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Abstract 
 

 
This thesis investigates the volatility structures found in forward-looking fundamental 
valuations of the Swedish stock index OMXS30. The evaluated data constitutes daily 
observations of P/E ratios based on twelve months earnings estimates during the period 2009-
01-02 until 2018-10-18. The analysis is conducted by applying a GARCH modelling framework 
to a log-return transformed return series derived from the raw data. This thesis reveals that the 
underlying data exhibit commonly observed properties found in financial time series with the 
most prominent ones being volatility clustering (i.e. heteroscedasticity) and leptokurtic 
behaviour. Parameter efficiency in the maximum likelihood estimation procedure is evaluated 
using five different distributional assumptions for the GARCH model innovations, namely: 
Normal distribution, Student-t distribution, skewed Student-t distribution, Generalised error 
distribution and the skewed Generalised error distribution. The final model choice entails a 
symmetric GARCH(1,1) model with innovations assumed to be generated from a skewed 
student-t distribution. Finally, this model proves to be sufficient in describing the volatility 
structure found in the return series. 
 
 
Keywords: GARCH, OMXS30, financial time series, volatility, heteroscedasticity, stationarity, 
McLeod-Li test, normal distribution, student-t distribution, skewed student-t distribution, 
generalised error distribution, skewed generalised error distribution.  
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1. Introduction 
 
 

“When an investor focuses on short-term investments, he or she is observing the variability of 
the portfolio, not the returns - in short, being fooled by randomness.” – Nassim Taleb 

 
 
1.1   Background 
 
The Stockholm Stock Exchange has become one of the primary securities exchanges in 
Northern Europe within equities trading. Even though over 300 companies are listed on the 
exchange, a majority of the total market capitalization, roughly 60 percent, originates from 
companies included in the OMXS30 index. The OMXS30 stock index includes thirty 
constituents who represent the thirty largest companies on the exchange in terms of trading 
volumes. An important aspect of any equity index is its valuation. This captures various 
fundamental variables of the economy, such as risk sentiment, corporate performance and 
interpretations of the general business cycle. Valuations can be quantified with numerous 
metrics with one of the most common valuation multiples being the price-earnings ratio (P/E). 
This valuation ratio is defined as price in relation to earnings, where price represents the market 
value of a company’s equity (i.e. market capitalization) and earnings represents a company’s 
net income (i.e. the final line item found in the income statement).  
 
Even though fundamental prerequisites such as management, clients and structural trends for 
most companies might be considered static in the very short term, the market value of a 
company’s equity is not. On the contrary, stock prices fluctuate continuously, sometimes as a 
consequence of market events such as earnings reports, but sometimes seemingly as a 
consequence of pure randomness.  
 
Understanding and adequately describing the volatility in OMXS30 valuations can be of use in 
further applications such as asset pricing and risk management. For instance, the Black-Scholes 
option pricing formula relies on volatility estimates in calculating asset prices. Additionally, 
applications within risk management, such as calculations of Value at Risk (VaR) and Expected 
Shortfall relies on an accurate understanding of volatility structures in the underlying asset 
(Hull, 2011).  
 
The analysis of financial time series often requires statistical models that can account for certain 
properties such as time dependent volatility, i.e. heteroscedasticity (Cryer & Chan, 2008). 
Models that adhere to these specifications were first introduced by Engle (1982), coined as the 
Autoregressive Conditional Heteroskedasticity (ARCH) model. This concept was later 
generalized by Bollerslev (1986) who introduced the Generalized Autoregressive Conditional 
Heteroskedasticity (GARCH) model.  
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1.2   Hypothesis 
 
The purpose of this thesis is to investigate if the volatility structure found in fundamental 
valuations of the OMXS30 exhibit the general characteristics often found in financial time 
series and if GARCH models are appropriate in describing this structure. Furthermore, 
emphasis is put on investigating which distributional assumptions should be used when 
estimating the model in order to achieve efficient parameter estimations. Hence, this thesis aims 
towards investigating and answering the following:  
 

• Does the volatility in fundamental valuations of the OMXS30 exhibit similar properties 
as often seen in other financial time series? 

• Are GARCH models appropriate for describing volatility structures in fundamental 
valuations of the OMXS30?  

• Which distributional assumptions should be used for the model innovations in order to 
achieve accurate models for the data?  

 
1.3   Disposition 
 
This thesis starts off by discussing the analysed data set and gives some intuition behind the 
choice of data. Relevant data transformations and data critiques are also provided. Afterwards, 
the theoretical frame work applied throughout the research process is described, followed by 
the empirical analysis. Finally, conclusions and suggested extensions of the research presented 
in this thesis are summarised.  
 
 
  



 3 

2. Market Valuation Data for OMXS30 
 
 

This section introduces the data set analysed in this thesis. The section discusses data 
collection, data transformations, data critiques and the usage of statistical software.  

 
 
2.1   Raw Data 
 
The data set has been retrieved from the Bloomberg terminal and consists of 2 462 observations 
(2009-01-02 until 2018-10-18). These observations constitute daily levels of P/E ratios in the 
stock index OMXS30. These valuation ratios are used to quantify valuations and are calculated 
as total market capitalization of all index constituents (P) in relation to the combined earnings 
estimates for all index constituents for the coming twelve months (E). This thesis investigates 
P/E ratios based on next twelve months (NTM) earnings estimates as oppose to earnings from 
trailing twelve months (TTM). There are two main reasons for this: 
 

• Valuation multiples based on NTM estimates tend to be less volatile compared 
to valuation multiples based on earnings TTM. 

• In theory, the value of an asset depends on its future cash flow generating 
capabilities. Hence, valuation multiples based on NTM estimates allows 
investors to compare assets based on expected corporate performance and not 
only historical performance. 

 
The market capitalization of the OMXS30 index is directly observable at any given time. 
However, earnings estimates produced by equity analysts are reported on a discretionary basis. 
These estimates are commonly updated and reported in close proximity to a company’s 
financial reporting, which usually occurs on a quarterly basis. 
 
