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Abstract

While many crystals, both natural and artificial, grow isotropically, there are examples of crys-
tals growing anisotropically. The aim of this theoretical study was to confirm the growth modes
displayed by three different crystals, representing 3D, 2D and 1D structures. This was done by
using energetic calculations with both molecular mechanics, with ReaxFFSiO as the force field,
and semi-empirical methods, with PM6 as the method. To start with, the 3D structure was
represented by CaO, and both the ReaxFFSiO and PM6 results confirmed the isotropic growth
mode of this rock salt structure. As for the 2D structure, nanoplatelets of calcium silicate
hydrate (C-S-H), which make up the bulk phase in concrete, were investigated. These were
modelled as C-S-H clusters with approximate cylinder shapes and adjustable chemical bonds
and compositions. The ReaxFFSiO calculations showed that the energetic gain was higher when
the radius was increased than when the height was increased. This was in agreement with the
platelet shape of real C-S-H nanoparticles. However, the high computational costs of semi-
empirical methods meant that the PM6 results did not represent a large enough cylinder size
span to confirm the ReaxFFSiO results. Lastly, the 1D structure was represented in the form of
calcium oxalate monohydrate (COM), which may form elongated shapes such as raphides and
styloids. Due to the ReaxFFSiO force field not being optimized for COM crystals, only PM6
calculations were performed. However, the computational demands of semi-empirical methods
again limited the number of PM6 data points considerably. Therefore, it could not be concluded
if the 1D growth mode was the most energetically favourable.

Keywords: anisotropic crystal growth, COM, C-S-H, PM6, ReaxFFSiO
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1 Introduction

1.1 Background and objective

It is a well known fact that crystals can adapt various shapes. For instance, whereas some
crystals grow to isotopic shapes, others grow anisotropically. These shapes are exemplified in
everything from NaCl or diamond (isotropic) to platelet-shaped concrete nanoparticles [1] or
needle-shaped raphides (anisotropic), which are found in plants [2]. Furthermore, crystals do
not grow indefinitely, and there is a wide size span, ranging from the nanometre scale via µm
and mm to very large crystals with sizes in the order of meters. For example, the dominant
sizes of some plagioclase crystal samples from Makaopuhi lava lake, Kilauea Volcano, Hawaii are
around a few tens of µm [3], Antarctic ice crystals with dimensions in the order of a few mm2

have been discovered hundreds of meters down into the dome C ice core [4], while the raphides
grow to lengths of tens of µm [5]. On a much larger scale, gypsum crystals with lengths of up
to 12 m in the Naica mine in Mexico have been discovered [6].

Figure 1: Gypsum crystals of the Naica cave, Chihuahua, Mexiko [7].

For many inorganic crystals grown from solution, the degree of supersaturation, the driving
force for growth, is controlled by programming the temperature [8]. When it comes to protein
crystal growth, the supersaturation is regulated by adding components which lower the solubil-
ity and/or by removing solvent [8]. As for crystals grown from melt, the growth rate is usually
regulated by the heat flow [9]. In for instance the Czochralski method, where the crystal seed
is slowly drawn from the melt, the heat flow is determined by, among others, the design of the
crystal puller the amount of power supplied to the melt [9].

When it comes to analysing crystal structures on the atomistic level, powder diffraction ex-
periments with X-rays and neutrons are very useful. Though X-ray diffraction experiments can
probe size dimensions as low as 1-10 Å, neutron diffraction can reach even lower sizes at around
0.1 Å. The scattering intensity of X-rays is larger for heavier elements (Hg) than for lighter
ones (O or H, for example), while neutrons offer significantly large scattering intensities for H.
[10]

Impurities in a crystal grown from solution may stem from lattice substitution, for example.
This can occur if the molecular structures of the impurity and crystal solute are similar. Lat-
tice substitution is the reason why impurities of L-leucine, L-valine or α-amino butyric acid
are incorporated into L-isoleucine crystals. Therefore, the crystal purity can be regulated by
manipulating the solubilities of the crystal solute and impurity, In the case of amino acids, this
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involves tuning the pH, temperature and electrolyte or co-solvent concentrations. [11]

Another example of the need to remove crystal impurities is in the synthesis of diamonds.
Nitrogen impurities are the most common impurities, and they may stem from the solvent
metal or carbon source material used during the synthesis. The concentration of nitrogen im-
purities is reduced by adding a nitrogen getter (Al or Ti, for instance) to the solvent metal,
though this promotes incorporation of metal impurities into the diamond crystal. In order to
limit the inclusion of metal impurities, the growth rate of the diamond crystal must be lower
compared to the growth rate when a nitrogen getter is not used. This may be achieved via
the temperature gradient method, where for example the temperature difference between the
carbon source and the seed crystal may be controlled. [12]

Yet another example where crystal purity is desired is in the electronics industry, where high-
purity silicon is used for computer chips [13] and solar cells [14], among others. The Siemens
process is the traditional purification scheme, and it starts off with metallurgical silicon as the
raw material [14]. This is hydrochlorinated to form trichlorosilane, which is then purified via
distillation and decomposed to form purified silicon [14]. Crystal growth is relevant not only
for physical chemistry, but also physics, materials science and geophysics [15]. Furthermore,
the research during recent times has increasingly been shifting focus to a microscopic view of
crystal growth [16]. In this study, the nanometre scale will be relevant, and the anisotropy in
the crystal qrowth can be used for synthesising anisotropic nanoparticles and colloidal building
blocks [17]. Examples of methods within this industrial branch are emulsion drying, surface
templating and the synthesis of metal nanoparticles from plant extracts, fungi and viruses [17].
Consequently, the industrial potential of creating very small structures with defined shapes is
another reason to study anisotropic growth [17].

The anisotropic growth is of interest in this study: what is the driving force for anisotropic
growth and how should it be modelled theoretically? This study will focus on the bulk phase
of concrete, calcium silicate hydrate (C-S-H), where the nanoparticles form platelets [1, 18], as
earlier mentioned. Additionally, the anisotropic growth of elongated crystals of calcium oxalate
monohydrate (COM), raphides and also styloids [2], will be studied. Gaining insight into the
driving force for anisotropic growth will help shed light on why some crystals, both natural and
artificial, grow anisotropically.

1.2 Methods for growing crystals

Growing crystals is a very complicated procedure with many different parameters to consider.
One way of doing so is via the earlier mentioned Czochralski method, in which the crystal seed
is slowly drawn vertically from the melt in a heated crucible. The seed rotates slowly, in order
to counteract any circular asymmetries in the heating field. With this method, it is possible
to obtain crystal with very directional shapes. Another melt growth method is the Bridgman
technique, where the sample is melted in a furnace and then slowly lowered from it while being
kept in a container. As the lower region of the container becomes cold enough, the sample
crystallises, though it is impossible to control the direction of growth. [9]

If crystals cannot be grown from the melt, solution growth methods are available. It might
be that the molecules decompose below the melting point, or the crystal structure might be
disrupted by a phase transition as it is cooled below the melting point to room temperature.
For example, the crystals can be grown from a spinning seed in an aqueous solution that is
under continuous stirring. However, it can take weeks to grow crystals of appreciable size. [9]
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An alternative solution growth method is the hydrothermal method, where the solvent con-
sists of high-temperature water vapour instead. Usually, the seed is placed in the higher part
of an autoclave, while the feeding material is found in the lower part of the autoclave, which
is kept at a higher temperature. When water is added into the lower part of the autoclave,
superheated steam forms that allows the feeding material to convect to the seed. Again, it can
take several weeks to grow crystals. Quartz crystals are grown in this way, since it undergoes a
phase transition at roughly 580oC. It is also believed that natural crystals of various minerals,
including quartz, have grown under the surface of the earth in similar conditions. [9]

Figure 2: A quartz crystal from Tibet [19].

1.3 Parameters and models for crystal growth

Various factors govern the crystal growth including, for instance, the type of medium in which
the crystal is suspended (melt, solution, vapor), growth rate and growth mode [20]. Examples
of growth modes are layer-by-layer, where one layer is finished before the next is started, or
three-dimensional growth, where several layers grow at the same time [20]. Another point of
relevance is that although crystal growth is intrinsically a non-equilibrium process, local equi-
librium can be assumed [16].

In transformation-rate-limited growth, the growth rate is limited by the rate of the atomic
processes. This is the case in solution growth methods, where it is difficult to create local
supersaturation high enough around the seed to promote layer growth at an appreciable rate,
or glass crystallisation, where the atoms and molecules are not very mobile. There are also
examples of thermally limited growth, where the rate of crystallization is limited by the heat
flow. Here, the heat conducted via the crystal to the interface and the heat expelled by the
crystals as they are crystallised must be carried away from the solid-liquid interface. This heat
flow is used in both the Czochralski and Bridgman techniques in order to control the growth
process. The crystal is kept at a lower temperature than the liquid via the heaters, and the
rate at which the crystal is lowered out of the Bridgman furnace or drawn from the melt in the
Czochralski case is carefully controlled. [9]

The growth rate can mathematically be expressed as the following product:

v = aν+fµk (1)

where a is related to the dimensions of the growing unit, ν+ is the frequency of atoms entering
active growth sites and f is the fraction of active grown sites out of the interface sites; it reflects
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the roughness of the surface. Therefore, a higher roughness serves to increase the growth rate.
Finally, µk represents the driving force provided by the chemical potential difference between
the two phases at the interface. [9]

There is the possibility of dendritic growth, or tree-like growth. This occurs when the kinetics
at the interface are so fast that it is not stable to have a planar growth front. Consequently, the
random motions of diffusing atoms and molecules arriving at the interface dictate the growth
shape. These conditions may occur, for instance, if a melt is cooled to well below its freezing
point - supercooled. [9]

Figure 3: A dendritic crystal of silver as a mineral, the black colour comes from slightly oxidized
silver [21].

Figure 4: Snowflake - another example of a dendritic crystal shape [22].

Furthermore, different types of models can be used to describe crystal growth, including ge-
ometric models for describing interfacial growth velocities unaffected by long-range influences.
As for rough surfaces, non-geometric models are preferable. [15]

If the surrounding medium is a melt, then a phase field model can be used, where a thin
interface separates the solid crystal phase from the the liquid phase [23]. Here, the parameter
φ is called the phase field and changes over the interface from 0 for a bulk solid to 1 for a liquid
[23]. However, the atomic picture of crystal growth is disregarded in favour of field values such
as temperature and concentration [23]. This model, which also allows dendritic growth to be
simulated by incorporating interfacial anisotropy, has acquired popularity over the past years
[24].
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The important point is that crystals can grow in 3D, 2D and 1D, and the growth mode depends
on the crystal system. This is exemplified in CaO (3D growth), C-S-H (2D growth) and raphides
and styloids (1D growth), the three systems to be investigated in this study. Now, background
theory for these systems will be provided.

1.4 CaO (3D growth)

The first system to be studied in this project is that of CaO, an alkaline earth oxide [25]. This
system crystallises in the cubic rock salt structure [25], with a lattice constant of 4.808 Å [26].
Since the CaO system grows isotropically [25], this study seeks to confirm this. This will be
done by analysing the energy as a function of the CaO crystal size, which will be done for
growth in 3D, 2D and 1D.

