
Generic Event Integration in Video
Management Software

Julius Barendt, Kim Fransson

MASTER’S THESIS | LUND UNIVERSITY 2018

Department of Computer Science
Faculty of Engineering LTH

ISSN 1650-2884
LU-CS-EX 2018-37

Generic Event Integration in Video
Management Software

Julius Barendt
jur12jba@student.lu.se

Kim Fransson
dat13kfr@student.lu.se

August 8, 2018

Master’s thesis work carried out at Axis Communications.

Supervisors: Pontus Evertsson, pontus.evertsson@axis.com
Niklas Hansson, niklas.hansson@axis.com

Boris Magnusson, boris.magnusson@cs.lth.se

Examiner: Ulf Asklund, ulf.asklund@cs.lth.se

mailto:jur12jba@student.lu.se
mailto:dat13kfr@student.lu.se
mailto:pontus.evertsson@axis.com
mailto:niklas.hansson@axis.com
mailto:boris.magnusson@cs.lth.se
mailto:ulf.asklund@cs.lth.se

Abstract

Today physical security systems consist of many different devices such as door
controllers and cameras. It can be hard to monitor these devices by hand, and
to make this easier these devices can send out events each time something in-
teresting has happened. These events would then be displayed in a log where
an observer could read them. The problem today is that there are many dif-
ferent ways hardware could be changed or upgraded, and these modifications
could add new types of events. Each time this happens, the software log will
also need an update to display the events correctly. This master’s thesis will
analyse how the events could be structured so that software could present them
directly without making changes to their code, and what others features could
be added to make events even more useful in a security system. In the end,
several desired features were identified, such as filter the events or trimming
the data down to only relevant information. An event structure with an accom-
panied API was developed to allow all this generically.

Idag består många säkerhetssytem utav flera antal hårdvaruenheter, så som
kameror eller passersystem. Med många enheter kan det vara svårt att hålla
koll på allt som händer. För att göra detta lättare så kan enheterna skicka ut
meddelanden varje gång något intressant har skett. Dessa meddelanden kan
sen visas i en log där de lätt kan läsas. Problemet som uppstår idag är att när
hårdvaran uppdateras så kan nya typer av meddelanden läggas till, då måste
även mjukvaran som presenterar loggen uppdateras för att kunna visa med-
delandena på ett korrekt sätt. Detta examensarbete går ut på att identifiera
ett sätt där meddelandena skulle kunna visas i loggen utan att behöva uppdat-
era mjukvarans kod. Olika sätt att få meddelandena att bli mer värdefulla för
loggens läsare skall också identifieras. I slutändan hittades flera olika sätt att
göra meddelandena mer användbara, så som att kunna filtrera dem eller att
skära ner dem så att bara relevant information visas. Ett sätt att strukturera
meddelande så de kan visas generiskt utvecklades också tillsammans med ett
API som en logmjukvara kan implementera.

Keywords: Protocol design, API, surveillance systems, VideoManagement Software

2

Acknowledgements

We would like to express our gratitude to Boris Magnusson and Ulf Asklund at LTH for
their academic guidance and support.

Wewould also thank Axis Communications for making this thesis possible by allowing
us to perform the work at their company as well as providing us with knowledge and
necessary hardware.

3

4

Contents

1 Introduction 7
1.1 Problem description . 7
1.2 Current solution . 8
1.3 Thesis outline . 9

2 Background and related work 11
2.1 Event . 11

2.1.1 Metadata . 12
2.1.2 Values . 12

2.2 Onvif . 12
2.3 VMS . 13

2.3.1 Event handling on ACS . 13
2.4 Axis devices . 15

2.4.1 A1001 . 15
2.4.2 Event2 . 16
2.4.3 VAPIX . 22
2.4.4 On-Screen Controls . 22

2.5 RESTful web services . 24
2.6 XML and JSON . 25

3 Problem identification methods 27
3.1 Investigation of events on the device . 27
3.2 Further problem identification . 29

4 Problems and Approach 31
4.1 Human Readable Events . 31

4.1.1 Approach - Event descriptions 31
4.1.2 Approach - Irrelevant data reduction 33

4.2 Filtering . 33
4.2.1 Approach - Filter and filter names 34

5

CONTENTS

4.2.2 Approach - Filter on values and time stamps 35
4.3 Aggregation of Events . 35

4.3.1 Approach . 38
4.4 Ease of Use . 43

4.4.1 Approach - Device development 43
4.4.2 Approach - VMS development 43

5 Prototyping 45
5.1 Device Software Extensions . 45

5.1.1 Daemon . 46
5.1.2 Event2 . 47

5.2 API . 47
5.2.1 C# API . 48
5.2.2 REST API . 49

5.3 Mock UI . 49

6 Evaluation and Results 51
6.1 Generic event descriptions . 51

6.1.1 Results . 52
6.2 Event filtering . 52

6.2.1 Results . 52
6.3 Event aggregation . 53
6.4 XML vs JSON vs Custom notation . 54

6.4.1 Results . 54

7 Discussion 55
7.1 Generic event description . 55

7.1.1 Value map VS nice name tag . 55
7.1.2 Reduction of irrelevant data . 56

7.2 Ease of use . 56
7.2.1 Device side development . 57
7.2.2 VMS side API . 57

7.3 Aggregation of events . 58

8 Future work 61
8.1 Implementation into AXIS products . 61
8.2 Aggregation of events . 61
8.3 REST API . 62

9 Conclusion 63

Bibliography 65

6

Chapter 1
Introduction

Security systems today often contain a large number of devices such as cameras and door
access controllers, specialised software is also often used to make it easier to monitor
these systems, called Video Managment Software or VMS. This software acts as a hub
where all devices can be controlled, and each camera feed can be viewed in real time. It is,
however, almost impossible to watch 100s of cameras at once, so even with a VMS, it can
be hard to keep track of everything that is happening. In this case, it would be handy if the
VMS could display everything that happens in some form of event-log, where information
is more concentrated and can be processed in retrospect by the person monitoring the
system.

What this thesis aims to do is to investigate how events should be structured for a log
to be possible, as well as to identify additional features that would make an event log event
more useful to an end user.

1.1 Problem description
Today the development of AXIS devices and VMS is intimately connected. This close
connection is usually a good thing, and it means that the VMS is tailored to handle every-
thing the different devices throws at it, this could be features such as turn on a LED on
the camera, or event information, e.g., a door has been opened. AXIS also develops their
own VMS called Axis Camera Station (ACS), but this is not the only VMS alternative and
ACS coexists with many different VMSes developed by other companies.

The main drawback of the system today is that when new features and events are added
to the device, the VMSmust also need to be updated to accommodate the new features and
events. These changes includes a way to activate the new features or making sure events
can be presented to a person in a useful way. There are many different ways devices can
be changed, a new sensor is released, a new application is installed on the device or the
firmware is updated and this is a real hassle when the VMS needs to be updated each time.

