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1
Abstract

In Reinforcement learning the updating of the value functions determines the in-
formation spreading across the state/state-action space which condenses the value-
based control policy. It is important to have an information propagation across the
value domain in a manner that is effective. Two common ways to update the value
function is Monte-Carlo updating and temporal difference updating. They are two
extreme cases opposite of another. Monte-Carlo updates in episodic manner where
fully played out episodes are used to collect the environment responses and rewards.
The value function gets updated at the end of every episode. Monte-Carlo updating
needs a large amount of episodes and time steps to converge to an accurate result
which is of course a downside. However, the positive is that it will be an unbiased
approximation of the value function. In circumstances like simulations and small
real world problems it can be applied successfully. However, for larger problems
it will cause problems regarding learning time and computer power. On the other
hand, by use of temporal difference updating one can in some cases achieve a more
effective spreading of information across the value domain. It uses, in contrary to
Monte-Carlo update, an incremental update at every time step with the newest in-
formation together with an approximation of the expected total discounted accu-
mulated reward for the rest of the episode. In this way the agent learns at every
time-step. This leads to a more effective updating of the Q-value function. However
the downside is that it introduces biases due to the approximation. Another draw-
back is that the algorithm only passes information one time step backward in time.
By combining Monte-Carlo and Temporal-Difference update the best of the two can
be exploited. A popular way to do that is by weighting the importance of the two.
The method is called T D(λ ) where the λ variable is a tuning parameter "how much
to trust the long term update vs. the step wise update. T D(λ = 0) takes one step
in the environment, bootstrapping the rest and updates. T D(λ = 1) updates with
received rewards and hence it does not make use of any approximation. A value
of λ in between is weighting the importance of the two. The optimal choice of λ

depends on the specific situation and is dependant on many factors both from the
environment and the control problem itself. This thesis proposes an idea to intelli-
gently choose a proper value for λ dynamically together with choosing the values

3



Chapter 1. Abstract

of other hyper parameters used in the reinforcement learning strategy. The main
idea is to use a dropout technique as an inferential prediction for the uncertainty in
the system. High inferential uncertainty reflects a less trustworthy Q-value function
and tuning parameters can be chosen accordingly. In situations where information
has propagated throughout the network and bounds the inferential uncertainty for
example a lower value of λ and ε (exploit versus explore parameter) can hopefully
be used advantageously.
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3
Introduction

Reinforcement learning is a branch within artificial intelligence and machine learn-
ing. Its main idea is to learn via trial and error. An example could be a robot, a so
called agent, with the ability to sense and act in its environment. In the environment
the agent receives rewards based on its actions and a predetermined reward function.
The goal is to maximize the total discounted accumulated reward along the agent’s
trajectory and is achieved by trial and error. The reinforcement learning method
can be applied to many problems and in many situations, e.g. self-playing com-
puter programs within the gaming industry and for controlling systems where it is
otherwise difficult with other classical control algorithms. However, reinforcement
learning faces many difficulties regarding learning time, state space and control
space dimensions. In practical scenarios this could be more or less unmanageable.
The reinforcement learning technique often utilizes neural networks for modeling
the so called Q-value function in the reinforcement learning structure. In order to
have an efficient learning algorithm it is important to have fine tuned hyper param-
eters within the learning algorithm. The optimal choice for these parameters differs
for every system and situation and they also depend deeply on the uncertainties
within the process and model. Knowledge of system uncertainties is also of great
value when to make decisions that could be of higher priorities or importance. De-
veloping a method for modeling uncertainties within the system and based on this
information choose optimal hyper parameters is the scope of this thesis.
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4
Background

An important factor for all learning is the ability to estimate our own level of skill.
Knowing that you may not be the best in for example bicycling, dancing or any
other task you may think of, the very first time you do it. This self-awareness leads
us in the learning process. It is a guide telling us when to thrust our already gained
knowledge and use it, or to try out new things to correct for the mistakes. In artificial
intelligence, a sort of guidance in the learning process could be the "awareness" of
uncertainties within the system. Noise, randomness, learning time are examples of
factors effecting the system uncertainties. Learning algorithms including some sort
of estimation mechanism for the system uncertainties would therefore be benefi-
cial. The system in this case is the neural network, in conjunction with the physical
system using the reinforcement learning technique. The estimation is done using
dropouts for all neural network layers except the last layer. Estimation by feed for-
warding the network a number of times using randomized dropouts produces a pre-
diction distribution with a mean value and its associated variance.
A normalized version of the variance is used to tune a weighting factor in the rein-
forcement learning technique to achieve faster learning.
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5
Programming language,
tools and packages