1.5 Concrete/C-S-H (2D growth)

1.5.1 General characteristics of concrete

Concrete consists of a mixture of aggregates (sand, gravel or crushed stone), Portland cement
and water. When the Portland cement is mixed with water, a chemical reaction known a hy-
dration gives rise to the characteristically hard structure of concrete. During the hydration,
the water and Portland cement coat the aggregates. Therefore, the type and size of the aggre-
gates dictate what kind of construction the concrete will be used for. The aggregates usually
make up about 60-75 % of the volume, the water 15-20 % and the Portland cement 10-15 %.
Furthermore, entrained air in the porous spaces may occupy 5-8 % of the volume. [27]

1.5.2 Preparation and composition of Portland cement

In order to manufacture the Portland cement, raw materials such as limestone and clay are first
quarried, since they contain the main components Ca, Si and Al. These rocks are then crushed,
mixed with other miscellaneous ingredients and then heated to 1480 oC in a kiln, forming clink-
ers. After the clinkers are cooled, they are grinded and mixed with gypsum and limestone,
finally forming Portland cement. [28]

The main components in Portland cement are CaO, SiO2, Al2O3 and Fe2O3, with typical
compositions around 60 weight%, 20 weight%, 4.5 weight% and 3 weight%, respectively [29].
In order to simplify the element description in cement chemistry, the cement chemist notation
(CCN) is used [18, 30]. For instance, CaO is denoted C, SiO2 is denoted S, H2O is denoted H
and Al2O3 is denoted A [18, 30]. This greatly simplifies the denotions of the main compounds
of Portland cement, which are shown in Table 1 [18, 30].

Table 1: Main compounds in Portland cement [18, 30].

Name of compound Chemical formula CCN

Tricalcium silicate 3CaO · SiO2 C3S

Dicalcium silicate 2CaO · SiO2 C2S

Tricalcium aluminate 3CaO · Al2O3 C3A

Tetracalcium Alumino-ferrite 4CaO · Al2O3 · Fe2O3 C3AF
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1.5.3 Structure of the C-S-H phase

Calcium-silicate-hydrate (C-S-H) makes up the bulk phase of hydrated cement, and it resembles
a structure of tightly packed powder grains on the nanometer scale [31]. The hardness of concrete
comes from the hydration, when cement powder is mixed with water, and subsequent setting of
the C-S-H phase [31]. During the precipitation, C-S-H forms particles on the nanometre scale
with polydisperse character, which results in a large variety of local densities [31]. Therefore,
the C-S-H phase displays a high degree of disorder [31]. It is known that the nanoparticles
display anisotropic growth, forming nanoplatelets with typical dimensions around 50 nm × 30
nm × 5 nm (the C-S-H nanoplatelets do not have very circular shapes) [1].

Figure 5: A microscopic view of the C-S-H phase [32].

The disordered atomic structure of C-S-H is not known exactly [33], and it is difficult to
study experimentally [33, 34]. Therefore, it is not possible to find a clearly defined unit cell for
the C-S-H phase; it cannot be modelled as a periodic structure. Nevertheless, XRD patterns
of C-S-H in Portland cement carry close resemblance to tobermorite (C/S ratio ∼ 0.8) [33, 34],
even though the C/S ratio in hydrated Portland cement is usually around 1.7 [33].

In order to simulate the disordered nature of the C-S-H phase, one study has proposed three
different models based on the tobermorite 11 Å structure (Figure 6). All the models start off
with the tobermorite 11 Å structure specified by Merlino S et. al. [35], and the following pro-
cedures were then done in order to obtain the unit cells for each model:

Model 1: The unit cell is a 3x4x1 supercell of tobermorite 11 Å, where silica monomers were
randomly removed from Si2 sites (figure 6). Ca atoms were added into the interlayer in order
to obtain a C/S ratio close to 1.67.

Model 2: The unit cell is a 3x5x1 supercell of tobermorite 11 Å, where four consecutive silica
chains at the Si2-Si1-Si3-Si2 positions were randomly removed (Figure 6). Ca atoms were then
removed in order to adjust the C/S ratio to 1.67.

Model 3: The unit cell is a 3x5x1 supercell of tobermorite 11 Å, where Si atoms were ran-
domly removed irrespective of atomic position.
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Figure 6: The ideal tobermorite 11 Å structure is shown in the upper picture. In the lower
picture, dimeric silicate units (Si1, Si3), bridging silicate units (Si2) and oxygen (O5) etc. have
been zoomed in on. W stands for water molecules, and silicon atoms of the bridging silicate
units are blue. [33]

All three models are visualised in Figure 7, with the unit cell parameters specified in Table 2
[36]. Structures corresponding to the various models were then subjected to energy optimization
with both molecular mechanics (MM) and semi-empirical calculations, with ReaxFF used as the
force field and parametric method number 6 (PM6) as the semi-empirical method, respectively.
According to these calculations, model 1 was energetically the most stable and its density closest
to the experimental value. Additionally, the density variation of model 1 with the H/S ratio
corresponded to the experimental trend. Therefore, model 1 will be used in this study. [36]
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Figure 7: Unit cells from the three C-S-H models based on the tobermorite 11 Åstructure. For
clarity, water molecules have been omitted from all unit cell pictures except in step C [36].

Table 2: Parameters for the unoptimized unit cells for model 1, 2 and 3 (Figure 7). The α and
γ angles were both 90.0 deg. [36]

Model 1 Model 2 Model 3

a / Å 29.48 36.84 36.84

b / Å 20.95 19.90 19.90

c / Å 22.78 22.68 22.68

β / deg 58.17 58.17 58.17

1.6 Calcium oxalate monohydrate - raphides and styloids (1D growth)

Crystals of calcium oxalate, CaC2O4, may be found in plants, where the purposes are, among
others, defence against herbivore, calcium regulation and ion balance [2]. However, they are
also found in around 70% of all kidney stones, though the exact mechanism which generates
kidney stones is still under debate [37].

The most thermodynamically stable form of calcium oxalate at room temperature is calcium
oxalate monohydrate (COM, CaC2O4 · H2O, whewellite), which forms a monoclinic crystal sys-
tem. Furthermore, there are two more natural forms: calcium oxalate dihydrate (COD, CaC2O4

· (2+x)H2O, x ≤ 0.5, weddellite), which forms a tetragonal crystal system, and calcium oxalate
trihydrate (COT, CaC2O4 · (3−x)H2O, x < 0.5, caoxite), which forms a triclinic crystal system,
though they will not be subject to studies here. [37]

Calcium oxalate crystals are categorized into five major shapes: crystal sand, raphide, druse,
styloid and prismatic [2]. Raphides are made of needle-shaped crystals consisting of whewellite
[2]. Hundreds to thousands of these crystals aggregate into bundles, giving rise to raphide crys-
tals, which are found in the vacuoles in plant cells called idioblasts [2]. The raphides, of which
there are four common types, can have square, H-shaped, hexagonal or octagonal cross-sections,
though the ends are often pointed [2]. They extend along the c-axis, and have diameters around
2-4 µm and lengths around 10-80 µm [5]. Furthermore, the styloids represent another type of
elongated crystals extending along the c-axis [2, 5]. Their ends may be pointed or squared [2],
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and as an example of their dimensions, styloid COM crystals from Eichhornia have displayed
lengths in the order of tens of µm [37].

Figure 8: Raphides from liquidized variegated ivy [38].

The essence of the COM structure is two distinct, alternating layers of oxalate ions, which
differ in their structural environment. Both types of oxalate ions are coordinated to Ca ions,
and the O atoms of one of the oxalate ion types bind to water molecules via hydrogen bonds.
While the C-C bonds in one of the oxalate ion layers are almost parallel to the b-axis, the
oxalate ions in the other layer lie in the (010) plane running along the c-axis. Consequently,
these two layers of oxalate ions are almost perpendicular to each other, and they are stacked
along the a-axis [37]. (Figure 9)

The unit cell of COM has parameters a = 6.250 Å, b = 14.471 Å, c =10.114 Å, β = 109.978o,
Z = 8 and symmetry space group P21/c [39] (Figure 9). Furthermore, there are three poly-
morphs of COM, which may be obtained via dehydration or manipulating the temperature, but
they will not be subject to studies here [37].

Figure 9: (A) displays the unit cell of COM, and (B) shows the stacking of Ca and oxalate
groups along the a-axis [37].
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1.7 Outline of the study

As mentioned earlier, this study seeks to model the anisotropic growth of the C-S-H nanoplatelets.
For this purpose, the MM method with the ReaxFFSiO force field and semi-empirical calculations
with the PM6 method will both be used. For a review of the theory behind those methods, please
refer to Appendix 5.1-5.3. The computing softwares to be used are LAMMPS and MOPAC,
respectively. The performances of the two methods will be compared, but it will only be pos-
sible to test smaller system in MOPAC, due to high computational costs for semi-empirical
methods. In both cases, the analysis is centred around plotting the total interaction energy as
a function of the crystal size. However, the CaO system is first analysed to test the reliability
of the ReaxFFSiO and PM6 calculations. Furthermore, the analysis of this simple structure will
also serve as a reference point for the study of the more complex C-S-H phase.

This study of the C-S-H phase is related to the analysis conducted by Rodŕıguez MA, where
the ReaxFFSiO and PM6 methods were used to analyse the growth of C-S-H nanoparticles [18].
Therefore, in this study, as was done in his study, the particles will be modelled as cylinders, and
it will be monitored how the energy varies with the system size when only the radius (growth
in the xy-plane) or the height (growth in the z -direction) is increased. This study will therefore
focus on the energetic driving force. Rodŕıguez MA concluded that the cylinders displayed a
larger gain in energy when only the radius was increased [18]. This was in accordance with
the known platelet structure of C-S-H nanoparticles [1]. This study seeks to expand the work
by Rodriguez MA by performing the same calculations for larger cylinders. However, it must
be mentioned that the cylinder shapes will only be approximative. The reason is that in order
to avoid breaking covalent bonds, since the cylinders will be cut out of C-S-H supercells, the
geometrical cylinder shape will have to be compromised. This will be explained in detail later.

As the C-S-H cylinder radius and therefore the size increases, so does the significance of size-
dependent entropic terms. If these entropic terms could be estimated, it would be possible to
combine these with the calculated energies and approximate the optimal sizes of the cylinders.
The optimal sizes would correspond to the most stable cylinders from a free energy perspective.
However, these entropic terms are difficult to estimate, so this will not be done in this study.
Furthermore, it will not be computationally feasible to calculate the energies for system sizes
corresponding to real concrete particles, as they have dimensions in the order of tens of nm [1].

It has to be mentioned that this study disregards how the cylinders have been created. Grow-
ing crystals in practice as well as modelling it theoretically are both very involved procedures
with many different parameters to consider. Therefore, only snapshots of C-S-H cylinders are
investigated without any regards to how they have been created. It is simply assumed that
the cylinders of various sizes and shapes are stable. This means that the radius/height ratios
of the modelled C-S-H cylinders can deviate considerably from the quite flat geometry of real
C-S-H nanoplatelets (∼ 50 nm × 30 nm × 5 nm) [1]. Furthermore, effects from a surrounding
water medium on the cylinder energy as well as dissolution of atoms are not modelled in the
study, since the cylinders are considered to be surrounded by vacuum. Entropic effects are also
excluded from the calculations, meaning that degradation effects on the C-S-H cylinders are
not simulated in this study. Furthermore, the calculations only consider the thermodynamic
picture. Kinetic effects are not included, meaning that for instance dendritic growth effects,
where the growth shape is dictated by the kinetics [9], cannot be simulated. These restrictions
apply to both the force field and semi-empirical calculations in the study.