7

1. Introduction

For a big company like AXIS, this is a pain, but it is doable. However, for smaller VMS
vendors the time and money needed are just not worth it, and the new features are left
unsupported. Obviously this is not ideal, and it is bad for the VMS developer but also for
AXIS when end users end up without acces to the latest features.

AXIS wants to find a way to make the changes to devices less of a burden for VMS
developers. Ideally, the device should be able to explain its features to the VMS which
then can display them without having to be updated each time a new feature or event is
added.

1.2 Current solution
The solution to the updating problem is to come up with a way of separating the VMS
development and the development taking place on the device. On the device the develop-
ment could include changes to the hardware itself, updating of the firmware or installation
of new applications running on the device, called ACAPs[17]. For features that can be
controlled with a button in the VMS such as toggle a light or activate loitering detection1
this is straightforward enough, and Axis has already come up with a way this could be
done called "On-Screen Controls"[15], referred to as OSC for the duration of this report.
OSC is based on a simple concept, illustrated in figure 1.1, where the VMS sends a request
to the device asking it what features are available. The device will then answer with a list
containing information about each feature, such as names and information about how to
activate it.

OSC request asking for features

Response containing a list of features

Figure 1.1: OSC workflow

This solution works because the device features can be triggered by sending VAPIX
or ONVIF request[16], which the devices support. The device includes the request-URL
used to trigger them in the response. The VMS is then able to create a button, with the
features name as text, which uses the provided URLwhen pressed. The VMS is now ready
to let the end user use the new features without having to make changes in the VMS. OSC
also works when the VMS wants to know what languages are supported by the device.

The VMS developers only need the one-time commitment to implement OSC. After
that when a new feature is added to the device, it is up to the device developer to update the
list of responses with the new feature, when that is done the VMS will be able to handle
it just like any other feature. The device feature- and VMS-development has now been
effectively separated. However, OSC is only used for button based features and AXIS now
wants to find a similar solution for generic presentation of events.

1A feature that detects if people are lingering in an area for too long.

8

1.3 Thesis outline

1.3 Thesis outline
Chapter 1 - Introduction This chapter will introduce the main problems that VMS and

device development face today.

Chapter 2 - Background and related work This chapter will discuss related work and
what has already been done by AXIS.

Chapter 3 - Problem identification methods The differentmethods used to identifywhat
problems needs to be solved will be presented here.

Chapter 4 - Problems and Approach This chapter will further discuss the problems found,
as well as explained the approach taken to solve them.

Chapter 5 - Prototyping To test the solutions prototypes were made, this chapter will
explain these prototypes.

Chapter 6 - Evaluation and Results The results obtained from the prototype testing of
the approaches will be presented here. As well as a description of how the results
were evaluated.

Chapter 7 - Discussion This chapter will discuss the results in more detail.

Chapter 8 - Future work Will explain what needs to be done in the future.

Chapter 9 - Conclusion Summary and comments on the thesis as a whole.

9

1. Introduction

Abbreviations
ACAP Axis Camera Application Platform

ACS Axis Camera Station

IPC Inter Process Communication

ONVIF Open Network Video Interface Forum

OSC On-Screen Controls

PACS Physical Access Control System

REST Representational State Transfer

TDD Test Driven Development

Terminology
end user is the person who actually uses a particular product.

event2 A system that handles event declaration and creation on AXIS devices.

external event is an event that is sent outside the device. Such an event is interesting for
external consumers such as the ACS.

internal event is an event that is sent inside the device. Such an event is interesting for
internal processes inside the device.

nice name A string describing data and is intended to be understandable to a human.

10

Chapter 2
Background and related work

This chapter will be an introduction to the related work and background that will be used
as a foundation for this thesis. As well as give insight into different key-parts needed to
understand the problem and what limitations exist that needs to be solved.

2.1 Event
In the context of this report, event refers in general to something that has happened on a
device, or on a peripheral connected to the device. An event could be movement detected
on a camera, or a person scanned their ID-card on an access control system.

Technically an event is a collection of different key-value pairs. For example, if a user
scans a key-card, the scanned card event would have a key "CardNumber" with the key-
cards number as the value, or if a door is opened the event could have a key "DoorStatus"
with the value "Opened". The number of key-value pairs an event has will differ from
event to event, depending on how much data is relevant to it.

Events can be further divided into two categories, State less and State full, and all
events can be placed in one of these two camps.

A stateful event is the name for events that represent some form of state on the device.
A lot of events are stateful, motion detected is either true or false, a door is either open or
closed, and LED-lights are enabled or disabled. Events like these will be possible to get
information about even when nothing has happened to change a status.

Stateless events cannot be associated with a state and will only be created when some-
thing happens and then disappear, it’s not possible to get the status of these events. Ex-
amples of these types of events are when a person scans their ID-card or when a door is
forced open.

Regardless of whether events are stateful or stateless, they are created in the same way
on the device. They are also sent to and received in the same way on the VMS part of the
exchange.

11

2. Background and related work

2.1.1 Metadata
Metadata is data used to describe or add additional information about other data. The
association with events are not clear-cut in this case, but the type of event-data treated
as metadata in this report is mainly two things; when the event happened, e.g. a times-
tamp and on which device it happened, e.g. the device-ID. Some events may have more
metadata.

2.1.2 Values
Today the biggest issue with event reporting is to make them human readable, for just the
event name or description it would be simple enough to attach a nice name in plain text
and send it as an additional field of data with the event. However, for the events with
changing values, this is not as simple. The values are represented as they are in code, with
boolean values being either 0 or 1. If values are presented to a human in this way, it could
be confusing. The 0 or 1 also could mean different things in different scenarios. In the
context of a "door open" event the 0 is "closed", and 1 is "open", but another event may
want the 0 to be "denied" and 1 to be "granted". Because of this a VMS cannot make a
simple mapping saying that 0 is "false" and 1 is "true", the event itself needs to be able to
describe the presentation of the values.

2.2 Onvif
OpenNetwork Video Interface Forum or ONVIF for short is an open protocol with the pur-
pose of standardizing communications between network-connected security devices[10].
ONVIF is divided into several profiles, and the one most relevant to this thesis is profile
C designed for Physical Access Controll Systems(PACS)[9].

The ONVIF standard contains a list of features and events that devices need to imple-
ment. All the events need to have topics, it can be made out of many topics but needs to
have a minimum of one. During this thesis events will be classified by the combination of
topics it has. When displaying the topics they are often separated by a "/" character as seen
in listing 1. For example, an event describing if a door is open or not will have three topics
and look like listing 1. From this its clear that the incoming event will be about a door, it
will contain a state and the state will be its physical state. These topic combinations are
used to filter the events quickly and group them by relevance.

Door/State/DoorPhysicalState

Listing 1: Topics from a door status event

To have a standard to conform to will ease the work quite a bit as an assumption about
how the events will look can be made on the VMS side.

