
 
Department of Automatic Control 

 

Object detection and avoidance 
using LiDAR on a hydrofoil boat 

Erik Söderberg 



 
 

 

 

 

 

 

 

 

 

 

 

MSc Thesis 
TFRT-6074 
ISSN 0280-5316 

Department of Automatic Control 
Lund University 
Box 118 
SE-221 00 LUND 
Sweden 

© 2019 by Erik Söderberg. All rights reserved. 
Printed in Sweden by Tryckeriet i E-huset 
Lund 2019 

 



Abstract

Robots in factories and vehicles on our roads are rapidly reaching the point

of automation. Commercial markets require high standards of safety and

reliability, which in turn demands strict requirements on software and hard-

ware. This thesis presents an analysis of driver assistance for a hydro-foil

speedboat using LiDAR technology. The LiDAR sensor measures 2D posi-

tions of surrounding objects and the control software processes the data in

order to distinguish clusters and movement.

Keywords: LiDAR, Point cloud, clustering, real-time system
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1
Introduction

1.1 Problem formulation

“Is it feasible to implement driver assistance on a speed boat using a 2D

scanning LiDAR sensor?”

The purpose of this master’s thesis was to investigate and develop a driver

assistance prototype for a hydro-foil speedboat, with LiDAR sensor technol-

ogy. The goal of the software was to be able to detect and track obstacles.

Other than focusing on the development of the real-time application running

the driver assistance software, other important milestones was to address

difficulties in the configuration of the hardware, software and identify limi-

tations in real-time performance.

1.2 Proposed solution

The proposed solution to this thesis problem formulation was to use a 2D

LiDAR sensor with 360◦ field of view in order to collect sufficient data of the

dynamic surroundings around the boat. The data was then to be analyzed

in real-time in order to provide as good estimations as possible of obstacles

1



Chapter 1. Introduction

and their movement. By isolating tests for the performance of the LiDAR

sensor, sensible conclusions could drawn about its durability and precision.

By also testing the software solutions in dynamic settings key performance

aspects could be addressed and analyzed.

1.3 Outline of thesis

This section is to describe the overall outline of this master’s thesis.

In chapter 2 all fundamental theories and tools, that underlie the practical

work and the analysis in this report, are described.

Chapter 3 lists previous and similar scientific studies, that have been

deemed relevant for this master’s thesis.

In chapter 4 work methodologies are covered in order to thoroughly detail

the major steps taken during the investigation and development of the driver

assistant prototype.

In chapter 5 all relevant and quantifiable results are listed. The chapter

covers the result from investigating and testing the LiDAR hardware, the first

prototype in Python, the ROS obstacle detection package and the testing of

the authors implementation and PCL.

Chapter 6 covers the analysis of the results and facts gathered to address

flaws and imperfections in hardware and software.

In chapter 7 future work and improvements are proposed for both hard-

ware and software.
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2
Background

Candela Speedboat AB has been developing an electric hydrofoil boat since

2014, with the goal of competing with fossil fuel speedboats. They are com-

bining hydrofoils with advanced techniques in automation and electronics to

achieve a long-range and almost silent ride. They have long been interested in

moving towards driver automation or assistance and welcomed this master’s

thesis as a first prototype to their future investigation.

Figure 2.1: The Candela Speedboat [2]

In the initial stages of this master’s thesis, a list of necessary hardware was

conducted. As mentioned in section 1.2, a LiDAR sensor with a wide field

of view was needed together with some stabilizing platform to compensate

for sea turbulence. In order to keep costs down without loosing too much

3



Chapter 2. Background

functionality, it was early decided to use a 2D rotating LiDAR. During the

research phase a lot of work was put into investigating the possibility of

building a stabilizing platform or gimbal. The idea was to order and assemble

the hardware and to write a closed loop control algorithm that would read

attitude of the sensor and quickly respond to tilt. After long consideration

it was later recognized to take too much time and the idea was discarded.

The idea of sensor stabilization is however vital for 2D LiDAR sensors, due

to them having no vertical field of view. Hence the basic concept of such a

device will be covered in this chapter as well.