2.2   Data Transformations 
 
It is often inappropriate to model financial time series directly since they can exhibit persistent 
trends which poses problems related to stationarity (see section 3.1 and 3.2).  To combat this, 
several data transformations are viable. One procedure is to impose a log-return transformation 
to the raw data (Cryer & Chan, 2008). This transformation is defined as: 
 

 𝑟" = log '
𝑝"
𝑝")*

+ = log(𝑝") − log(𝑝")*)	, (1) 

 
where 𝑝" is the P/E NTM ratio for OMXS30 at time t. Furthermore, each element in the return 
series, {𝑟"}, is multiplied by 100 so that they can be interpreted as percentage changes and to 
reduce numerical errors related to rounding errors.   
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2.3   Data Critiques 
 
One critique of the data set that should be brought forward is the fact that forward-looking P/E 
ratios are based on earnings estimates projected by several equity analysts. Estimates used in 
calculating forward P/E ratios therefore reflect the market consensus of future earnings and not 
actual reported earnings. The reader should be aware of this since reported earnings can deviate 
significantly compared to prior estimates.  
 
Further issues regarding the reliability of consensus earnings estimates arose in 2018 as a 
consequence of the implementation of new EU regulation in the form of the Markets in 
Financial Instruments Directive II (MiFID II). This legislation has made an impact on a wide 
range of aspects related to financial markets, with one being the reporting of consensus 
estimates. Since the implementation of MiFID II, the number of equity analysts reporting 
projections such as earnings estimates has decreased. Hence, the market consensus regarding 
these estimates originate from a smaller sample of analysts (Exane BNP Paribas & EY, 2017). 
With data covering the time period prior- and subsequent to the implementation of MiFID II, it 
is possible that these regulatory changes have made a significant impact on the data. 
 
2.4   Statistical Software 
 
All calculations presented in this thesis have been performed using Microsoft Excel or the 
statistical software R. The data was collected and structured in Excel. All statistical 
computations have been carried out using R. Within R, the following packages were used:  
 

• tseries – Package for time series analysis and computational finance. Used for 
stationarity tests. 

• TSA – Package for time series analysis. Used for calculating and plotting 
autocorrelation functions, partial autocorrelation functions, extended 
autocorrelation functions, McLeod-Li tests, kurtosis and skewness.  

• Stats – Package for statistical calculations and normal random number generation. 
Used to create time series objects, density estimates, normality tests, time series 
plots and normal QQ plots.  

• readxl – Package for importing excel files to R.  
• fGarch – Package for analysing and modelling heteroscedastic time series data and 

non-normal random number generation. Used for model specification, model 
estimation, model simulations, residual analysis, empirical distribution estimation, 
conditional volatility plots, non-normal QQ plots and non-normal random number 
generation. 

• Graphics – Package for producing various types of graphs. Used to create 
histograms, density plots and line segments.  
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3. Theory of Financial Time Series 
 
 

This section aims to introduce and discuss the theoretical framework applied in this thesis. 
First, the concept of stationarity is discussed and then followed by an exposition of typical 
properties found in financial time series. Finally, the framework for heteroscedastic time 

series modelling is introduced.  
 
 
3.1   Stationarity 
 
One key assumption when making statistical inference about the structure of a stochastic 
process is that of stationarity. A stochastic process is said to be strictly stationary if its 
unconditional joint probability distribution does not change with respect to time. For financial 
time series, such an assumption can often be deemed unreasonable due to reasons discussed in 
section 3.2. Another similar but mathematically more relaxed definition of stationarity is that 
of weak stationarity. A stochastic process is said to be weakly stationary if its mean function 
and covariance function are not time dependent (Tsay, 2005). In this thesis, the term stationary 
refers to the weaker definition. Financial time series often exhibit non-stationarity behaviour 
due to trends in the data. To deal with this inconvenience, several data transformations are 
viable in making the data stationary, with a common solution being the log-return 
transformation (see section 2.2). 
 
Formal statistical tests can be performed to investigate if a time series is stationary, with one 
procedure being the Augmented Dickey-Fuller Test. This procedure tests the null hypothesis 
stating that there is a unit root present in the time series sample (i.e. non-stationary) against the 
alternative hypothesis stating that the time series sample is stationary. The test is constructed 
by creating the following model:  
 

 𝑟" = 𝛼𝑟")* +	𝑋"					for	𝑡 = 1,2, … (2) 
 
where {𝑋"} is a stationary process and the return series, {𝑟"}, is a non-stationary process if 𝛼 =
1. If |𝛼| < 	1, the return series is said to be stationary (Cryer & Chan, 2008). Hence, the 
hypotheses are formulated as:  
 

H?:	𝛼 = 1 
			H*:	|𝛼| < 1 

 
3.2   Properties of Financial Time Series 
 
After imposing a log-return data transformation to a financial time series according to equation 
(2), the resulting return series often exhibit properties discussed below.  
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3.2.1 Volatility Clustering 
 
When analysing financial return series, a pattern often observed are alternations between calm 
and volatile periods where small and large values tend to be clustered together. This pattern is 
referred to as volatility clustering. This occurs because the conditional variance of the return 
series is not constant over time, i.e. heteroscedastic. When analysing heteroscedastic time series 
data, ARCH and GARCH models can be appropriate (Cryer & Chan 2008).  
 
3.2.2 Leptokurtic Distribution 
 
Distributions with leptokurtic properties assigns greater probabilities to extreme values relative 
to those of the normal distribution. This implies that the probability density function (PDF) for 
a leptokurtic distribution exhibit heavy tails and a higher peak around the mean compared to 
the PDF for a normal distribution. On the contrary, platykurtic distributions display a lower 
peak around the mean and less extreme tail behaviour compared to the normal distribution. 
Finally, the normal distribution is an example of a mesokurtic distribution.  
 