All coding is done in Python programming language version: Python 3.5. Program-
ming editor: Pycharm from Jetbrain [7]. Used Python packages:

• tensorflow [8]

• numpy [9]

• OpenAIGym [10]

• matplotlib [11]

Results based from OpenAIGym environment:

• CartPole-v0 [12], see fig. 8.21.
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6
Theory

6.1 Reinforcement learning

Reinforcement learning is a branch within artificial intelligence and machine learn-
ing. The idea is to learn by trial and error. Usually the so called agent tries different
things in its environment, receives rewards either directly or delayed which is a
measurement of how good its actions have been. The agent then learns to take the
best actions to maximize the rewards. There are many ways to implement an rein-
forcement algorithm which we shall discuss in this section.

The Bellman equation
The reinforcement learning method is based on solving the so called Bellman equa-
tion. eq. (6.1). The basic idea is to have a value function that describes how good it
is to be in a specific state and to take a specific action in that state. Such a function
could be used as a guide to take the best action in every state. An example could
be a robot avoiding an obstacle by taking an appropriate action and receiving a re-
ward for that action. This function, often denoted the Q-value function or in short
the Q-function, is solved for in an iterative manner while the agent is interacting in
its environment. In order to solve the Q-function in the whole state-action space,
the agent must be testing different actions in the environment. This is often done
to some degree by letting it randomly acting in the environment. A technique often
used is the ε-greedy [1], which is a control policy where the agent is taking random
action with a probability of ε , and takes the best action according to the Q-function,
for the rest.

Monte Carlo sampling.
In reinforcement learning the Bellman equation is solved by letting the agent take
a sequence of actions for either a predetermined number of steps or for an undeter-
mined number of time steps. Monte-Carlo sampling [1] or in short MC-sampling,
makes use of undetermined number of time steps, or until reached episode termi-
nation before update of the Q-function is done. Rewards along the trajectories are
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6.1 Reinforcement learning

Equation 6.1 Bellman equation for the evolution of the Q-value function, where s,a
is the current state and action, respectively, whereas s′,a′ represent the next state and
action, γ is the discount factor, and r is the received reward for action a in states. E
meaning the expectation value of the Q-function.

E{Q(s,a)}= E{rt+1 + γQ(s′,a′)} (6.1)

summed with a discount factor γ , see eq. (6.2). The GMC is then used for iterative
update of the Q-function. see eq. (6.3).

Equation 6.2 Monte-Carlo target.

GMC(t+1) = rt+1 + γrt+2 + γ
2rt+3 + ...+ γ

(end−1)rend (6.2)

Equation 6.3 Q-function at a state-action pair updates with learning rate α every
time that state-action pair is being visited.

Q(s,a)← Q(s,a)+α(GMC−Q(s,a)) (6.3)

By solving the Bellman equation using Monte-Carlo sampling for the target,
one gets an unbiased, converging estimate for the Q function. However, it suffers
from high variance from stochasticity along the many state transitions [1]. A big
disadvantage with Monte-Carlo sampling is that it takes a relative large amount of
time steps in order to converge to an accurate approximation of the true Q func-
tion which can be unfeasible for real-world systems. Monte-Carlo sampling is also
restricted to episodic tasks, meaning that the game or task must be terminated be-
fore the update process can be carried out, which causes problems, because not all
learning processes posses this episodic nature.

Temporal difference approximation.
Another way to compute the target is to take one action and receive a reward for that
action, and then approximate the value of the state using Q as an estimate for the
expected discounted accumulated reward for rest of the trajectory. The approxima-
tion is called bootstrapping and is just the value of the Q-function in the next state
after the transition. The value of the Q-function at this state depends on the chosen
action at that state. If the action that maximizes the Q-function is used, it is the so
called Q-learning algorithm [1], see eq. (6.4).
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Chapter 6. Theory

Equation 6.4 Target for Q-learning algorithm.