2.1 Hardware configuration

2.1.1 LiDAR technology

LiDAR stands for Light Detection and Ranging. It is a technique used for

determining distances to surrounding obstacles and environments. The tech-

nique utilizes the principle of time-of-flight in order to give distance mea-

surements. By transmitting light and measuring how long it takes to bounce

back, it is possible to estimate the distance to the reflecting object. As men-

tioned in [6] factors such as reflexive index and smoothness of surface of the

reflecting object directly affect the intensity of the reflected light.

LiDAR technique is accurate and fast and has been used in a large variety

of applications ranging from urban planning to autonomous vehicles and

robots. The basic constructs and techniques are described below starting

with the one-dimensional range finder.

4



Chapter 2. Background

2.1.1.1 Laser range finder

A laser range finder is a device that can measure a distance from itself to a

point, aimed at by the device. They are widely used by golfers, military staff

and in commercial products.

A single ray of laser light is emitted from the device. The light is bounced

back to upon first contact with a solid material. The laser range finder device

also has a photo diode that awaits light of the same, or similar wavelength

that was emitted by the laser. By measuring the time between the laser

emission and the reply, it is possible to estimate the distance to an object by

using an approximation of speed of light in air. The formula for estimating

the distance d with this, so called time of flight technique, can be seen

in equation: 2.1. Here c is the speed of light, t is the time between the

transmission and the laser response. Division with 2 is done to only acquire

half of the total distance traveled by the light, namely the distance to the

object.

d =
c · t
2

(2.1)

2.1.1.2 2D mechanical scanning LiDAR

2D Scanning LiDARs utilize the same technical concept as laser range finders.

The difference between them is that scanning LiDAR are mounted on a

rotary motor making it possible to take continuous samples as it is rotating.

Scanning LiDAR sensors are also equipped with rotary encoders to be able

to map a laser sample to a rotary angle. By doing this it is possible to

acquire a point cloud of samples represented in the plane. Since there is still

no vertical field of view to these sensors, they are not able represent their

5



Chapter 2. Background

Figure 2.2: Scanse’s 2D scanning LiDAR ”Sweep” [18]

Figure 2.3: Example of point cloud output from the Sweep LiDAR

surrounding environment in 3D. The angle between two consecutive samples

is called azimuth or angular resolution and can for some LiDAR sensors be

tuned manually by adjusting the sampling - and rotational frequency of the

device, as can be seen in equation 2.2. Furthermore, the term sample will

relate to a single point in a point cloud and a sample frame will refer to a

full point cloud.

azimuth =
fsampling

frotation · 360 (2.2)

6



Chapter 2. Background

Figure 2.4: Velodyne’s 3D scanning LiDAR HDL-64E [14]

Figure 2.5: Example of point cloud output from the Velodyne 3D scanning
LiDAR HDL-64E [14]

2.1.1.3 3D mechanical scanning LiDAR

3D scanning LiDARs are scanning LiDARs with vertical field of view. To

obtain their vertical field of view, there are currently different approaches.

Market-leading Velodyne currently uses 64 lasers in their flagship product

HDL-64E with equally spaced angles between each laser emitter [14]. Other

3D LiDAR variants use mirrors to aim the laser beams, in order to gain

vertical field of view [15].

7



Chapter 2. Background

Figure 2.6: Solid state LiDAR with laser flash technique [12]

2.1.1.4 Solid state LiDAR

2017 was a big year for remote sensing, due to the emergence of solid state

LiDARs. The term solid state is used interchangeably between various tech-

nical domains, but is most well known in digital storage. The term solid state

refers to the hardware having no mechanically moving parts. Due to recent

research the same technique has been utilized in LiDAR sensors. Instead

of using a rotary motor to spin the sensor module, solid state LiDARs are

used as stationary units. They usually have a narrower field of view, and

machinery requiring 360 degree of vision usually requires multiple sensors

installed. One of the market-leading companies, LeddarTech, offers two dif-

ferent Solid state LiDAR configurations for the automotive industry [12]. In

figure 2.7 and 2.6, two solid state LiDARS, based on laser flash and hybrid

flash technology, respectiveley, are depicted.

Both techniques use either some lattice or diffuser lens to break a ray of

light into a scanning line of light. For flash LiDARs that line a laser light

is then propagated horizontally by using an array of laser emitters. Figure

2.7 shows the hybrid flash solid state LiDAR. This LiDAR projects the laser

beam onto a very small mirror oscillating on high frequencies, in order to

scan the environment. Due to their compact design solid state LiDAR are

much smaller than their predecessors, cheaper and more durable.