These distributional properties can be measured using the excess kurtosis, where excess refers 
to deviations from the kurtosis of a normal distribution (i.e. 3). Kurtosis is the normalised fourth 
central moment where the sample kurtosis, 𝑔B, is estimated by the following equation:  
 

 𝑔B =C
(𝑌E − 𝑌F)G

𝑛𝜎JG − 3	,
L

EM*

 (3) 

 
where 𝑌E is the ith value in the sample, 𝑌F is the sample mean and the sample variance, 𝜎JB, is 
calculated as: 
 

 𝜎JB =C
(𝑌E − 𝑌F)B

𝑛

L

EM*

	. (4) 

 
The level of excess kurtosis yields the following distribution classifications: 
 

𝑔B < 0 : Platykurtic distribution 
𝑔B = 0 : Mesokurtic distribution 
𝑔B > 0 : Leptokurtic distribution 

 
Financial time series often exhibit excess kurtosis, i.e. leptokurtic behaviour (Cryer & Chan, 
2008).  
 
3.2.3 Skewness 
 
Asymmetry in probability distributions can be measured using skewness, the normalised third 
central moment. The sample skewness, 𝑔*, is estimated by using (Cryer & Chan, 2008):  
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 𝑔* =C
(𝑌E − 𝑌F)Q

𝑛𝜎JQ

L

EM*

	. (5) 

 
3.2.4 Independence and The Sample Autocorrelation Function (ACF) 
 
Testing the return series for dependency is commonly done by calculating the sample 
autocorrelation function (ACF). The sample ACF, 𝑐S, at lag 𝑘 is defined as:  
 

 𝑐S =
∑ (𝑌" − 𝑌F)(𝑌")S − 𝑌F)L
"MSV*

∑ (𝑌" − 𝑌F)BL
"M*

	. (6) 

 
The sample ACF, 𝑐S, for 	𝑘 = 1,2, …  is then compared to a critical value calculated as ±2/√𝑛. 
Values of 𝑐S that exceed the critical value indicate significant correlations. This procedure is 
often plotted and presented in a correlogram. If the return series does not exhibit any significant 
autocorrelations, serial independence is suggested and can be modelled as a white noise process.  
 
Our experience when working with financial return series is that tests for presence of 
dependence using the autocorrelations, seldom show indications that are significant. If values 
in the return series are indeed independent, nonlinear transformations such as squaring or taking 
absolute values should preserve the independence. This allows for testing of higher order serial 
dependence by examining the autocorrelations for the squared return series. Therefore, if the 
returns are truly independent and identically distributed, the squared returns should also follow 
a white noise process.  
 
However, return series are often expected to show heteroscedastic tendencies, indicating serial 
dependencies. Graphically, this would be manifested as an ACF plot showing significant 
correlations slowly decaying as the number of lags increase. Such a behaviour would imply 
serial dependence in the volatility process (Cryer & Chan, 2008). 
 
3.3   Probability Distributions 
 
In accordance with the discussion in section 3.2.2, probability distributions for financial time 
series often exhibit leptokurtic properties. To achieve efficient parameter estimates, adequate 
distributional assumptions for the model innovations are of importance. This thesis will focus 
on five different probability distributions. These are introduced below.   
 
3.3.1 Normal Distribution 
 
The normal distribution is a symmetric (mesokurtic) probability distribution and is widely used 
in several statistical models. The normal distribution was originally assumed for the model 
innovations by Engle (1982) in the ARCH model. The normal probability density function is 
defined as (Hogg et al., 2014):  

 𝑓[(𝑥; 𝜇, 𝜎B) =
1

𝜎√2𝜋
𝑒)

(a)b)c
Bdc 		. (7) 



 8 

 
3.3.2 Symmetric Student-t Distribution 
 
In 1987, Bollerslev proposed the use of a student-t distribution with 𝑣 > 2 degrees of freedom. 
The purpose was to improve the model’s recognition of conditional heteroscedasticity. It should 
be noted that the student-t distribution converges to the normal distribution as 𝑣 → ∞. The 
probability density function for the student-t distribution with unit variance is defined as 
(Hansen, 1994):  
 

 𝑓[(𝑥; 𝑣) =
Γ i𝑣 + 12 j

k𝜋(𝑣 − 2)	Γ i𝑣2j '1 +
𝑥B

(𝑣 − 2)+
lV*
B
		. (8) 

 
3.3.3 Skewed Student-t Distribution 
 
To allow for a more flexible probability distribution where skewness can be modelled, the 
skewed student-t distribution is a viable option. This distribution can account for both 
leptokurtic properties but also possible skewness. The probability density function for the 
skewed student-t distribution with mean zero and unit variance can be defined as (Hansen, 
1994):  
 

 𝑓[(𝑥; 𝑣, 𝜆, 𝑎, 𝑏, 𝑐) =

⎩
⎪
⎨

⎪
⎧
𝑏𝑐 t1 +

1
𝑣 − 2 '

𝑏𝑥 + 𝑎
1 − 𝜆 +

B

u
)lV*B

, 𝑥 < −𝑎/𝑏	

𝑏𝑐 t1 +
1

𝑣 − 2 '
𝑏𝑥 + 𝑎
1 + 𝜆 +

B

u
)lV*B

, 𝑥 ≥ −𝑎/𝑏

 (9) 

 
where 2 < 𝑣 < ∞ and −1 < 𝜆 < 1. The constants a, b and c are defined as: 
 

 𝑎 = 4𝜆𝑐 '
𝑣 − 2
𝑣 − 1+	, 

(10) 

 
 𝑏B = 1 + 3𝜆B − 𝑎B	, (11) 

 
and 
 

 𝑐 =
Γ i𝑣 + 12 j

k𝜋(𝑣 − 2)Γ i𝑣2j
		. (12) 

 
The skewed student-t takes the form of its symmetric counterpart, (8), when 𝜆 = 0. 
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3.3.4 Symmetric Generalised Error Distribution (GED) 
 
The generalised error distribution (GED) originates from a family of exponential distributions 
and can be both leptokurtic and platykurtic depending on the shape parameter, 𝑣. If 	𝑣 = 2 and 	
𝜆	 is	 given	 by	 (14),	 the	GED	 is	 a	 standard	 normal	 distribution,	whereas 𝑣 < 2 yields a 
leptokurtic leptokurtic distribution and 𝑣 > 2 yields a platykurtic distribution. The probability 
density function is defined as (Karlsson, 2002):  
 

