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Abstract

A Bose-Einstein condensate is a type of gas consisting of one or more types of particles called
bosons which are cooled to a temperature very close the absolute zero. Under these condi-
tions the particles all start to occupy their lowest quantum state. Once in these states it is
necessary to use quantum physics to describe the behavior of the particles by the means of a
wave function which describes the probability of finding the particles in different locations. In
this thesis we will study a gas consisting of two components. The wave function satisfies the
Schrödinger equation, which is a linear partial differential equation. The gas will be considered
to be confined within a thin ring with a cross section small enough to treat it as one dimen-
sional. By using the mean field approximation we’re able to consider a much simpler model
than the individual particle interaction and reduce the many-body problem to a one-body
problem. However, the linear Schrödinger equation is replaced by the non-linear Schrödinger
equation. We will also investigate the mean-field yrast spectrum, where these states are the
ones with minimum energy for a given angular momentum. The existence of a minimum gives
the possibility of having persistent currents as argued in previous research. In order to identify
the yrast states, we first look for critical points of the energy under the constraints of total
probability mass and angular momentum using a special Ansatz. We then try to determine if
they are minimizers using analytic and numerical methods.

Populärvetenskaplig sammanfattning

Vi har studerat en matematisk modell för ett Bose-Einstein kondensat best̊aende av tv̊a kom-
ponenter. Gasen är uppbyggd av bosoner, t.ex. fotoner eller atomer som har en jämn summa
av protoner, neutroner och elektroner. Denna typ av gas uppvisar en del intressanta egenskaper
vid väldigt l̊aga temperaturer nära den absoluta nollpunkten, främst att den är superflytande,
vilket upptäcktes redan 1938 i flytande helium. Detta innebär att gasen p̊averkas väldigt lite
av friktion, och skulle kunna ge ett alternativ till att transportera information liknande ett su-
perledande material. Allt eftersom temperaturen sänks s̊a antar atomerna sina lägsta till̊atna
kvantmekaniska tillst̊and. Genom att placera gasen i ett magnetfält kan man f̊anga atomerna i
en ring-potential där man sedan kan försätta kondensatet i rotation och studera superfluiditeten.
I kvantmekaniken beskrivs gasen med hjälp av en v̊agfunktion som anger sannolikheten för att
hitta partiklarna i olika positioner. Vi använder medelfältsapproximationen där flerkroppsprob-
lemet ersätts med ett enkroppsproblem. V̊agfunktionen uppfyller d̊a en icke-linjär differential
ekvation. Vi löser denna och undersöker vilka av lösningarna som ger lägst energi.
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1 Introduction

A Bose-Einstein condensate is a gas which is cooled to a very low temperature close to absolute
zero. At this point all particles try to occupy the lowest quantum state possible. Here the
wave like properties of the particles makes it possible to describe the interaction between them
by the means of wave functions as solutions to a nonlinear differential equation (the nonlinear
Schrödinger equation). In this thesis we consider a gas consisting of two different components
of equal particle mass contained in a thin ring. We also assume that the interaction strengths
are equal. We can then describe the system using only one wave function for each component,
satisfying the equation (see [7])

i
∂us
∂t

= −∂
2us
∂θ2

+ 2πγ(xA|uA|2 + xB|uB|2)us, s = A,B. (1)

We denote our two species using the index s = A,B. N is the total number of atoms, Ns the
number of atoms of each component and xs =

Ns

N
. The ring geometry gives rise to the periodic

boundary condition u(θ+2π, t) = u(θ, t). We restrict our attention to standing-wave solutions

us(θ, t) = e−iµstΨs(θ − Ωt) (2)

where Ψ(θ) = (ΨA(θ),ΨB(θ)) is periodic and µs,Ω ∈ R.

The standing waves are critical points of the energy subject to constraints of fixed mass and
momentum. The energy functional is given by

E[Ψ] =
∑
s

xs

∫ 2π

0

|Ψ′
s|2dθ + πγ

∫ 2π

0

ρ2(θ)dθ (3)

where γ is the scaled effective interaction between the two components taken to be positive
since we’re considering the case with a repulsive interaction between particles and

ρ(θ) = xA|ΨA|2 + xB|ΨB|2 (4)

is the normalized number density. Note that

xA + xB = 1 (5)

and we choose xB ≤ xA, without loss of generality. The probability mass of each component is
normalized to unity

ms[Ψs] =

∫ 2π

0

|Ψs|2dθ = 1, s = A,B, (6)

and the angular momentum is given by some fixed value l0:

l[Ψ] =
1

i

∑
s

xs

∫ 2π

0

Ψ̄sΨ
′
sdθ = l0. (7)

