
INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTATIONSDAG 2018-06-07

EXAMENSARBETE SZZ Unleashed: Bug Prediction on the Jenkins Core Repository
STUDENT Oscar Svensson, Kristian Berg
HANDLEDARE Markus Borg (LTH), Sven Selberg (Axis Communications AB)
EXAMINATOR Emelie Engström (LTH)

Open Source Implementations of Bug
Prediction Tools on Commit Level

POPULÄRVETENSKAPLIG SAMMANFATTNING Oscar Svensson, Kristian Berg

Code reviews are ubiquitous in large scale software development. We have imple-
mented an approach using machine learning to help reviewers prioritize their efforts
on high risk code.

Code reviewing is a common tool in software
development for analyzing commits. A commit
is a collection of changes to a program made up
of added and deleted lines of code. When a devel-
oper puts up a commit for review, their peers look
at the committed code and make sure the change
is sound, that the code follows established conven-
tions and that it does not introduce any bugs. The
last part can be tricky, as well as time consuming,
and some bugs are bound to slip through. How-
ever, it is of great interest to catch these bugs as
early on as possible. Fixing a bug once a program
has been released is much more expensive than
fixing it during the review process. If more bugs
could be caught at this early stage, it could save
development teams a lot of time and money. One
way to do this would be to direct code reviewers
so that they focus on commits that are more likely
to introduce bugs.
Machine learning could possibly be of help here.

If a machine learning model is presented with
many examples of bug introducing commits, as
well as clean commits, it could learn to recog-
nize them. Unfortunately, which commits intro-
duced what bugs is not usually kept track of. That
means a big part of our work consisted of taking
a large number of commits and labeling them, so
that we could use them to train our machine learn-

A Code Reviewing Process.

ing model.
The method we used to go about labeling these

commits is called the SZZ algorithm. It takes bug
reports as input and from these reports it tries
to deduce what commits were responsible for in-
troducing each bug. However, even though the
SZZ algorithm has been around for 13 years, there
were no suitable implementations available for us.
Therefore we undertook the effort of implementing
this algorithm.
The SZZ algorithm works in two steps: first it

tries find a bug fixing commit for each bug report,
and second it tries to pair each bug fix with one

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTATIONSDAG 2018-06-07

EXAMENSARBETE SZZ Unleashed: Bug Prediction on the Jenkins Core Repository
STUDENT Oscar Svensson, Kristian Berg
HANDLEDARE Markus Borg (LTH), Sven Selberg (Axis Communications AB)
EXAMINATOR Emelie Engström (LTH)

or more bug introducing commits.
In our study we implemented and applied the

SZZ algorithm to a large open source software
repository, Jenkins. Out of 26,000 commits in the
project, we identified 1,000 commits as bug intro-
ducing, or slightly less than 4 percent.
The metric by which we measured the perfor-

mance of our machine learning model is called the
F1-score. It is a combination of how often the
model is correct when it says a commit is bug in-
troducing, and how many of the bug introducing
commits it correctly identifies. The best realis-
tic score we achieved was 13.7%. Although this
is probably not good enough for use in a real life
setting yet, it is a significant improvement when
compared to random chance which would give an
F1-score of only about 4%.
In addition to our machine learning model re-

sults, one of our main contributions is that we
have released the code we used for our implemen-
tation as open source software. Our hope is that
future researchers will use our implementations to
improve upon our results. The software repository
can be found at https://github.com/wogscpar/
SZZUnleashed.

https://github.com/wogscpar/SZZUnleashed
https://github.com/wogscpar/SZZUnleashed