 𝑓[(𝑥; 𝑣, 𝜆) =
𝑣

𝜆2i
lV*
l jΓ i1𝑣j

𝑒)
*
Bx
a
yx
z

	, (13) 

 
where  
 

 𝜆 = {
2)

B
lΓ i1𝑣j

Γ i3𝑣j
|

*
B

	. (14) 

 
3.3.5 Skewed Generalised Error Distribution (SGED) 
 
The symmetric GED can be extended to allow for modelling skewness. This provides flexibility 
when estimating the probability distribution for empirical financial data. The probability 
density function for the skewed GED is defined as (Lee et al., 2008):  
 

 𝑓[(𝑥; 𝜅, 𝛿, 𝜃, 𝜆, 𝐶) = 𝐶𝑒)
' |aV�|�
[*V����(aV�)y]���+	, (15) 

 
where  
 

 𝐶 =
𝜅
2𝜃 Γ '

1
𝜅+

)*

, (16) 

 

 𝜃 = Γ '
1
𝜅+

*
B
Γ '
3
𝜅+

*
B
𝑆(𝜆))*	, (17) 

 
 𝑆(𝜆) = k1 + 3𝜆B − 4𝐴B𝜆B	, (18) 

 

 𝛿 =
2𝜆𝐴
𝑆(𝜆)	, 

(19) 

 
and 

 𝐴 = Γ'
2
𝜅+ Γ '

1
𝜅+

)i*Bj

Γ '
3
𝜅+

)i*Bj

. (20) 
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3.4   Heteroscedastic Time Series Models 
 
As previously discussed, the return series for financial data, {𝑟"}, is often serially uncorrelated 
while showing volatility clustering. This indicates that the conditional volatility of 𝑟" is not 
constant with respect to time, i.e. heteroscedastic. Hence, models that can account for 
heteroscedasticity should be employed to accurately describe the volatility structure of 𝑟". Such 
models, namely the ARCH and GARCH frameworks, are introduced below.  
 
3.4.1 ARCH 
 
The Autoregressive Conditional Heteroscedasticity (ARCH) model was first introduced by 
Engle in 1982 and models the conditional volatility, 𝜎"|")*

B , of a time series. The ARCH(1) 
model generates the return series, {𝑟"}, in the following way:  
 
 𝑟" = 𝜎"|")*𝜀"	, (21) 

 
 𝜎"|")*

B = 𝜔 + 𝛼𝑟")*B 	, (22) 
 
where 0 ≤ 𝜔 and 0 ≤ 𝛼 are unkown parameters and {𝜀"} is a sequence of independent and 
identically distributed random variables with mean zero, unit variance and independent of 𝑟")�, 
𝑗 = 1,2, … (Cryer & Chan, 2008). These random variables are also referred to as innovations. 
It may be of use to expand the model by including several lagged returns for forecasting 
accuracy. Engle (1982) suggested a general form of equation (13), the ARCH(q) model. This 
model is defined as: 
 

 𝜎"|")*
B = 𝜔 +C𝛼E𝑟")EB

�

EM*

	, (23) 

 
where 0 ≤ 𝜔 and 0 ≤ 𝛼E for 0 < 𝑖. However, previous research has shown that a high order of 
ARCH(q) is needed to properly describe the conditional volatility structure (Cryer & Chan, 
2008). As a remedy, Bollerslev (1986) suggested an extended version of the ARCH model, 
namely GARCH.  
 
3.4.2 GARCH 
 
The Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model is an 
extension of the ARCH model that includes the conditional volatility as a linear function of its 
own lags. The conditional volatility, using the GARCH(p,q) model, is expressed as:  
 

 𝜎"|")*
B = 𝜔 +C𝛽�𝜎")�B

�

�M*

+C𝛼E𝑟")EB
�

EM*

	, (24) 
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where 𝜔, 𝛽 and 𝛼 are constant with 0 < 𝜔, 0 ≤ 𝛽� and 0 ≤ 𝛼E. The model is weakly stationary 
if (Cryer & Chan, 2008): 
 

 C (𝛽E + 𝛼E) < 1
���(�,�)

EM*

	. (25) 

 
For the purpose of this thesis, ARCH models will be neglected with favour to GARCH models 
for the reasons described above.  
 
3.5   Model Order Specification 
 
When determining the order specification of a GARCH(p,q) model, it is convenient to express 
the conditional volatility in terms of the squared returns by defining: 
 
 𝜂" = 𝑟"B − 𝜎"|")*

B 	, (26) 
 
where {𝜂"} is a serially uncorrelated zero mean sequence. Equation (26) is re-written as: 
 
 𝜎"|")*

B = 𝑟"B − 𝜂" (27) 
 
and substituted into equation (24), yielding the following form: 
 

 
𝑟"B = 𝜔 + (𝛽* + 𝛼*)𝑟")*B + ⋯+ �𝛽���(�,�) + 𝛼���(�,�)�𝑟")���(�,�)

B  
+	𝜂" − 𝛽*𝜂")* − ⋯− 𝛽�𝜂")�	, 

(28) 

 
where 𝛽S = 0 for all integer values 𝑝 < 𝑘 and 𝛼S = 0 for 𝑞 < 𝑘. Equation (28) implies that the 
squared return series follows an ARMA(max(p,q),p) process. Hence, the model order 
identification techniques applicable for ARMA models can be applied to the squared return 
series (Cryer & Chan, 2008). This thesis will mainly rely on the extended autocorrelation 
function (EACF) for model order identification.  
 
3.6   GARCH Parameter Estimation 
 
Parameter estimation of the GARCH model can be carried out using maximum likelihood. The 
log-likelihood function will differ depending on which conditional probability distribution is 
assumed for the innovations. The different log-likelihood functions are presented below.  
 
