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Abstract

Two relatively new concepts in planetary science are planetary migration; wherein the plan-
ets migrate through the protoplanetary disk as they form, and pebble accretion; wherein
the planetesimals which become terrestrial planets and giant planet cores grow through the
accretion of small pebbles. Planetary migration has become a generally accepted concept
but there is still much to be learned even about how it affected the formation of our own
solar system. As such, the goal of this thesis is to add to this knowledge by investigating
how far Jupiter might have migrated in the protoplanetary disk surrounding the young
Sun.

This is done by performing simulations of the growth and migration of planets evolving in
a protoplanetary disk. These simulations are carried out using different initial planetesimal
parameters in terms of distance from the host star and starting time of the accretion in
relation to the lifetime of the protoplanetary disk. The Python code developed for the
thesis to perform the simulations does so by numerically integrating the mass and radial
distance from the host star of evolving planets according to the Euler method. In the case
of the planet mass the integration follows pebble accretion and subsequently gas accretion
for such planets that grow massive enough. The integration of the radial distance from
the host star follows recent solutions wherein the migration of a gas accreting planet is not
tied to the gas accretion rate onto the star as has been previously suggested.

From the results of the simulations I find that the migration distance is heavily dependent
on the ratio between the gas accretion and pebble accretion rates onto the host star. When
using the low value of 0.01 for this ratio in the simulations Jupiter analogues are found to
migrate almost 50 AU. By increasing the value to 0.1 on the other hand I find that the
migration distance is reduced to less than 10 AU. The simulations in the thesis follow a
simplified model of the planet formation process. As such, these results should be seen as
a stepping stone towards more accurate results.
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Populärvetenskaplig beskrivning

Vet du hur planeterna i v̊art solsystem kom att kretsa p̊a sina nuvarande avst̊and fr̊an
solen? Inte? Var inte orolig, det vet inte jag heller och inte ens astronomer som studerar
planetformation vet riktigt säkert. Det finns dock astronomer som lever än i dag som
kanske inte alltid hade svarat nej p̊a den fr̊agan, d̊aman för bara ett par årtionden sedan
trodde att planeterna formades och utvecklades i sina nuvarance omloppsbanor. Dem första
indikationerna p̊a att detta kanske inte var fallet kom inte förrän det sena 1970-talet och
tidiga 1980-talet d̊abevis för planetmigration upptäcktes. Detta fenomen innebär, enkelt
uttryckt, att planeter rör sig närmare eller längre ifr̊an sin stjärna under sin formation
relativt mot vart planeterna börjar formas. Intresset för det tog dock inte fart förrän mitten
av 1990-talet med upptäckten av dem första extrasolära planetsystemen eller exosystemen;
det vill säga planetsystem i omloppsbana runt en annan stjärna än solen, och i en del av
dessa system upptäckten av planeter med s̊a pass underliga omloppsbanor att det var
osannolikt att dem hade formats i sina nuvarande positioner. Genom att undersöka den
här nu generellt accepterande planetmigrationen kan insikter n̊as om hur inte bara v̊art
eget solsystem men även exosystem formades.

Migrationen av väldigt massiva planeter är av särskilt intresse, därav kommer jag i denna
avhandling specifikt att titta p̊a hur Jupiter kan ha migrerat under sin formation. Det
finns tv̊a huvudanledningar till att migrationen av massiva planeter är av särskilt intresse,
den första av vilka är att massiva planeter är dem första att formas. För att först̊a den
andra anledningen behöver vi veta att en ung stjärna är omringad av en disk som best̊ar
av gas, damm och is som r̈ överblivet fr̊an dess formation, och att det är ifr̊an denna disk
som en stjärnas planeter formas. Detta händer d̊a det fasta materialet i disken kan klumpa
ihop sig genom turbulenta rörelser och p̊a detta sätt forma de planetära frön som kallas
planetesimaler. Dessa planetesimaler är massiva nog att börja dra till sig material fr̊an
disken genom deras gravitation. S̊aledes växer dem än mer massiva vilket i sin tur ökar
kraften av deras gravitation. Detta sätter ig̊ang en kedjereaktion som för dem mest massiva
planeterna lämnar en gas- och dammlös lucka i det omr̊ade av disken där planeten växer.
En s̊adan lucka p̊averkar självklart formationen av planeter som växer fram samtidigt eller
efter dess formation. Genom att undersöka migrationen av väldigt massiva planeter kan vi
s̊aledes inte bara f̊aen bättre först̊aelse för hur den massiva planeten själv formades utan
även för hur efterkommande planeter formades. Detta kan i sin tur hjälpa oss att svara p̊a
den öppnande fr̊agan och därmed lägga till en bit p̊a pusslet som är den ur̊aldriga fr̊agan
om hur vi kom att hamna där vi är.
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Chapter 1

Introduction

In this thesis I simulated the formation and migration of planets as they grew by pebble
accretion and subsequent gas accretion up until the dissipation of the protoplanetary disk.
These simulations were done using a code developed specifically for the purposes of the
thesis. With the help of said simulations I determined the initial parameters of Jupiter
analogues in terms of their initial radial distance from their host star and the starting time
of their accretion in relation to the lifetime of the disk. This was done to investigate the
extent to which Jupiter underwent migration during its formation.

Sections 1.1 and 1.2 below give brief introductions to planetary formation and migration.
In chapter 2 we go into detail about the physics behind these phenomena as well as the
physics of the disk necessary for the simulations. Chapter 3 gives a short description of how
the code functions as well as what was produced by it for the thesis. Also present in chapter
3 is an overview of what parameters were used for the simulations. The results produced
by the code are presented in chapter 4 and finally the results and their implications are
discussed in chapter 5.

1.1 Planetary formation

Most young stars are surrounded by a disk of gas, dust known as a protoplanetary disk.
These disks evolve on million year time scales with the material being accreted by the
star. It is generally accepted that it is from these disks that a stars planets form. This
stems from the simple facts that not only does their shape reflect the coplanar distribution
of material in our solar system but they also contain all the materials necessary for the
formation of planets with the average disk having a mass of 0.01 − 0.1 M� (Chambers
2009).

The formation of planets is thought to follow multiple steps, beginning with the solid
material present in the disk forming larger aggregates, called pebbles, by colliding and
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1.1. PLANETARY FORMATION CHAPTER 1. INTRODUCTION

sticking together through turbulent motions. This process of pebble formation is known as
coagulation and depending on their density the pebbles formed this way can grow to mm-m
sizes. Growth through coagulation is, however, eventually stopped as the pebbles encounter
bouncing, fragmentation and radial drift barriers which hinder further growth.