In order to obtain a well-defined mathematical problem, we introduce the space

X = {Ψ ∈ C2(R;C2) : Ψ(θ + 2π) = Ψ(θ) for all θ ∈ R} (8)

and for l0 ∈ R the subset

Xl0 = {Ψ ∈ X : mA[ΨA] = mB[ΨB] = 1, l[Ψ] = l0}. (9)
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We wish to find Ψ̃ ∈ Xl0 such that

E[Ψ̃] ≤ E[Ψ]

for all Ψ ∈ Xl0 . Such a minimizer must satisfy the Euler-Lagrange equation

−Ψ′′
s + iΩΨ′

s + 2πγρ(θ)Ψs = µsΨs, s = A,B (10)

where Ω and µs, s = A,B, are real numbers known as Lagrange multipliers. This equation can
also be derived by substituting the Ansatz (2) into (1). Not all solutions of the Euler-Lagrange
equation are minimizers, however. In general, they are only constrained critical points of the
energy. The existence of a minimizer is not completely obvious, but follows by the direct meth-
ods of the calculus of variations - see e.g. the discussion on p. 2 of [8].

The main focus will be to find the critical functions that solve (1) similarly to what was
done in [12], [1] with slightly more mathematical outlook and motivation. When they are
found we make sure that these do indeed minimize the energy functional (3) both analytically
and numerically. Recent studies have examined a Bose-Einstein condensate consisting of 87Rb
atoms with two different spins and how the spin would influence persistent currents of the gas
and its stability [2].

2 Solving the two component case

We now try to solve the Euler-Lagrange equation (10) by introducing polar coordinates,
Ψs(θ)=rs(θ)e

iφs(θ). By doing so we must have the following boundary conditions

rs(θ + 2π)− rs(θ) = 0 (11)

φs(θ + 2π)− φs(θ) = 2πJs, for some integer Js ∈ Z (12)

where the integers Js are known as winding numbers. Now we can rewrite our Euler-Lagrange
equation (10) and separate the real and imaginary parts:

−(r′′s − rsφ
′2
s ) + iΩ(rsiφ

′
s) + 2πγρ(θ)rs = µsrs, (13)

−(2r′sφ
′
s + rsφ

′′
s) + Ωr′s = 0. (14)

Equation (14) can be integrated to

φ′
s(θ) =

Ws

2r2s
+

Ω

2
, (15)

where Ws is some integration constant to be determined. From (6) we get that∫ 2π

0

r2sdθ = 1, s = A,B (16)

and by using this together with (7) and (15) we get the total angular momentum

l0 = xAlA + xBlB (17)

with

ls = πWs +
Ω

2
. (18)
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Next we substitute (15) into (13) to solve for the real part of our system. After simplification
and multiplication with r3s we obtain

r′′sr
3
s −

W 2
s

4
+ µ̃sr

4
s − 2πγρ(θ)r4s = 0, (19)

where µ̃s = µs +
Ω2

4
. By making the following Ansatz

r2B = cB(1 + c−1
A r2A) (20)

we’re able write this in terms of only one component, where the coefficients cs are to be deter-
mined. Substituting this into (4) we obtain

ρ =
cAxA + cBxB

cA
r2A + xBcB (21)

Due to (16), cB and cA have to satisfy

1 = cB(2π + c−1
A ). (22)

This Ansatz is made to simplify the system. However we can’t ensure that all possible
solutions of (19) fulfill (21). If we now apply our new expression for ρ(θ) in (19) we arrive at

r′′sr
3
s −

W 2
s

4
+ µ̄sr

4
s − 2πγsr

6
s = 0, (23)

γs = c−1
s (cAxA + cBxB)γ, µ̄s = µ̃s ∓ 2πγxs̄cs̄, (24)

where s̄ refers to the complementary component of our system. At this point we can already
give an expression for our coefficients cs through the means of the ratio r = γA/γB = cB/cA.
Substituting this in (22), we get

cA =
1− r

2πr
, cB =

1− r

2π
. (25)

Here we realize that there are two different classes of solutions to equation (23). We distin-
guish between the two cases cAxA + cBxB = 0 and cAxA + cBxB ̸= 0.

2.1 Class (i) solutions

First we look at when cAxA + cBxB = 0 which simplifies equation (23) by the vanishing inter-
action factor γs = 0. Next we use a suitable variable substitution, rs =

√
ρs, to simplify the

calculations. Equation (23) transforms into

1

2
ρsρ

′′
s −

1

4
ρ′2s + µ̄sρ

2
s −

W 2
s

4
= 0. (26)

Differentiation gives

1

2
ρsρ

′′′
s + µ̄s2ρsρ

′
s = 0. (27)

Assuming that ρs ̸= 0, we get

ρ′′′s + 4µ̄sρ
′
s = 0. (28)
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This equation has three linearly independent solutions 1, cos
√
4µ̄sθ, sin