Fortunately, the neglect of water effects on the energy is not a significant problem. Rodŕıguez
MA did PM6 calculations on C-S-H cylinders in water, where the water influence was simulated
via an external potential called COSMO. While the inclusion of COSMO resulted in lower en-
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ergies, this energy reduction was very small. Therefore, the calculated C-S-H cylinder energies
in this study should not be affected significantly by the calculations being done in vacuum. [18]

In reality, the C-S-H platelets in the hydrated cement paste have high surface charge densi-
ties, which is due to titrating silanol groups [40]. But these charges will not be included in this
study, because the C-S-H cylinders are considered to be surrounded by vacuum in our calcula-
tions, and the real-life process through which concrete is made is not modelled. Furthermore,
it will be simpler to perform the calculations on electro-neutral C-S-H cylinders. Furthermore,
this study also seeks to analyse the observed anisotropy in the growth of needle-shaped COM
crystals, the raphides and styloids. The energy as a function of crystal size will be compared
for COM crystals undergoing 3D growth and COM crystals only expanding along the c-axis
(1D growth). Therefore, only the energetic contribution to crystal growth will be investigated
here too. If elongated shapes are more favourable for COM crystals from an energetic point
of view, the 1D growth should result in a more pronounced decrease in energy as the crystal
size increases. Also, the earlier explained constraints, such as the neglect of water and kinetic
effects, apply to COM crystals as well.

In theory, the crystal systems represented by CaO, C-S-H and COM are infinite. However,
in this theoretical study, only clusters of limited size will be analysed. Through the results for
these clusters, growth trends for the infinite systems will be investigated.

2 Creation of clusters and computational setup

2.1 CaO system

2.1.1 Creation of supercells

The first part of the study was to create supercells of CaO, based on the unit cell of CaO.
The unit cell consisted of a cubic rock salt structure of four atoms each of Ca and O, with the
atoms located on each corner of a cube with edge 2.404 Å. A script was written which took the
coordinates of the eight atoms of the unit cell and translated them into a supercell using the
lattice vectors (4.808 Å, 0, 0), (0, 4.808 Å, 0) and (0, 0, 4.808 Å).

Using this technique, 3D cubic supercells were created for studying the 3D growth of CaO.
This was done by simply increasing the number of unit cells in each of the x -,y- and z -axes by
one for every step. Therefore, a series of CaO cubes with increasing sides were obtained.

As for studying the 2D growth, only the number of unit cells along the x - and y-axes was
increased in steps of 1, while keeping the thickness in the z -axis at 1 unit cell. Therefore, a
series of quadratic plates with expanding areas in the xy-plane were studied when analysing the
2D growth. However, due to the very low thickness of the 2D plates, 2.4 Å, all the atoms were
at the surface. This introduced considerable surface effects to all the atoms, but the low thick-
ness was nevertheless chosen in order to reduce the number of atoms for the computationally
demanding semi-empirical calculations. Furthermore, a comprised thermodynamic stability of
the CaO system was not deemed important; CaO was only intended to be a simple modelling
system, primarily for testing the accuracies of ReaxFFSiO and PM6.

As for the 1D growth, a script was created which allowed a cylinder to be carved out of a
3D supercell, with both the radius and height as adjustable parameters. Using the cylinder
shape instead of just a single row of unit cells provided the crystals with more thermodynamic
stability; the surface effects were reduced. Then, while keeping the radius at 5 Å, cylinders with
various heights were created in order to analyse the 1D growth of CaO crystals. A radius of 5
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Å was deemed large enough to resemble some approximate cylinder shape while still keeping
the number of atoms down for the semi-empirical calculations.

When limiting the sizes of the cube or plate supercells or cutting the cylinders, no covalent
bonds were cut as CaO is a purely ionic system. Also, the cubes and platelets were both
electro-neutral, due to the unit cell having no net charge. Furthermore, the 1D cylinders could
be considered to be made up of plates stacked along the z-direction. And at a radius of 5 Å,
these plates were electro-neutral in themselves, meaning that the supercell cylinders were also
electro-neutral.

2.1.2 ReaxFFSiO calculations (force field)

All the structures were run with ReaxFFSiO as the force field. Fixed, non-periodic faces were
used for the boundary box, since it was only of interest to study samples of limited size, not bulk
conditions. Furthermore, the boundary box was made very large, extending from -300 Å to 300
Å in the x -,y- and z -axes, in order to ensure that no atoms would be lost beyond the boundary
faces. Since the CaO structure was already known to be a simple and ordered structure, the
energy minimization (geometry optimization) was run without any MD, as any relaxation of
the structure was deemed unnecessary. As for detailed information about LAMMPS, please
refer to the online documentation [41].

The ReaxFFSiO calculations were very quick, and a table is provided to highlight how short the
computation times were.

Table 3: Wall-clock times for some of the ReaxFFSiO calculations on CaO, using the LAMMPS
software.

Growth mode Dimensions Number of atoms Wall-clock time

1D r = 5 Å, h = 108 Å 552 6 s

1D r = 5 Å, h = 120 Å 612 10 s

1D r = 5 Å, h = 132 Å 672 12 s

2D Side = 64.8 Å, Thickness = 2.4 Å 1568 1 s

2D Side = 69.6 Å, Thickness = 2.4 Å 1800 4 s

2D Side = 74.4 Å, Thickness = 2.4 Å 2048 6 s

3D Side = 55.2 Å 13824 51 s

3D Side = 64.8 Å 21952 2 min 24 s

3D Side = 74.4 Å 32768 3 min 12 s

As can be seen, compounds with thousands of atoms could be calculated within seconds, and
for tens of thousands of atoms the time was still within minutes (Table 3). Fast computation
times are typical for force field methods [42, 43].

2.1.3 PM6 calculations (semi-empirical)

Due to the computational demands of semi-empirical methods, only small structures with at
most hundreds of atoms were run with PM6 [42, 43]. All atomic positions were optimized. For
more information about MOPAC2016, the used version of MOPAC, please consult the online
documentation [44].

The following keywords were used during the PM6 calculations:

PM6 in order to use PM6 as the method.
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XYZ to use Cartesian coordinates.

PULAY to speed up the convergence.

PL to monitor the convergence of the density matrix. [44]

The calculations were done a second time, but with the keyword NOOPT added to prevent
geometry optimization of all atoms. The energies obtained with and without geometry opti-
mization were then compared.

Table 4: Wall-clock times for some of the PM6 calculations on CaO, as implemented in MOPAC.
Geometry optimization was used.

Growth mode Dimensions Number of atoms Wall-clock time

1D r = 5 Å, h = 12 Å 72 1 min 34 s

1D r = 5 Å, h = 36 Å 192 23 min 31 s

1D r = 5 Å, h = 60 Å 312 1 h 59 min

2D Side = 16.8 Å, Thickness = 2.4 Å 128 5 min

2D Side = 26.4 Å, Thickness = 2.4 Å 288 1 h 58 min

2D Side = 31.2 Å, Thickness = 2.4 Å 392 10 h 30 min

3D Side = 7.2 Å 64 6 s

3D Side = 12 Å 216 1 h 26 min

3D Side = 16.8 Å 512 1 d 3 h

The numbers in Table 4 show how quickly the time taken by PM6 computations increased
with the number of atoms, a trend which was expected from theory. For a specific size order,
the PM6 computation times were also significantly longer than ReaxFFSiO computation times,
which was also in accordance with theory. Thus, it was not feasible to perform PM6 calcula-
tions on compounds with more than hundreds of atoms, even for a system as simple as CaO.
This can be compared with the time taken by the ReaxFFSiO calculations on CaO, where even
compounds with tens of thousands of atoms could be optimized within a few minutes (Table 3).

It was also of interest to extract some computed charges of Ca atoms from the PM6 calcu-
lations without geometry optimization. This was done for Ca atoms both in the middle (6
nearest O neighbours) and at the surface (5 nearest O neighbours) of the cubes representing
3D growth, as well as the middle (6 nearest O neighbours) and the end surfaces (5 nearest O
neighbours) of the cylinders representing 1D growth. The purpose was to see how the structural
environment influenced the charges.

2.2 C-S-H phase

2.2.1 Creation of cylinders

As explained in the introduction, it was not possible to define a single unit cell for the C-S-H
phase, because the structure lacks periodicity. A database of C-S-H 2x2x1 monoclinic unit cells
with 9 different compositions, optimized by ReaxFF and PM6, was already available at the
start of this project, all of them based on the template provided by model 1, as explained in
section 3.7 [36]. Furthermore, each composition had hundreds of samples with different internal
structures of the atoms represented, a heterogeneity which reflected the disordered nature of
the C-S-H phase. Puck, a program written by Veryazov V and Rodŕıguez MA, was then used
to translate these unit cells into supercells and cut cylinders out of the supercells [18]. The
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radius, height and cylinder origin were all adjustable parameters, but the cylinder origin was
kept fixed at (1 Å, 0, 0.25 Å). Since the translation vectors varied between the optimized unit
cells, the translation vectors cannot be listed in full. Furthermore, when later on producing the
energy curves, ReaxFFSiO would be run on C-S-H cylinders created from unit cells that had
been optimized with ReaxFF, and PM6 would be run on cylinders created from unit cells that
had been optimized with PM6.

When cutting out cylinders in Puck, covalent bonds were inevitably cut (Figure 10), so a
set of connectivity rules were applied in the program in order to remedy this. Also, charge
rules were also applied in order to compensate for any net charges obtained during the cutting
process and create electro-neutral cylinders. The detailed working mechanisms of these rules
are explained in Appendix 5.4, and a detailed review of the original version of Puck, released
in 2016, is provided by its creators [18].

Figure 10: One example of a C-S-H cylinder with broken connectivity is shown; a H atom
without any O neighbours may be seen, along with a Si atom with fewer than four O neighbours.

By using a script, Puck was run on the database of C-S-H unit cells, and C-S-H cylinders
spanning a wide range of radii and heights were cut out of the supercells, However, Puck, despite
the connectivity rules, produced some unwanted cylinders which had Si atoms that were not
tetrahedrally coordinated to O, and/or single H atoms. Therefore, a script was used to loop
over all the Si atoms in each cylinder, and if any Si atom did not have four O atoms within a
sphere of radius 2.0 Å, that cylinder was rejected. Furthermore, the H atoms were also looped
over, and if any H atom did not have an O atom within a sphere of radius 1.1 Å, that cylinder
was rejected. The limits of these spheres were based on the rules used in Puck when applying
the connectivity rules [18].

Though it was possible to cut out relatively smooth and geometrical cylinders with defined
radii and heights in Puck, atoms were inevitably removed when the connectivity and charge
rules were applied. This made it practically impossible to create cylinders that were both ge-
ometrical and in agreement with the charge and creativity rules in Puck. Therefore, since the
removal of atoms introduced considerable and unpredictable irregularities into the geometries,
the increments in the radii and heights of the cylinders to be used in the calculations were not
very small.