8



Chapter 2. Background

Figure 2.7: Solid state LiDAR with hybrid flash technique [12]

2.1.1.5 Scanse’s Sweep LiDAR

For this master’s thesis the Scanse’s Sweep LiDAR was used. The sensor can

be seen in figure 2.2 and is a 2D scanning LiDAR. It has two customizable

parameters for rotational frequency and laser sampling frequency. Rotational

frequency of the motor can be set to values between 1 - 10 Hz and the sam-

pling rate can be set up to 1000 Hz. It collects all samples of a full revolution

before sending the fully populated point cloud over a USB connection. This

means that data arrives in a synchronous manner. An estimated error func-

tion is shown in figure 2.8, provided by the company Scanse.

Figure 2.8: Graph of measurement error for detected obstacles up to 40m,
produced by Scanse [18]

The sensor lacks an otherwise common function among scanning LiDARs,

called fixed scanning. Fixed scanning means that samples do not only occur

at an exact frequency but also conducts all samples at the exact same azimuth
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Chapter 2. Background

per each revolution. A scanning LiDAR with fixed scanning intervals would

e.g., always have its first sample reading at 0◦, whilst opposite LiDARs have

a sporadic order for when samples occur [17].

The Sweep LiDAR is shipped with a predicted lifetime of 45 million rota-

tions or approximately 2500 hours of moderate use at only 5 Hz of rotation

frequency. The company warns of an even shorter lifetime if the sensor is

exposed to turbulent or vibrating environments.

2.1.2 Sensor stabilization

Despite having multiple attitude sensors in the Candela speedboat and hy-

draulic motors to keep the boat and deck stabilized, it was early recognized

that further sensor stabilization was needed. Since the Sweep sensor had

no vertical field of view it was crucial to have the aiming of the laser beam

correct. As can be seen in figure 2.9 and in equation (2.3), it was recognized

that the sensor had to keep a horizontal orientation, with an approximate

error of ±1.86◦ in order to not hit surface of water and to not miss boats and

obstacles that were too small.

Figure 2.9: Image showing the crucial angle α for which the laser beam will
hit the surface of the water

α = tan−1(
1.3

40
) =⇒ α ≈ 1.86◦ (2.3)

This puts a rather strict requirement on hardware and software. However,
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Chapter 2. Background

by investing in an attitude sensor, a micro controller and a custom made

construction housing two brushless motors, a stabilizing platform could be

built and automated with a Kalman filter, to solve such a problem [1].

2.2 Obstacle detection

As mentioned in section 2.1.1 the output from LiDAR sensors, are point

clouds. Regardless of using a 2D LiDAR or a 3D LiDAR the most common

way of detecting obstacles are with point cloud clustering.

2.2.1 Clustering

The idea of point cloud clustering is to group data points together based on

a predefined condition. Theoretically this condition can be any quantifiable

state that a point holds, but we will for this master’s thesis only focus on

spatial clustering. As for detecting solid objects from point cloud data, the

most obvious approach would be to measure the relative distance between

points. The algorithm then determines the clusters upon a predefined mini-

mum threshold value of this parameter. Such an approach was proposed in

[3]. Here, the Euclidean clustering algorithm was effectively used to detect

houses and buildings from airborne LiDAR data sets.

Given two data points p and q, in the three-dimensional space, represented

in Cartesian coordinates, their Euclidean distance d is defined as:

d =
√

(xp − xq)2 + (yp − yq)2 + (zp − zq)2 (2.4)

In order to speed up the clustering it is recommended to structure the input

11



Chapter 2. Background

point cloud in something called a k-d tree. A k-d tree is a binary search tree

used for organizing points living in an arbitrary number of dimensions. The

first step of creating a k-d tree is by dividing the input data in two subsets.

This is done by finding the median value of a specific dimension of the data

set, say the x-coordinate of the points. The point, having its x value closest

to this median value will represent the root of the k-d tree. The subset of

points whose x value is smaller than the root’s will appear as the left child of

the root and the right-hand subset will appear as the right child of the root.

After this initial step, all children of the graph are processed recursively in

the same manner, until a predefined number of points are left in a subset

[10].