G = rt+1 +maxa′Q(s′,a′) (6.4)

T D(λ )

The T D(λ ) [1] uses a weighted sum of all n-step returns as a target for updating the
Q-values, see eq. (6.5) and eq. (6.6). This gives the advantage of utilizing a mix of
Monte-Carlo sampling and Temporal-difference approximation. In some situations,
for example where the Q-functions is well known, it could be beneficial to use more
of Temporal-difference updating, and likewise for situations where the Q-function
is less known, it could be more useful to trust more on the Monte-Carlo strategy.
T D(λ ) gives the possibility of blending the two techniques.

Equation 6.5 n-step return Gn.

Gn = rt+1 + γrt+2 + ...+ γ
n−1rt+n + γ

nmaxa′Q(s′,a′) (6.5)

Equation 6.6 Gλ return. Where Gn is the n-step return, and λ , is the weighting
factor that controls the contribution of each n-step return.

Gλ = (1−λ )
∞

∑
n

λ
n−1Gn (6.6)

Reinforcement learning using tables
In smaller problems with finite and not too large numbers of state-action pairs one
can use a table to represent the Q-value function. Hence the Q-function hence has
the dimension [observable states× number of actions]. Equation (6.3) and eq. (6.7)
show how the Q-function is updated. The parameter α is the so called learning rate
which determines how much to update in the direction of the return.

Equation 6.7 Q-learning update with learning rate α and discount factor γ

Q(s,a)← Q(s,a)+α
(
rt+1 + γQ(s′,a′max)−Q(s,a)

)
(6.7)

14



6.2 Upscaling using Neural networks

6.2 Upscaling using Neural networks

Deep networks
In large problems, use of tables to represent the Q-function will cause problems
because these tables will quickly grow to extremely large sizes when used to de-
scribe real and practical systems. Neural networks are general function approxima-
tors [2] and could therefore be used in reinforcement learning problems to model the
complex Q-function where Q-tables otherwise would be of extensive unmanageable
sizes. The approach is to have all states needed to represent a Markov process (or at
least approximate a Markov process) together with the available actions as inputs to
the neural network. The output is in this case a single scalar value to represent the
Q-value for that state. This reduces the extremely large Q-tables to a set of fewer
parameters namely the weights of the neural network to describe the Q-function.

Optimizers and stochastic training
The learning process of neural network is to update the weights in the direction
which minimizes a certain cost function. The simplest way of doing this is using the
vanilla Gradient descent optimizer [5] to find the direction of the weight updates.
However, the gradient decent method is a rather slow method to find optima and
therefore more advanced methods have been developed to make more effective op-
timizers, like the Adam-optimizer and the RMS-prop optimizer which make use of
information from prior steps. They are so called momentum optimizers [4]. Stochas-
tic batch update is yet another technique in the optimizing process and is used to
reduce the computations cost and to get more stable weight updates. It works by
having the neural network not learn from all data points but instead from a random
set of data points at every iteration. Stochastic batch updates converge to at least
local minima as well as learning from all data points.

Q-learning algorithm with neural networks
The Q-learning algorithm, see eq. (6.7), uses an approximation of the future dis-
counted accumulated rewards in order to have a value to update the Q-function at
every iteration [1]. The update is also off-policy due to the bootstrapping is based
on the action that gives maximum expected reward and not by following the control
policy itself, for example epsilon-greedy [1]. When modeling the Q-function by a
neural network one can not directly update a state-action pair like it is done in the
table case. Instead it is updated using the gradient of the loss function with a stored
batch of transitions, see eq. (6.8)

Monte-Carlo learning with neural networks
Monte-Carlo update with neural networks uses the same strategy as for Monte-
Carlo update with tables, i.e. by having an unbiased target to update against. Monte-
Carlo is playing out the whole episode and stores all rewards along the trajectory
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Chapter 6. Theory

Equation 6.8 Loss function L to minimize. ωn is a set of fix weights that get updated
in a predetermined number of iterations. ω are the current weights.

L(ω) =
1
2 ∑

batch
(rt+1 + γQ(s′,a′max,ωn)−Q(s,a,ω))2 (6.8)

and then update without any approximation. The learning is done by batch update
using a predetermined number of stored rewards and transitions sampled from the
experience memory, see eq. (6.9).

Equation 6.9 Loss function L with target GMC

L(ω) =
1
2 ∑

batch
(GMC−Q(s,a,ω))2 (6.9)

T D(λ ) algorithm with neural networks
The T D(λ ) uses a weighted sum of all n-step returns, see eq. (6.5) and eq. (6.6) as
a target for updating the Q-values.