Furthermore, due to the ordering of the cylinder layers in the z -direction, care had to be taken
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when comparing the energies of cylinders with the same radii but different heights. It had to be
ensured that the cylinders being compared had the same ordering of layers in the z-direction.
As can be seen, the cylinder in Figure 11a had roughly half a interlayer region extending to
both the top and bottom surfaces, while the cylinder in Figure 11b had full-length interlayer
regions extending to the top and bottom surfaces [33]. Therefore, the energies of these cylinders,
which represented the only two types of cylinders that could be obtained without breaking any
covalent bonds, could not be compared with each other.

The figures also shows the two different cell types, A and B, where only the former had empty
spaces in the middle (Figure 11). Disregarding the atomic disorder of the C-S-H phase, the
two cell type were structurally symmetric around the midplane in the z -direction. Cylinders of
the type in Figure 11a were built by periodically repeating cell type A along the z -axis, while
cylinders of the type in Figure 11b were likewise constructed from cell type B. As can be gath-
ered, a cell type had a height of roughly 12 Å (Figure 11). Therefore, it seemed appropriate to
use a step size of 12 Åwhen increasing the height. While this step size deviated from the 11 Å
interlayer spacing for the tobermorite model in this study [35, 36], the height of the intralayer
region was not well defined. 12 Å was deemed enough to include a complete inter- and intralayer
region in every step.

On the other hand, for any value of the radius, the ordering of the structure in the xy-direction
was the same (Figure 12). Therefore, the energies of any cylinders with the same height but
different radii could be compared freely.

(a) (b)

Figure 11: Comparisons of cylinders with the same radii but different heights, in order to
show the differences in ordering of the layered structure in the z -direction. The composition of
cylinder (a) is Si404Ca501O1876H1134, with dimensions r = 20 Å, h = 36 Å, whereas the cylinder
(b) has composition Si502Ca793O2512H1430, with dimensions r = 20 Å, h = 48 Å. The cell types
A and B, from which the cylinders can be considered to be made up of, have also been marked.
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(a) (b)

Figure 12: Top view of two C-S-H cylinder structures in the xy-dimension, the radial plane.
The composition of cylinder (a) is Si381Ca595O1983H1252, with dimensions r = 25 Å, h = 24
Å, whereas cylinder (b) has composition Si801Ca974O3707H2262, with dimensions r = 35 Å, h =
24 Å. The ordering of the atomic structure as viewed along this direction does not differ much
between the cylinders.

2.2.2 ReaxFFSiO calculations (force field)

All the created C-S-H cylinders were run in LAMMPS by using ReaxFFSiO as a force field.
The boundary box had the same dimensions as for CaO, extending from -300 Å to 300 Å in
all dimensions, and fixed, non-periodic faces were used. Just as for CaO, the study only aimed
to study samples of limited sizes, which is why the box was made non-periodic. Furthermore,
a very large box would ensure that no atoms would be lost beyond the box faces during the
calculations, even for large cylinders. For an example of a LAMMPS script, please refer to Ap-
pendix 5.5. It must be stated that since the C-S-H system is a solid, the scheme was designed
with the intention of preserving this solid system.

The optimization scheme was as follows:

1. Energy minimization of the entire system except for SiO2, which were frozen.

2. MD of all atoms for 2.5 ps, except for SiO2, which were frozen. The canonical ensemble
was used for the time integration, and the external temperature was raised from 0.1 K to 500
K. Nose-Hoover thermostat was used.

3. Energy minimization with no frozen atoms.

4. Low-temperature MD of all atoms for 2.5 ps. The canonical ensemble was used for the
time integration, and the external temperature was kept constant at 0.1 K. Nose-Hoover ther-
mostat was used.

5. Energy minimization with no frozen atoms.

The purpose of the MD in between the energy minimization steps was to relax the struc-
ture towards an energy minimum and therefore aid the energy minimization [43]. During the
energy minimization in step 1 and MD in step 2, the SiO2 were frozen in order to preserve the
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main structural elements of the intralayer regions. The unfrozen intralayer Ca atoms should
not have been affected too much by the high-temperature MD in step 2, due to the very high
melting point of CaO, over 2800 K [25]. However, the interlayer regions were more disordered
than the intralayer regions (Figure 11). Therefore, it was considered necessary to explore many
different interlayer geometries in order to surpass energy barriers from the energy minimization
in step 1. This is why the temperature of the MD in step 2 was set to as high as 500 K;
a high-temperature MD was used to significantly alter the interlayer geometry into one more
suitable for further energy minimization. Furthermore, the MD in step 4, where no atoms were
frozen, was done at a low temperature, since any further pronounced changes of the interlayer
geometry at that point were regarded as unnecessary. The low-temperature MD in step 4 also
preserved the main structural elements of the more ordered intralayer geometry.

Table 5: Wall-clock time for some of the ReaxFFSiO calculations on the C-S-H cylinders created
in Puck, using the LAMMPS software.

Dimensions Number of atoms Composition Wall-clock time

r = 5 Å, h = 12 Å 91 Si8Ca11O42H30 27 s

r = 5 Å, h = 24 Å 177 Si17Ca24O84H52 1 min 7 s

r = 10 Å, h = 12 Å 368 Si32Ca37O167H132 3 min 22 s

r = 10 Å, h = 48 Å 1325 Si124Ca199O632H370 15 min 36 s

r = 15 Å, h = 36 Å 2210 Si213Ca316O1055H626 29 min 12 s

r = 15 Å, h = 60 Å 4081 Si364Ca443O1872H1402 59 min 38 s

r = 20 Å, h = 60 Å 6554 Si684Ca808O3138H1924 1 h 39 min

r = 25 Å, h = 48 Å 8026 Si812Ca1274O3912H2028 2 h 13 min

r = 30 Å, h = 48 Å 12066 Si1128Ca1590O5680H3668 3 h 33 min

r = 30 Å, h = 60 Å 15493 Si1458Ca2129O7332H4574 4 h 33 min

r = 35 Å, h = 60 Å 19785 Si2056Ca2493O9482H5754 5 h 36 min

r = 40 Å, h = 60 Å 26460 Si2719Ca3369O12662H7710 9 h 1 min

The results revealed that ReaxFFSiO computation times were longer for C-S-H samples than
for CaO samples of the same size order (Table 3, 5). This is due to the C-S-H phase being much
more complex than the CaO system, and to more steps being used in the ReaxFFSiO routine for
C-S-H, where several energy optimization steps were alternated with MD. Nevertheless, samples
with hundreds of atoms were calculated within minutes, and samples with thousand of atoms
within hours (Table 5). The program displayed a very large amount of converged solutions,
even for very large cylinders, and it is clear that the computation time did not increase very
quickly with the number of atoms (Table 5). Therefore, LAMMPS was robust enough to be
used for large-scale calculations for small to very large C-S-H cylinders.

However, it can clearly be seen here than even very large cylinders were well below the di-
mensions (tens of nm) of real C-S-H particles [1]. Since real particles therefore probably have
hundreds of thousands of atoms, it would require computationally expensive, parallellized MD
to perform calculations for theoretical systems correspond to that size. Those calculations were
beyond the scope of this study.

2.2.3 PM6 calculations (semi-empirical)

Only smaller crystals were run with PM6, due to considerable computational costs. The same
keywords as for the CaO calculations were used here as well. All atomic positions were opti-
mized.
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Table 6: Wall-clock time for some of the PM6 calculations on the C-S-H cylinders created in
Puck, as implemented in MOPAC. Geometry optimization was used.

Dimensions Number of atoms Composition Wall-clock time

r = 5 Å, h = 12 Å 100 Si9Ca11O46H34 12 min 34 s

r = 5 Å, h = 24 Å 171 Si17Ca21O81H52 1 h 33 min

r = 5 Å, h = 36 Å 302 Si28Ca37O141H96 8 h 18 min

r = 5 Å, h = 48 Å 370 Si38Ca47O177H108 (Convergence failed)

r = 10 Å, h = 12 Å 355 Si35Ca44O168H108 (Convergence failed)

r = 10 Å, h = 12 Å 387 Si32Ca42O175H138 7 h 41 min

As can be seen, the PM6 computation time increased very quickly with the number of
atoms (Table 6), which was expected from semi-empirical methods. By contrast, the scaling of
LAMMPS computation times (C-S-H phase) with the number of atoms was much lower (Table
5).

The structural complexity of the system was an important factor which increased the com-
putation time. This is why the computation times for the disordered C-S-H cylinders were
longer than for CaO samples of the same size order (Table 4). The structural complexity also
explains why some C-S-H structures with sizes of a few hundreds of atoms failed to converge
(Table 6). MOPAC did not produce any messages stating the specific reason(s) for convergence
failure. To conclude, only small C-S-H cylinders were suitable for PM6 calculations. This can
be compared with the ReaxFFSiO calculations on C-S-H, where even the solutions for samples
with several thousands of atoms converged and the number of converged solutions was higher
(Table 5).

2.2.4 Creation of energy curves from database

The Puck runs resulted in a large database of around 500 cylinders with 5 Å ≤ r ≤ 40 Å and
12 Å ≤ h ≤ 60 Å. The radii were increased in steps of 5 Å, while the heights were increased in
steps of 12 Å, referring to the 12 Å height of the structure cell types A and B (Figure 11). The
cylinders with the same radii and heights belonged to the same group, and the cylinders within
each group displayed different compositions. Within each subgroup of compositions, various in-
ternal structures of the C-S-H phase were represented. ReaxFFSiO and PM6 calculations were
only run on the most common composition within each respective group of cylinders. If there
was not a unique most common structure within a group, a random one of the most common
structures was selected. The calculations resulted in a spread of calculated energy values within
each group due to the different internal structures. Statistical methods were used to reject re-
sults in the tails of the energy distribution within each group, assuming a normal distribution.
More details about these statistical methods can be found in the results and discussion section.

When analysing the growth, the total system energy was plotted as a function of either in-
creasing radius (growth in the xy-plane) or height (growth in the z -direction), while keeping the
other variable constant. It was analysed whether these two kinds of curves displayed different
trends. In his thesis, Rodŕıguez AM had already shown that the reduction in energy should be
more pronounced when the radius increases [18]. Since it was not computationally feasible to
calculate the energies of real-life sized C-S-H nanoparticles, the results from the smaller systems
in this study were extrapolated.
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2.3 COM crystals

2.3.1 Creation of supercells

The procedure was similar to the creation of CaO supercells, though the monoclinic unit cell,
which may be seen in Figure 9a, and translation vectors were more complex. The fractional
atomic coordinates for one of the four asymmetric units were retrieved from the study by Tazzoli
V and Domeneghetti C [45] (Table 7).

Table 7: Fractional atomic coordinates for one of the four asymmetric units of COM at 123
K, though standard deviations have been omitted [39]. All the atomic parameters came from
structure refinement of atomic coordinates from Tazzoli V and Domeneghetti C [39, 45].