3.6.1 Maximum Likelihood Estimation Assuming Normal Innovations 
 
Under the assumption that the GARCH innovations are normally distributed, the log-likelihood 
function takes the following form: 
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The log-likelihood function cannot be maximised analytically but can be maximised using a 
numerical procedure (Cryer & Chan, 2008).  
 
3.6.2 Maximum Likelihood Estimation Assuming Student-t Innovations 
 
In accordance with previous discussions, normality in financial time series can be an 
unreasonable assumption. If the GARCH innovations are assumed to follow a student-t 
distribution, the log-likelihood function becomes (Peters, 2001):  
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3.6.3 Maximum Likelihood Estimation Assuming Skewed Student-t Innovations 
 
If the GARCH innovations are assumed to be generated from a skewed student-t distribution, 
the log-likelihood function is formulated as (Peters, 2001):  
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(31) 

where 𝑣 is the degrees of freedom, 𝜉 is the asymmetry parameter and  
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3.6.4 Maximum Likelihood Estimation Assuming GED Innovations 
 
If the GARCH innovations are assumed to follow a GED distribution, the log-likelihood 
function is altered to the following (Karlsson, 2002):  
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3.6.5 Maximum Likelihood Estimation Assuming SGED Innovations 
 
The final case where the innovations are assumed to originated from a skewed generalised error 
distribution, the log-likelihood function takes the following form (Altun et al., 2017):  
  

 𝑙L = −
x𝑟"𝜎"

+ 𝛿x
¯

¢1 + sign i𝑟"𝜎"
+ 𝛿j 𝜆£

¯
𝜃¯
		, (37) 

 
where the additional parameters are specified as in section 3.3.5. 
 
3.7   Model Diagnostics  
 
Model diagnostics for the final model can be done by analysing the standardised residuals. If 
the model is correctly specified, the standardised residuals should be approximately 
independently and identically distributed. The standardised residuals, 𝜀"̂, are defined as (Cryer 
& Chan, 2008): 
 

 𝜀"̂ =
𝑟"
𝜎J"
	. (38) 

 
Distribution assumptions for the innovations can be reviewed by studying QQ plots for the 
standardised residuals. If the plotted values significantly deviate from a straight-line pattern, 
the distributional assumptions can be questioned. Furthermore, the sample ACF for the squared 
standardised residuals are examined and the McLeod-Li test is performed to scrutinise the 
model assumptions. Finally, the Akaike Information Criterion (AIC) is calculated where the 
model yielding the lowest value is preferred. The AIC value is calculated as: 
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 AIC = −2 log(maximum	likelihood) + 2𝑘	, (39) 
 
where 𝑘 is the number of estimated parameters. Since the AIC is estimated using maximum 
likelihood, adding additional model parameters can often result in better model fit, which 
introduces the problem of overfitting. To combat this, the AIC includes a penalty function (the 
second term in equation 39) with the purpose of capturing the trade-off between adding 
additional model parameters, risking overfitting and obtaining low AIC values (Tsay, 2005).   
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4. Analysis of the OMXS30 Index Data 
 

 
This section is dedicated to analysing the empirical data underlying this thesis. Data 

transformations, model estimation and diagnostics are discussed. Procedures introduced in 
the previous section are applied and evaluated. 

 
 
4.1   Data Transformations 
 
The P/E NTM ratio for OMXS30 during the period 2009-01-02 until 2018-10-18 is displayed 
in Figure 1 (Bloomberg, 2018). There seems to be a positive trend but with large fluctuations 
at times with major market events such as the Euro crisis and the Brexit election. Figure 2 shows 
the daily logarithmic returns. There are clear indications of volatility clustering since the return 
pattern seems to alternate between calm and volatile time intervals.  
 

 
Figure 1: P/E NTM ratio for OMXS30 from 2009-01-02 until 2018-10-18 with the red line representing the mean valuation 

 

 
Figure 2: Daily log returns (also referred to as returns) with the mean value represented by the red line 
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4.2   Tests for Stationarity 
 
The mean of the return series is close to zero (0.017) and seems to be rather constant over time, 
as is indicated by the red line in Figure 2. The return series also exhibit heteroscedasticity which 
indicates the appropriateness of applying the GARCH framework.  
 
The Augmented Dickey-Fuller test is calculated in order to test for stationarity. The test yields 
a p-value of less than 0.01 with stationarity being the alternative hypothesis. This gives further 
indication of the return series being stationary.  
 
The sample autocorrelation function (ACF) is calculated and investigated for the raw return 
series as well as for the squared return series. These are presented in Figure 3. The ACF for the 
raw return series is significant at four lags, indicating that there is still some autocorrelation 
present. However, in the context of further analysis, these dependencies are small, and the 
return series is deemed stationary.  
 

  
Figure 3: Sample ACF for returns (left) and sample ACF for square returns (right) 

 
The right panel in Figure 3 presents the sample ACF for the squared return series. The ACF is 
significant at most lags, indicating higher order serial dependency in the volatility process (i.e. 
heteroscedasticity). This indicates that GARCH models are applicable for modelling the return 
series.    
 
4.3   Tests for ARCH 
 
The data are examined for ARCH by using the McLeod-Li test. This test is based on the Box-
Ljung statistic for the squared returns and entails a null hypothesis stating that there are no 
ARCH effects in the data (see McLeod & Li (1983) and Li (2004) for further details). The test 
is presented graphically in Figure 4, where the red line signals the significance level (𝛾 = 5	%). 
The test is significant at all lags, giving substance to rejecting the null hypothesis. Hence, there 
seems to be ARCH effects in the data which contributes further to the appropriateness for 
applying GARCH models.  
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Figure 4: McLeod-Li test for ARCH effects in the return series 

 
4.4   Empirical Distribution of Returns 
 
An important aspect when constructing a GARCH model is accuracy in the distributional 
assumptions for the innovations. This is because the maximum likelihood estimation will differ 
depending on assumptions put on the innovations and will impact the parameter efficiency. 
However, innovations from the return series’ data generating process are not directly 
observable. Therefore, the distribution of the return series is analysed empirically with the 
purpose of receiving an indication of which assumptions should be made for the innovations 
during the estimation procedure. 
 