Equation 6.10 Loss function L with target Gλ .

L(ω) =
1
2 ∑

batch
(Gλ −Q(s,a,ω))2 (6.10)

Eligibility traces
The drawback of using T D(λ ) is that even if the information is available it will
not be used until after the full episode is played out. It would be more far more
efficient to make use of the newest information and train the network at every time
step. Eligibility traces solve this problem and it can be shown to be approximately
mathematically equivalent to the T D(λ ) algorithm with the crucial difference that
it is updating the value function at every time-step [1]. The idea is to update the
network at every visited state-action pair in proportion to the so called TD-error
for the current state-action pair. This is done using saved gradients at every visited
state, and letting them exponentially decay by the factor λγ , see eqs.(6.11-6.13).
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6.2 Upscaling using Neural networks

Equation 6.11 TD-error

δ = r+ γQ(s′,a′)−Q(s,a) (6.11)

Equation 6.12 Eligibility trace, where ∇ω Q(s,a,ω) is the gradient of the Q-
function at s,a with respect to the network weights.

Et+1 = λγEt +∇ω Q(s,a,ω) (6.12)

Equation 6.13 Weight update with eligibility trace

ω ← ω +αδE (6.13)
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7
Method

7.1 Limitations

For this thesis, investigations and testing of how varying λ based on the system
variance affects the learning algorithm performance. At every iteration, the weights
are updated for the latest visited state, i.e. no batch update is used. All results are
based on the OpenAIGym game: CartPole-v0 [12].

7.2 Uncertainties

Noise in the process along with noise and errors related to updating and training
the neural network model will introduce errors and uncertainties in the system. It is
important to be able to estimate these uncertainties for many reasons. Knowledge
about the system uncertainty can make the learning process more efficient. It can
also be used to decide how much to explore versus exploit in the learning process.
Every system has its own inherent noise due to stochastic mechanisms in the envi-
ronment and hence the Q-value function is described as an expectation value and
has its associated variance.

Modeling uncertainties with dropouts
Dropout is a technique often used to avoid overfitting when training neural net-
works [3]. This technique will in this case be used as an inference model to ap-
proximate the noise in the Q-function [6]. The network is trained in usual manner
with dropout. The network is then evaluated by making a predetermined number
of predictions of the Q value. Letting the Q-function predict the Q value for the
same state many times with random dropouts will be equivalent to do evaluations
by different networks with slightly different weights. This evaluation results in a
prediction distribution over the values which tells something about the uncertain-
ties in the system. Low variance in the Q value predictions, presumably reflects low
level of uncertainties in the system. It also means that the network weights have
been updated in such a way that the network is robust to slight changes in the input
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7.3 Normalized variance

space. This occur when training on consistent data with low noise levels. However,
a lot of factors affect the Q-value prediction distribution and variance other than just
the stochasticity and noise in the training data. In the result section figures reflect
the effect of these factors, see list below.

• Weight initialization

• Input value to network

• Magnitude of Q-value to predict

• Number of training iterations

• Denseness of data points

• Noise and stochasticity in rewards

• Dropout percentage

• λ value (Higher variance in the rewards for longer trajectories.)

• Number of evaluations (to get a statistically satisfying approximation)

• Possible others

Understanding the impact of every factor on the variance is crucial in order to
make use of the information about the uncertainty. In order to visualize the effects
of these factors on the predicted variance for the system, a 2D regression problem
is constructed which makes it possible to plot the variance for the states.

7.3 Normalized variance

Using a normalization of the variance reduces the correlation between input value
and prediction as well as the correlation between magnitude of Q-value and predic-
tion. This can be seen in figs.(8.5-8.8). However, this will not work for all systems.
If the mean value of the predictions is << 1 problems can arise regarding division
by a small number close to 0 in the variance computations which causes variance
explosion. This problem needs to be addressed in order use the normalized variance
as a measure of the Q-function quality.

Equation 7.1 Normalized variance. x is predicted value, µ is the expectation value.

σ
2
normalized =

1
n ∑((x−µ)/µ)2 (7.1)
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Chapter 7. Method

The variance explosion problem is in this case addressed by replacing the divi-
sion by µ in eq. (7.1) by 1 if |µ| is less than 1. There are other ways of doing this,
i.e. normalizing the variance using

√
1+µ2. The first one is chosen for simplicity.