Atom x y z

C(1) 0.9770 0.32008 0.2493

C(2) 0.9983 0.42690 0.2505

C(3) 0.5147 0.12697 0.1804

C(4) 0.4426 0.11592 0.3132

O(1) 0.9665 0.28174 0.1303

O(2) 0.9898 0.46552 0.1375

O(3) 0.9707 0.28100 0.3537

O(4) 0.9898 0.46559 0.3600

O(5) 0.3573 0.14503 0.0684

O(6) 0.7378 0.12132 0.2051

O(7) 0.2793 0.12102 0.3031

O(8) 0.6025 0.10490 0.4269

Ca(1) 0.96197 0.12372 0.05344

Ca(2) 0.99212 0.12283 0.43515

W(1) 0.3873 0.34435 0.1009

W(2) 0.5850 0.3926 0.3890

H(11) 0.479 0.367 0.049

H(12) 0.388 0.2792 0.091

H(21) 0.473 0.378 0.431

H(22) 0.513 0.378 0.291

By utilizing the translation symmetry of the symmetry space group, P21/c, the asymmetric
unit with fractional coordinates as in Table 2.3.1 was transformed into the unit cell. These
symmetry operations were:

(x, y, z) −→ (−x,−y,−z)

(x, y, z) −→ (−x, y + 1/2,−z + 1/2)

(x, y, z) −→ (x,−y + 1/2, z + 1/2)

Afterwards, in order to make the unit cell more compact, the value 1 was added to every nega-
tive fractional coordinate in the unit cell. It was then translated into supercells by means of the
unit cell parameters a =6.250 Å, b =14.471 Å, c =10.114 Å and β = 109.978o (at 123(1) K) [39].

In order to study the 3D growth, a series of supercells were created, each with the same number
of unit cells along the a-, b- and c-axes. As for the 1D growth, three sets of needle-shaped
structures expanding along the c-axis were created. The first one had a thickness of 1 unit cell
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along the a- and b-axes, whereas the other two had a thickness of 2 unit cells along either the
a- or b-axis. Just as for CaO, the number of unit cells in the growth direction(s) was increased
in steps of 1.

Since the unit cell did not contain any broken covalent bonds, (Figure 9) [37], any unchem-
ical connectivity situations were avoided when creating the supercells. Additionally, due to the
unit cell being electro-neutral, the supercells were all electro-neutral as well.

2.3.2 ReaxFFSiO calculations (force field)

The ReaxFFSiO force field was optimized for compounds containing Si and SiO2 [50], and a
force-field is usually not suitable for a set of compounds for which it has not been optimized
[43]. Some test calculations showed that this force field was unsuitable for COM crystals, and
no other suitable force fields for COM crystals were available. Therefore, only PM6 calculations
were used for the COM clusters.

2.3.3 PM6 calculations (semi-empirical)

Once again, only smaller crystals were run with PM6, due to considerable computational costs.
Furthermore, the same keywords as for the CaO and C-S-H calculations were used here as well.
All atomic positions were optimized.

3 Results and discussion

3.1 CaO system

In this section the results of the LAMMPS and MOPAC calculations are displayed and discussed
for the CaO system. The CaO plots concern the 3D growth of the cube, 2D growth of the
platelets, and the 1D growth of the cylinders.

3.1.1 Results for ReaxFFSiO calculations (force field)

The unit cell consisted of eight atoms (four Ca and four O) with side 2.4 Å. Therefore, the num-
ber of atoms in each cube was calculated as n3 ∗ 8 and the side of the cube as (2 ∗ n− 1) ∗ 2.4Å
(Figure 13). As for the plates, the number of atoms in each structure was calculated as n2 ∗ 8
and the side in the xy-plane as (2 ∗ n− 1) ∗ 2.4 Å, with n being the number of unit cells along
each side (Figure 14). As explained earlier, the plates had a thickness of 2.4 Å. As for the
cylinders, they could be regarded as being made up of plates stacked along the z -axis. One
plate with radius 5 Å consisted of 12 atoms (6 of each kind). Therefore, the number of atoms
in each cylinder was calculated as n ∗ 12 and the height along the z -axis as (n− 1) ∗ 2.4Å, with
n being the number of stacked layers (Figure 15).

All three curves displayed the same trend, with an increasing crystal size in terms of volume,
xy-area or z -height all leading to a decreased energy (Figure 13-15). However, the asymptote
for the 3D growth was at roughly -5.36 eV (Figure 13), while the asymptote for the 2D growth
corresponded to a higher energy, roughly -5.18 eV (Figure 14). And the asymptote for the 1D
growth was even higher up at approximately -5.01 eV (Figure 15). This showed that is most
energetically favourable for CaO crystals to grow in three dimensions, which agrees with the
isotropic nature of the cubic rock salt structure. Furthermore, the absolute slope of the energy
curve, which reflected the energy gain, decreased as the crystals grew larger. This indicated
that it is less and less energetically favourable for a crystal to increase its size as its becomes
larger - one possible explanation for why crystals do not grow indefinitely. (Figure 13-15)
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Figure 13: The energies of the CaO cubes representing 3D growth, are displayed as a function
of the system size. Asymptote has been drawn.

Figure 14: The energies of the CaO plates representing 2D growth are displayed as a function
of the system size. Asymptote has been drawn.

Figure 15: The energies of the CaO cylinders representing 1D growth are displayed as a function
of the system size. Asymptote has been drawn.
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Even the highest energy obtained in these calculation was remarkably low at around -4.75
eV/atom (Figure 13-15). This would require a temperature of roughly 55000 K, as calculated
from the entropic quantity kbT , in order for the entropy to disintegrate the crystal. Therefore,
entropic effects could justifiably be neglected for the CaO crystals, as this temperature was
more than nine times the effective temperature of the sun: 5772 K [46]. This suggested that
energetic effects in these calculations were far more important than thermodynamic entropic
effects for governing the growth of CaO crystals. Taking entropic effects into account would
have given a more accurate treatment, but it was beyond the scope of this study and would
likely not have yielded any significant differences.

One reason for these very low energies is that the ReaxFFSiO scheme in LAMMPS simply
minimized the total potential energies of the crystals by iteratively adjusting atom coordinates,
without regard to any other factors [41]. Another reason was that the process in which indi-
vidual atoms are supplied from a surrounding medium to the crystals was not modelled, as the
creation process was not part of this study. Therefore, the calculated minimum energies were
not compared with some initial stage that the dissociated crystal components would experience
in real-life.

3.1.2 Results for PM6 calculations (semi-empirical)

It can be seen in Figures 16-18 that including geometry optimization of the CaO structure
resulted in lower energies, which was expected. However, the simple, periodic structure of the
CaO system was already perfectly set up by the unit cell parameters used when creating the
supercells. So, although geometry optimization allowed further decreases in energy beyond
the quantum chemical calculations on the initial structure, it also compromised this ordered
structure. This is why the energy curves corresponding to the calculations without geometry
optimization were smoother (Figure 16-18).

Figure 16: The energies of the CaO cubes representing 3D growth are displayed as a function
of the side of the cubes. The red squares correspond to the calculations without geometry opti-
mization, whereas the blue diamonds correspond to the calculations with geometry optimization.
Asymptote has not been drawn, due to a lack of data points.
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Figure 17: The energies of the CaO plates representing 2D growth are displayed as a function
of the side of the plates in the xy-plane. The red squares correspond to the calculations without
geometry optimization, whereas the blue diamonds correspond to the calculations with geometry
optimization. Asymptote has been drawn for the calculations with geometry optimization.

Figure 18: The energies of the CaO cylinders representing 1D growth are displayed as a function
of the height of the cylinders along the z -axis. The red squares correspond to the calculations
without geometry optimization, whereas the blue diamonds correspond to the calculations with
geometry optimization. Asymptote has been drawn for the calculations with geometry opti-
mization.

Due to the limited number of data points for the 3D growth, no asymptote has been drawn
for that curve (Figure 16). The asymptotes for the 2D and 1D growth curves (blue diamonds;
with geometry optimization) both appeared to correspond to energies of around -156.3 eV, it is
difficult to determine which asymptote corresponded to the lower energy (Figure 17-18). How-
ever, it is clear that the asymptote for the 3D growth curve (blue diamonds; with geometry
optimization) would correspond to an even lower energy, provided more data points had been
obtained (Figure 16). Consequently, the PM6 (semi-empirical) calculations confirmed the ob-
served ReaxFFSiO (force field) trend: that it is most energetically favourable for CaO crystals
to grow isotropically. Furthermore, the PM6 curves (Figure 13-18), just like the ReaxFFSiO

results (Figure 13-15), showed that the absolute slopes of the energy curves decreased as the
crystals grew larger. Therefore, both methods also showed that the energetic driving force for

28



crystal growth becomes weaker as the systems size increases.

The absolute values of the energies obtained with the two methods differed significantly, due to
different points of zero energy being used in the two methods. But the interesting part in this
study here was the trend, not the absolute values. Because the more accurate semi-empirical
calculations produced the same trends as the force-field calculations, the methods both ap-
peared reliable. This gave good promise when the methods were later applied on the much
more complex C-S-H phase.

The bond in solid CaO is of an ionic nature [25], so it was excepted that the charges of Ca
and O should be significantly affected by the structural environment. Analysing atomic charges
is a good way to determine if an atom is experiencing almost bulk-like or surface-like conditions,
or something in between. Therefore, it was of interest to investigate how the charge of, in this
case Ca, varied between atoms found at the surface and in the middle of some of the crystals.
Investigating the Ca charge as a function of the crystal size was also of interest.

In figures 19 and 20, plots concerning the comparison of computed Ca charges at the surface
and in the middle of the cubes representing 3D growth and cylinders representing 1D growth
are shown. The omission of geometry optimization meant that it was feasible to perform the
calculations on cubes larger than in the calculations with geometry optimization.

As can be seen in Figures 19 and 20, for both the cubes representing 3D growth and the
cylinders representing 1D growth, the charges of the Ca atoms in the middle were higher than
those at the surface. This was expected due to the higher number of O neighbours around the
Ca atoms in the middle, which consequently increased the electronegative attraction of electrons
from the Ca atoms to the O atoms. As the system size increased, the charges also increased for
Ca atoms both in the middle and at the surface (Figure 19,20). This was due to the increased
number of O neighbours around the Ca atoms.

Figure 19: The computed charges of Ca atoms in the cubes representing 3D growth are displayed
as a function of the system size. The calculations were done with the PM6 method without any
geometry optimization. The red squares correspond to Ca atoms in the middle of the cubes (6
nearest O neighbours), while the blue diamonds correspond to Ca atoms at the surface of the
cubes (5 nearest O neighbours).
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Figure 20: The computed charges of Ca atoms in the cylinders representing 1D growth are
displayed as a function of the system size. The calculations were done with the PM6 method
without any geometry optimization. The red squares correspond to Ca atoms in the middle of
the cubes (6 nearest O neighbours), while the blue diamonds correspond to Ca atoms at the
surface of the cubes (5 nearest O neighbours).

Regarding the cubes, the difference in charges between the Ca atoms in the middle and at
the surface increased with the system size (Figure 19). This was explained by that the Ca atoms
in the middle were less and less influenced by surface effects as the crystal became larger. As
for the cylinders, the differences between the charges of Ca atoms in the middle and at the end
surfaces were relatively small (Figure 20). This is because the cylinders were thin, so the atoms
in the middle were strongly influenced by surface effects, regardless of the length of the cylinders.