It should be noted that the estimated empirical distributions for the return series are 
unconditional and may be affected by the heteroscedastic properties found earlier. Hence, the 
optimal conditional distributions for the innovations used in the maximum likelihood procedure 
need not be the same. However, the unconditional estimates should provide guidance in finding 
appropriate distributional assumptions for the innovations.  
 
4.4.1 Normal Distribution  
 
The sample kurtosis for the return series is estimated to approximately 9.77, which is well 
beyond the theoretical kurtosis of a normal distribution. Furthermore, the Shapiro-Wilk test for 
normality yields a p-value close to zero, implying that the return series is not normally 
distributed. This becomes quite apparent when studying the QQ plot for the return series (see 
Figure 5) where the pattern deviates significantly from a straight line. Finally, the histogram for 
returns with a superimposed theoretical normal distribution estimated from the data clearly 
displays the excess kurtosis present in the data. Therefore, assuming normality for the 
innovations when estimating the model should be rejected.  
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Figure 5: Normal QQ plot for returns and histogram of returns with superimposed normal curve 

 
4.4.2 Symmetric and Skewed Student-t Distribution 
 
The student-t distribution has leptokurtic properties under most circumstances and might 
provide a better fit to the data. In the symmetric case, the shape parameter (i.e. degrees of 
freedom, v) can be estimated empirically using maximum likelihood. The estimates, under the 
assumption of the symmetric student-t distribution are presented in Table 1 where the shape 
parameter is estimated to 2.96. The QQ plot for the return series assuming a student-t 
distribution with a shape parameter of 2.96 is presented in Figure 6. In addition, Figure 6 display 
a histogram for returns with a superimposed curve showing the density for a theoretical student-
t distribution with 2.96 degrees of freedom. Both graphs indicate a significantly better fit 
compared to the normal distribution. This agrees with the leptokurtic properties often seen in 
financial time series.  
 

  
Figure 6: QQ plot for returns and histogram with superimposed theoretical t(2.96) density curve 
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Distribution `XML SDML ShapeML 

Symmetric Student-t 0.05459 1.54413 2.96902 
 

Table 1: Maximum likelihood estimates of returns assuming a symmetric student-t distribution 
 
The sample skewness for the raw return series is estimated to approximately -1.12. This might 
be due to asymmetric tendencies, such as leverage effects, sometimes observed in financial time 
series. It is therefore interesting to investigate if introducing skewness improves model fit. The 
skewed student-t distribution might be of interest. This distribution has an additional skewness 
parameter that also can be estimated empirically. The empirical estimates under the skewed 
student-t assumption is presented in Table 2. Compared to the symmetric version, the shape 
parameter is practically identical in magnitude. A histogram with the superimposed estimated 
distribution and a QQ plot is presented in Figure 7. The skewed student-t distribution seems to 
produce almost identical results as the symmetric version.  
 
Distribution `XML SDML ShapeML SkewML 

Skewed Student-t 0.03228 1.54296 2.97444 0.96763 
 

Table 2: Maximum likelihood estimates of returns assuming a skewed student-t distribution 
 

  
Figure 7: QQ plot for returns and histogram with superimposed theoretical skewed t(2.97) density curve 

 
4.4.3 Symmetric and Skewed Generalised Error Distribution  
 
If the return series belongs to a leptokurtic generalised error distribution, the shape parameter 
(v) should be less than two. Once again, a skewness parameter can be introduced to model 
asymmetric behaviour. Empirical estimates under the assumption of a symmetric and skewed 
generalised error distribution are presented in Table 3. In both cases, estimates for the shape 
parameter are almost identical. QQ plots and histograms for returns with superimposed 
theoretical generalised error distributions are displayed in Figures 8 and 9. Here, the GED 
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seems to overestimate the kurtosis slightly. In addition, the QQ plots suggest that the student-t 
distribution provides a better fit and seems favourable compared to the normal and generalised 
error distributions.  
 
Distribution `XML SDML ShapeML SkewML 

Symmetric GED 0.06681 1.38218 0.96281 0.00000 

Skewed GED 0.01729 1.38065 0.96647 0.94502 
 

Table 3: Maximum likelihood estimates of returns assuming a skewed student-t distribution 
 

  
Figure 8: QQ plot for returns and histogram with superimposed theoretical GED(0.96) density curve 

 

  
Figure 9: QQ plot for returns and histogram with superimposed theoretical skewed GED(0.97) density curve 
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4.5   Model Order Specification 
 
The extended sample autocorrelation function (EACF) is calculated for the squared return series 
and are presented graphically in Table 4. This representation suggests that a GARCH(1,1) 
model is appropriate for modelling the data. Therefore, the GARCH(1,1) will be the model 
order specification used going forward.  
 
AR/MA 0 1 2 3 4 5 6 7 8 9 10 11 12 13 

0 X X X X 0 X X X X X X X X 0 
1 X 0 0 0 0 0 0 0 0 0 0 0 0 0 
2 X X 0 0 0 0 0 0 0 0 0 0 0 0 
3 X X 0 0 0 0 0 0 0 0 0 0 0 0 
4 X 0 X X 0 0 0 0 0 0 0 0 0 0 
5 x X X X X 0 0 0 0 0 0 0 0 0 
6 X 0 X X X X 0 0 0 0 0 0 0 0 
7 X 0 X X 0 X 0 0 0 0 0 0 0 0 

 
Table 4: Extended autocorrelation function for squared return series 

 
4.6   Model Estimation 
 
Five GARCH(1,1) models have been fitted to the return series using maximum likelihood and 
the different distributional assumptions discussed above. The results are presented in Table 5. 
For all models, a constant mean function was used in the estimation procedure. Furthermore, 
the optimization algorithm nlminb was used for all models except for those relying on 
symmetric or skewed GED innovations. In these cases, the lbfgsb algorithm was used. For all 
models, the estimates for omega, alpha and beta are quite similar, indicating robust parameter 
estimates and that GARCH models are appropriate for describing the volatility structure in the 
return series. It should also be noted that all coefficients are significant.  
 