To form planetesimals the pebbles gather in clumps due to the drag they feel from the
gas (Johansen et al. 2014). These clumps eventually grow dense enough to collapse under
self-gravity. From this point on it has long been thought that further growth towards
terrestrial planets and the cores of giant planets is due to the accretion of planetesimals.
However, for planetesimal accretion to form planets massive enough to attract a gaseous
envelope in the lifetime of the disk surface densities exceeding the minimum mass solar
nebula (MMSN) by factor of ten are required (Lambrechts, M. et al. 2014). If that was
the case an issue arises as to what happened to the remaining planetesimals not used to
create planets.

We will instead consider the relatively new concept of pebble accretion in which mm-
cm sized pebbles are the main building blocks for growth beyond the planetesimal size
(Ormel & Klahr 2010; Lambrechts & Johansen 2014). Pebbles of these sizes are abundant
in the planetary disk due the growth barriers they encounter during coagulation which
hinder their growth. The accretion of these pebbles onto the planetesimal takes place
in three increasingly efficient regimes which depend on the mass of the planetesimal and
the speed of the pebble (see Johansen & Lambrechts 2017, for a review). In the lowest
mass regime, known as the geometric regime, pebble accretion is not sufficiently efficient
for the planetesimal to grow massive enough to enter the next regime within the lifetime
of the disk. As such, planetesimal accretion is assumed to work in tandem with pebble
accretion for planetesimals of such low masses. The abundance of pebbles together with
the efficiency of pebble accretion in the later stages of Bondi regime as well as in the Hill
regime results in planetary growth rates which are several orders of magnitude greater than
for planetesimal accretion alone.

As the planetesimal grows into a protoplanet it begins to attract a gaseous envelope due to
its increasing mass. However, the heat produced by the flow of pebbles onto the protoplanet
keeps the envelope from contracting around it. The continued attraction of gas perturbs
the gas density in an annular region around the core, thereby creating a gap in the disk
with lower gas density. Protoplanets that grow fast enough become so massive that they
reach the so-called pebble isolation mass (Lambrechts, M. et al. 2014). At this mass they
gravitationally perturb the gas around them enough to create pressure bumps at the edges
of the gap which results in the pebble accretion being halted. With the flow of pebbles
stopped the protoplanet cools, thereby lowering the pressure of the gas. This allows the
gas to contract and as the pressure due to the heat is no longer a factor the protoplanet
can continue gas accretion until the protoplanetary disk dissipates.

The concepts introduced here are expanded upon in chapter 2. However, for a more detailed
accounting of planetary formation, including formation by pebble accretion, see Johansen
et al. (2014), Lambrechts, M. et al. (2014) and Johansen & Lambrechts (2017).
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1.2. PLANETARY MIGRATION CHAPTER 1. INTRODUCTION

Figure 1.1: Figure 3 from Chambers (2009). Simulation showing the spiral density wakes
being excited in the protoplanetary disk by an embedded protoplanet. The protoplanet,
located at the center of the plot, is of low mass and is yet to clear an annular gap. Brighter
shades indicate higher densities while the inner and outer black regions were not included
in the simulation.

1.2 Planetary migration

The orbit of a protoplanet in a protoplanetary disk is subject to change through planetary
migration. Like pebble accretion, planetary migration is, in a way, a relatively new concept
in planetary science. Although it was first introduced decades ago the subject received little
attention until the discovery of exo-planets (Mayor & Queloz 1995; Lin et al. 1996). This
newly sparked interest arose as many exo-planets where found with such peculiar orbits
that they were unlikely to have formed in situ (Chambers 2009) and planetary migration
is now a standard part of planetary formation theories.

This migration stems from gravitational interactions between the protoplanet and the gas
in its vicinity. As a result of these interactions spiral density wakes are excited in the
gas surrounding the protoplanet. A visualization of such density wakes recreated by a

8



1.2. PLANETARY MIGRATION CHAPTER 1. INTRODUCTION

simulation can be seen in figure 1.1. The inner wake will exert a positive torque on the
protoplanet while the outer wake will exert a negative torque. An imbalance between these
torques is what drives migration, either towards or away from the host star depending
on which way the balance shifts. Migration is generally directed towards the host star,
however, the direction is determined by the local properties of the disk and can under
certain circumstances be directed away from the star or even halt completely.

Planetary migration is thought to take place in two regimes simply known as Type-1 and
Type-2 migration. Low mass protoplanets are subject to Type-1 migration while proto-
planets which have accreted enough gas to clear an annular gap in the protoplanetary disk
are subject to Type-2 migration. The migration rate in the Type-1 regime is proportional
to the mass of the protoplanet in a linear fashion as laid out in section 2.6. At masses
above the Earth mass the speed of Type-1 migration is so fast that unless the protoplanet
growth rate is sufficiently high the growing planet can migrate to inside 0.1 AU before
ever reaching the slower Type-2 regime. This presents a major hurdle for planetary growth
through pure planetesimal accretion which can be cleared with the high accretion rates of
pebble accretion. This thesis, however, will use a novel solution to the migration rate as
laid out by Johansen et al. (2018) in which the protoplanets migrate following a modified
version of the classical Type-1 migration.

As will be shown in the thesis it is ultimately the interplay between migration and growth
that determines what type of planet, if any, is formed from a growing protoplanet.
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Chapter 2

Theory

2.1 Accretion in a protoplanetary disk

Both the gas and the pebbles in the protoplanetary disk accrete onto their host star,
however, they do so by different means as detailed in sections 2.1.1 and 2.1.2 below. The
accretion rates or mass fluxes of the gas Ṁg and the pebbles Ṁp are defined in Johansen
et al. (2018) as

Ṁg = −2πrurΣg, (2.1)

Ṁp = −2πrvrΣp. (2.2)

Here r is the radial distance from the star, ur is the radial speed of the gas, vr is the radial
speed of the pebbles and Σg and Σp are the gas and pebble surface densities respectively.
Another property I will define here is the ratio of Ṁg and Ṁp denoted as

ξ =
Ṁp

Ṁg

. (2.3)

The accretion rate of the gas is known from Hartmann et al. (1998) to evolve over the disks
lifetime as

Ṁg(t) = Ṁ0

(
t

ts
+ 1

)(5/2−γ)/(2−γ)

. (2.4)

In this expression ts is the characteristic timescale of the accretion and through it Ṁg(t)
is dependent on the turbulent viscosity of the gas ν, a property which will be defined in
section 2.1.1. The exponential γ is the power-law index of ν ∝ rγ and also enters the
expression for ts which is defined as

ts =
1

3(2− γ)2
R2

1

ν1
(2.5)
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2.1. ACCRETION IN A PROTOPLANETARY DISK CHAPTER 2. THEORY

where R1 is the initial radial size of the disk and ν1 is the value of ν at that radial distance
from the star.