12

2.3 VMS

2.3 VMS
Video management system(also called video management software, or video management
server) is a central component of a security systemmainly consisting of cameras. However,
it is possible to integrate many other security devices to a VMS, such as access control
systems or speakers. So the video in VMS can be misleading. In this thesis, VMS refers to
a systemwhich is integrated not onlywith cameras, but tomany different device categories.

A VMS is used in general as a hub controlling all devices connected to it, and it is also
used to collect data from the different sources. For example video from cameras. It can
record and store this data for future inspection and provides an interface for the end user
to interact with the data, such as view the video both live and offline.

Usually, devices have a lot of features that can be used and needs to be integrated with
the VMS. There is many different ways to do this, and Axis has come up with a solution to
generically implement these features, without having to update the VMS, called on-screen
controls, which is described in section 2.4.4.

Devices can send events to event consumers such as a VMS. The VMS will have to
handle these events by itself, having to make specific actions for each event. One way to
handle them is to display all the events for the end user. The end user then needs to search
and filter through the events. Another way is to implement a rule engine that executes
actions when different events occur, such as start to record on a camera when a door is
opened.

AXIS develops their own VMS called Axis Camera Station(ACS), and it is essential to
dig in deeper into how the ACS handles events to get a better understanding of how a com-
mercial VMS handles events. This investigation will shed some light on what limitations
exist, and how to work around them.

2.3.1 Event handling on ACS
The core event handler in the ACS is its rule engine. The rule engine consists of several
rule entities. Each rule has its own set of triggers and actions. The real event consumers
in the ACS is the triggers. The triggers consume events from different sources. Actions
specify what the rule should do when one or more triggers are activated. For example,
there exist in the ACS a MotionDetected-trigger which consumes motion detection events
from cameras that support motion detection and a Send-Email action. A rule can say that;
when a MotionDetected-trigger has consumed a motion detection event an email will be
sent to the end users email. Thus notifying that motion has been detected.

To configure an event rule in the ACS, the end user is first prompted to add a trigger
(see figure 2.1). The end user can select many different events. All of these events (except
Device Event) are pre-defined in ACS and can be configured using specialised dialogues
tailored for these events. The pre-defined events are of no interest in this master thesis.
Device Events is the collective term for all events specified by a device, and these are not
pre-defined. This process is also referred to as subscribing to events. The configuration
itself can be refereed as a subscribe description.

When the end user selects to have a device event as a trigger, the user needs to specify
which connected device the event will come from. In figure 2.2 the AXISA1001 is chosen.
When it is time to chose what kind of device event to use, the ACS will contact the device

13

2. Background and related work

and ask for what kind of events it produces. A1001 will send back a list of events supported
by the device.

When an event is chosen the end user is shown different filter options. These filter
options are fetched from the device event. However, these filters are hard to interpret.
For example, in figure 2.3 what exactly does AccessPointToken ,CredentialType, Creden-
tialHolderName and CredentialToken mean, and what kind of values are valid for these
filters?

Figure 2.1: User dialogue in the ACS for specifying a trigger

Figure 2.2: User dialogue in the ACS for specifying which device
event type the trigger should generate.

14

2.4 Axis devices

Figure 2.3: User dialogue in the ACS for configuring which filter
values should be used.

After the trigger configuration, the user can specify which action should be taken when
an event occurs. These details are not necessary for this section. Once a valid rule con-
figuration is set up, the ACS will instantly try to contact the device and subscribe to the
event.

The rules configuration are stored in the ACS database, and this configuration is used
as a filter for polling events from connecting devices. One problem that may occur here
is when a device has been reset or upgraded and no longer supports a specific event de-
scription that may be used in a rule configuration saved on the ACS database. If this
happens, the ACS will no longer be able to get any triggers when polling events from the
event stream. To fix this, the administrator needs to remove or to modify the configuration
manually until it becomes valid.

2.4 Axis devices
AXIS develops many different devices which in the context of this paper are any AXIS
developed and network connected hardware product that runs an embedded system capable
of reporting events. The primary focus throughout the report will be on the device A1001
that will be explained in more detail in section 2.4.1.

2.4.1 A1001
The A1001 which is a network door controller[14]. Which runs a custom Linux distri-
bution and development is mainly done by adding so-called daemons to the system. A

15

2. Background and related work

daemon is an application running in the background without user interaction[1]. These
daemons can be developed independently from each other and are written in C.

The A1001 itself produces a lot of events some of them are tampering detection, sched-
uled events and changes in configuration[14]. It is also possible to attach peripherals, for
example, a card scanner or a door contact switch1. When an event occurs on one of these
peripherals, it will notify a daemon running on the A1001 device, and this daemon will
in turn produce an appropriate event on the A1001 as well. Today an end user can view a
complete log of all events using a web browser by accessing a website hosted locally on
the A1001, this log can be seen in figure 2.4.

Figure 2.4: The event log hosted on a A1001 device

This log shows the time when the event occurred, source is which device the event
happened on and the event topics column displays a short text describing the event.

The weblog works but is not ideal. When displaying the events in the log every one of
them needs a describing name to be understandable. To get these names, the device has to
fetch them from a long and hard-coded list. If new events are added during run-time, they
would then not have a human-readable name unless the list was also updated. This list is
also internal and readable only by the device. An outside source, such as a VMS, is not
currently able to get a hold of it.

2.4.2 Event2
The event2 structure is a way to handle and control the flow of both internal events and
external events produced on AXIS network products, it will be referred to as event2 during
this report. Internal events are events that will not be sent to a VMS, but rather only used
internally by the device. Likewise external events are the ones that the end users will see.
The event2 system consists of three component types, Event Producers, Event Consumers
and Event switch (see figure 2.5).

Before any events can be sent, they need to be declared, and the role of the Producer is to
declare events to the Event switch. It is also responsible for sending events to Consumers.

Consumers subscribe to events and receive them fromProducers. They can also request
updates of stateful events.

1a device that uses magnets to determine if a door is open or not

16

2.4 Axis devices

Finally, the heart of the event2 system is the Event switch. Its role is to store event
declarations from producers, storing subscriptions from consumers and match event dec-
larations with subscriptions and finally sets up connections between producers and con-
sumers.

Event Switch

Event Producer Event Consumer

"Get all event declarations"

"Subscribe to event(s)""Declares its event(s)"
"Notify producer that

a consumer wants to

subscribe to an

event"

"Sending events"

"Uses the API"

Internal Daemon

External Source
"Uses the API"

Figure 2.5: Simplified model of the event2 system

Figure 2.6 explains the sequence how a producer declares an event to the event switch.
First the event must be declared either by constructing an XML representation (see list-

ing 2). To construct the representation using XML is also referred to as statically declaring
which can be useful if an application does not need to change the event declarations dur-
ing their lifetime. However if the application indeed will change its event declarations
under its lifetime, the preferable way is to dynamically construct it in the C-code as seen
in listing 3, for simplicity, only the most common methods are shown. The methods are
self-explanatory, and no further deeper details are needed for this example.