Conditional 
Distribution Omega Alpha Beta Alpha + 

Beta ShapeML SkewML AIC 

Normal 0.11751 
(***) 

0.07961 
(***) 

0.86564 
(***) 

0.94525 
 

2.00000 
 

0.00000 
 

3.43363 
 

Symmetric 
Student-t 

0.03602 
(**) 

0.08130 
(***) 

0.90154 
(***) 

0.98284 
 

4.51011 
(***) 

0.00000 
 

3.18107 
 

Skewed 
Student-t 

0.03507 
(**) 

0.08354 
(***) 

0.90066 
(***) 

0.98420 
 

4.56757 
(***) 

0.90059 
(***) 

3.17484 
 

Symmetric 
GED 

0.05256 
(**) 

0.05256 
(***) 

0.89418 
(***) 

0.97390 
 

1.08476 
(***) 

0.00000 
 

3.22319 
 

Skewed 
GED 

0.04532 
(***) 

0.07942 
(***) 

0.89824 
(***) 

0,97766 
 

1.11091 
(***) 

0.87394 
 

3.20984 
 

 
Table 5: Estimates for fitted GARCH(1,1) models 
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At this stage, the GARCH(1,1) model assuming a skewed student-t distribution for the 
innovations is preferred since it has the lowest AIC value. However, further analysis concerning 
model fit should be performed to validate this initial conclusion. This is mainly done by 
analysing the standardised residuals for each model.  
 
4.7   Model Diagnostics 
 
In addition to the AIC value comparison, the preferred GARCH(1,1) model is determined by 
evaluating the standardised residuals for each model. Table 6 shows the estimated mean values 
and standard deviations for the standardised residuals from each model. The table also includes 
maximum likelihood estimates for the shape and skew parameters when applicable. 
Furthermore, the standardised residuals should follow the same distribution as the model is 
estimated from. The standardised residuals from each model is discussed further below.  
 

Conditional 
Distribution 

XML 
Standardised 

Residuals 

SDML 
Standardised 

Residuals 

ShapeML 
Standardised 

Residuals 

SkewML 
Standardised 

Residuals 

Normal -0.00276 1.00126 2.00000 N/A 

Symmetric 
Student-t 0.04253 1.00452 4.41286 N/A 

Skewed 
Student-t 0.01203 1.00052 4.53897 0.90733 

Symmetric 
GED 0.04264 1.00136 1.07933 N/A 

Skewed 
GED -0.01074 1.00395 1.11114 0.86790 

 
Table 6: Estimates for the standardised residuals from each fitted GARCH(1,1) model  

 
4.7.1 Model Diagnostics Assuming Normal Distribution 
 
Figure 10 presents a QQ plot for the standardised residuals assuming a normal distribution and 
a histogram of the standardised residuals with a superimposed theoretical normal distribution. 
The QQ plot shows quite heavy deviations from a straight-line pattern and the model does not 
seem to capture the leptokurtic properties. This was expected since the normality assumption 
for the return series was rejected prior to model fitting. Hence, a distribution with heavier tails 
should be better suited.  
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Figure 10: Normal QQ plot for standardised residuals and histogram with superimposed theoretical normal distribution 

 
4.7.2 Model Diagnostics Assuming Symmetric and Skewed Student-t Distribution 
 
Figure 11 displays the standardised residuals for the GARCH(1,1) model where a symmetric 
student-t distribution was assumed. By examining the QQ plot, we see some deviations from a 
straight-line pattern. However, this model seems to capture the tail behaviour better than the 
one analysed in section 4.7.1. It should also be mentioned that a weakness of the QQ plot is that 
the graphical interpretation becomes more difficult when extreme values exist in the data since 
these distort the results visually. Furthermore, the histogram with the superimposed theoretical 
counterpart display a significantly better fit compared to that of the model assuming normally 
distributed innovations.  
 

 
Figure 11: QQ plot for standardised residuals and histogram with superimposed theoretical t(4.41) distribution 
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The standardised residuals for the model assuming a skewed student-t distribution are presented 
in Figure 12. The results are almost identical to those in the symmetric version, perhaps with a 
slightly better fit. Since the model assuming a skewed student-t distribution provided a lower 
AIC value, this model is preferable between the two.   
 

  
Figure 12: QQ plot for standardised residuals and histogram with superimposed theoretical t(4.41) distribution 

 
4.7.3 Model Diagnostics Assuming Symmetric and Skewed Generalised Error Distribution 
 
The standardised residuals for the GARCH(1,1) model estimated from a symmetric generalised 
error distribution are presented in Figure 13. In comparison with the model assuming normal 
innovations, the QQ plot indicates that the GED assumption captures the tail behaviour better. 
However, in comparison with the models assuming student-t innovations, the differences are 
quite small. Finally, the histogram in Figure 13 implies a better model fit when a symmetric 
GED is assumed for the innovations compared the case of the normal distribution assumption. 
When compared to the student-t models, smaller differences are obtained with some tendencies 
towards higher kurtosis.  
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Figure 13: QQ plot for standardised residuals and histogram with superimposed theoretical GED(1.08) distribution 

 
The last GARCH(1,1) model is estimated assuming a skewed generalised error distribution for 
the innovations. The standardised residuals are presented in Figure 14. Once again, the skewed 
version only deviates slightly from the symmetric one, showing only small differences.  
 

  
Figure 14: QQ plot for standardised residuals and histogram with superimposed theoretical skewed GED(1.11) distribution 
 
4.8   Final Model Decision 
 
After analysing the standardised residuals for each model, it can be concluded that the GARCH 
models assuming leptokurtic innovations provide a better fit compared to assuming normality 
for the innovations. The residual analysis does not suggest major differences between these 
models. Therefore, the model that obtained the lowest AIC value will be chosen, in this case 
the GARCH(1,1) model with innovations generated from a skewed student-t distribution. The 
final step in validating this model is to determine if the standardised residuals are independent 
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and identically distributed. This is done by analysing the sample ACF and EACF for the squared 
standardised residuals and calculating the McLeod-Li test.  
 