2.1.1 Radial drift

Due to a temperature gradient being present in the protoplanetary disk the gas therein is
pressure supported in the radial direction. This causes the gas to orbit at a sub-Keplerian
speed

vg = vk − ηvk = vk −∆vk (2.6)

where vk is the Keplerian speed and the radial pressure parameter η is given in terms of
the radial pressure gradient through

η ≡ −(1/2)(H/r)2(∂ lnP/∂ ln r). (2.7)

Here H is the scale height of the disk and H/r is the disk aspect ratio at the radial distance
r from the star.

The scale height H can be expressed as H = cs/Ω where cs is the gas sound speed and Ω is
the Keplerian frequency. From this expression for H along with 2.6 and 2.7 the reduction
in the Keplerian speed of the gas ∆vk can be defined as

∆vk = −1

2

H

r

∂ lnP

∂ ln r
cs. (2.8)

The sound speed in the disk is assumed to follow the power-law expression

cs = cs0

(
r

AU

)−ζ/2

(2.9)

where ζ = 3/7 is the negative power-law index of the temperature and cs0 = 650 m/s is
the sound speed of the gas at 1 AU (Bitsch et al. 2015). Here we also denote the pressure
gradient as

−∂ lnP

∂ ln r
≡ χ = β + ζ/2 + 3/2 (2.10)

where β = 15/14 is the negative logarithmic derivative of Σg. This disk profile represents
a so-called stellar irradiation disk wherein the heat being supplied to the disk comes solely
from the host stars.

The direct effects of the radial pressure on the speed of the pebbles in the protoplane-
tary disk are negligible. However, the pebbles couple to the gas via drag force with the
acceleration of the pebbles due this drag being expressed as

v̇ = − 1

τf
(v − u). (2.11)
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2.1. ACCRETION IN A PROTOPLANETARY DISK CHAPTER 2. THEORY

Here v and u are the pebble and gas velocities respectively and τf is the friction time
of the pebbles with the gas (Johansen et al. 2014). As the gas travels at a sub-Keplerian
speed, the drag on the pebbles (which initially orbits with the Keplerian speed vk) serves to
decelerate them. Accretion of the pebbles onto the host star is then due to this deceleration
as it continually lowers their angular momentum.

The friction time τf can be divided into different regimes that depend on the mean free
path of the gas as well as the speed of the pebbles in relation to the gas (v − u). For a
detailed description of the different friction regimes see Johansen et al. (2014). I will focus
on pebbles in the Epstein regime which is valid when the size of the pebbles is smaller than
the mean free path of the gas. In this regime the expression for τf is independent of the
relative speed and is given by

τf =
Rρ•
csρg

. (2.12)

Here R is the radius of the pebble which is assumed to spherical while ρ• and ρg is the
material density of the pebble and the gas density respectively. The radial drift speed of
the pebbles vr is dependent on τf through the Stokes number St = τfΩ and is given by

vr = − 2∆vk

St + St−1 +
ur

1 + St2
. (2.13)

In the limit that St � 1, which is valid for all simulations performed in this thesis, 2.13
simplifies to

vr = −2St∆vk + ur. (2.14)

The dimensionless Stokes number introduced for 2.13 is a useful parameter to define as 1/Ω
is the natural timescale for physical effects in a protoplanetary disk and τf contains all the
physics of the pebble and gas interaction. As such St not only enters into the expression
for vr but plays a part in all interactions between the gas and the pebbles.

2.1.2 Gas accretion

Accretion of gas onto the host star is due to the diffusion of the angular momentum of the
gas in the faster moving inner parts of the protoplanetary disk to the gas in the slower
moving outer parts. The radial speed of the gas due to this diffusion is proportional to
the turbulent viscosity ν in the disk which is itself determined by both cs and H. In this
thesis I use the α−disk assumption which gives the following expression for the turbulent
viscosity

ν = αcsH =
αc2s
Ω
. (2.15)

This in turn results in the gas accretion speed

ur = −3

2

ν

r
= −3

2
αcs

H

r
(2.16)
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2.2. PEBBLE GROWTH CHAPTER 2. THEORY

where α is simply a dimensionless measure of ur. If the angular momentum loss of the gas
was instead caused by disc winds (Bai & Stone 2013) this expression for ur would not be
valid as it is specific to the α-model assumption.

2.2 Pebble growth

Pebble growth is a consequence dust particles coagulating into larger aggregates due to
turbulent motions. For dust particles and pebbles with St < 1 the turbulent collision speed
vc is set by the Stokes number through

vc = cs
√

3αvSt. (2.17)

Here αv is a dimensionless measure of the turbulent viscosity which is to be distinguished
from α as α may be driven by disc winds at a weak level of actual turbulence (Bai & Stone
2013). Depending on the internal structure and composition of the particles the growth
from these collisions is eventually halted as the growing aggregates encounter one of the
three coagulation barriers.

2.2.1 Fragmentation barrier

The fragmentation barrier is reached when vc becomes equal to the critical fragmentation
speed uf at which point colliding particles fragment rather than stick together (Birnstiel
et al. 2011). This gives an expression for the Stokes number at which the barrier is en-
countered through 2.17 as

St =
u2f

3αvc2s
. (2.18)

As mentioned in Johansen & Lambrechts (2017) uf is a complicated function of the porosity
and size of the colliding particles. However, it can for simplicity to be set to a constant to
obtain an approximate solution to the Stokes number of the fragmentation barrier.

2.2.2 Bouncing barrier

The speed at which particles can stick together through coagulation is limited by what is
known as the sticking speed vs defined as

vs =

√
5πa0Froll

m
. (2.19)

Here a0 is the size of the pebble building blocks, known as a monomer, Froll is the force
needed to roll one monomer over the surface of another and m is the reduced mass of the
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2.3. PLANETESIMAL FORMATION CHAPTER 2. THEORY

colliding monomers. Particles that collide with collision speeds equal to this sticking speed
bounce of each other rather than stick together (Zsom et al. 2010). As this expression is
inversely proportional to m the growth of high density particles made from silicates will
be hindered by bouncing before they begin to fragment.

2.2.3 Radial drift barrier

If a particle can grow large enough without reaching the fragmentation or sticking speed it
will eventually cease growth due to its radial drift. This happens for low density pebbles
such as very fluffy ice aggregates when their radial drift timescale r/ṙ equals their growth
timescale St/Ṡt (Birnstiel et al. 2011; Lambrechts & Johansen 2014). The fate of these icy
aggregates is not to fall into the star however, but rather to evaporate and sublimate at
different snow lines whose radial position in the disk depends on the composition of the
ice. Pebble formation can take place at these snow lines through the condensation of the
ice vapor onto already existing ice particles (Ros & Johansen 2013; Johansen et al. 2014).
This type of pebble formation is not pertinent to this thesis however so I will not go into
further detail about it.