2.3 Obstacle tracking

In order to achieve multi-target tracking of dynamic obstacles, there are

mainly two important building blocks of the general tracking algorithm that

need to be incorporated, namely:

• An accurate function for associating data (detected obstacles) between

two consecutive sample frames

• An efficient algorithm that solves tracking problems like overlapping

targets and obstacle fission and fusion.

Associating data or features between samples is usually referred to as the

correspondence problem. It involves mapping data, or in this case obstacles,

between samples that are statistically most likely to be the same. To find

correspondences between samples or point clouds it is useful to utilize a cor-

respondence function, that measures the similarity of states for all present

12



Chapter 2. Background

obstacles. Depending on the granularity of analyzed data such a correspon-

dence function could look very different. Such function can measure obstacle

correspondences on states such as position and velocity and provide a mea-

sure of similarity. By incorporating such a function together with a Kalman

filter for all detected obstacles, it is possible to estimate, predict and associate

obstacles between point clouds [7][16].

13



3
Related work

In recent years much has happened in the fields of vehicle automation and

assistance. The car company Tesla announced in 2015 that their Model S

cars were to be shipped with autopilot and since then a lot has happened.

Recent research suggests that there will be 10 million self-driving cars on the

roads in 2020 [11] and more companies than Tesla are joining the future of

technology. The urge for improved autopilots has boosted the development

of sensing hardware and resource efficient software.

3.1 The ROS obstacle detector package

The ROS obstacle detector package is an open source software developed

by Mateusz Przyby�la from Poznań University of Technology. The package

was developed for a small indoor mobile robot with two 2D scanning LiDARs

utilizing fixed azimuth scanning. It uses a Kalman filter for eliminating noise

and providing optimal state estimations of all surrounding obstacles. It has

two algorithms running in parallel in order to detect walls (straight lines of

points), and dynamic obstacles. Dynamic, or moving obstacles, are detected

when the shape of a point cloud cluster deviates from that of a straight line.

Once an obstacle is detected it will remain in the graphical interface as a

14



Chapter 3. Related work

trace until it finds an adjacent obstacle that is considered similar enough for

it to have moved.

The reason why this package is considered important for this paper is due

to the fact that it addresses the key features of 2D LiDAR obstacle tracking

mentioned in chapter 2.3, namely data association and tracking difficulties

of dynamic obstacles. Data association is solved here with a correspondence

function. The correspondence function measures the similarity between one

obstacle in a sample frame and compares it to all detected obstacles in the

succeeding sample frame. The function does this by calculating a cost value

based on the obstacles position and shape [16].

3.2 A Simple Reactive Obstacle Avoidance

Algorithm and Its Application in Singa-

pore Harbor

In the paper by Tirthankar Bandyophadyay, Lynn Sarcione and Franz S.

Hover [4], a solution to detecting and avoiding stationary and dynamic boats

and obstacles in the Singapore harbor, is pressented. By equipping an au-

tonomous surface craft with a two-dimensional scanning LiDAR the authors

propose a model-free approach for avoiding obstacles

This scientific paper is considered import due to the fact that it addresses

some key difficulties in detecting and tracking obstacles at sea using a 2D

laser scanner. It also covers common problems of usage that can occur for

2D scanning LiDARs at sea [4].

15



4
Methodology

This section aims to clarify the major steps taken in this master’s thesis and

answer what, when and how the work was conducted.

4.1 Stabilizing platform

In the initial stage, the possibility of building a gimball was considered. In-

spired by an online article describing the process [1], time was put into finding

relevant hardware and evaluating their specifications. After two weeks of in-

vestigation, both the time needed for building the hardware and writing the

software was considered to take too much time. Instead, the idea of building

a stabilizing platform was discarded to make more time for investigating the

LiDAR and the software.

4.2 Prototype in Python

To first test the Sweep LiDAR and all necessary drivers, a prototype software

was written in Python. The aim of this part of the master’s thesis was to

get acquainted with the device and also how to extract and use the output

16



Chapter 4. Methodology

data provided by the Sweep. By sending commands to it, it was also possible

to change and investigate different settings of the sensor, such as rotational

frequency and sampling frequency. The final goal was to produce a graphical

interface that could plot the point clouds in real-time, as data arrived from

the sensor.