Furthermore, the increase of the Ca charge with crystal size was much more pronounced for the
cubes than for the cylinders. This can be explained by an increase in the number of neighbour-
ing O atoms in the cubes, due to expansion in three dimensions, compared to the cylinders,
which only expanded in one dimension. Because of computational limitations, the calculations
were not performed for even larger cubes, but the shape of the curves suggested that they were
staring to level out (Figure 19). This indicated that the number of atoms was eventually so
large that the atoms in the middle of the cubes experienced almost pure bulk conditions, while
the surface atoms similarly approached pure surface conditions. However, the curves for the
cylinder levelled out for relatively small crystal sizes (Figure 20). The explanation was that the
cylinders could only approach bulk-like size orders in one dimension, which happened for much
smaller geometrical dimensions than for the cubes.

3.2 C-S-H phase

3.2.1 Results for ReaxFFSiO calculations (force field)

Figures 21 and 22 in this section show how the total energy of the C-S-H cylinders changed
when only the radius was increased (growth in the xy-plane). This is shown for different values
of the cylinder height (growth in the z -direction). It is then followed by figures depicting how
the total energy changed when only the height was increased. This is shown for different values
of the cylinder radius.

Strictly speaking, the methods used to reject results in the tails of the energy distributions
were pseudo-statistical, since only a limited amount of cylinders were found in each group
(same radius and height of every C-S-H cylinder within a group). Any results lower than the
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first quartile, Q1, or higher than the third quartile, Q3, were rejected. Q1 and Q3 were com-
puted as the medians of the lower and upper data halves, respectively, with the median of the
full data set excluded from both halves, according to method 1 in a paper by Joarder AH and
Firozzaman M [47]. For an odd number of elements, the median was the innermost element,
and for an even number of elements, the median was the mean of the innermost pair.

Around 100 cylinders were used in the force field calculations. It also has to be mentioned
that the amount of C-S-H cylinders within each group varied quite considerably, ranging from
around 5-11 for cylinders with a few hundreds of atoms to 1-3 for cylinders with thousands of
atoms. This was due to the larger difficulty present in creating large cylinders that satisfied both
the charge and connectivity rules. However, since the energy spread for the groups with smaller
cylinders was small, this was also considered to be the case for groups with larger cylinders,
despite the relative lack of sampling data in the latter groups. An analogy with the tree forest
works here: while a few trees are considerably taller than the others, they still intrinsically
comply with the same biological and chemical laws as the other trees, if they belong to the
same species. Therefore, the limited results obtained for groups with big cylinders were still
deemed representative for those groups.

(a)

(b)

Figure 21: The energies of the C-S-H cylinders are displayed as a function of increasing radius.
For each curve, the height is kept constant, and the points represent the median energies. If
there is only one energy value within a group, the corresponding point represents that value.
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After visualizing some of the cylinders, it was concluded that the 12 Å step length in the
z -direction, though deemed suitable in the methods section, was a source of error. Incomplete
layers were introduced to the top and bottom surfaces of the C-S-H cylinders with h = 24
Å and 48 Å, though they were to some extent limited by the connectivity rules in Puck and
energy minimization and MD steps in the ReaxFFSiO scheme. Nevertheless, these incomplete
layers, though relatively small, were to the detriment of the stability of these cylinders, which
is why results for h = 24 Å and 48 Å are displayed in a separate graph (Figure 21). A more
systematic approach when choosing the height increment would have been to investigate how
the C-S-H cylinder energy varies with the step length. The optimal step length would then have
corresponded to the minimum energy and therefore the most stable cylinder.

It was not known beforehand how exactly how the cylinder shapes would be affected by the
step length. The effects could only be analysed after the time-consuming processes of creating
the cylinders in Puck and calculating the energies had been completed. Though the remaining
discussion in this section is still valid for cylinders with h = 24 Å and 48 Å as well, it must be
stressed that the stabilities or these cylinders were decreased by the incomplete layers.

(a)

(b)
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(c)

(d)

(e)

Figure 22: The energies of the C-S-H cylinders are displayed as a function of increasing radius.
Within each figure, the radius is kept constant, and the red and blue points for each group
represent Q3 and Q1, respectively. If there is only one energy value within a group, that sole
value is shown. The heights are: a) 12 Å, b) 24 Å, c) 36 Å, d) 48 Å and e) 60 Å.
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The height values for the figures depicting radial growth (growth in the xy-plane) were al-
most the same as those used by Rodŕıguez MA [18]. However, the radii in this study went up to
40 Å for all heights, whereas Rodriguez MA went all the way to 80, 50 and 45 Å for h = 11.5, 23
and 34.5 Å, respectively, and only to 35 and 30 Å for h = 46 and 57.5 Å, respectively (the step
increment of the radii was the same in both studies) [18]. By our own judgement, a radius of
40 Åwas deemed large enough for the atoms in the middle of the cylinders to experience almost
bulk-like conditions. Therefore, cylinders up to this size order were considered to represent a
large enough size span to display clear trends in the crystal growth.

For all the height values, the overall trend (the energy bumps are discussed towards the end
of the ReaxFFSiO section) was that an increased radius lead to a decease in energy (Figure
24). Furthermore, the slope of the energy curve decreased as the cylinder size increased (Figure
24), which was also observed for the much simpler CaO system (Figure 13-18). Both of these
observations were in agreement with the results obtained by Rodriguez MA [18]. However, the
ReaxFFSiO energy curves for the complex C-S-H phase were naturally less smooth than those of
CaO. Nevertheless, to conclude, the ReaxFFSiO results overall showed than an increased radius
lead to a significant decrease in energy.

The next step was to analyse the C-S-H cylinder energy as a function of the height. Results for
r = 5 Å and r = 10 Å were omitted, since cylinders that thin experienced more considerable
surface effects than cylinders with larger radii. Therefore, the energy curves for r = 5 Å and
r = 10 Å were affected by this, making comparisons with energy curves for cylinders with larger
radii complicated. (Figure 23)

(a)
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(b)

Figure 23: The energies of the C-S-H cylinders are displayed as a function of increasing height.
For each graph, the radius is kept constant, and the points represent the median energies. If
there is only one energy value within a group, the corresponding point represents that value.

The energy curves have been divided into two groups, based on the overall shapes of the
curves, though the correlation between the radius and the curve shape could not be determined
(Figure 23). Regardless, no significant energy fluctuations were expected when only increasing
the height [18, 1]. Therefore, it was of interest to investigate the C/S ratios of the various
cylinder groups to find potential sources of error (Table 8).

Table 8: Calculated C/S ratios for all the groups of C-S-H cylinders.

r/h 12 Å 24 Å 36 Å 48 Å 60 Å

5 Å 1.38 1.41 1.15 1.41 1.51

10 Å 1.16 1.62 1.41 1.60 1.62

15 Å 1.23 1.18 1.48 1.58 1.22

20 Å 1.31 1.20 1.24 1.58 1.18

25 Å 1.15 1.56 1.21 1.57 1.45

30 Å 1.19 1.20 1.17 1.41 1.46

35 Å 1.19 1.22 1.18 1.39 1.21

40 Å 1.19 1.21 1.20 1.42 1.24

It is evident that the calculated C/S ratios of the C-S-H cylinder groups deviated consider-
ably from the bulk value of 1.67 [36], and they also fluctuated between the groups (Table 8).
This was due to that the connectivity rules used by Puck were designed to avoid producing
cylinders with broken covalent bonds. Atoms at the cylinder surfaces were removed or added
with regards to these connectivity rules only and without any respect to the bulk value of C/S.
The fluctuations in the C/S ratio meant that the individual contributions from the atomic
species (Si, Ca, O and H) were not equal between the groups, consequently undermining the
accuracy of using units of energy/atom. Plotting the energy per atom of one species, for in-
stance Si, might have given smoother curves for not only the energy dependence on the cylinder
height (Figure 23), but also the energy dependence on the radius (Figure 21. Furthermore, that
the C/S ratios deviated from the bulk value impaired the accuracies of the individual energies
within each group. (Table 8)
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(a)

(b)

(c)
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(d)

(e)

(f)

Figure 24: The energies of the C-S-H cylinders are displayed as a function of increasing height.
Within each figure, the radius is kept constant, and the red and blue points for each group
represent Q3 and Q1, respectively. If there is only one energy value within a group, that sole
value is shown. The radii are: a) 15 Å, c) 20 Å, c) 25 Å, d) 30 Å, e) 35 Å, and f) 40 Å.
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As mentioned earlier, the ordering of the layers in the z -direction had to be considered
when analysing the change in energy as a function of height (Figure 11). Therefore, for each
radii, the cylinders had to be divided into two groups based on the ordering of layers in the
z -direction: h = 12, 36 and 60 Å, with half a interlayer region extending to both the top and
bottom surfaces, and h = 24 and 48 Å, with full-length interlayer regions extending to the top
and bottom surfaces. Energies could only be compared within these two groups.

After taking the above considerations into account, it can be seen that there was no clear trend
depicting a pronounced energy decrease when the height was increased (Figure 24). While
there was sometimes an energy decrease when increasing the height, it was not consistent when
looking at the different radius values (Figure 24), and often less pronounced than for the curves
depicting the energy dependence on the radius (Figure 22).

The ReaxFFSiO energy curves for height growth displayed a few bumps indicating local in-
stabilities (Figure 24), which may also be seen in the results from reference [18]. A cylinder
with a size corresponding to one of those bumps will collapse to a smaller size equivalent to
the closest energy curve valley, which can be prevented if growth is promoted so that the cylin-
der size surpasses this energy summit. The existence of these bumps for C-S-H but not CaO
(ReaxFFSiO curves) can be explained by the much more complex nature of the C-S-H phase,
which consisted of layers (Figure 11). Where the cut was made in these layers affected the
energetic stability. A real-life analogy is found in the construction of tall buildings. During the
construction, the building is so unstable that it requires supporting structures in order to not
collapse. However, once the construction has progressed far enough, the building is eventually
so stable that the support can be removed. Similar reasoning explains why the energy curves for
radial growth also contained bumps (Figure 22). Even though the structure in the radial plane
(xy-plane) was not layered (Figure 12), the energetic stability of the disordered and complex
C-S-H phase could likewise be affected by where the radius cut was made.

Is can be seen from the graphs that the highest energies were around -4.8 eV/atom (Figure
22, 24). In the ReaxFFSiO CaO results section, the highest energy, approximately -4.75 eV,
was concluded to be much more significant than entropic effects, kbT . Consequently, the en-
ergetic contribution to the growth was the most important one for C-S-H also. Furthermore,
the ReaxFFSiO results suggested that the C-S-H cylinders have an energetic preference for ra-
dial growth. This was also concluded in the previous study [18], and in agreement with the
known platelet shape of C-S-H nanoparticles [1]. The next step was to verify this with PM6
calculations.