2.3 Planetesimal formation

As the pebbles grow they begin to sediment towards the midplane of the protoplanetary
disk. Due to sedimentation being counteracted by turbulent diffusion the pebbles eventu-
ally settle in an equilibrium midplane layer as the two reach a balance. The scale height of
this midplane pebble layer Hp can be expressed in terms of the gas scale height H through

Hp = H

√
δ

St + δ
(2.20)

where δ is a dimensionless measure of the dust diffusion coefficient D = δcsH. If the pebble
density exceeds the Roche density

ρR =
9Ω2

4πG
, (2.21)

where G is the gravitational constant, the pebbles can contract to form a planetesimal held
together by self-gravity. However, sedimentation alone will not lead to pebble densities
that fulfill this criteria due to the turbulent diffusion. Instead, the pebbles can concentrate
locally due to turbulent motions and so-called streaming instabilities. In both of these
cases the concentration of pebbles is due to their radial drift being locally slowed down or
even halted completely.
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Turbulent motions can lead to regions in the protoplanetary disk where the gas speed goes
from sub- to super-Keplerian. The positive drag felt by the pebbles as they enter the super-
Keplerian gas accelerates them back towards the sub-Keplerian gas. This creates a pebble
trap where ∆vk = 0 in which the local pebble density can grow towards ρR. Streaming
instabilities on the other hand are due to instabilities in the local radial drift speed of
the pebbles. These instabilities can lead to perturbations in the local pebble density. If
the local pebble density is increased by such a perturbation the gas in the region will feel
an increased positive drag force from the pebbles. As the local gas speed grows closer
to vk due to this increased drag the local radial drift speed decreases. This can lead to
streaming instabilities, as seen in figure 2.1, wherein the pebbles begin to pile up due to
the decrease in the local radial drift speed. As more and more pebbles arrive the local gas
and radial drift speeds keep increasing and decreasing respectively leading to local pebble
densities which exceed ρR. In this way large planetesimals with contracted radii between
100-1000km are formed (Johansen et al. 2014).

2.4 Pebble accretion

Planetesimals have long been thought to continue their growth towards terrestrial planets
and planetary cores through the accretion of other planetesimals. However, due to the
gas drag and resulting angular momentum loss experienced by pebbles as they pass by the
growing planetesimals and protoplanets they are more readily accreted than planetesimals.
Pebbles are also abundant in the protoplanetary disk as the coagulation barriers makes
the disk efficient at producing them. This accretion efficiency and abundance of pebbles
makes pebble accretion an interesting alternative to planetesimal accretion.

Pebble accretion, which is the focus of this thesis, can take place in either the geometric, the
Bondi or the Hill regime. These regimes are determined by the characteristic interaction
radius Rg of the planetesimal which is given by

Rg =
GM

δv2
. (2.22)

where M is the mass of the growing planetesimal and δv is the relative speed of passing
pebbles. The Bondi radius RB is given by this expression when δv is dominated by ∆vk
while the Hill radius RH is obtained when δv is dominated by the Hill speed vH = ΩRH. A
transition mass Mt from the Bondi regime to the Hill regime can then be extracted from
2.22 by equating ∆vk with vH = ΩRH

Mt =

√
1

3

∆v3k
GΩ

. (2.23)

This gives a transition mass typically ranging between 1.5× 10−4 − 1.2× 10−2 ME where
ME is the Earth mass.
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Figure 2.1: Figure 7 from (Simon et al. 2016). Formation of a streaming instability and
the subsequent formation of planetesimals. The density has been normalized by the average
pebble surface density in the protoplanetary disk and the axes have been normalized by
H. Four sequential snapshots in time are shown from the top left to the bottom right. In
the bottom left plot pebbles beginning to collapse through self-gravity can be seen while
in the bottom right planetesimals have formed and the streaming instability has almost
completely dissolved.
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2.4.1 Bondi regime

The accretion radius of a planetesimal Racc is a function of Rg as well as τf relative to
the characteristic timescale to pass the planetesimal. However, Racc also depends on which
regime the planetesimal is accreting in. In the Bondi regime, also known as the drift regime
due to the approach speed of pebbles being set by their drift speed, Racc is given by

Racc =

(
4τf
tB

)1/2

RB (2.24)

where tB = RB/∆vk is the characteristic timescale to pass a planetesimal in the Bondi
regime. Figure 2.2 shows pebbles with τf = 100tB, τf = tB and τf = 0.1tB approaching a
planetesimal in the Bondi regime. Weakly coupled pebbles with τf = 100tB are scattered
by the planetesimal owing to the weak drag they feel while optimally coupled pebbles with
τf = tB enter decaying orbits around the planetesimal and are accreted from within most of
RB. Pebbles with τf < tB can be accreted as well though from smaller impact parameters
than optimally coupled pebbles.

2.4.2 Geometric regime

Planetesimals whose physical radius R is greater than RB will accrete in the geometric
regime characterized by the timescale to pass the planetesimal R/∆vk. Here the planetesi-
mal has a capture radius which is equal to its own size and pebbles approach with a speed
that is greater than the escape speed of the planetesimal. This can result in weakly cou-
pled pebbles escaping the planetesimal when colliding with it elastically. The momentum
loss of the pebbles in inelastic collisions can however lead to accretion of weakly coupled
pebbles if their new speed is lower than the escape speed. Optimally coupled pebbles are
accreted in both elastic and inelastic collisons as the gas drag is sufficient to lower their
speeds below the escape speed. The accretion of strongly coupled pebbles in this regime is
more complicated. These pebbles enter a decaying orbit around the planetesimal resulting
in an accretion efficiency which depends on both τf and the gas flow pattern.

Pebble accretion in the geometric regime and early stages of the Bondi regime is not
sufficiently efficient for a planetesimal to grow to planet size within the lifetime of the
protoplanetary disk. As such, planetesimal accretion is a necessary complement to pebble
accretion at these stages.