4.3 The obstacle detector package

In the next step of the practical work, an already existing software package

was tested. This was deemed relevant to, in an early stage, address difficulties

with object tracking from 2D point clouds. The software package chosen was

the ”The obstacle detector package” by Mateusz Przyby�la [16]. The reason

this package was chosen was because it proposed a solution to tracking of

dynamic obstacles from 2D LiDAR data.

In order to interface the Sweep to this package, several preparatory mea-

sures had to be made. Being a ROS package [8] a ROS node and driver for

the Sweep had to be configured in order to publish data to the package. Since

the Sweep differed greatly in performance compared to the LiDAR used in

The obstacle detector package, model parameters had to be tuned to work

with the new hardware.

4.4 PCL and author’s implementation

The last milestone in this master’s thesis was to construct a driver-assistance

prototype software based on the knowledge gathered from literature studies

and testing. To not lose too much time on underlying implementation, the

open source Point Cloud Library (PCL) was used [13]. PCL offers various

17



Chapter 4. Methodology

processing tools for point clouds, and was early considered useful, mostly for

its tools on graphical interfaces. The library is available in C++ and is built

with the building tool CMake.

In the architectural design of this software, three parallel processes were

recognized as necessary:

1. Read sensor data

2. Analyze data and run underlying algorithms

3. Update the graphical interface

To isolate these crucial processes three separate threads were introduced.

As can be seen in the UML diagram in Chapter 5, all threads read from and

wrote to a central monitor, holding shared resources and methods, such as

point clouds and detected obstacles. Due to quite new and unstable versions

of the PCL graphics module at the time, a lot of work was put into getting the

visualization working. Once the input point cloud was successfully plotted,

time was spent on clustering and improving the graphics.

To solve the correspondence problem in obstacle tracking the following

correspondence function C was used:

C(α, β) =
√

(αx − βx)2 + (αy − βy)2 + w · (αpoints − βpoints)2 (4.1)

The function takes two obstacles, α and β and compares two attributes

between them; position and number of constituting points. The variable w in

equation (4.1) is a customizable weight to how much the difference in number

of points should affect the correspondence value of the function. By calcu-

lating the similarity between obstacles from the previous point cloud and the

18



Chapter 4. Methodology

obstacles from the current point cloud, it was possible to obtain a measure

of which old obstacles most possibly corresponded to new ones. All corre-

spondence values were put in a matrix to easily compare all correspondence

values, before deciding which obstacles transformed into which.

When the correspondence function was working, time was put into imple-

menting the Kalman filter for obstacles.

4.5 Experiments

To verify and measure all implemented functionality, numerous experiments

were set up throughout the thesis work, all of which will be covered in this

section.

4.5.1 Indoor testing

After the realization that it would not be possible to use a stabilizing plat-

form, it was immediately recognized that testing on the boat would not be

possible. Instead, the majority of all software testing was done indoors in

the Candela office space. By looking at how well and fast obstacles were

detected, it was possible to tune parameters for the algorithms and evaluate

the performance. By analyzing moving obstacles, such as walking people, it

was possible to measure the speed of the obstacle tracking.

4.5.2 Outdoor testing with a car

By setting up a test environment at a big and empty parking lot, the obstacle

detector package was thoroughly tested, by circulating the Sweep sensor with
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Chapter 4. Methodology

a car. The experiments included testing of sensor range, obstacle detection

at different ranges and also the software performance at different speeds of

the car.

4.5.3 Hardware testing

To test the LiDAR sensor’s real performance a hardware test was conducted.

The main idea was to establish the precision in distance measuring as well

as the ability to track the azimuth to the centroid of a static obstacle. The

goal was to abstract the sensor variance in order to compare precision to the

proposed error function provided by Scanse 2.8. As can be seen in figure 4.1,

the test obstacle was composed of one 1.5 meter wide and 1.5 meter high

fence dressed in tarpaulin. The obstacle was then moved to a soccer field

in order to have a wide and flat area with no interfering environments. Due

to difficulties aiming the device at the obstacle at too large distances, the

successful test was conducted at ten meters away from the obstacle, with an

approximate azimuth of 20◦ to the obstacle.

20



Chapter 4. Methodology

Figure 4.1: The test environment for the hardware test

21



5
Results

5.1 Hardware performance

Since the hardware test was only meant to measure how much the collected

data deviate from the real stationary position of the obstacle, the mean of

all azimuth values are not the interesting parameter but rather the standard

deviation of the azimuth values.