3.2.2 Results for PM6 calculations (semi-empirical)

Only smaller cylinder with at most a few hundreds of atoms were calculated on, due to the high
computational costs for semi-empirical methods (Table 6). Around 30 cylinders were used in
the PM6 calculations, but the number of groups was so small that no conclusive trends could
be obtained. Therefore, no PM6 results for C-S-H are shown.
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3.3 COM crystals

3.3.1 Results for PM6 calculations (semi-empirical)

Again, due to computational demands of semi-empirical methods, the sizes of the studied crys-
tals were limited to hundreds of atoms. These constraints limited the number of of data points
for the 3D growth so much that no clear trend could be obtained for that growth mode. How-
ever, results for 1D growth are displayed. When it came to needle-shaped structures with a
thickness of 2 unit cells along either the a- or b-axis, only the latter type converged. Therefore,
these structures are displayed in the figure depicting 1D growth, together with the needle-like
structures with a thickness of 1 unit cell.

Figure 25: The energies the needle-shaped COM structures depicting 1D growth, as calculated
with PM6 without geometry optimization, are displayed as a function of the length along the
c-axis. The blue diamonds correspond to the structures with a thickness of 1 unit cell along
both the a- and b-axes, whereas the red squares correspond to the structures with a thickness
of 2 unit cells along the b-axis.

It can be seen that the 1D growth mode displayed a decrease in energy as the system
size increased (Figure 25). Furthermore, increasing the thickness of the needle-like structures
lowered the energy, which was expected (Figure 25). As was stated in the introduction, the
semi-empirical calculations were done in vacuum, without any regards to water effects. This
deviated considerably from reality, as real COM crystals may be found in aqueous environments
in the plant cells. Also, kinetic effects were not accounted for; the calculations were thermo-
dynamic in nature. If these effects had been included, the energy curves might have looked
different.

Due to the absence of results for 3D growth, it cannot be concluded if growing to isotropic
(3D growth) or elongated shapes (1D growth) is more energetically favourable for COM crys-
tals.
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4 Conclusions

This project investigated into the driving force for anisotropic growth of crystals, both natural
and artificial. The main objective in this project was to confirm the observed anisotropy in the
growth of C-S-H nanoplatelets, which make up the bulk phase in concrete. Models of C-S-H
clusters with approximate cylinder shapes were created, and the variation of the energy with
crystal size when only increasing the radius or height was investigated. The energies were com-
puted using both molecular mechanics, with ReaxFFSiO as the force field, and semi-empirical
methods, with PM6 as the Hamiltonian.

By using Puck, a database of C-S-H cylinders, with radii and heights ranging from 5 Å to
40 Å and 12 Å to 60 Å, respectively, was created. In total, approximately 100 cylinders were
included in the force field calculations, while around 30 were used in the semi-empirical calcu-
lations. However, also including cylinders not used in the calculations brings the size of the
database up to over 500. This database could potentially be used in the future as a starting
point for studies extending to even larger C-S-H cylinders.

The ReaxFFSiO calculations showed that the energetic gain was higher when the radius in-
creased (growth in the xy-plane) than when the height increased (growth along the z -axis).
However, the computational demands of semi-empirical methods meant that the PM6 calcula-
tions could only converge for small C-S-H cylinders. Therefore, too few PM6 data points were
produced to confirm the ReaxFFSiO trends. Furthermore, due to computational limitations,
even the largest C-S-H cylinders in the force field calculations only reached diameters of ap-
proximately 8 nm. By contrast, real C-S-H nanoparticles have xy-dimensions of around 50 ×
30 nm.

It was observed that Puck is robust enough for creating C-S-H cylinders with sizes of up to
a few tens of thousands of atoms. Unfortunately, since some structures with unsatisfying Si
and/or H connectivity were created, a complementary script had to be developed to reject
those. So, despite the solid performance of Puck, there is room for improvement in the source
code.

The project also briefly analysed the observed anisotropic growth of elongated crystals of COM
- raphides and styloids. Since the ReaxFFSiO force field was incompatible with COM crys-
tals, only PM6 calculations were used. However, the computational demands of semi-empirical
methods meant that too few results for 3D growth could be obtained to conclude if 3D or 1D
growth is more energetically favourable for COM crystals.
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[6] Otálora F and Garćıa-Ruiz J, Chem Soc Rev, 43, (2014).

40



[7] Van Driessche A. Gypsum crystals of the Naica cave [Internet], Copyright (2010) Apr [cited
2019 Jan 29], Link to license: https://creativecommons.org/licenses/by/3.0/legalcode

[8] Rosenberger F and Meehan EJ, J Cryst Growth, 90, (1988).

[9] Jackson KA, Kinetic Processes: crystal growth, diffusion, and phase transformations in
materials, John Wiley & Sons; (2006).

[10] Pynn R, Neutron Scattering-A Primer, Los Alamos Science Summer, (1990).

[11] Givand JC, Teja AS and Rousseau RW, AlChe J, 47, (2001).

[12] Sumiya H and Satoh S, Diam Relat Mater, 5, (1996).

[13] Schulz M, Nature, 399, (1999).

[14] Jiao Y, Salce A, Ben W, Jiang F, Ji X, Morey E and Lynch D, JOM, 63, (2011).

[15] Wettlaufer JS, Jackson M and Elbaum M, J Phys A; Math Gen, 27, (1994).

[16] Kotrla M, Comput Phys Commun, 97, (1996).

[17] Glotzer SC and Solomon MJ, Nat Mater, 6, (2007).
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5 Appendix

5.1 Molecular quantum mechanics

5.1.1 Ab initio methods

One category of molecular quantum mechanics calculations is ab initio methods. These are
based on solving the non-relativistic, time-independent Schrödiger equation, making use of
fundamental constants for a theoretically pure approach. One example of ab initio methods is
the Hartree-Fock self-consistent field (HF-SCF) method, in which the starting point is the HF
equations for closed-shell species with doubly occupied wavefunctions:

f1ψm(1) = εmψm(1) (2)

where εm are the orbital energy eigenvalues, ψm are the spatial wavefunctions and f1 is the Fock
operator :

f1 = h1 +
∑
m′

[
2Jm′(1)−Km′(1)

]
(3)

Here, h1 is the one-electron Hamiltonian (hydrogenic Hamiltonian for a single electron and
a nucleus with charge Ze) and Jm′ and Km′ represent the Coulomb and exchange operators,
respectively:

Jm′(1)ψm(1) = jo

∫
ψ∗m′(2)

1

r12
ψm(1)ψm′(2)dτ2 (4)

Km′(1)ψm(1) = jo

∫
ψ∗m′(2)

1

r12
ψm′(1)ψm(2)dτ2 (5)

where jo = e2/4πεo. The Coulomb operator represents the Coulomb repulsion between electron
1 and 2, and the exchange operator includes the effects of spin correlation. [42]

One important point is that each electron is considered to be affected by the average field
of all the other electrons, so electron correlation is neglected. Consequently, instantaneous
electron-electron interactions as well as quantum mechanical effects on the electron distribution
are disregarded. The Born-Oppenheimer approximation is also used, meaning that the electrons
are considered to be able to respond immediately to changes in the positions of the nuclei, due
to the electron mass being much lower than the mass of the nucleus. Nevertheless, one proce-
dure is then to write each spatial wave unction ψm as a linear combination of basis functions
χo, which for instance be approximated as atomic orbitals centred on each of the No atoms:

ψm =

No∑
o=1

comχo (6)

with com representing expansion coefficients. After inserting this expansion into the HF equa-
tions (2) and performing some operations, it is convenient to introduce the overlap matrix, S,
and the Fock matrix, F:

So′o =

∫
χ∗o′(1)χo(1)dτ1 (7)

Fo′o =

∫
χ∗o′(1)f1χo(1)dτ1 (8)

This results in the Roothaan equations:

Fc = eSc (9)
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where c and e are No × No matrices of the expansion coefficients and orbital energies εm,
respectively, the latter of which is a diagonal matrix. The equation system (9) has a non-trivial
solution only if

det|F− eS| = 0. (10)

However, the Roothaan equations (10) must be solved in a self-consistent field way by first
choosing basis functions and trial expansion coefficients and then calculating the overlap and
Fock matrix elements, (7) and (8). From (10) a new set of expansion coefficients and orbital
energies is then obtained, which are used to compute new matrix elements and obtain another
set of expansion coefficients and orbital energies. This cycle of computations is then repeated
until the change of com and εm from cycle to cycle is not very large, i.e. until convergence has
been achieved. [42]

5.1.2 Semi-empirical methods

However, ab initio method, consume a considerable amount of computing power [42]. Therefore,
for more than a few dozen atoms, they may be replaced by semi-empirical methods [42]. Here,
the Hamiltonian is simplified and adjustable parameters taken from experimental data are also
introduced, which saves computing power at the expense of accuracy [42]. Furthermore, the
computations only involve the valence electrons, each of which is considered to be influenced by
atomic cores consisting of the nuclei and other electrons [43].

In the previous section, it was explained that the basis functions can be approximated as,
for example, atomic orbitals centred on the atoms. One type of functions fulfilling this is Slater
type orbitals (STOs), which for an orbital with quantum numbers n ,l and ml looks like:

Ψn,l,ml
(r, θ, ϕ) = Nrneff−1e−Zeffρ/neffYl,ml

(θ, ϕ) (11)

with N being a normalization constant, Yl,ml
(θ, ϕ) a spherical harmonic and ρ = r/ao (ao is

the Bohr radius). Zeff and neff represent the effective nuclear charges and principal quantum
numbers, respectively, and may be retrieved from a table. [42]

In semi-empirical methods, the Roothaan equations are again considered, but the overlap ma-
trix S is set to the unity matrix [43]. Then, the core Hamiltonian for valence electron i is
introduced:

hvi = − }2

2me
∇2
i + V v,eff

i , (12)

where V v,eff
i is the effective potential field experienced by valence electron i from the nuclei and

the inner-shell electrons. This gives for the Fock matrix elements (8) of a closed-shell molecule
with Nv valence electrons:

F vo′o = hvo′o +
∑
q,r

Pqr{(o′q|or)−
1

2
(o′q|ro)} (13)

where

hvo′o =

∫
χ∗o′(1)hv1χo(1)dτ1 (14)

and
Pqr = 2

∑
m

c∗qmcrm. (15)
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Here, the simplified notation (ab|cd) is used for the two-electron integrals:

(ab|cd) = jo

∫
χ∗a(1)χ∗b(2)

1

r12
χc(1)χd(2)dτ1dτ2. (16)

[42]

Since the calculation of two-electron integrals (16), especially three- and four-centre ones, con-
sume a considerable amount of computing time, some extent of differential overlap is neglected
in order to reduce the number of integrals [43]. In the neglect of diatomic differential overlap
(NDDO) approximation, χ∗a(1)χc(1) is neglected if the basis functions χa and χc correspond
to different atoms, i.e. all one-centre two-electron integrals of the form (16) are retained [42].
Furthermore, NDDO makes use of the earlier introduced STOs as basis functions [43].

One example of a semi-empirical method that can be used in these calculations is paramet-
ric method number 6 (PM6) which is one of the the latest developments in NDDO [48]. This
method, which makes use of diatomic properties, offers better accuracy than previous NDDO-
types, such as AM1 and PM3, and also allows for the parametrization of up to 70 elements [48].
Also, it treats hydrogen bonds better and yields better heats of formation than AM1 and PM3
[43]. When it comes to semi-empirical methods, there are three sources of error: insufficient
or inaccurate reference data, poor assumptions made during approximations or insufficiently
optimized parameters [48]. In the case of PM6, data from over 9000 compounds was used for
the parametrization [43].