2.4.3 Hill regime

When a planetesimal has become massive enough to enter the Hill regime it is known as a
protoplanet. At this point the timescale to pass the protoplanet is tH = Ω−1 independent
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Figure 2.2: Figure 1 from Johansen & Lambrechts (2017). Pebble accretion in the Bondi
regime. Blue trajectories show weakly coupled pebbles (τf = 100tB), red trajectories show
optimally coupled pebbles (τf = tB) and orange trajectories show strongly coupled pebbles
(τf = 0.1tB). The scattering of weakly coupled pebbles as well as the decaying orbits of
optimally and strongly coupled pebbles can be seen in the inset where colored dots mark
incoming trajectories. The axes are normalized by RB and the pebbles enter from above
with ∆vk.

of the protoplanet mass and the approach speed of the pebbles is set by the Keplerian
shear flow. As a result of tH being equal to the inverse of the Keplerian frequency Racc is
determined by St in the Hill regime with the expression for Racc being given by Johansen
& Lambrechts (2017) as

Racc =

(
St

0.1

)1/3

RH. (2.25)
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Figure 2.3: Figure 2 from Johansen & Lambrechts (2017). Pebble accretion in the Hill
regime. The axes are normalized by RH. Blue trajectories show very large pebbles that
couple to the gas on a timescale which is much longer than the orbital timescale. These
weakly coupled pebbles are scattered by the protoplanet. Red trajectories show optimally
coupled pebbles with St = 1 while orange trajectories show strongly coupled pebbles with
St = 0.1. The protoplanet accretes optimally and strongly coupled pebbled from within
most of RH. Optimally coupled pebbles entering horseshoe orbits can be seen in the two
insets. As the protoplanet radius is just 0.001 times its Hill radius the insets are shown at
two different scales.

The trajectories of pebbles in the Hill regime can be seen in figure 2.3. As in the Bondi
regime, the weakly coupled pebbles are scattered by the protoplanet while optimally and
strongly coupled pebbles are accreted. However, the dynamics of the pebble trajectories
are heavily influenced by the Coriolis force in the Hill regime. This can lead to pebbles
with low impact parameters entering horseshoe orbits around the protoplanet as can be
seen in the figure 2.3 insets.
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Pebble accretion in the Hill regime is said to be either 3-dimensional or 2-dimensional
depending on the relation between Racc and the scale height of the pebble layer Hp. The
accretion is 3-dimensional when Racc is smaller than Hp. If this criteria is fulfilled the
accretion rate Ṁ3D can be expressed as

Ṁ3D = π

(
St

0.1

)
ΩR3

Hρp (2.26)

where ρp = Σp/(
√

2πHp) is the midplane pebble density. Should Racc grow larger than Hp

the accretion becomes 2-dimensional in which case the accretion rate can be expressed as.

Ṁ2D = 2

(
St

0.1

)2/3

ΩR2
HΣp. (2.27)

2.4.4 Isolation Mass

As the planetesimal and eventual protoplanet grows through pebble accretion it begins to
attract a gaseous envelope due to its increasing gravitational pull. Heat supplied by the
accreted pebbles keeps the continually growing envelope pressure supported and thus it
can not contract around the core. The continued attraction of gas perturbs the gas density
in an annular region around the core, thereby creating a gap with lower gas density as seen
in figure 2.4.

When the protoplanet mass reaches the pebble isolation mass Ṁiso the perturbations be-
come so great that pressure bumps are formed at the edges of the annular region. As in
the formation of planetesimals the reversing of the pressure gradient creates a pebble trap
which abruptly halts the pebble accretion onto the protoplanet (possibly resulting in a new
planetesimal formation zone). Bitsch et al. (2018) determined that Ṁiso follows

Miso =

(
H/r

0.05

)3(
0.34

(
log(α3)

log(αv)

)4

+ 0.66

)(
1− 2.5 + χ

6

)
(2.28)

where α3 = 0.001 is a constant.

2.5 Protoplanet gas accretion

As the protoplanet cools due to the lack of heat being supplied by pebble accretion the
gaseous envelope surrounding it can contract. The contraction of the envelope subsequently
heats the protoplanet again. This Kelvin-Helmholtz like contraction of the envelope results
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Figure 2.4: Figure 2 from (Lambrechts, M. et al. 2014). Annular gap cleared by a
planet with M = 50ME embedded in the midplane of a protoplanetary disk. The x-axis is
normalized by the radial distance of the planet from the host star. Miso has been reached
and pebble accretion has been completely halted. The densities exceeding the unperturbed
density seen interior and exterior to the gap are regions where the gas orbits with a super-
Keplerian speed due to the perturbations caused by the presence of the massive planet.

in the gas accretion rate (Ikoma et al. 2000)

ṀKH =
10−5 ME

yr

(
M

10ME

)4(
κ

0.1 m2 kg−1

)−1

(2.29)

where κ is the opacity of the envelope. However, as ṀKH ∝M4 this rate increases rapidly
and is eventually limited by the rate at which gas enters the Hill sphere

Ṁdisk =
0.29

3π

(
H

r

)−4(
M

M?

)4/3
Ṁg

α

Σgap

Σg

(2.30)
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where Σgap is the gas surface density in the gap and M? is the mass of the host star. The
gas accretion onto the protoplanet becomes further limited if Mdisc grows large enough
within the lifetime of the disk to completely absorb Ṁg. This results in a protoplanet gas
accretion rate Ṁpg that is ultimately set by

Ṁpg = min

(
ṀKH, Ṁdisc, Ṁg

)
. (2.31)

2.6 Planetary migration

Perturbations to the gas flow caused by the gravity of a growing planet leads to spiral
density wakes being launched in the gas around it as demonstrated in figure 1.1. The wake
on the planets exterior in relation to the host star will carry angular momentum away from
the planet by exerting a negative torque on it. For the wake on the planets interior the
situation is reversed. The mechanics behind the launching of these wakes and the angular
momentum being carried by them are quite complex and beyond the scope of this thesis. I
instead refer to Chambers (2009), Nelson (2018) and Kanagawa et al. (2018) for a more in
depth review on the subject. Here it will suffice to say that the momentum being carried
away from the growing planet is under ordinary circumstances greater than the momentum
being carried to it. As a result a net negative torque is exerted on the planet which leads
to inwards migration.

This type of migration is what is called Type-1 migration and the migration rate due to
the momentum loss follows

ṙ1 = −kmig
M

M?

Σgr
2

M?

(
H

r

)−2

vK (2.32)

where M? is the mass of the host star (Johansen et al. 2018). The prefactor kmig is a con-
stant which depends on the gradients of surface density β and temperature ζ. Simulations
performed by D’Angelo & Lubow (2010) found that kmig is given by

kmig = 2(1.36 + 0.62β + 0.43ζ). (2.33)

Should the gas flow through the annular gap created as the protoplanet grows completely
halt the protoplanet will be subject to Type-2 migration. At this point the protoplanet
becomes locked inside the gap as migration towards either of the edges leads to an imbalance
in the torque acting on it which pushes the protoplanet back to the middle of the gap
(Chambers 2009). This means that the migration rate in the Type-2 regime is equal to
the gas accretion rate as the protoplanet is essentially pushed along by the gas.
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2.6.1 Modified Type-1 migration

Recent simulations have shown that gas can continue to flow through the gap and that
subsequently the migration rate is not tied to the gas accretion (Kanagawa et al. 2018).
These simulations found instead that the torque on a growing planet can be described by
the classical Type-1 torque multiplied by the relative gap depth Σgap/Σg. A good fit to an
expression for the relative gap depth is given by (Johansen et al. (2018))

Σgap

Σg

=
1

1 + 0.04K
(2.34)

where

K =

(
M

M?