√
4µ̄sθ. Using the

boundary conditions (11) and the normalization (16) we obtain

ρs =
1

2π
(1 + ds cos js(θ − θ0s)), (29)

where js = 1, 2..., and we have introduced a phase constant θ0s to avoid the sine term. Here
we must take |ds| ≤ 1 in order to have ρs ≥ 0. The parameters js and µ̄s are related by the
formula

µ̄s =
j2s
4
. (30)

In the two component case there are a number of parameters, some of which are free and
others fixed depending on the Bose-Einstein condensate’s properties. First we have r = −xA

xB
,

due to the assumption cAxA + cBxB = 0. Moreover, r ≤ −1 since xB ≤ xA. Next we have the
relation

ρB =
1− r

2π
+ rρA, (31)

due to (21). Looking back at equation (26) with the solution to the density of states (29), we
can find an expression for the integration constant Ws:

W 2
s =

j2s
4π2

(1− d2s). (32)

Furthermore we obtain the following relations by inserting the solutions (29) into (31):

jA = jB = j, θ0A = θ0B = θ0, dB = rdA. (33)

In summary, we are free to choose dB, with |dB| < 1, j = 1, 2, ... and θ0 as we please and then
the other parameters will be determined. For convenience we choose dB ≥ 0 which implies that
dA ≤ 0.

Once this has been established we seek to find the phase functions φs(θ). Through inte-
grating equation (15) with respect to θ we arrive at

φs(θ)− φs(θ0) =
Ω

2
(θ − θ0) +

Ws

2

∫ θ

θ0

dθ′

ρs(θ′)
. (34)

By making the series of variable substitutions ϕ′ = j(θ′ − θ0) and then u′ = tan(ϕ
′

2
), one finds

that

Ws

2

∫ θ

θ0

dθ′

ρs(θ′)
=

sgnWs

2

{
2nπ + 2arctan

[√
1− ds
1 + ds

tan
θ̄

2

]}
, (35)

where

sgnWs =


1 if Ws > 0

0 if Ws = 0

-1 if Ws < 0

(36)

and

j(θ − θ0) = 2nπ + θ̄, −π < θ̄ < π, n ∈ Z. (37)
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as θ̄ → ±π we find that the right hand side in (35) converges to sgnWs

2
(2n ± 1)π. Setting

θ = θ0 + 2π in (34) (so that n = j and θ̄ = 0 in (37)) and using the boundary condition (12),
we arrive at the following equation for Ω:

Ω = 2Js − jsgnWs. (38)

It’s clear that Ω is not a free parameter since it depends on our chosen value of j, Js as well as
Ws. Equation (34) can also be simplified in the following way using (38) and (37) in order to
remove the Ω dependence

φs(θ)− φs(θ0) = Js(θ − θ0)−
sgnWs

2
θ̄ + sgnWs arctan

[√
1− ds
1 + ds

tan
θ̄

2

]
. (39)

Taking the difference between (38) with s = A and B, we find that

JA − JB =
j

2
(sgnWB − sgnWA). (40)

The final formula for the class (i) solutions is thus

Ψs(θ) =
√
ρs(θ)e

iφs(θ) (41)

with ρs(θ) given by (29) and φs(θ) given by (39).

It turns out that there is a much simpler way of expressing these solutions, namely in the
form

Ψ̃A(θ) =

(
c0√
2π

+
c1√
2π
e−ijsgnWA(θ−θ0)

)
eiJA(θ−θ0)+iφA(θ0), (42)

Ψ̃B(θ) =

(
d0√
2π

+
d1√
2π
e−ijsgnWB(θ−θ0)

)
eiJB(θ−θ0)+iφB(θ0).

for some real coefficients c0, c1, d0 and d1.

The normalization (6) implies that∑
m

|cm|2 = 1
∑
m

|dm|2 = 1. (43)

To see that (41) is the same as (42) in polar coordinates for some c0, c1, d0, d1, consider first
the radius squared of Ψ̃A in (42):

|Ψ̃A|2 =
1

2π
+
c0c1
2π

eij(θ−θ0) +
c0c1
2π

e−ij(θ−θ0)

=
1

2π
(1 + dA cos j(θ − θ0))

where
dA = 2c0c1, (44)

Similarly, we find that

|Ψ̃B|2 =
1

2π
(1 + dB cos j(θ − θ0))
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where
dB = 2d0d1 (45)

This agrees with (29) and (33) if
d0d1 = rc0c1, (46)

or, equivalently as
xAc0c1 + xBd0d1 = 0. (47)

In order to check that the angle φA corresponding to (42) matches (39), it suffices to con-
sider the case Js = 0 and φs(θ0) = 0, since the corresponding terms in (39) clearly come from
the factor eiJs(θ−θ0)+iφs(θ0) in (42).