DBus is a system for IPC and is used to communicate between process [18]. It is not
necessary to go more into detail about DBus for our problem. The DBus object can be
seen as the address to the producer and will be needed for communications between the
switch and producer.

1) In the message "Declare" the event declaration is sent as the event_declaration pa-
rameter, and serialized as a byte array, together with the DBus object in the event producer
and a human-readable name representing the event producer.

2)When the process of declaring the event is completed the event switch will send back
an integer identifier serving as an acknowledgment. This identifier also known as Glob-
alDeclareId is used to access the event declaration in the Event switch when a producer
wants to create an event.

Figure 2.7 explains how a consumer subscribes and consume an event E. First, the
consumer needs to specify a subscribe expression, representing the event(s) the consumer
is interested in. This expression is serialized as a byte array. This expression is the same as
the event declaration. This subscription is sent together with the DBus object in the event
consumer, a consumer token representing the subscription in the consumer and a human-
readable name representing the event consumer. The DBus object will serve the same
purpose as described above. It will be needed for communications between the switch and
also necessary for the producers to know where to send the events.

17

2. Background and related work

The Event switch then tries to match the expression with an existing event declaration
that has been stored earlier. If it is a match, the switch will then forward the subscription
to the target producer and set up a connection between the producer and the consumer. All
communication regarding sending events are now between the producer and the consumer.
However, adding or removing declarations or subscriptions still needs to go through the
event switch.

Figure 2.6: Simplified sequence diagram of how a producer de-
clares an event

18

2.4 Axis devices

Figure 2.7: Simplified sequence diagram of how a consumer sub-
scribes and consumes an event.

19

2. Background and related work

1 {
2 <declare>
3 <expression>
4 <keyvalue
5 key="topic0"
6 value="Device"
7 value-nice-name="Device"
8 name-space="tns1"/>
9 <keyvalue

10 key="topic1"
11 value="SystemMessage"
12 value-nice-name="System message"
13 name-space="tnsaxis"/>
14 <keyvalue
15 key="topic2"
16 value="ActionFailed"
17 value-nice-name="Action failed"
18 name-space="tnsaxis">
19 <tag tag="client-event"/>
20 </keyvalue>
21 </expression>
22 </declare>
23 }

Listing 2: Statically declared events using XML

20

2.4 Axis devices

1 {
2 event_declaration_add_key_value(declaration, "topic0",
3 "Device", VALUE_TYPE_STRING);
4 event_declaration_add_key_value(declaration, "topic1",
5 "SystemMessage", VALUE_TYPE_STRING);
6 event_declaration_add_key_value(declaration, "topic2",
7 "ActionFailed", VALUE_TYPE_STRING);
8

9 event_declaration_set_name_space(declaration, "topic0",
10 "tns1");
11 event_declaration_set_name_space(declaration, "topic1",
12 "tnsaxis");
13 event_declaration_set_name_space(declaration, "topic2",
14 "tnsaxis");
15

16 event_declaration_set_nice_names(declaration, "topic0",
17 NULL, "Device");
18 event_declaration_set_nice_names(declaration, "topic1",
19 NULL, "System message");
20 event_declaration_set_nice_names(declaration, "topic2",
21 NULL, "Action failed");
22

23 event_declaration_add_key_tag(declaration, topic2,
24 "client-event");
25

26 }

Listing 3: Dynamically declared events using C, simplified

A short explanation of how the events are stored. Both event declarations and events
are stored in an SQLite3 database stored on the network device. One tableDeclaration (see
figure 2.8) where the over all structure of the event is stored. The token column is a unique
key for identifying the event declaration, the UUID column is the device that produces the
event, and lastly, the sizeKeyValues column states how many keys (also referred to event
properties) the event declaration has.

Another interesting table is the Declaration_KeyValues table where the event prop-
erties are stored. In figure 2.8 we see that the event declaration has 5 event properties.
In figure 2.9 we see that we have 5 rows with the same token value. This value refers
to the corresponding event declaration that has these properties. Important columns is
KeyValue_key, KeyValue_value and KeyValue_Tags. The two first is self explanatory but
the third column KeyValue_Tags stores some more specific characteristics of the property,
such as nice names. The tags are stored in the form of:

tag1; tag2; ...; tagN

21

2. Background and related work

For example in figure 2.9 we can see on row 4 the tag evvnn:Alarm, the evvnn stands
for event value nice name.

Figure 2.8: Table of how the event declarations are stored on a
device

Figure 2.9: Table of how the event key and key values (event prop-
erties) are stored

2.4.3 VAPIX
VAPIX is the name for AXIS own REST-API. This API is used for many different things
including getting lists of and setting parameter values on devices, but also to activate dif-
ferent features. The API is easy to use and gives the users control over the device, but the
most important part is that it makes it easy to write software that can modify devices. An
example use of this API was shown in section 2.5

VAPIX is an essential way that VMS software communicates with different devices.

2.4.4 On-Screen Controls
On-Screen Controls or OSC is the name used by AXIS to describe their way of imple-
menting button based features on their VMS generically without having to make changes
to existing code for each new feature. This section will explain how it works and what
limitations exist preventing it from being an ideal solution to this thesis problem.

The main idea behind OSC is to use the HTTP/HTTPS post method[15]. The user
query by posting JSON formatted data and will get a response containing data relevant
to the query. The following is a simple example used to get the supported languages on
the device. Listing 4 displays the JSON structure a VMS could send a device, the critical
part here is the method parameter specifying what type of data should be returned, this is
followed by params used to send additional data to the method languages.

22

2.4 Axis devices

1 {
2 "apiVersion": "1.0",
3 "context": "",
4 "method": "languages",
5 "params": {
6 }
7 }

Listing 4: JSON data used to request languages

When a device receives this request, it will return the data seen in Listing 5. It is
similar to the request but contains the data field, and the different languages have now
been obtained.

1 {
2 "apiVersion": "1.0",
3 "context": "",
4 "method": "languages",
5 "data": {
6 "languages": [
7 {
8 "language": "English",
9 "locale": "en-us"

10 },
11 {
12 "language": "Svenska",
13 "locale": "sv-se"
14 },
15 {
16 "language": "Deutsch",
17 "locale": "de-de"
18 }
19]
20 }
21 }

Listing 5: JSON response from the device with languages

Similar to this other methods exists used to list all available features on the device. The
responses data field would then look more like Listing 6.

Here a response containing a feature called "SpeedDry" was received. The VMS will
parse this response and get all necessary information needed to use the feature. Visually
the response includes the nice name and a short description, and both are human readable

23

2. Background and related work

1 "data": {
2 "en-us": {
3 "name": "SpeedDry",
4 "niceName": "Speed Dry",
5 "info": "Remove water from the camera dome.",
6 "requestType": "GET",
7 "response": false,
8 "requestURL":
9 "/axis-cgi/com/ptz.cgi?auxiliary=speeddry"

10 }]
11 "features": []
12 },

Listing 6: JSON response from the device with features

and ready to be displayed to the user. TheVMSwill also obtain everything it needs to know
to use the feature, included are a VAPIX URL used to activate the feature as described in
section 2.4.3.