Throughout all testing and development, minor wobbling of the rotating

module could be observed for the Sweep LiDAR.
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Figure 5.1: Distance distribution to a static obstacle at a range of approxi-
mately 10 meters. Result from experiment mentioned in section 4.5.3
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Figure 5.2: Result of the experiment to verify the precision and tracking
of the centeroid of a static obstacle. Result from experiment mentioned in
section 4.5.3

5.2 Prototype in Python

The first graphical prototype was written in Python using the library PyQt-

Graph [5] and can be seen in figure 5.3. It successfully plotted all data from

the LiDAR in real time, with no visible latency. Throughout the testing of

this prototype points appeared to move around their actual positions. Walls

would not appear entirely straight despite being so and the errors appeared

to increase as the distance between the Sweep and the static objects were

increased.
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Figure 5.3: Visualization prototype written in Python for the Sweep

5.3 The obstacle detector package

The obstacle detector package was tested in both static and dynamic en-

vironments. The dynamic environment took place on an open field with a

circulating car. All data was recorded and analyzed afterwards. Figure 5.4

shows the car as the top right big circle and figure 5.5 shows the car as two

detected circular obstacles. Despite the Sweep’s stated maximum range of

40 meters, no data points were received from the car if driven 15 meters or

further away from the sensor. The maximum speed for which the package

could detect and follow the car as an object within the range of 15 meters,

was approximately 9 km/h. Figure 5.6 shows the result of a less strict pa-

rameter tuning. Here the Sweep is located in the forest with no moving

obstacles in its surrounding and still struggles hard in determining obstacles.

Despite having the Sweep sending point clouds in a synchronous manner, the
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application would mostly lag between samples and not have the same update

frequency in the GUI as the rotational frequency of the sensor.

Figure 5.4: The obstacle detector package detecting a car as one cluster

26



Chapter 5. Results

Figure 5.5: The obstacle detector package detecting a car as two overlapping
clusters
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Figure 5.6: The obstacle detector package struggling with identifying trees
in a forest

5.4 PCL and author’s implementation

After the disappointing sensor performance in outdoor environments all fol-

lowing tests for this implementation was done indoors with both stationary

and moving obstacles. The test environment was the Candela office space

and the performance of the application was measured in how well walking

people could be detected and tracked. The centroid of all detected obstacles

in the GUI are marked with a white circle. All red points belong to a cluster

are hence obstacles.

Most of the time all obstacles were detected fast and tracked flawlessly

in the application. No obstacles were detected that should not have been

detected. There was however a threshold of performance around 18 obstacles

at a time, for which the GUI started to update slower than the rate of which

data arrived. Figures 5.8 and 5.9 show around 10 detected obstacles for
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which the application would run with no visible lag.

Due to some problematic functions in the PCL library there were difficul-

ties in updating detected obstacles and clearing old ones. Red points would

at times linger between point clouds, as a result of an unsuccessful clearing

between point clouds. This phenomenon can be seen in figure 5.9 around the

left-most detected obstacle. There, a number of red points linger from the

previous point cloud without belonging to any obstacle in the current point

cloud. All tests were conducted with a rotational frequency of 4 Hz and a

sampling frequency of 1000 Hz.

Figure 5.7: UML diagram of proposed software solution

29



Chapter 5. Results

Figure 5.8: A screenshot of the author’s implementation, showing a room
scan. The yellow arrow marks the direction of the Sweep
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Figure 5.9: A screenshot of the author’s implementation, showing a close up
of a room scan
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6
Analysis

6.1 LiDAR sensor

Figure 6.1: Aerial image showing a detected obstacle

e = r · tan(α) (6.1)

In an optimal scenario, obstacles that are stationary, should also appear to
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be stationary by the LiDAR sensor. In a more technical approach this would

mean that the measured distance and estimated azimuth to the centroid of a

stationary obstacle should be the same between all consecutive point clouds.

When working with real time systems that utilize sensors, the property of

precision and resolution is important due to the fact that it can leave less to

approximations and estimations. The tests conducted for this LiDAR sensor

were done in order to obtain the degree of uncertainty of all measurements.