Equation (39) then yields

φA(θ) =

(
θ̄

2
− arctan

[√
QA tan

θ̄

2

])
(−sgnWA) (48)

and hence

tanφA(θ) =
tan θ̄

2
−
√
QA tan θ̄

2

1 +
√
QA tan2 θ̄

2

(−sgnWA)

=
1/2(1−

√
QA) sin θ̄

1/2(1 +
√
QA) + 1/2(1−

√
QA) cos θ̄

(−sgnWA)

where

QA =
1− dA
1 + dA

. (49)

If we now choose

c0 =
1

2
(
√
1 + dA +

√
1− dA), c1 =

1

2
(
√

1 + dA −
√
1− dA)

we see that (43) and (44) are satisfied, and that c0 > 0 and −c0 ≤ c1 ≤ 0 (since −1 ≤ dA ≤ 0).
Moreover

1−
√
QA =

2c1
c0 + c1

, 1 +
√
QA =

2c0
c0 + c1

.

Thus

tanφA(θ) =
c1 sin θ̄

c0 + c1 cos θ̄
(−sgnWA),

On the other hand, (42) gives

tan φ̃A(θ) =
ImΨA(θ)

ReΨA(θ)
=

c1 sin(j(θ − θ0))

c0 + c1 cos(j(θ − θ0))
(−sgnWA) =

c1 sin θ̄

c0 + c1 cos θ̄
(−sgnWA)

Since both Ψ̃A and Ψ̃B are confined to the right half-plane, we obtain that ΨA = Ψ̃A.
Similar computations reveal that ΨB = Ψ̃B if we choose

d0 =
1

2
(
√

1 + dB +
√

1− dB), d1 =
1

2
(
√
1 + dB −

√
1− dB).

This time we have 0 ≤ d1 ≤ d0 (since 0 ≤ dB ≤ 1)
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2.2 Class (ii) solutions

In the case where xAcA + xBcB ̸= 0 we once again look back at equation (23) and with help
from previous research one finds that the solution can be expressed in terms of elliptic functions
(see the appendix):

rs(θ) =

√
s1 + (s2 − s1)sn2(

√
πγs(s3 − s1)(θ − θ0,s); ks) (50)

where

s1 =
1

2π
+
K(ks)j

2
s (E(ks)−K(ks))

π3γs
, (51)

s2 =
1

2π
+
K(ks)j

2
s (E(ks) +K(ks)(k

2
s − 1))

π3γs
, (52)

s3 =
1

2π
+
K(ks)E(ks)j

2
s

π3γs
; (53)

can be found in [8, p.24]. There the case γs > 0 is treated, but a direct verification shows that
the same formulas are valid when γs < 0. Thus we find

rs(θ) =
√
As − Cssn2(Ds(θ − θ0,s); ks), (54)

where

As = s1, Cs = −K
2(ks)j

2
sk

2
s

π3γs
, Ds =

K(ks)js
π

. (55)

Moreover, it follows from [8, p.7] that

µ̄s = πγs(s1 + s2 + s3), W 2
s = 4πγss1s2s3. (56)

In order for the solution to be valid the following conditions must be fulfilled:
γs > 0

0 < s1 < s2 < s3 (57)

γs < 0
s3 < 0 < s2 < s1. (58)

Just as for the class (i) solutions, we integrate equation (15) which gives equation (34).
Next we evaluate the integral

Ws

2

∫ θ

θ0

dθ′

ρs(θ′)
=

Ws

2As

∫ θ

θ0

dθ′

1− nssn2(Ds(θ′ − θ0,s); ks)
, (59)

where

ns =
Cs

As

. (60)

The variable substitution

u =
jsK(ks)

π
(θ − θ0,s), (61)
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gives us that

Ws

2As

∫ θ

θ0

dθ′

1− nssn2(Ds(θ′ − θ0,s)); ks)
=

Wsπ

2AsjsK(ks)

∫ u

0

du′

1− nssn2(u′; ks)
. (62)

After expressing sn(u; ks) using (108) we use the variable substitution

ϕ = K−1(u, ks) (63)

and that the integral can be expressed using the incomplete elliptic integral of the third kind

φs(θ)− φs(θ0) =
Ω

2
(θ − θ0,s) +

Wsπ

2AsjsK(ks)
Π(ns;K

−1(u, ks), ks). (64)

The boundary conditions then yield

Ω = 2Js − 2MssgnWs, (65)

where

Ms =
|Ws|

4AsjsK(ks)
Π(ns;K

−1(2jsK(ks); ks), ks), (66)

using the relations

K(jsπ, ks) = 2jsK(ks), js ∈ Z, and Π(ns; jsπ, ks) = 2jsΠ(ns;
π

2
, ks)

we can rewrite

Ms =
|Ws|

2AsK(k)
Π(ns;