This approach works just fine for button-based features because they are few and usu-
ally do not change that often. However, OSC in its current state is unfit for taking care of
event generalisation, for each button based features there could exist, perhaps, ten events,
each needing their nice name and values. The values that make up the event are often also
not human readable and could change during run-time adding another layer of complexity
that OSC does not support.

2.5 RESTful web services
The VMS needs to be able to communicate with the different devices in order to get events.
One way of doing this is to use RESTful web services, which is a way for machines to
interact through the internet. It uses HTTP request such as GET and POST to provide
users with functionality. GET is most often used to retrieve data, and POST is usually
used to manipulate data on the server, such as updating lists or modify variable values.
These kinds of web services are often used as an API where computer programs can send
HTTP request to a server hosting a web service, and the server responds with data relevant
to the request. Each functionality are their own URL so to access a specific feature; the
request has to be sent to the right URL.

RESTful APIs are statelessmeaning that neither the client or the server needs to know
anything about the other[11]. The request contains all data needed for the server to produce
an appropriate response, and the response contains everything needed to be useful. In
short, this means that when a client sends a request, the server responds to it and then
forgets about it, no session information is stored.

AXIS has a RESTful API of their own called VAPIX, an example use of this API is
shown in listing 7. Here a POST request is sent to set a variable called audio to 1 thus

24

2.6 XML and JSON

enabling audio on the device.

http://IP-to-device/axis-cgi/audio/receive.cgi?&audio=1

Listing 7: REST API example to enable sound on an axis device

2.6 XML and JSON
To have the VMS display the events in a log a way of sending event-data from the device
to the VMS is needed. The two most common ways of representing data are XML and
JSON. Both are human readable and easy for machines to parse and generate. They are
popular ways of sending data between applications because they are platform independent,
and support exists in most programming languages. JSON is the more popular option as it
is more readable and more lightweight(requiring fewer characters, compare listing 2.10a
and listing 2.10b which is shows an example of how a person could be represented.)

{
<person>

<firstName>John</firstName>
<lastName>Doe</lastName>
<age>24</age>

</person>
}

(a) XML representation

{
"firstName": "John",
"lastName": "Doe",
"age": 24,

}

(b) JSON representation

Figure 2.10: (a)XML and (b)JSON representation of a person

25

2. Background and related work

26

Chapter 3
Problem identification methods

Before improvements to the event system could be made, the problems with it needs to
found, and this chapter will describe the methods used when identifying the problems.
The first thing done was to get a better understanding how events works on a device, and
to get this an investigation was done on an A1001 device. This investigation revealed some
problems and secondly to identify further problems, feedback from experienced engineers
was requested.

3.1 Investigation of events on the device
To get a better understanding of the events, a custom daemon was developed and run on an
A1001 device. The purpose of this daemon was to use the event2 structure and subscribe
to all events on the device, each time an event occurred the daemon printed all the data
about the event so it could be observed and studied further. Each event contains several
keys, and each key has a value. The daemon printed the event by first printing the key
followed by " = " and then the value. The functionality to extract data from the events was
provided in the event2 library. This daemon was used throughout the project as a base to
test the different theories and solutions.

Figure 3.1 shows the raw data contained by the event produced when a door is closed.
The event contains three "topic" keys as required by the ONVIF standard. The "Device
Source" key is to identify from which the event came from, and the "DoorToken" key tells
what door the event refers to. "State" is perhaps the most interesting one as this is the key
that actually tells us the door has been closed.

27

3. Problem identification methods

Figure 3.1: The old door closed event

This is a lot of useful information, the different topics make it easy to filter events and
sort them into different categories and it is good to know what door the event refers to.
However, for a human this is hard to read and it is not immediately obvious that a door has
been closed.

Figure 3.2 highlights another problem with the events, some values are not human
readable. This event is triggered at a set time and the two topmost data fields are Special-
Day = 0 and Active = 1. It could be displayed like this to a user but they would probably
find it much more useful if the SpecialDay field said "No" or "New Years Eve" and Active
could be "True" or "False"

Figure 3.2: The old scheduled day event

A string describing data in a human readable way is sometimes called a nice name,
and this term will be used throughout this report. The values needs nice names to help the
VMS side to display the values in a way useful to humans, and today the event2 system
has support for this. It is possible to tag both keys and values with a nice name.

To investigate the potential of this nice name tag the daemon was modified and instead
of the key and value, the corresponding nice names was printed instead. For the door
closed event in fig 3.1 the corresponding nice names are shown in figure 3.3.

28

3.2 Further problem identification

Figure 3.3: The old door closed events corresponding nice names

Some nice names are not that useful, and some keys and values do not have any nice
names at all. If this nice name tag contained useful strings for all values it could be dis-
played by the VMS instead of the actual value, but this is not the case. Another problem is
that the event2 system only allows the nice name tag to be set during the event declaration
stage, making it hard to set useful nice names for values that change during run time, such
as the special day key’s value.

It would also be useful if the entire event had a collective nice name, as mentioned
previously the door closed event could have the nice name "Door has been closed". This
tag is only for the individual keys and values making up the event. But none of them
can be used to represent the event in its entirety they can only be used by the VMS when
displaying the event details. There exists no support for setting the nice name for an entire
event.

3.2 Further problem identification
Each Friday at the department which this thesis was carried out, a seminar was held. This
seminar is used to present what has happened during the week and to let the entire team
sync up.

After the investigation of events on the device was done, the problems were presented
to the entire team of about 50 engineers at one of these seminars. These engineers could
then come with feedback as well as stating other problems previously not thought of, for
example, one problem could be reduced readability in a log if events had too much irrel-
evant data attached to it, or the desire to aggregate some events together creating a larger
more useful one and the need to filter events.

29

3. Problem identification methods

30

Chapter 4
Problems and Approach

The previous chapter described the methods used to identify problems. This thesis will
focus on four of these problems, making the events readable to a human, enable filtering
of the events, aggregation of events and the final problem is to make sure the solutions are
easy to use so that companies will actually use them.

4.1 Human Readable Events
To display the events in a log, and for this to be useful, the events needs a human readable
name. This name should let the end user immediately know what has happened for the
event to have been triggered. This is done today by some VMS developers by having a
hardcoded list with descriptive names for each available event on the device, and this list
would then have to be updated each time a new event is added. To avoid this a way of
describing the events automatically and generically is needed.

Another unwanted aspect of the events is the amount of data presented. A massive
amount of information is not easily digested, and it takes time to read it all and understand
what is going on. Many events from the device will include a lot of data that’s not useful
for a human and it will clutter the log with unwanted data and in turn reduce readability.