)2(
H

r

)−5

α−1
v . (2.35)

This yields a migration rate which can be expressed as (Johansen et al. 2018)

ṙ =
ṙ1

1 + (M/Mgap)2
. (2.36)

Here Mgap is the gap transition mass, defined as the mass for which K = 1/0.04 and
as such the mass which is required to create a relative gap depth of 0.5. To reach Miso

a relative gap depth of 0.85 is sufficient from which Johansen et al. (2018) finds that
Mgap = 2.3Miso.
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Chapter 3

Method

3.1 Code

To simulate the growth and migration of protoplanets I developed a code in Python which
numerically integrates their mass and radial position according to the Euler method. All
simulations performed for the thesis using this code started with a protoplanet mass of
M = 0.01 M⊕ and the simulated protoplanets were assumed to begin accretion in the
2D Hill-regime. Furthermore the protplanets were assumed to migrate according to the
migration model laid out by Johansen et al. (2018). As such, the code was developed to
utilize Eq. 2.36 for the numerical integration of the radial position and Eq. 2.27 for the
numerical integration of the mass. Should the mass of a growing planet reach Miso in
the simulations Eq. 2.31 takes precedence over 2.27 in the code as further mass increase
to is due to gas contraction. For the interested reader Appendix A presents a link to a
github-repository which contains all of the code developed for the thesis.

Using this code I produced growth tracks in which I show how the mass of the growing
planet evolves with its radial distance from host star. These growth tracks were initiated
with a starting radial distance as well as starting time in relation to the lifetime of the
disk. The simulations then continued up until the dissipation of the protoplanetary disk
following static values for α, St and ξ. These parameters as well as all other parameters
necessary for the simulations are detailed in section 3.2.

Growth maps which show the final positions and masses of the simulated protoplanets
as overlapping contours were produced using the same code developed to produce the
growth tracks. The coordinates of these growth maps which are represented by the initial
distance from the host star r0 and the starting time t0 range from 1-60 AU and 0-3 Myrs
respectively. With the help of a Python module called shapely I determined r0 and t0
for possible Jupiter analogues from said growth maps. This could be done as shapely

can be utilized to find the coordinates of an intersection between two contours. By taking
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advantage of this functionality present in shapely I determined the coordinates of the
intersection between the Jupiter mass (318 ME) contour and the Jupiter position (5.2 AU)
contour for different protoplanetary disk parameters.

An altered version of the code in which the numerical integrations were done according to
the more accurate Runge-Kutta method, as compared to the Euler method, was also devel-
oped. This was done so that the accuracy of the Euler method could be investigated.

An altered version of the code in which the numerical integrations were done according
to the more accurate Runge-Kutta method, as compared to the Euler method, was also
developed. Using this version of the code I determined the final mass and radial position
values of planets evolving according to the same parameters used for the growth tracks
produced by the Euler version of the code so that the accuracy of the Euler method could
be investigated.

3.2 Simulation parameters

In the protoplanetary disk model used for the simulations of the thesis I followed the
standard viscous accretion disk model where Ṁg drops from 10−7M�/yr to 10−8M�/yr
according to Eq. 2.4 over 3 Myr. As such, Σg evolves with Ṁg in contrast to the MMSN
where it is assumed to follow 1700(r/AU)−3/2 g/m2 (Hayashi 1981). In figure 3.1 plots
produced by the code can be found which show the dependence of Σg on r due to this
accretion rate as compared to the MMSN for two different values of α.

After these 3 Myr the disk is assumed to dissipate with most of the material having been
accreted on to the star. From this Ṁp and subsequently Σp can obtained through 2.3 where
ξ is a static parameter which was set for each simulation.

The gas accretion rate used in the simulations produces pebbles whose sizes are typically in
the mm-cm range for St = α. These sizes fall well in line with pebbles which have further
growth hindered by the bouncing barrier. Pebbles which are that small have radial speeds
that are approximately the same as the gas accretion speed. This results in the solid and
gaseous components of the protoplanetary disk being depleted on similar time scales. As
such, I used St = α in all simulations. This choice is justified by the fact that it agrees
well with both the bouncing barrier as well as with observations which show mm-cm sized
pebbles remaining present in protoplanetary disks over a wide range of ages (Johansen
et al. 2018).

Any dependence of a protoplanets inclination and eccentricity on pebble accretion rates is
not yet well understood, though significant effort is currently being put into it. Therefore
it was not taken into account in any simulations and I instead focused on the simpler case
of a protoplanet on a circular orbit.

The gas accreted onto protoplanets which have reached Miso is assumed to be completely
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Figure 3.1: Gas surface density as a function of r in a disk following the standard
viscous accretion model. Both the left and right plot display the gas surface density at the
beginning of the lifetime of the disk (green) as well as after 3 Myr (blue) though they do
so for two different values of α. The gas surface density of the MMSN (red) is shown as a
comparison in both plots.

pebble free due to the pressure bump created at the edge of the gap. In spite of this small
dust particles can still pass the gap along with the accreted gas. These dust particles can
constitute 10% of the total content of solids resulting in a nominal opacity in the range
0.001-0.01 m2 kg−1 (Johansen et al. 2018). Therefore a standard opacity value of κ = 0.005
m2 kg−1 was used for all simulations.

Finally, the time step of dtgt of the numerical integration performed by the code using the
Euler method was set to follow

dtg = 0.01 ·min

(
M

Ṁ
,
r

ṙ

)
(3.1)

for the growth tracks. Here Ṁ is the accretion rate of the type of accretion the protoplanet
is subject to at the current point in the simulation. Thus the size of the time-step decreased
as either the protoplanets growth or migration rate increased in relation to its mass and
radial position respectively. This procedure for determining the time-step was chosen as
compromise between the computation time of the simulations and their accuracy. The
simulations producing the growth maps on the other hand required a higher accuracy for
the contours to come out smooth. Thus the time step for these simulations gm was set to
follow

dtgm = min

(
dtg, 100 yr

)
. (3.2)
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Chapter 4

Results

4.1 Growth tracks

Growth tracks produced by the code for four different pairs of ξ and α/St values starting
at r0 = 10 AU and r0 = 30 AU are presented in figure 4.1. The figure presents two different
plots, one of which shows growth tracks which were initiated at t0 = 0.7 Myr while the other
shows growth tracks which were initiated at t0 = 1.2 Myr. The protoplanets responsible
for the growth tracks in both of these plots form in protoplanetary disk with the same
values for α, St and ξ. This is done in order to show the effects of the starting time on the
growth tracks.