7.4 How to choose λ

If we predict high uncertainties in the Q-value function i.e., the dropout evaluation
method infers high variance, the algorithm weights the importance of the unbiased
Monte-Carlo updating method higher while for lower variance the algorithm uti-
lizes to greater extent to the temporal difference method. The idea of this approach
is, that for systems with high uncertainties, the best guess for the Q-value would
be of less biased character. Even if this choice is suffering from high variance for
the reward return, its mean return is presumably closer to the true value than if a
biased Temporal-difference approximation is used. When the Q-function begins to
represent the true reward returns more accurately, the update relies more on the
nearby Q-values as an approximation for the rest of the trajectory, in order to tune
the Q-function. In this example of the inverted pendulum, the λ value is fitted for
the specific typical variance for the system which is in this case measured before-
hand. This means that a low typical system variance yields λ values close to zero
while high typical system variance results in λ values closer to 1. A linear mapping
for λ is done for system variances in between. Also a moving average filter for λ

is used to decrease the effects of fluctuations in the variance approximation and to
avoid updating cutoffs that can occur if λ rapidly switches from 1 to 0 and cutting
off the gradients to be carried throughout the eligibility trace.
The eligibility trace method inherently correlates λ to weight update step length.
This is due to the trace built up from previous steps leading to greater weight up-
dates with greater values of λ . Therefore a normalized version of the eligibility
trace is used at every update step along with the TD error and learning rate α , see
Algorithm 1 below. This will decouple the dependence between λ and step length
and it will also reduce the risk of overshooting minima in the loss function. This is
further reduced by letting the learning rate α decrease exponentially.

20



7.5 Network structure

Algorithm 1
initialization:
while episode not terminated do

Take action a according to ε-greedy
compute: ∇ω Q(s,a,ω), δ , λ , v (normalized variance)
E = λγE +∇ω Q(s,a,ω)

E
′
= E/norm(E)

ω ← ω +αδE
′

ε ← εdecay × ε

t ← t +1
end

7.5 Network structure

Two different network structures are chosen: one for the regression problem and
one for the reinforcement learning problem.
The regression network has one input neuron and five fully connected hidden layers
with size of 100 neurons with ReLu activation functions, where the Q-function net-
work has five input neurons and three fully connected hidden with size 100 neurons
with ReLu activation functions. The output layers have the dimension of a scalar
for prediction of the y-coordinate value for the regression problem and the Q-value
for the reinforcement learning problem. Both networks are trained using dropouts
in each hidden layer.
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8
Results

Results are presented as figures together with explanatory text. In the testing pro-
cedure analysis was made for how the factors in section 7.2 affect the variance.
For demonstration and visualization a regression problem was implemented. A 2-D
visualization can be seen in figs.(8.1-8.2). For the evaluation of the reinforcement
learning algorithms, the environment CartPole-v0 [12] was used, see fig. 8.21.

In the process of testing the different reinforcement-learning algorithms outliers
were present in every method. In these cases the performance went down to a level
compared to not learning at all. This occurred approximately 20% of all evaluating
runs. They were removed as outliers and are not part of the presented results. For
every run of a learning algorithm its corresponding network weights were randomly
initialized. This caused slightly different predictions of the Q values and hence cause
different initial variance. This can be seen in fig. 8.3 and fig. 8.4.

Network input and the magnitude of the value to predict is correlated to the
variance in the network predictions which can be seen in figs.(8.5-8.8). In order to
decouple or reduce the impact of input and magnitude on the variance, a normalized
variance is used, see eq. (7.1).

The variance and normalized variance is dependant on number of training steps
performed on the network which can be seen in fig. 8.9, and fig. 8.10.

The amount of data the network is trained on is of great importance and therefore
the denseness of data points has an impact on the normalize variance, see fig. 8.11.

If the network trains with noisy data the normalized prediction variance in-
creases in most cases. There are situations where noisy data can cause less vari-
ance which are in those situations where the Q-function is complex. The result is a
smoothness effect which leads to less variance, see fig. 8.12.

A factor that highly effects the variance is the dropout percentage in the layers
of the network, see fig. 8.13.