4.1.1 Approach - Event descriptions
As previously mentioned an event consists of different keys each with a value. Each key
and value can have nice names on the device, but there exists no support for the collective
event to have a nice name.

This is solved by having the events require a "NiceName" key with a nice name repre-
senting the entire event as value, as seen in listing 8. The VMS side will then replace the
part within the curly brackets with the value of the Key with that name, in this case, the
"State" key from the example in figure 3.1.

31

4. Problems and Approach

"Door has been {State}"

Listing 8: Example of a NiceName keys value

But this only solves half the problem as the value needs a nice name of their own, to
avoid the 0 and 1 situation described previously. It would be good if the nice name tag of
the values could be used. However, the event2 system has the limitation that nice names
need to be set at the event declaration stage. After that, the names cannot be changed. And
that eliminates the possibility to set nice names for values that will change during runtime.

One solution to the changing value problem is simply to extend the event2 system to
include the ability to change nice names after the event has been declared. It makes it
possible to have custom nice names for each of the values.

Another solution is to add another mandatory key to the events called "ValueMap" and
the value should be similar to listing 9.

"Status=0:Opened;1:Closed;2:Forced Open"

Listing 9: Example value map string

This string will have the name of all applicable keys1 followed by the possible values
and a nice name for the value. This string will then be parsed, and a value map can be
constructed and associate values with nice names just as shown in figure 4.1. When con-
structing the events nice name, the key’s value can then be swapped for the values nice
name from the value map, an example how this is done is illustrated in figure 4.2.

Value mapping string

0:Open;1:Closed;2:Forced open

0:Open 1:Closed 2:Forced open

Split ';'

Value: 0

Nice name: Open

Value: 2Value: 1

Nice name: Closed Nice name: Forced open

Split ':' Split ':' Split ':'

Figure 4.1: Value map parsing steps
1The one used by the NiceName key

32

4.2 Filtering

Door has been {State}

State = 1 Value map lookup 1 = Closed

Door has been closed

Figure 4.2: Nice name generation using a value map

4.1.2 Approach - Irrelevant data reduction
As the need and skill level of each end user is different, it’s impossible to know which of
the events keys is relevant to display. Two basic methods were however developed to try
and make a good enough system for evaluating the events. One way is to send only the
keys that have an explicitly set nice name for the value. Because nice names need to be
set by hand in the code on the device by a human, it will probably be useful to some other
human on the VMS side if that effort has been made. This method has the drawback that
events with no nice name values will be skipped, a card number has no nice name because
it’s just a number. But a user may want to see it anyway.

The second way is to introduce another key to some events, called "Advanced", and
the value includes the name of keys deemed not useful for the average user. All the events
keys are sent to the VMS, but now the VMS will know what keys are considered advanced
and can choose not to display those keys. But the VMS can have the option to display all
keys if a user wants to. The only drawback to this is another key need to be attached to
some events. And there is no way to tell if a key should be advanced or not, it’s up to each
developer.

4.2 Filtering
When it comes to filtering the events, the fact that every event needs to complywith ONVIF
as discussed in section 2.2 can be used. What this means is that each event needs to
implement one or more topics. These topics can then be used to classify what type of
event it is and this enables a VMS to filter based on these topics.

There’s nothing wrong with filtering in this way, but just as with the nice names with
events, VMS developers has to hardcode lists with the different topic combination for each
event. It would be better if the VMS could ask the device which events it has, and get a list
of all the topic combinations for these. Another level of complexity to this problem is that
filters also need to have nice names. If a filter is displayed to the user in the raw format
as a combination of topics, it’s not clear what the event is about. If instead the filter was
presented as, for example, "Door - physical state" the user would immediately know what
the filter did.

In short, each event needs a filter associated with it, but, in most cases, the filter nice
name cannot be the same as the name displayed in a log. Figure 4.3 illustrates the differ-
ence. The difference between the nice names is that for a single event instance, the name
changes based on the values of some keys, but the filter nice name is used to describe the
general event, it is not dependent on values and thus will never change.

33

4. Problems and Approach

Door/State/DoorPhysicalState

Event topics

"Door - physical state"

Filter nice name

"Door 1 has changed state to
closed"

Topic log name

Figure 4.3: The different nice names needed

To have filters for each event is great, but it would be even more useful if the user could
filter events based on values too. The physical state event used in previous examples has
three different values, seen in figure 4.1. If a user wants to only view the times the door
has been forced open, the filter for the specific event can be used. But this will also display
every time the door has been opened and closed normally as well. Support for further
filtering eliminates this problem.

If a VMS has a time-line view of a video feed or something similar, then perhaps they
would want the events to show up on the time-line, or have the time-line jump to a specific
point when selecting an event from the log, or simply wants to sort events based on a time-
interval. For this to be possible the ability to filter events based on the time they are created
would be required.

4.2.1 Approach - Filter and filter names
During the event declaration stage, all keys needs to be declared as well. This means that
when the event has been declared it’s topics are already defined. This makes it easy to
have the device maintain a long list of all event topic combinations. Whenever the VMS
user wants to apply a filter, a request is sent to the device which will respond with the said
list.

Because filters and topics will not change during runtime, they can be saved and added
to the list during the event declaration stage. The proposed solution is to modify the event2
system and add support for events to have the key filterNiceName with the filter nice name
as value. When events are declared this value will be saved in a long list alongside the
topics as seen in listing 10.

"Door/State/DoorPhysicalState: Door - physical state"

Listing 10: Event topics with a corresponding filter name

The topics are separated by a "/" character and a ":" character marks the beginning
of the suggested name of the filter. All left for the VMS to do is to parse the string and
associate the topic combination with the supplied name for easy filtering.

34

4.3 Aggregation of Events

4.2.2 Approach - Filter on values and time stamps
The issue with filtering on values as well as the actual filter is a bit harder. The device needs
to provide every possible value each key can have to the VMS for it to be possible. But
today the device doesn’t know what different values are possible, certainly not at runtime,
when some values have never even appeared.

The value map solution discussed in section 4.1.1 could potentially also solve this
problem. It suggests that all of the events possible values should be present in a value map
string at the declaration stage. Because this string includes both the value and a nice name
for that value, it could be used for filtering as well. If the value map string is concatenated
to each filter in the list, the VMS could then parse it in conjunction with the filters and
then know all the possible values, enabling further filtering. This also has the bonus of
obtaining the nice name of the values, making it possible to display that part of the filtering
directly without modifications.

Each event already contain a time-stamp of the time they are created. This time-stamp
could be used as a filter if a user wants to display events that has happened at a certain
time, or interval.

4.3 Aggregation of Events
To show what aggregation of events is and the problem it can solve, the best way is to
begin this section with a user case, illustrated in figure 4.4. In the figure we have a person,
”Person A” and a door leading into a building. The door is equipped with a access control
system (not shown in the figure). The access control system is connected to a VMS, which
the events, produced by the control system, are sent to.