The final masses and radial positions of the planets represented by the growth tracks
initiated at t0 = 0.7 Myr and r0 = 30 AU are presented in table 4.1. This table also
presents the final masses and radial positions of planets were the numerical integrations
were done using the Runge-Kutta method for the same initial parameters.

Looking at the growth tracks one can see that the distance travelled by a protoplanet due
to migration before reaching Miso increases rapidly as the starting location moves farther
from the host star. This phenomenon arises from riso being proportional to r0 through
riso ∝ r

1/2
0 where riso is the radial position at which Miso is reached. For a derivation of

this proportionality see sections 2.5-7 of Johansen et al. (2018).

Initially the migration seen in the growth tracks essentially follows the classical Type-1
migration as M � Mgap. As such, the growth tracks grow ever more horizontal as the
protoplanets represented by them grow more massive. However, as can be seen all but one
of the tracks that manage to reach Miso abruptly turn more vertical at some point after
doing so. The protoplanets responsible for these tracks are massive enough for Kelvin-
Helmholtz contraction to be effective. This results in the protoplanets quickly growing so
massive that the migration rate, which is inversely proportional to M , rapidly drops. For
lower mass protoplanets the Kelvin-Helmholtz contraction is significantly less effective due
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Figure 4.1: Numerically integrated planetary growth tracks evolving according to 2D
Hill-accretion (Eq 2.27) up until reaching Miso at which point further growth is due to gas
accretion (Eq 2.31). All protoplanets are initiated with M = 0.01 ME and are subject to
migration following the modified Type-1 migration rate (Eq 2.36). The growth tracks in
the upper plot are initiated at t0 = 0.7 Myr while the growth tracks in the lower plot are
initiated at t0 = 1.2 Myr. Miso is shown as a function of r for two values of αv corresponding
to the two different α values used for the growth tracks in both the upper and lower plot.

to it being proportional to M4. Protoplanets that reach Miso with too low a mass therefore
never manage to accrete the mass needed for the migration rate to slow down. This is
clearly demonstrated by the growth track initiated at r0 = 10 AU and t0 = 0.7 Myr in a
protoplanetary disk with α = St = ξ = 0.01 which manages to reach Miso without ever
turning vertical. The fact that the growth track initiated with the same α/St, ξ and r0
does turn vertical when initiated at the later starting time is due to Ṁg decreasing over
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time. From Eq 2.1 one notes that this decrease leads to an decrease in Σg and thus serves
to lower the migration rate.

Table 4.1: Final masses and radial positions of planets initiated at r0 = 30 AU and
t0 = 0.7 Myr when using the Runge-Kutta method as well as when using the Euler method

Runge-Kutta Euler

α/St ξ M [ME] r [AU] M [ME] r [AU]

0.01
0.01 1478.2 2.0153 1459.6 1.9976
0.02 2468.3 2.8666 2464.1 2.8388

0.02
0.01 465.39 4.5348 445.23 4.5258
0.02 1892.7 4.4989 1883.4 4.4652

By decreasing the value used for α in the simulations a lower ur is obtained and as Ṁg

is set there must be an increase in Σg as a response. Similarly, as vr is proportional to
ur there will also be a corresponding increase in Σp. As a consequence of these increases
to the surface densities, the protoplanet migration rate and core growth rate will both
increase as can be seen from Eq 2.27 and 2.32. However, the increase in the migration rate
is greater than the increase in the growth rate. This happens as even though Σg and Σp

are both proportional to 1/α the growth rate is also proportional to St2/3 and St is set to
be equal to α in all simulations. Thus the growth rate is ultimately proportional to 1/α1/3.
As such, for a given value of ξ the tracks produced in the disk with α = 0.01 begin to turn
horizontal at a lower mass than those produced in the disk with α = 0.02 as can be seen
in figure 4.1.

Also of note is that two of the growth tracks which were initiated at r0 = 30 AU and
t0 = 1.2 Myr never manage to accrete enough mass to reach Miso before the dissipation of
the protoplanetary disk. This is in part due to the late starting time of the protoplanets
represented by these growth tracks. However, it is also caused by the protoplanets evolving
in a protoplanetary disk with a low value for ξ which lowers the core growth rate. Of these
two growth tracks one manages to both accrete more mass and migrate a greater distance
than the other. This difference is a result of the tracks evolving according to separate
α/St values which, as detailed above, impacts both the core growth rate and the migration
rate.

From table 4.1 one notes that there is a noticeable difference in the results when using the
Runge-Kutta method and the Euler method. This difference is quite small however with
the greatest difference occurring for the final mass of planets initiated with α/St = 0.02
and ξ = 0.01 being less than 5 percent regardless of which order the ratio of the masses is
taken.
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Figure 4.2: Growth maps showing the final masses (color graded contours) and final
positions (black contours) of protoplanets growing and migrating in protoplanetary disks
with α = St = 0.01 and four separate values for ξ. The color contours have been normalized
by ME. The mass contour of the Jupiter mass (318 ME) has been highlighted with a blue
contour to make the intersection between it and the Jupiter position contour (5.2 AU) easy
to pick out.

4.2 Growth maps

Figure 4.2 presents growth maps used to determine r0 and t0 for possible Jupiter analogues.
In the figure four separate growth maps are displayed, each one of which is the product of
simulations in protoplanetary disks with different values for ξ. All four growth maps are,
however, produced using the same value for α/St. Growth maps which are the product of
simulations in protoplanetary disks with the same four ξ values as figure 4.2 but a different
α/St value are presented in figure 4.3. The final masses of the simulated protoplanets are
represented by color graded contours in the figures. Due to there being some difficulty in
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Figure 4.3: Growth maps showing the final masses (color graded contours) and final
positions (black contours) of protoplanets growing and migrating in protoplanetary disks
with α = St = 0.02 and four separate values for ξ. As for figure 4.2 the color contours
have been normalized by ME and the mass contour of the Jupiter mass (318 ME) has been
highlighted with a blue contour.

determining the exact shade of a certain mass the contour following the Jupiter mass of
318 ME has been highlighted with a solid blue contour in all eight growth maps.

Jupiter analogues are indicated in the growth maps by the intersections between the Jupiter
mass contours and the Jupiter position contours. The coordinates of these intersections
and thus the starting times and initial positions of the Jupiter analogues, which have been
extracted using the Python module shapely, are presented in table 4.2 along with distance
d over which they have migrated.