In figs.(8.14-8.15) the learning curve is shown for the inverted pendulum, using
Eligibility Traces with λ = 0, and λ = 1 respectively. In fig. 8.16 the performance
of the normalized-variance based λ is presented. The variation of the λ during the
learning can be seen in fig. 8.17. The variation of λ is correlated to abrupt changes
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Chapter 8. Results

in the state space, this is shown in fig. 8.18. Comparison between fix λ -values and
the variance-based λ method is presented in fig. 8.19.
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Chapter 8. Results

Figure 8.1 Network prediction distribution of a cosine function. Network has
trained for 100 training steps.

Figure 8.2 Network prediction distribution of a cosine function. Network has
trained for 10000 training steps.
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Chapter 8. Results

Figure 8.3 Weight initialization. Compare fig.(8.4) for slightly different prediction
distribution. The thick and slightly curled line is here the cosine curve overlayed as
a reference.

Figure 8.4 Weight initialization. Compare fig.(8.3) for slightly different prediction
distribution. The thick and slightly curled line is here the cosine curve overlayed as
a reference.
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Figure 8.5 Variance for state predictions for a regression problem. Given x-
coordinates the y-value is to be predicted for a cosine curve. The network is untrained
for the problem. Value of input and prediction is strongly correlated. The thick and
slightly curled line is here the cosine curve overlayed as a reference.
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Figure 8.6 Normalized variance for state predictions for a regression problem.
Given x-coordinates the y-value is to be predicted for a cosine curve which is here
overlayed as a reference. The network is untrained for the problem. No correlation
between input and prediction can be seen.
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Figure 8.7 Compared prediction variance for cosx+ 2 (solid line), 10 ∗ (cosx+
2) (dashed line). This shows that the magnitude of the value to predict is strongly
correlated to the variance.
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Figure 8.8 Compared normalized prediction variance for cosx+2 (solid line), 10∗
(cosx+ 2) (dashed line). This shows that the normalized variance is not correlated
to the magnitude of value to predict. The periodic nature of the normalized variance
reflects the network’s uneven performance in predicting the function.
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Figure 8.9 Compared variance for prediction of cosx+ 2. Network trained 1000
times (dashed line), network trained 10000 times (solid line).
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Figure 8.10 Compared n variance for prediction of cosx+2. Network trained 1000
times (dashed line), network trained 10000 times (solid line).
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Figure 8.11 Compared normalized variance, network trained with denser points
(solid line), network trained with 50 percent denseness (dashed line). Generally
denser points yield less variance except for in some cases where the function is com-
plex and fewer points smooth out the complexity.
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Figure 8.12 Compared normalized variance. Network trained with noise twice the
magnitude (dashed line) of the solid line.
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Figure 8.13 Compared normalized variance, network trained with dropout rate of
0.01 (solid line), network trained with dropout rate of 0.02 (dashed line)
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Figure 8.14 Reward history for eligibility trace using λ = 0. Dashed line is moving
average using the rewards from the 100 latest episodes.

Figure 8.15 Reward history for eligibility trace using λ = 1. Dashed line is moving
average using the rewards from the 100 latest episodes.

31



Chapter 8. Results

0 10000 20000 30000 40000 50000
time steps

0

20

40

60

80

100

120

re
wa

rd
s/

ep
iso

de
Reward history - Eligibility trace

Figure 8.16 Reward history for eligibility trace using normalized variance-based
λ . Dashed line is moving average using the rewards from the 100 latest episode.s

Figure 8.17 Variation of λ , using the variance-based λ learning algorithm.
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Figure 8.18 Variation of λ value. Spikes with value of 1 where the episode ends
by pendulum falling down, and spikes with value of 0.5 when the episode end by
reaching the maximum duration. When the episodes ends with the pendulum falling
down it seems that predicted normalized variance reaches a local maximum, and for
episodes ending by reaching maximum duration the variance seems to be unchanged.
The oscillating pattern is linked to abrupt changes in state-space, which occur when
the CartPole-v0 [12] game terminates by the pendulum falling down, resetting the
game and therefore changing the pendulum state from down position with high an-
gular velocity to top position with no angular velocity. The cause is presumable that
training on data in a subset of the state space causes a drift in the accuracy of the
Q-value predictions in the rest of the state space.
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Figure 8.19 Total rewards after a finite number of time steps for each method.
Dashed line represents the normalized variance-based λ method. Result presented is
the average of 10 method evaluations.