π

2
, ks). (67)

where if we apply (54) to (20) we find that

kA = kB = k, θ0,A = θ0,B = θ0, jA = jB = j (68)

Just as for class (i) solutions,

JB − JA = MBsgnWB −MAsgnWA. (69)

which will determine for what values of r we obtain a solution given the interval for k. We
would also like to remind the reader of the relations obtained from (24){

γA = (xA + rxB)γ

γB = (xA

r
+ xB)γ

(70)

which gives the following three equations when trying to find for what value of r, s1, s2, s3
become zero under the condition that γA > 0 and γB < 0, respectively.

r0,A =
−xAπ2γ + 2j2K(k)(K(k)− E(k))

π2γxB
, (71)

r0,B =
−xAπ2γ

π2γxB + 2j2K(k)(E(k) + (k2 − 1)K(k))
, (72)

r1,B =
−xAπ2γ

π2γxB + 2j2K(k)E(k)
, (73)

where r1,B is the maximum value at which we can find a solution and either r0,A, r0,B being the
minimum. These will determine for each k in what range r we can find solutions.
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3 yrast spectrum for two components

We now return to the problem of minimizing the functional (3) under the two constraints (6)
and (7). We begin by investigating what happens if we make the change of variable ψs = Ψse

iθ.
We note that ψs is 2π-periodic and that

m[ψs] = m[Ψs] = 1. (74)

Moreover

l[ψ] =
∑
s

xs

[
1

i

∫ 2π

0

Ψ′
sΨ̄sdθ +

∫ 2π

0

|Ψs|2dθ
]

= l[Ψ] + xA + xB

= l0 + 1 (75)

due to the facts that

ψ′
sψ̄s = Ψ′

sΨ̄s + i|Ψs|2, (76)

xA + xB =
NA

N
+
NB

N
=
NA +NB

NA +NB

= 1. (77)

Once these relations have been established we look at the energy functional assuming
m[ψs] = 1 and l[Ψ] = l0.

E[ψ] =
∑
s

xs

∫ 2π

0

|Ψ′
s|2dθ + πγ

∫ 2π

0

ρ(θ)2dθ

+
∑
s

xs

[
i

∫ 2π

0

ΨsΨ̄
′
sdθ − i

∫ 2π

0

Ψ′
sΨ̄sdθ +

∫ 2π

0

|Ψs|2dθ
]

=E[Ψ] + 2l[Ψ] + xA + xB

=E[Ψ] + 2l0 + 1 (78)

where we have used partial integration to rewrite

i
∑
s

xs

∫ 2π

0

ΨsΨ̄
′
sdθ = l[Ψ] (79)

This can be rewritten as

E[ψ] = E[Ψ] + (l0 + 1)2 − l20. (80)

If we instead set ψs = Ψ̄s similar computations give

m[ψs] = 1, l[ψ] = −l[Ψ] = −l0 and E[ψ] = E[Ψ]. (81)

Theorem 1. Let e0(l0) = E0(l0)− l20. Then e0(l0) is a 1-periodic even function.

Proof. Let ψ with l[ψ] = l0 + 1 be given and set Ψs = ψse
−iθ. Then l[Ψ] = l0 and (80) implies

that

e0(l0) ≤ E[Ψ]− l20 = E[ψ]− (l0 + 1)2. (82)
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Assuming that ψ minimizes E, we obtain

e0(l0) ≤ E0(l0 + 1)− (l0 + 1)2 = e0(l0 + 1). (83)

Interchanging the roles of ψ and Ψ, we obtain that

e0(l0) ≥ e0(l0 + 1), (84)

and hence
e0(l0) = e0(l0 + 1), (85)

which means that the function e0(l0) is 1-periodic. The evenness of e0 is shown similarly by
letting ψs = Ψ̄s and using (81).

This result is more commonly known as Bloch’s theorem [3].

3.1 Energy minimization of class (i) solutions

Once we have established this relation we compute the energy and momentum of class (i) so-
lutions using formulas (42).

If we evaluate the total angular momentum (7) using (42) we find that

l[Ψ] = −j(sgnWAxA|c1|2 + sgnWBxB|d1|2) + JAxA + JBxB, (86)

while evaluating the energy functional (3) is given by

E[Ψ] =xA

∫ 2π

0

|Ψ′
A|2dθ + xB

∫ 2π

0

|Ψ′
B|2dθ + πγ

∫ 2π

0

ρ2dθ

=j2(xA|c1|2 + xB|d1|2) +
γ

2
− 2j(sgnWAxAJA|c1|2 + sgnWBxBJB|d1|2) (87)