Person A wants to access the building. To access the building, Person A needs to scan
its key card on the scanner (the thing on the door). When Person A scans its card an event
is sent to the VMS.

On the right side of the figure is a time line of every event sent and its origin (what
caused the event). For a simple action ”Person A access the building”, the access controller
produce seven events to describe this action. On the VMS log after receiving these events
it could look messy, especially if events from different sources has been received during
the duration of the action.

The user case is made up, however the A1001 produce approximately the same amount
of events, as the access controller did. It is therefore not far from what the reality looks
like and that the problem do exists.

Figure 4.5 illustrate a example of this, the log is not from an actually VMS, but reflects
the reality that can occur in a real log. In the log two actions has been done, Person A
access the building and another person has also accessed the building simultaneously using
another door to the building, connected to the same VMS. In the figure, events coming
from Person A:s action is marked for readability for the reader.

35

4. Problems and Approach

Person A

Device VMS

Time

Card Scanned

Event

Access Granted

Door Unlock

Door Open

Access Taken

Door Closed

Door Locked

Action: "Access the building"

Figure 4.4: Illustrated example of a Person accessing the building,
resulting in a chain of events sending to the VMS.

Time

2018/06/11 - 17:20:00 "Door scanned"

2018/06/11 - 17:20:01 "Door scanned"

2018/06/11 - 17:20:02 "Access Granted"

2018/06/11 - 17:20:03 "Door Unlock"

2018/06/11 - 17:20:04 "Door Open"

2018/06/11 - 17:20:05 "Access Granted"

2018/06/11 - 17:20:06 "Access Taken"

2018/06/11 - 17:20:07 "Door Unlock"

2018/06/11 - 17:20:08 "Door Closed"

2018/06/11 - 17:20:09 "Door Open"

2018/06/11 - 17:20:10 "Access Taken"

2018/06/11 - 17:20:11 "Door Locked"

2018/06/11 - 17:20:12 "Door Closed"

2018/06/11 - 17:20:13 "Door Locked"

Message

Event produced from Person A

Figure 4.5: Illustrated example of how a log could look like after
receiving the events from simultaneous actions, that has not been
aggregated.

36

4.3 Aggregation of Events

It would be a tedious task for the end-user to find and analyze the events linked to Person
A:s action mixed up with similar events. It would be nicer if the events were aggregated
together into a event that summarized the whole action, instead that the action would be
compiled by seven events.

The idea is when an action is done, an aggregated event is sent from the device (see
figure 4.6) and the VMS log could display this aggregated event as illustrated in figure 4.7,
where the aggregated event consists of the events produced by the action.

The level of abstraction is raised with aggregated events, hide the smaller events that
really does not describe much for the end-user. Making it easier to identify actions that
has occurred without piece together the smaller events.

This problem raises the question on how would aggregated events work in Axis event
system? What changes needs to be done? Can this be done dynamically or should it be
done manually?

Person A

Device VMS

Time

Card Scanned

Event

Access Granted

Door Unlock

Door Open

Access Taken

Door Closed

Door Locked

Action: "Access the building"

Person Accessed Building

Figure 4.6: Illustrated example of a Person accessing the building,
resulting in a chain of events sending to the VMS and an aggre-
gated event that summarized the chain of events.

37

4. Problems and Approach

2018/06/11 - 17:20:00 "Door scanned"

2018/06/11 - 17:20:02 "Access Granted"

2018/06/11 - 17:20:03 "Door Unlock"

2018/06/11 - 17:20:04 "Door Open"

2018/06/11 - 17:20:06 "Access Taken"

2018/06/11 - 17:20:08 "Door Closed"

2018/06/11 - 17:20:11 "Door Locked"

Time

2018/06/11 - 17:20:06 "A Person Accessed the Building"

2018/06/11 - 17:20:10 "A Person Accessed the Building"

Message

Figure 4.7: Illustrated example of how a log could look like af-
ter receiving the events from simultaneous actions, that has been
aggregated.

4.3.1 Approach
The approach was to gradually developed a concept that could be further developed in
the future into a proof of concept. The lack of time was the reason for this and also the
overall complexity of the problem made it difficult to cover and find all the use-cases.
Three questions was the start of the research, where, when and how should the event be
aggregated. These question was a good starting point and building block for the concept,
however not a final result.

Where the aggregated should be defined must be on the device. It is logical because
all of the other events created by the device are defined and created on the device. What
exactly the aggregated event should contain is flexible, the key things however should be
a list of reference to the events so that the VMS would know which events will be linked
together to the aggregated event and a descriptive name explaining the action.

The definition of the aggregated event should be saved on the device, such as the event
definition are now on the devices. A separate process on the device will be needed for
creating the aggregated events. It will need to listen to every event produced by the device
and check with a list of aggregation definitions if the event is a part of a aggregation. To
be able to know when to start creating an aggregated event and when to send it, it assumes
that events come in a sequential order with a start event and a final event. The event will
still be sent to the VMS without delay, and after the final event will the aggregated event
be sent.

For example, the main process will need to listen to all start events of a possible aggre-
gation. When a start event has occurred a new task or process should start only listening to
the next event of the aggregated event list, and when the final event has occurred, send the
aggregated event. To terminate an aggregated event construction a deadline needs to be
set. If an aggregated event construction is ended only when the final event has occurred it
is possible that the construction will go on forever for the case when the final event never
comes. A deadline is therefore needed, when the deadline has come the construction pro-
cess of the aggregated event will be terminated. From the previous example with Person A

38

4.3 Aggregation of Events

accessing the building, the start event would be the event produced by scanning the card,
and the final event when the event produced when the door is locked. A deadline could
be 1 to 2 minutes after the start event has occurred before terminating the construction
process, confirms that the action will not happen.

Figures 4.8 illustrates a example of how the aggregated events could be created on the
device. Every device has internal processes, example from applications running on the
device, these processes generate events. With the new daemon constructed in this thesis,
it subscribes to all external events happening on the device and send them to the VMS.
This is necessary because all events needs to go in one direction. This daemon will check
every events and see if it is a start event for an aggregation. If that so a reference to the
event is saved, and a aggregation process is started. From the aggregation definition a
state machine is created, needed for keep track of the next event in the aggregation. When
the next event in the aggregation has occurred the Daemon updates the state machine and
saves the reference to the event. When the final event has occurred, the aggregated event
is created with the references and a descriptive name from the definition and is sent to the
VMS.

DaemonProcess
Start event

Creates state machine from definition,
and save a reference to the "Start" event.

Start

Middle

Final

Start Event

VMS

DaemonProcess
Middle event

Start

Middle

Final

Middle Event

VMS

Updates the state, of the state machine.

39

4. Problems and Approach

DaemonProcess
Final event

Start

Middle

Final

Final Event

VMS

Updates the state, of the state machine.