Figure 8.20 The box diagram shows how the total rewards are spread out for the
different methods. The fixed-λ method generally seems to have greater spread than
the variance-based λ method, resulting it to be a more robust method than the others.
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Figure 8.21 OpenAIGym game CartPole-v0 [12]. Control signal acts on the cart
(the base) which for this game environment could be either 0 or 1, representing a
discrete force on the cart in the leftmost direction and rightmost direction, respec-
tively. The measured states are cart position, cart velocity, angle and angle velocity
between the pendulum and the cart.
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9
Discussion

From the figures in the result section, correlation between variance and the learning
process is concluded. There are in most cases a direct relation between variance
and poorly trained networks. Using this methodology a variance-based λ method
is condensed. From figs.(8.3-8.13) conclusions can be made for how the variance
reflects a poorly trained network. Normalized variance seems to be higher in cases
where the network has been trained on noisy data, fewer and sparser data points and
low number of training iterations. This information is used as a guidance for the
tuning of λ . When comparing the normalized variance-based λ method to fixed-λ
methods, it seems that the performance of it is equivalent to the best tuned λ value,
see fig. 8.19. The reason for this could be that this method utilizes a better guess for
the Q-value when there are high uncertainties for its true value, while shifting to an
updating strategy that relies more on local Q-values yielding less variance, when the
Q-function is assumed to be a better approximation of the true nature of the system.
The learning curves for fixed-λ methods with λ = 0 and λ = 1, respectively, are
shown in figs.(8.14-8.16), in comparison to the learning curve for the normalized
variance-based λ method, see fig. 8.16.

In fig. 8.17. changes in λ during the learning are shown. It seems like λ is
changing periodically which reflect the specific nature of the pendulum. In the case
of the OpenAIGym Cartpole-v0 [12] an episode termination is represented either by
the pendulum falling down, or if it reaches maximum time duration. Variance seems
to be unaffected if the episode terminates by reaching the maximum time duration,
while reaching local maxim when episodes are terminated by falling down, see
fig. 8.18. The reason for this could be that when training on data that are consistent,
(pendulum in vicinity of the top position for most of the episode) together with
consistent Q-values the variance decreases, where for episode terminations where
the pendulum is falling down the abrupt changes in the state yield less consistent
data. The mechanism could be that the network is trained for a period of time on data
that lies is a subspace of the state space domain, (pendulum in top position with low
angular velocity) which causes the weights in the network to update in the manner
to minimize the loss function for those states while in some sense the weights get
altered for the other input values of the network, which results in a higher variance
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when the pendulum enters the region of states where it is less trained recently. If
this is the case, stochastic training could be used to break the asymmetric training.

For this setup, that is, the game environment, network structure, dropout rate
and system parameters, this method didn’t produce a more efficient learning pro-
cess, However, the performance of the method is equivalent to T D(λ ) with optimal
choice of λ , which is reflected in fig. 8.19. The variance-based λ method seems to
have less spread in the total rewards and is therefore a more robust method than for
fixed-λ methods, see fig. 8.20.

The nature of the reinforcement learning process is its convergence to the true
value function after a sufficient amount of iterations. This is extrapolated to that the
variance itself is a measure of the correctness of the value function. This however
may not generally be true and could be the reason that the method did not yield
better performance for this specific setup.
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10
Conclusion

This thesis proposes an idea to an intelligent way of weighting the importance and
tradeoffs between variance and biases in reinforcement learning using eligibility
traces. By approximating system variance with dropouts in the neural network a
measure of the quality of the Q-value function is determined.
The Quality of the neural network is a variable to choose the λ value in the update
process. Results show correlations between approximated system variance and dif-
ferent factors listed in the method section. In order to avoid the influence of certain
factors, a normalized variance is used. Testing and evaluation show that this prox-
imate measure of uncertainty in a system, and by use of this measure in the way
it is done at least for this specific setup is not leading to a more efficient learning
algorithm. However, it is more robust than the other methods and the performance
is equivalent to T D(λ ) with optimal choice of λ .

10.1 Future work

Further investigations could be useful to study, such as implementing algorithms
that use experience replay [1]. Hopefully this could be a solution to small fluctua-
tions in λ as mentioned in the discussion chapter. Various types of network struc-
tures and dropout rates could be important to investigate in order to understand the
impact that those factors have on the variance estimation. This thesis is limited to
tuning λ , whereas other hyper-parameters, ε , α , γ is not included. They are likely
to be just as important to do further research upon.
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