+ J2
AxA + J2

BxB

These formulas can be used to plot the relationship between E and l, but they are quite
complicated to understand. It turns out that there is an easier approach to find the least
energy for 0 ≤ l0 ≤ xB. Here we follow Anoshkin, Wu and Zaremba [1]; see also Smyrnakis
et.al [7]. We replace (42) with j = 1 by the expressions

Ψ̃A(θ) =
c̃0√
2π

+
c̃1√
2π
eiθ, (88)

Ψ̃B(θ) =
d̃0√
2π

+
d̃1√
2π
eiθ.

where we no longer require that |c̃1| ≤ |c̃0| and |d̃1| ≤ |d̃0| (notice that we can take θ0 = 0 and
φA(0) = φB(0) = 0 without loss of generality when computing the energy and momentum).
This can be achieved by taking sgnWA = −1 and JA = 0 or sgnWA = 1 and JA = 1 (and
similarly for the B-component), so that either c̃0 = c0 and c̃1 = c1 or c̃0 = c1 and c̃1 = c0 (and
similarly for d̃0, d̃1).

Then
l[Ψ̃] = xA|c̃1|2 + xB|d̃1|2

10



E[Ψ̃] =xA|c̃1|2 + xB|d̃1|2 +
γ

2

=l[Ψ̃] +
γ

2

It remains to be seen which values of l can be attained using the special Ansatz (88).

Note that
|c̃0|2 + |c̃1|2 = 1

|d̃0|2 + |d̃1|2 = 1

and
xA|c̃0||c̃1| = xB|d̃0||d̃1|.

Using these relations, we find that l[Ψ̃] = l0 if and only if

|c̃0|2 =
(xA − l0)(1− l0)

xA(1− 2l0)
, |c̃1|2 =

l0(xB − l0)

xA(1− 2l0)
, (89)

|d̃0|2 =
(xB − l0)(1− l0)

xB(1− 2l0)
, |d̃1|2 =

l0(xA − l0)

xB(1− 2l0)
. (90)

For these relations to hold l0 must either be in the interval 0 ≤ l0 ≤ xB or xA ≤ l0 ≤ 1.
Specializing to the case 0 ≤ l0 ≤ xB we find that |c̃1| ≤ |c̃0|, so that JA = 0, while |d̃1| ≤ |d̃0|
and hence JB = 0 when 0 ≤ l0 ≤ 1

2
− 1

2

√
1− 2xB, and |d̃0| ≤ |d̃1| and hence JB = 1 when

1
2
− 1

2

√
1− 2xB ≤ l0 ≤ xB.

Theorem 2. Let 0 ≤ l0 ≤ xB. Then E0(l0) = l0 +
γ
2
, where γ ∈ R.

Proof. We choose the coefficients in (88) such that l[Ψ̃] = l0 and add a variation to (88) such
that

ΨA = Ψ̃A + δΨA, ΨB = Ψ̃B + δΨB (91)

where (δΨA, δΨB) ∈ X are such that Ψ ∈ Xl0 . We expand δΨA and δΨB in Fourier series:

δΨA =
∑
m

δcm
eimθ

√
2π
, δΨB =

∑
m

δdm
eimθ

√
2π

(92)

If we make use of (91) and the angular momentum constraint (7) we find that

xA(c̃1δc1 + c̃1δc1) + xB(d̃1δd1 + d̃1δd1) = −xA
∑
m

m|δcm|2 − xB
∑
m

m|δdm|2. (93)

Next we look at how the variation affects the energy and find that

E[Ψ] = xA

∫ 2π

0

|Ψ̃′
A + δΨ′

A|2dθ + xB

∫ 2π

0

|Ψ̃′
B + δΨ′

B|2dθ + πγ

∫ 2π

0

(ρ̃+ δρ)2dθ (94)

where

ρ̃ = xA|Ψ̃A|2 + xB|Ψ̃B|2 (95)

=
1

2π

11



and
δρ = ρ− ρ̃. (96)

The constraints (6) imply that∫ 2π

0

δρdθ =

∫ 2π

0

ρdθ −
∫ 2π

0

ρ̃dθ = 0 (97)

and hence ∫ 2π

0

(ρ̃+ δρ)2dθ =

∫ 2π

0

ρ̃2dθ + 2

∫ 2π

0

ρ̃δρdθ +

∫ 2π

0

(δρ)2dθ (98)

=

∫ 2π

0

ρ̃2dθ +

∫ 2π

0

(δρ)2dθ.

Expanding the first two term in (94) and using (93), we therefore find that

E[ΨA,ΨB] =E[Ψ̃] + xA(c̃1δc1 + c̃1δc1) + xB(d̃1δd1 + d̃1δd1) (99)

+ xA

∞∑
m=−∞

m2|δcm|2 + xB

∞∑
m=−∞

m2|δdm|2 + πγ

∫ 2π

0

(δρ)2dθ

=E[Ψ̃] + xA

∞∑
m=−∞

(m2 −m)|δcm|2 + xB

∞∑
m=−∞

(m2 −m)|δdm|2 + πγ

∫ 2π

0

(δρ)2dθ.