As can be seen in figure 5.2 the hardware test showed an interesting attribute

of the sensor. Despite experiencing some visual fluctuations of points during

the initial Python prototype phase, this hardware test proved this suspicion

of the sensor inaccuracy. A standard deviation value of 1.1◦ for the azimuth

to the centroid of an obstacle is a significant value. Looking at equation

(6.1) and figure 6.1, it is possible to convert this error and conclude that

obstacles can on average appear to fluctuate 0.78 m perpendicular to the

laser beam from its actual position, at the maximum range of 40 meters.

In general, inserting the azimuth error value of 1.1◦ in equation (6.1) gives

a linear equation between the distance to an obstacle and its approximate

spatial error perpendicular to the laser beam.

Moving on to the sensors precision in distance measurement, it is harder

to conclude the performance for the sensor’s entire range. Figure 5.1 shows a

standard deviation of 0.4 meters at the obstacle distance of around 10 meters.

Since there were no clear indications of distance errors of such proportion

when testing the author’s implementation at the Candela office, there is

reason to believe that the result from distance measurement test conducted

in section 5 is faulty. Article [9] discusses how airborne LiDAR technology

can be used over forests to measure the height of trees and vegetation by

counting how many laser pulse replies are received from a single laser pulse

transmission. When a reflecting object is not entirely solid a part of the

light might pass through which is the case for leaves and bushes. This is a

probable outcome of the tarpaulin fence; the laser light passed through the
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first layer to reflect a second time upon hitting the surface of the second

tarpaulin layer, located approximately 0.3 meters behind the first layer. Not

only does this give an insight to the inaccuracy of the distance test but also

one of the drawbacks of object detection for this specific application. In cases

of an undesired aiming of the Sweep, all laser samples for a boat might only

hit the windows. Either that could result in no obstacle detected at all or a

faulty distance measurement.

When analyzing the range of the Sweep LiDAR there are multiple things

to consider. With no vertical field of view, the reliability of the aiming

of the laser becomes very important. As mentioned section 5.1 the Sweep

appeared to wobble slightly throughout all testing. Once again, looking

at equation (2.3) small changes in the aiming angle can greatly influence

where laser beams hit, depending on the distance to the target. With no

specific apparatus for aiming the Sweep and with no stabilizing platform,

small mechanical imperfections as this could have influenced the detection

of the testing obstacle and the detection of the car when investigating the

obstacle detector package, possibly missing the targets by aiming too high.

Adding to this the great variety of heights for different boats, it becomes clear

that a stabilizing platform for the Sweep would probably not be sufficient

for this application. It would be hard deciding a good inclination, that

compensates for the mechanical imperfections of the Sweep.

As mentioned in section 2.1.1 rotating LiDARs tend to break more often

than solid state LiDARs due to moving parts. Having kept that in mind,

along with the device’s estimated lifetime it is possible to conclude scanning

LiDARs have a great weakness when used in mobile configurations. Despite

always testing the Sweep in a stationary position, it broke and needed to be

repaired twice during the thesis project. This also gives an indication that

sensor breakdown would be likely to occur on the Candela boat even with or

without a potential stabilizing platform.
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6.2 The ROS obstacle detector package

The obstacle detector package was originally written for an indoor robot

with two scanning LiDARs utilizing fixed azimuth scanning. The software

would not track an obstacle if its point cloud shape was close enough to a

straight line. This was early recognized as a problem due to two reasons.

Firstly, computational power would be consumed to look for walls that are

non existing at sea. Secondly, obstacles that were supposed to be tracked

risked, at certain angles, to have their point cloud shapes close enough to

straight lines, to get lost in the tracking. As mentioned in section 5.3, the

tracking of dynamic obstacles would sometimes appear inconsistent. They

would disappear and only have a trace of its last detection lingering some two

seconds in the GUI before also disappearing. The reasons for this inconsistent

tracking with the obstacle detector package are many. First of all, the author

of said work uses a 2D scanning LiDAR of much higher angular resolution

and yet higher rotational frequency than the Sweep. The parameters for his

models were hence tuned for a sensor of much higher performance. Despite

adjustment of these model parameters, no desirable result could be obtained

and inconsistent tracking would still occur. Lastly, it is possible that the

mentioned car in the tracking experiments of section 4.5.2 would, for some

angles, have its point cloud shape close enough to a straight line for it to be

considered a wall. It would then fall in and out of the tracking algorithm and

could thus explain why some obstacles have overlapping circles, or traces of

circles from where it has traveled, seen in figures 5.5 and 5.6.