As can be seen from the growth maps and the values of table 4.2, the intersections between
the Jupiter mass contours and the Jupiter position contours are pushed towards earlier
starting times and initial distances farther from the host star as ξ is decreased (so too are,
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of course, the starting times and positions of all simulated protoplanets). The change in
both the starting time and position stems from the fact that by lowering ξ the core growth
rate is reduced as was mentioned for the growth tracks. Needless to say, this reduction of
the core growth rate means that it takes more time to accrete a core with a given mass as
compared to when using a higher value for ξ. However, as the protoplanets spend more
time accreting their core due the reduced growth rate they also spend more time with a
mass much lower than Mgap. Thus said protoplanets will migrate in the fast migrating
region around 1-10 ME where the growth tracks follow a nearly horizontal path over a
greater period of time. Thereby resulting in an increased migration distance to produce a
protoplanet of a given mass.

Table 4.2: Starting times and initial positions of Jupiter analogues growing and migrating
in protoplanetary disks with α = St = 0.01 and α = St = 0.02 as well as four separate
values for ξ. The data has been extracted from the data used to produce the growth maps
of figures 4.2 and 4.3.

α/St ξ r0 [AU] t0 [Myr] d [AU]

0.01

0.01 53.29 0.64 48.09
0.02 25.44 1.75 20.24
0.05 13.46 2.49 8.26
0.1 10.25 2.71 5.05

0.02

0.01 33.39 0.64 28.19
0.02 17.67 1.68 12.47
0.05 10.47 2.43 5.27
0.1 8.47 2.67 3.27

By increasing the value of α/St a push is instead seen towards shorter migration distances
for a given value of ξ as this decreases not only the core growth rate but the migration rate
as well. The change in starting time due to this increase on the other hand is in the same
direction as when increasing ξ. This change is, however, minor compared to the change in
initial distance. This is in part due to the changes in α/St having a smaller impact on the
growth rate than the migration rate. It is also due, in part, to the impact on the starting
time that comes with a change in the growth rate being counteracted by the change in
migration distance before reaching Miso that comes with an initial distance closer to the
host star. This change in migration distance affects the time as it takes for a planet to
begin gas accretion and as such affects the starting time.

As a result of the increased migration distance that comes from using a protoplanetary
disk with a low value for ξ there is an accompanying increase in the production of hot
Jupiters with final positions interior to 1 AU. On the other hand, high values for ξ will
increase the production of giant planets in general due to the accompanying increase in
the growth rate. Both of these phenomena become evident when comparing the growth
maps. This comparison also shows how the decrease in the growth and migration rates
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that comes from increasing the value of α/St in the simulations mitigates the production
of both these types of planets over all.

Another point to note about the growth maps, though it might seem obvious, is that
the protoplanets grow ever closer to forming in situ as they begin their accretion in later
stages of the disk lifetime. This happens simply due to the fact that the protoplanets have
an ever decreasing time to migrate. The path of the position contours towards near in
situ formation is, however, heavily influenced by the value of the ξ parameter as detailed
above.
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Discussion & conclusions

The first point that I believe should be made here is regarding the reliability of the results
as several assumptions and simplifications have been made in the simulations. Foremost of
these are the facts that 3D Hill-accretion is not taken into account and that the protoplanets
are assumed to evolve without being influenced by the simultaneous formation of other
planetesimals and protoplanets.

The impact of the simplification that is ignoring 3D accretion becomes clearly visible
when comparing the results of this thesis with the results of Johansen et al. (2018) where
3D accretion is implemented in the simulation of growth maps. The growth maps of
said paper makes a good comparison as the planets they represent evolve following the
same equations used in this thesis aside from 3D accretion being implemented. Thus the
protoplanetary disk parameters used to generate the growth maps of figure 4.2 in this thesis
were specifically chosen to match those of Johansen et al. (2018) so that a comparison could
be made. From this comparison one notes that planets grow more massive in general when
3D accretion is not taken into account. Thus one can deduce that accretion is generally
more effective in the 2D accretion regime than in the 3D accretion regime without making
a detailed comparison of Eq 2.26 and Eq 2.27. Also of note is the distance over which the
forming planets migrate in the two cases. There is a noticeable difference as the time it
takes to accrete the core is effected by the inclusion of 3D accretion in the simulations.

I cannot speak as much to the impact on the results due to protoplanets forming without
being influenced by the simultaneous formation of other planetesimals and protoplanets.
However, it is safe to say that there is an impact. This becomes most obvious when
considering the effects of the annular gap created by massive cores. As the pressure bump
created by such gap halts the flow of pebbles any core that is undergoing pebble accretion
and is forming interior to the gap will have its growth stunted.

Putting the deficiencies of the simulations aside. I find, as can be seen from table 4.2, that
a planet which ultimately ends up with the mass and orbit of Jupiter undergoes several
tens of AU of migration when forming in a protoplanetary disk with the lowest values of
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ξ used in the thesis. This is true both in the case α = St = 0.01 and α = St = 0.02
though the difference between the two cases is significant. The migration distance quickly
drops as ξ is increased on the other hand and is reduced to below 10 AU for the highest
values of ξ used. However, from the table one notes that the influence of changes in ξ on
the migration distance drops quickly as the value of ξ increases. As does the difference
between using α = St = 0.01 and α = St = 0.02, with the difference in migration distance
changing from just over 20 AU in the case of ξ = 0.01 to less than 2 AU in the case of
ξ = 0.1.

There are still some issues with the smoothness of the contours even when using the smaller
time step of 3.2 instead of 3.1. Whether this is simply due to the time step being to large I
cannot not say with any certainty, though the decrease from 3.1 to 3.2 did have an impact
on the smoothness of the contours. Nor can I speak to why this unevenness is only present
on some parts of some contours and only for certain protoplanetary disk parameters, I can
only note that it is present to make the reader aware of this flaw. As one will not from table
4.1 this might have been alleviated by using the Runge-Kutta method when producing the
growth maps. However, the Runge-Kutta method is computation heavy and each growth
maps contains the final masses and positions of ten thousand planets. As such I did not
have the processing power necessary to finish the simulations in a timely manner when
using this more accurate method.

It should also be mentioned that the Python module shapely was utilized without full
comprehension of how it manipulates the provided the data in order to correctly determine
the intersection coordinates of two contours. Therefore the accuracy of the results produced
by the module were cross checked (and found to be accurate) several times. This was
done using intersecting contours produced on interactive plots where the intersection could
simply be zoomed in on until the coordinates could be read of the plot with a desired
accuracy.
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Appendix A

Github-repository

For the full code developed for the thesis see https://github.com/Calle-Ahlgren/

Bachelors-Thesis-Collected-Code. The code is only lightly commented, it is however
simple enough to be understood in tandem with the thesis assuming the reader possesses
a beginner-level understanding of Python-programming.
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