Since all parts of (99) are positive we can say for certain that E[Ψ] ≥ E[Ψ̃].
Hence E0(l0) = E[Ψ] = l0 +

γ
2
.

3.2 Energy minimization of class (ii) solutions

The solutions found belonging to the second kind are rather complicated to work with. Be-
cause of this it is not possible to get an explicit result that describes how the energy of the
Bose-Einstein condensate will change depending of the angular momentum. Instead one must
use numerical tools in order to say anything regarding this part of the yrast spectrum.

While minimum energy in the range 0 ≤ l0 ≤ xB was attained by class (i) solutions, the
class (ii) solutions minimize the energy when xB ≤ l0 ≤ 1/2. As for class (i) we will mainly
look at solutions where j = 1 as it can be checked numerically that any j > 1 would result
in a higher energy. The main task will be to determine how the ratio r will change under the
elliptic parameter k which is easiest done numerically.

Our ratio can thus be seen as a function r(m,J ) where m = k2 and J = JB − JA which
is the difference between the winding numbers and is given by (69). By using said equation
and evaluating it for different values of m, we are able to determine what allowed values of the
ratio r(m,J ) there are. Of course this depends on the value of J and xB.

Once the values of r(m,J ) were determined we started looking at how the energy given by
(3) is related to the total angular momentum (17) by evaluating each function at the given r
and m value. By combining Theorems 1 and 2 it is clear that the part of the yrast spectrum
corresponding to class (i) solutions is fairly simple. Thus the real interest is what occurs when
where l0 ≥ xB and our class (ii) solutions continue.
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The following figures were produced numerically utilizing the equations from Section 2.2.
We choose to hold certain parameters fixed and find for what interval r for each m we’re able
to find a solution and for what combination of sgnWA and sgnWB the function

F(r,m) = MBsgnWB −MAsgnWA − J (100)

changes sign. For some combinations and higher values of J , (100) will change sign multiple
times leading to multiple solutions. As m→ 1 it is necessary to use a finer division to get more
values for r. This is needed in order to reach all the way up to l0 = 1/2. The values of xB
determine how close m has to be to 1 in order to reach the limit of l0. We choose the same
division of m for all given values of xB. This results in l0 not reaching all the way up to 1/2
for small values of xB.

Fig. 1: The ratio r(m) plotted as a function of m for γ = 23 with xB = 0.2 (left) and xB = 0.06
(right), where the blue crosses and red dots correspond to J = 1 and 2 respectively.

Fig. 2: The ratio r(m) plotted as a function ofm for γ = 23 with xB = 0.05 (left) and xB = 0.04
(right), where the blue crosses and red dots correspond to J = 1 and 2 respectively.

13



Fig. 3: The ratio r(m) plotted as a function of m for γ = 23 with xB = 0.02 (left) and
xB = 0.008 (right), where the blue crosses, red dots and green asterisks correspond to J = 1, 2, 3
respectively.

For smaller values of xB the winding number increases and multiple solutions can be found
for the same combination of parameters such as sgnWA and sgnWB, J and m. Here it’s not
enough to only look at the end points of the interval where we can find a solution but in-
stead the interval from r0 to r1 (where r0 is the maximum value of r0,A, r0,B), is divided into
smaller ones. This issue does not come into effect until J ≥ 3 for this particular choice of γ. By
keeping JA = 0 we allow JB to determine the value of J as it jumps for decreasing values of xB.

What we come to realize is that for decreasing values of xB (and thus increasing xA) the
number of lobes increases. When examining individual m values it was found that for each xB
there was a singular point for which we would find a possible solution. These singular points
all had an end point for which F = 0. Since the code only gave an output if (100) changed
sign they’re not found in Figures 1 through 3.

Fig. 4: yrast spectrum e0(l) as a function of l for xB = 0.2 and γ = 23. The solid blue part
corresponds to the class (i) solutions and the dashed-dotted for class (ii) solutions.
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Fig. 5: yrast spectrum e0(l0) as a function of l0 for xB = 0.06 (left) and xB = 0.02 (right) with
γ = 23. The solid blue part corresponds to the class (i) solutions and the dash-dotted red for
class (ii) solutions.

In figures 4 through 5 we see how the part corresponding to class (i) solutions breaks off
and continues for class (ii). The dark circles represent the point at which J (and JB) increases
by 1. Each consecutive breaking point indicates a similar jump of JB. If one were to increase
the limit of m closer to 1 it would result in a continuation of the energy function for higher
values of l0.