6.3 PCL and authors implementation

The open source library PCL offered many beneficial functionalities for the

final implementation of this master’s thesis. Multiple flaws were however
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detected during the development and testing, which will be discussed in

this section. The most important function it provided was the graphical

interface. Building a graphical interface from scratch is very time consuming

especially for real-time applications. With the results presented in this thesis

report, it is possible to conclude that the library is more optimized for static

point cloud processing rather than for real-time processing. As discussed

in section 5.4 there were no resource efficient functions for working with

point clouds or the geometric figures plotted in the window. There were

many problems detected when trying to update the view between point cloud

samples, such as clearing detected obstacles and entering new ones. To solve

the problem, many new functions had to be implemented and customized,

such as "draw obstacles()" and "clear GUI strings()" seen in figure 5.7.

These functions had to be iterative and redundant in order to work with

the library, slowing the overall performance of the application. This is most

likely the reason why the application would run slower as more obstacles were

detected, forcing the resource inefficient functions to process more data. If

it would have been possible to work with a more streamlined library, built

specifically for real-time processing and presentation of point clouds and

geometrical figures, the performance of the the application could have been

improved greatly.
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Conclusion

In conclusion, this master’s thesis addresses multiple key factors of object

detection and avoidance using LiDAR technology intended for a hydrofoil

speedboat.

The initial steps included a lot of investigative work regarding sensor mod-

els and required sensors stabilization. After deciding that the 2D LiDAR

Sweep was the most feasible sensor for this thesis work, together with the

fact that building a stabilizing gyro for the sensor would not be possible,

efforts were put into investigating the hardware precision and developing the

software.

By using and analyzing three different software approaches, it was possible

to address key features and find weaknesses in all approaches. The main

difficulty found was to visualize data and obstacles in real-time. The best

approach was using the C++ compatible library PCL, for which there was

some support for visualizing point clouds in real-time. It was possible to

plot point clouds, clusters and shapes. However, using PCL for this purpose

proved to be not optimally suited and resource inefficient, resulting in crashes

and poor performance.

The performance of the Sweep LiDAR also proved to be less than promised

and not well suited for this application. By analyzing the sensor specifications

37



Chapter 7. Conclusion

and its tested precision in range and horizontal perception to obstacles, it

was possible to conclude that resolutions and precision were not enough for

this application. To summarize the result of this master’s thesis, and to

answer the problem formulation question, it is not feasible to implement

driver assistance for a hydrofoil speedboat, with mentioned techniques and

hardware.

7.1 Future work and improvements

7.1.1 Hardware improvements

As discussed in section 6.1 rotating LiDARs entail many difficulties that are

solved with solid state LiDARs. Not only would such sensors last longer and

be more resilient for this specific demanding configuration, but also improve

object tracking, power consumption, device cost and reliability. Having a

sensor device that is much less likely to break in a critical situation means

much in the sense of reliability and safety. Furthermore, having a LiDAR

that produces 3D point cloud data rather than data in 2D, implies more

details and information about each detected object. As discussed in section

4.4 the difficulty in mapping the same object between two consecutive sample

frames, is to have a good enough correspondence function. By knowing more

about an object’s 3D shape, it is possible to utilize a more rigorous cost

function, making tracking more reliable by minimizing the risk of mixing

objects together.

38



Chapter 7. Conclusion

7.1.2 Software improvements

The major software flaw in the proposed solution with PCL is the effective-

ness of the graphical drawing tools. PCL’s visualization packages appear to

be intended for offline plotting of point clouds rather than real-time plotting.

According to the documentation the visualization class can not be used by

multiple threads in an application, and warns about possible crashes. Fur-

ther more there are no efficient functions to redraw shapes or update texts

in the GUI. Before each new point cloud can be shown in the visualizer, all

previous geometric shapes and texts need to be erased sequentially and new

ones need to be drawn, forcing excess computational power. In addition to

this, all showable objects, such as texts, shapes and point clouds share the

same memory space of IDs, meaning there is no uniform way of only deleting

texts or only deleting point clouds. This is most probably the reason why

the GUI started to run slower once more objects were detected.
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