The sample ACF for the standardised residuals and their squares are presented in Figure 15. 
These plots suggest that the standardised residuals are stationary and do not exhibit any 
autocorrelation in the volatility process. This result is reinforced by the EACF presented in 
Table 7, where no distinct pattern can be found. Finally, the visual representation of the 
McLeod-Li test, presented in Figure 16, indicates that there are no ARCH effects in the 
standardised residuals.  
 
AR/MA 0 1 2 3 4 5 6 7 8 9 10 11 12 13 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 X 0 0 0 0 0 0 0 0 0 0 0 0 0 
2 X X 0 0 0 0 0 0 0 0 0 0 0 0 
3 X X X 0 0 0 0 0 0 0 0 0 0 0 
4 X X X X 0 0 0 0 0 0 0 0 0 0 
5 X X X 0 0 0 0 0 0 0 0 0 0 0 
6 X X 0 0 X X 0 0 0 0 0 0 0 0 
7 X X X 0 X X X 0 0 0 0 0 0 0 

 
Table 7: Extenteded autocorrelation function for the squared standardised residuals  

 

 
Figure 15: Sample ACF for raw and squared standardised residuals 
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Figure 16: McLeod-Li test for ARCH effects 

 
The final GARCH(1,1) model chosen to describe the volatility structure in fundamental 
valuations of the OMXS30 is summarised in Table 8.  
 

Conditional 
Distribution Omega Alpha Beta Alpha + 

Beta ShapeML SkewML AIC 

Skewed 
Student-t 

0.03507 
(**) 

0.08354 
(***) 

0.90066 
(***) 

0.98420 
 

4.56757 
(***) 

0.90059 
(***) 

3.17484 
 

 
Table 8: Final GARCH(1,1) model specification 

 
This model specification was used to simulate a new return series of the same length as the 
empirical return series. A histogram comparing the densities of the empirical data and the 
simulated series is presented in Figure 17. This plot provides evidence that the estimated 
GARCH model is able to produce similar data to those found the empirical return series.  
 

 
Figure 17: Histogram of returns with superimposed GARCH simulation density curve 
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Finally, it is imperative to investigate to what extent the model can detect volatility in the return 
series. This can be done by graphically comparing the conditional volatility estimated by the 
model with the empirical return series. The estimated conditional volatility and the return series 
is presented in Figure 18. One can see that the model sufficiently estimates the volatility 
structure in the return series as volatile time periods in the return series results in greater 
estimated conditional volatility. This is clearly illustrated during the time period 0 to 100 and 
600 to 800.  

 
Figure 18: Return series (upper panel) and conditional volatility estimated by the final GARCH(1,1) model 
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5. Concluding Remarks 
 
 

This section aims to answer the questions proposed in the ‘Hypothesis’ section. In addition, 
this section summarises the specific results found in the empirical analysis and draws 

conclusions from the estimation procedure. In addition, suggestions for future research topics 
that might provide further insight into the volatility structure found in fundamental valuations 

of stock indices are discussed. 
 
 
5.1   Conclusions  
 
The purpose of this thesis was to investigate if the volatility structures found in fundamental 
valuations of the OMXS30 exhibit the general characteristics often found in financial time 
series and if GARCH models sufficiently can describe this structure. The thesis also set out to 
determine which distributional assumptions should be used for the innovations during the 
estimation procedure in order to obtain efficient parameter estimates. Limitations were made 
with the purpose of focusing the analysis on a time period ranging from 2009-01-02 until 2018-
10-18. This time period only reflects “bull market conditions”, that is market conditions where 
asset prices tend to trend upwards. 
 
It has now been established that the return series, based on forward-looking P/E ratios, exhibit 
the general characteristics often found in financial time series. The most prominent properties 
were volatility clustering and the lack of normality for the raw return series. Furthermore, it 
was thoroughly established that leptokurtic conditional distribution assumptions for the model 
innovations provides a better fit when estimating the model. Hence, for these data the normal 
distribution has proven to be insufficient in capturing the more extreme tail behaviour seen in 
the analysed financial data. Consequently, these results have given support to applying the 
GARCH framework with leptokurtic innovations to model the volatility structure in the return 
series.  
 
The final model choice resulted in a GARCH(1,1) model estimated with the assumption of 
skewed student-t distributed innovations. This model achieved the lowest AIC value out of all 
the models and the standardised residuals acceptably resembled the conditional distribution 
from which they were assumed to be generated from.  
 
In addition, the chosen model was able to sufficiently describe the volatility structure found in 
the return series which was showed in Figure 18. Furthermore, when the densities of the 
empirical return series and the simulated series based on the specified model were compared, 
they exhibited similar shapes (see Figure 17). This provides confidence that the specified model 
actually is able to produce data similar to the empirical return series.  
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5.2   Further Research Topics 
 
The return series analysed in this thesis only cover a time period where bull market conditions 
were present. The results found may not be equivalent if the time period covers more pessimistic 
market conditions, for example during a recession. Such market conditions could very well 
yield different results and could statute an interesting extension to the research presented in this 
thesis. In addition, this thesis only focuses on the Swedish equity index OMXS30. A similar 
research procedure could be conducted for other equity indices where the results may differ.  
 
Furthermore, this thesis only entails standard GARCH models which by nature are symmetrical. 
Some financial time series exhibit asymmetrical properties due to phenomena such as leverage 
effects. Therefore, extensions to the standard GARCH framework, such as the EGARCH could 
be applied and possible yield better models in terms of fitting.  
 
Finally, general anomalies found in the stock market such as calendar effects are likely to 
impact the fundamental valuations of a stock index. Hence, time series models analysing these 
valuations might benefit from various model extensions that account for these effects.  
 
To conclude, this thesis should be viewed as an initial attempt to bring insight into the volatility 
structure of fundamental valuations of the OMXS30. Extensions to this thesis suggested above 
could proficiently contribute to a further understanding of this interesting matter.  
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