Like ab initio methods, semi-empirical methods make use of several basis functions for each
atom [42]. Furthermore, the scaling is normally O(N3), where N is the number of basis func-
tions [49]. Conventional semi-empirical methods are only recommended for compounds with
up to 1000 non-hydrogen atoms [49], and it is not computationally feasible to perform semi-
empirical calculations on very large compounds.

5.1.3 Density functional theory

A third alternative, apart from ab intio and semi-empirical methods, is to apply density func-
tional theory (DFT). This is fundamentally based on two theorems. The first one is the
Hohenberg-Kohn existence theorem, which states that the ground-state energy is uniquely de-
termined by the electron density. The second one is the Hohenberg-Kohn variational theorem,
which states that the energy functional Eo[ρ

′] cannot be less that the molecular ground-state
energy (ρ′(r) is the trial electron density function). In order to minimize the energy functional,
the Kohn-Sham equations must be solved, where also electron correlation is included. [42, 43].

The inclusion of electron correlation represents one advantage over ab initio and semi-empirical
methods [42, 43]. The electron density is also unbound by the permutation symmetry considera-
tions that limit the acceptable choices of wavefunctions [42]. However, the exchange-correlation
functional EXC [ρ] (which represents exchange and correlation energy) is not known exactly, and
there are many proposed forms for this functional [42, 43]. Furthermore, DFT calculations are
much slower than semi-empirical calculations [49].

5.2 Molecular mechanics (force field)

For large systems, it is not computationally feasible to use quantum mechanical calculations.
Instead, it is worth considering using molecular mechanics (MM) methods, in which each atom
with associated nucleus and electrons is treated as a single particle. The interatomic interac-
tions are approximated via a spring-like system, but since electronic effects are disregarded,
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bond-breaking and bond-forming, etc. cannot be simulated. Also, the set of parameters and
equations used to describe the potential energy is referred to as a force field [42]

There are various force fields available, including for instance AMBER and CHARMM,
which are used for proteins and nucleic acids. The force fields are usually reliable only for the
specific set of compounds that they are parametrized for, and transferring parameters between
force-fields is not recommended [43]. Regardless of the type of force field being used, there are
typical expressions for the potential energies. First of all, there is the potential energy due to
stretching of the bonds:

Estr =
∑ 1

2
kb(r − r0)2 (17)

where the sum is over all bonds in the molecule and kb and r0 are the empirical force constants
and equilibrium bond lengths, respectively, for each bond. The zero-order term represents the
potential energy at the equilibrium bond length, which may be set to zero for convenience.
Furthermore, the first-order term is zero due to that potential energy representing an energy
minimum, a stationary point. [42]

Another potential energy takes into account the bending of the bonds:

Ebend =
∑ 1

2
kΘ(Θ−Θ0)2 (18)

where kΘ and Θ0 are empirical constants and equilibrium angles, respectively, for every type
of angle, with the sum extending over all bonds. A third expression takes into account the
potential energy associated with the torsional motion of the atoms:

Etors =
∑

A[1 + cos(nπ − ϕ)] (19)

where the sum extends over all types of torsional motion, with A being the amplitude, ϕ the
dihedral displacement and n testifying of the symmetry of the torsional motion. For instance,n =
2 indicates a periodicity of π. These constants are assigned to each kind of torsional motion.
Lastly, a fourth expression takes into account the non-bonded interactions: the van der Waals,
repulsion and Coulomb interactions:

Enb =
∑
i>j

[
− Cij
r6
ij

+
Dij

r12
ij

+
QiQjjo
εrrij

]
(20)

where the sum is over each pair of non-bonded atoms i and j. The empirical coefficients Cij
and Dij in (20) are assigned to each such pair, and Qi and Qj represent the electric charges of
the non-bonded atoms. Since, for each atom, the interactions with non-bonded atoms far out-
number the interactions with neighbouring, bonded atoms, the computation of (20) consumes
the most computing power. [42]

The force-field to be used in this study is ReaxFFSiO, which has been developed for systems
containing silicon and silicon oxides [50]. However, the force-field parameters in this study were
also optimized for C and Ca, among others [41]. Unlike other force fields, ReaxFFSiO does not
use fixed connectivity assignments, which allows for bonds to be created and dissociated during
computations [50].

5.3 Molecular dynamics

Molecular Dynamics (MD) methods disregard the Schrödinger equations and instead use as a
starting point Newton’s equations of motion:

mi
d2ri
dt2

=
∑
j 6=i

1

rij

dφ(rij)

drij
rij . (21)
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Here, the masses mi and displacement vectors ri of each particle i are considered in a system of
N particles. The pairwise interaction potentials are represented by φ(rij), where rij = |ri− rj |.
The equations (21) are solved numerically, and the system eventually reaches equilibrium as
time translates. The solution to this MD method is a microcanocial ensemble, which means
that V,E and N are free variables. [51]

Since MM methods are unreliable if the optimization is done to a stationary point that is not
a minimum [43], MD can be used to relax the structure towards a minimum (not necessarily a
global minimum).

5.4 Details about Puck

In order to create the super cells from which the cylinders are cut, Puck first takes the highest
value of the height or twice the radius, and doubles it. This value is then divided by the length
of the longest of the three translation vectors, as counted from the cylinder origin. This value,
rounded to the nearest integer, represents the number of unit cells in the positive and negative
x -, y- and z - directions.

Afterwards, all atoms that are not located within the cylinder with the specified origin, ra-
dius and height are rejected. This is where the cylinder is actually cut out from the supercell.
Since covalent bonds are broken after cutting out the cylinders, there are eight separate rules for
restoring connectivity. All of the connectivity rules are carried out twice, because the changes
done to comply with one rule might violate another rule.

Rule 1: Any H atom which does not have any O atoms inside the cylinder and within a distance
of 1.1 Å is removed.

Rule 2: If an O atom has two H atoms within a distance of 1.1 Å, but one of them is out-
side the cylinder, they are all included in the cylinder.

Rule 3: If an O atom has two H atoms within a distance of 1.1 Å, but both of them are
outside the cylinder, they are all included in the cylinder.

Rule 4: Any O atom which does not have any Si atoms inside the cylinder and within a
distance of 2.0 Å, while one or several Si atoms are outside the cylinder and within 2.0 Å, is
removed.

Rule 5: If a Si atom has four O atoms within a distance of 2.0 Å, but one of them is out-
side the cylinder, they are all included in the cylinder. If this O atom is also within 2.0 Å from
another Si atom inside the cylinder, it is a bridging oxygen. This is a valid case, but if it is not
connected to another Si atom, a H atom is added at a distance of 1.0 Å from the O atom, and
a SiOH bond angle of 116.7 o is enforced.

Rule 6: If a Si atom has four O atoms within a distance of 2.0 Å, but two of them are outside
the cylinder, they are all included in the cylinder. For both of these O atoms, the procedure
for bridging O in rule 5 is then applied

Rule 7: If a Si atom has four O atoms within a distance of 2.0 Å, but three of them are
outside the cylinder, they are all included in the cylinder. For all of these three O atoms, the
procedure for bridging O in rule 5 is then applied.

Rule 8: If a Si atom has four O atoms within a distance of 2.0 Å, but all of them are out-
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side the cylinder, they are all included in the cylinder. For all of these four O atoms, the
procedure for bridging O in rule 5 is then applied.

After going through all the above rules twice, a sanity check is applied to review both Si
and H connectivity. All Si atoms should be coordinated to four O atoms inside the cylinder
and within a distance of 2.0 Å, and each H atom should have one O atom inside the cylinder
and within a distance of 1.1 Å. If either connectivity is not satisfied, the program stops and the
geometry file is not created. Due to the many different connectivity scenarios for O and Ca,
these atoms are not subjected to connectivity rules [18].

As for establishing the charge neutrality, the defined charges are +4 for Si, +2 for Ca, +1
for H and -2 for O. Based on this, the computed charge can be positive, neutral or negative,
and the absolute value can be even or odd. If the charge is neutral, the geometry file is created,
otherwise, these charge rules are applied:

Rule 1: If the charge is positive and odd, then an OH group is removed to make the charge
even. Puck looks for an O atom which has a H atom inside the cylinder and within a distance of
1.1 Å and removes this OH group. If no O and H atoms meet this criterion, Puck is terminated
without creating the geometry file.

Rule 2: If the charge is positive and even, Ca atoms are removed until the charge is zero.
Only Ca atoms that are located further away from the cylinder origin are removed.

Rule 3: If the charge is negative, Puck stops without creating the geometry file.
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5.5 Example input script for ReaxFFSiO calculations on C-S-H

boundary f f f 

read_data r___10.00_h___12.00_Si______32Ca______37OO_____167HH_____132n______0.lmp 

pair_style reax/c NULL 

pair_coeff * * ffield.reax Si O Ca O H 

neighbor 0.8 bin 

thermo 10 

thermo_style custom step time temp etotal press lx ly lz xy xz yz 

neigh_modify delay 0 check yes 

group silica type <> 1 2 

group Ca type == 3 

group water type <> 4 5 

 

fix charge all qeq/reax 1 0.0 10.0 1.0e-6 reax/c 

 

# 1. minimization of all atoms except silica 

 

print """Starting" minimization of all atoms except "silica""" 

min_style cg 

fix 1 silica setforce 0.0 0.0 0.0 

 

minimize 1.0e-5 1.0e-7 300 1000 

unfix 1 

 

 

# 2. MD of all atoms except silica 2.5 ps 

 

timestep 0.1 

velocity silica zero linear 

velocity Ca create 0.1 1881677804 

velocity water create 0.1 1514666106 

fix 1 silica setforce 0.0 0.0 0.0 

fix 2 Ca nvt temp 0.1 500.0 1000.0 

fix 3 water nvt temp 0.1 500.0 1000.0 

print """running" 0.1 K->500 K "MD""" 

 

run 2500 

unfix 1 

unfix 2 

unfix 3 

 

 

# 3. E minimization with no frozen atoms 

 

print """Starting" minimization of all atoms in the "cell""" 

min_style cg 

dump 1 all xyz 1000 r___10.00_h___12.00_Si______32Ca______37OO_____167HH_____132n______0_step3.xyz 

dump_modify 1 element Si O Ca O H 

 

minimize 1.0e-5 1.0e-7 300 1000 

undump 1 

 

 

# 4. low temperature MD of the whole system 

 

timestep 0.1 

velocity all create 0.1 722092004 

print """running" 0.1 K MD for the whole "system""" 

fix 1 all nvt temp 0.1 0.1 1000.0 

 

run 2500 

unfix 1 

 

 

# 5. E minimization with no frozen atoms 

 

print """Starting" minimization of all atoms in the "cell""" 

min_style cg 

dump 1 all xyz 1000 r___10.00_h___12.00_Si______32Ca______37OO_____167HH_____132n______0_step5.xyz 

dump_modify 1 element Si O Ca O H 

 

minimize 1.0e-5 1.0e-7 300 1000 

undump 1 
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