Fig. 6: Amplitude change for increasing values of l0 = 0.03, 0.07 from left to right for xB = 0.02,
with the corresponding values of Ω = 2.99, 5.19.
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Fig. 7: Angular change for each component over the interval −π ≤ θ ≤ π for the corresponding
values mentioned previously in Figure 6

Figure 6 displays how the radius (50) for each component changes with increasing angular
momentum. Because of how we choose xB and xA we see a more drastic variation over the
period 2π for the B-component. Similarly we see how the angular part is almost constant
around zero for A while B makes a full rotation.

The special case wherem = 0 was especially looked at for every xB treated here and possible
combination of J , sgnWA and sgnWB for which a solution was found. As one were to expect
the radius for both components resulted in

√
ρs = 1/

√
2π. For the angle however it was found

that due to the choice JA = 0, φA = 0 while for the B-component −JBπ ≤ φB ≤ JBπ.
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4 Discussion

The following topics were not included in this thesis but would be of interest to examine:

One should have another look at the class (i)-solutions and plot the energy (87) against the
angular momentum (86) for different parameters. In particular it would be interesting to see
what happens when l0 ≥ xB for other values of JA and JB.

So far we have only proven that the class (i) and class (ii) solutions are critical functions
in general. This is a necessary condition, however not enough to ensure that they do in fact
minimize the functional (3). In the range 0 ≤ l0 ≤ xB we were able to show directly that
the class (i) solutions (with same specific parameter values)are minimizers. Another possibility
would be to use the second derivative test. This was treated for the one component case in [4].

Through the means of some physical intuition regarding the parameter j provided from [12]
we have assumed that j = 1 gives the lowest possible energy for the Bose-Einstein condensate.
However one should examine what happens when with the energy when j ≥ 1 in particular for
class (ii)-solutions.

One topic which is currently an active area of research is the asymmetric case where at least
one of the interaction strengths are different. This case is much more intractable and there are
less explicit solutions [6].

Finally we would like to remind the reader that the solutions found comes from Ansatz (20)
and that there could be other solutions.
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A Appendix

A.1 Elliptic functions

Through out the thesis elliptic functions were used in order to solve the nonlinear Schrödinger
equation. Therefore it’s important to understand how these functions are defined and how they
are related. First we introduce the incomplete elliptic integral of the first kind

K(φ, k) =

∫ φ

0

dθ√
1− k2 sin2 θ

=

∫ y

0

dt√
(1− t2)(1− k2t2)

, (101)

the incomplete elliptic integral of the second kind

E(φ, k) =

∫ φ

0

√
1− k2 sin2 θdθ =

∫ y

0

√
1− k2t2

1− t2
dt, (102)

and the incomplete elliptic integral of the third kind

Π(n;φ, k) =

∫ φ

0

dθ

(1− n sin2 θ)
√

1− k2 sin2 θ
=

∫ y

0

dt

(1− nt2)
√

(1− t2)(1− k2t2)
(103)

where y = sin(φ) with φ ∈ [−π
2
, π
2
], t = sin(θ) and k ∈ [0, 1). In the incomplete elliptic integral

of the third kind we also have a parameter n which sets it apart from the other two. The
complete elliptic integrals of first, second and third kind are defined as follows:

K ≡ K(k) ≡ K(π/2, k) =

∫ π/2

0

dθ√
1− k2 sin2 θ

=

∫ 1

0

dt√
(1− t2)(1− k2t2)

, (104)

E ≡ E(k) ≡ E(π/2, k) =

∫ π/2

0

√
1− k2 sin2 θdθ =

∫ 1

0

√
1− k2t2

1− t2
dt, (105)

Π ≡ Π(n; k) ≡ Π(n; π/2, k) =

∫ π/2

0

dθ

(1− n sin2 θ)
√
1− k2 sin2 θ

(106)

=

∫ 1

0

dt

(1− nt2)
√

(1− t2)(1− k2t2)
. (107)

The function φ 7→ K(φ, k) extends to a strictly increasing function on R. We let K−1(u, k)
be its inverse and define

sn(u; k) = sinK−1(u, k). (108)

This is one of the twelve Jacobi elliptic functions though there is only need to define three
of them since the rest can be expressed in terms of these. In addition to sn(u; k), these three
are:

{
cn(u; k) = cosK−1(u, k)

dn(u; k) =
√

1− k2sn2(u; k).
(109)

The derivatives of these elliptic functions are used in the thesis:
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∂
∂u
sn(u; k) = cn(u; k)dn(u; k)

∂
∂u
cn(u; k) = −sn(u; k)dn(u; k)

∂
∂u
dn(u; k) = −k2sn(u; k)cn(u; k).

We also use the following periodicity and parity properties:
sn(u; k) = sn(u+ 4K; k) (odd)

cn(u; k) = cn(u+ 4K; k) (even)

dn(u; k) = dn(u+ 2K; k) (even).
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