Aggregated event

Figure 4.8: 1: State machine created by the daemon when start
event of an aggregation is received, 2: State machine updated
when next event in the aggregation is received, 3:When the last
state is set, the aggregation is sent to the VMS

The state machine will be on a another process, and is created for every new start
event that occurs, so it will be possible that several state machines are alive simultane-
ously. When the deadline has occurred or when the final event has occurred that process
will be terminated. However it will be necessary to make choices depending on when an
aggregated event is to be sent if that aggregated event is a sub part of another aggregated
event definition. Figure 4.9 illustrate an example of this.

We have two aggregated event definitions. The first one is an aggregated event about
a person not taking access to a building (A1), the second one is the aggregated event of a
person accessing the building (A2). As seen in the figure, A1 and A2 both consist of the
same start event and the three succeeding events. When the start event ”Card Scanned”
two state machines are created (not shown in the figure). Lets say that the action is ”person
access the building”, when the four first events has occurred A1 will be created and sent
to the VMS. However when the three last events has occurred A2 is also created and sent
to the VMS. Now the VMS has received two aggregated events and they describe two
different actions, and the actions also contradict each other. A person that did not go into
the building, but did go into the building.

40

4.3 Aggregation of Events

Device VMS
"Card Scanned"

"Access Granted"

"Door Unlock"

"Door Open"

"A1: Person did not access the building"

"Access taken"

"Door Closed"

"Door Locked"

"A2: Person accessed the building"

Figure 4.9: Illustrated example of when a aggregation definition
is a sub part of another aggregation definition.

First thing to solve is not to have two different state machines alive when there exists
several definitions with the same start event. One solution is to merge the state machines
together into one. For our example we would have a state machine looking something like
this (see figure 4.10). However which of the aggregated event should be sent? Should it be
a shortest match and send A1, or longer match and send A2 instead. If shortest match is
applied it would still create incorrect information. When the first four events has occurred,
A1 is sent and the process is terminated. However the last four events do occurred but A2
is never sent. The VMS will have information of a person not accessing the building but in
reality the person did accessed the building. This is illustrated in figure 4.11. This results
in that longest match should be applied in such situations.

Scanned
Card

Access
Granted Door Open

Access
Taken Door Closed Door Locked

Door Unlock
Did not accessed the building

Did accessed the building

Figure 4.10: When two or more aggregation definition has the
same start event, it would be possible to merge the state machines.

41

4. Problems and Approach

Device VMS
"Card Scanned"

"Access Granted"

"Door Unlock"

"Door Open"

"A1: Person did not access the building"

"Access taken"

"Door Closed"

"Door Locked"

"A2: Person accessed the building"

Creation process
terminated here

A2 did happened,
but will not be sent

Figure 4.11: When shortest match is applied the termination will
end to early because of A1, resulting that A2 is never sent.

There exists still a situation that may occur with longest match. In figure 4.12 we have
two fictional actions A1 and A2. A1 is sub part of A2, however the deadline differs, A1
has a deadline of five seconds and A2 a deadline of one day. The two first events has
occurred, because of longest match A1 will not be sent, it must be verified if A2 should
be sent. Next event occurred and there exists still a chance that the final event will occur.
If the final event will not occur, the state machine will terminate sending A1 with a long
delay.

Device VMS
Event 1

Event 2

Event 3

A1 {1, 2}, T1 = 5s

A2 {1, 2, 3, 4}, T1 = 1dA1{1, 2}

Event 4

A1{1, 2}

Long delay after that it is confirmed that
A2 never happened. It should have been
A1 that should be sent, however due to

A2 long time duration, A1 will be
delayed. Delayed events in a VMS is not

tolerated

Figure 4.12: A problem that may occur if longest match is ap-
plied, delaying A1 before knowing if A2 should be sent.

42

4.4 Ease of Use

4.4 Ease of Use
The final problem is that the system needs to be easy to use and implement. If a VMS
company wants to use the new event system to create an event log in their software, but
the implementation time is too high, no VMS company will want to do it, and the whole
new event system is useless.

There are problems that exists on the device side too, mainly that the way that nice
names, filters and value maps need to be formatted is now very complex. This is not
only hard for the developers to use, but requiring specific structures is also very prone to
human errors. If the new event structure is too complex and hard to use, it could increase
the development times and in turn could increase the time to market which will potentially
hurt the sales numbers for the company(Axis)[12].

4.4.1 Approach - Device development
To ease development on the device, programming functions needs to be added that will
perform the formatting of nice names, filters and value maps automatically, making the
developers life easier as well as preventing any potential human error. For example, the
value map string could be generated by calling a event_generate_valuemap_string
function with the in parameters being a key name followed by possible values and their
nice names. For the example value map in listing 9 it would look like listing 11.

event_generate_valuemap_string("Status",
0, "Open",
1, "Closed",
2, "Forced Open");

Listing 11: Example use of the GenerateValueMap function

4.4.2 Approach - VMS development
To ease the development for VMS developers, an API will be provided. This API will
take care of all the heavy lifting concerning event handling, such as parsing and filtering,
see figure 4.13. This will lead to faster implementation times for VMS developers as they
don’t have to worry about any event specific code, allowing the developers to simply call
a function and then only have to worry about applying their own styling to the event data
provided.

43

4. Problems and Approach

VMS
API

Device

GetEvents()

Parsed event name and relevant keys

Raw event data

Figure 4.13: Event API

There are two ways this API could be made, the first way is to develop a C# API and
the second is to create a REST API.

44

Chapter 5
Prototyping

To enable testing and evaluation of the proposed solutions a prototype system was made.
The prototype consisted of three parts, seen in figure 5.1. One part of the system was
modifications to the embedded system on an A1001 device, most of which is isolated to a
custom daemon running on the device. This daemon had the purpose to collect and send
events to the VMS. The second was a VMS side API that receives events and is respon-
sible for parsing and extracting useful data from them. Lastly, a mock GUI was made
that implements this API to ensure functionality and to verify everything was working as
intended.

Mock GUI

API

Custom
Daemon

A1001 device

Figure 5.1: The prototype system

This chapter will go through how each part of the prototype was constructed, and mo-
tivate some design choices made.

5.1 Device Software Extensions
The prototype development on the device can be split into two parts. The most significant
part is the construction of a custom daemon. Smaller modifications to the event2 system

45

5. Prototyping

were also required and will be explained as well.

5.1.1 Daemon
The custom daemon used as a part of the prototype system was built on the same one
used when investigating how the events were structured on the device. This meant that the
code for subscribing and receiving events was reused. However, additional features were
needed.

The existing code base for the embedded system is very large, and to avoid having to
make changes to it as much logic as possible was isolated to this daemon. This meant
that some basic functionality had to be redone by the daemon, such as allowing a VMS to
connect to it.

To enable communication with a VMS, code were written to allow a VMS to connect
to the device via a TCP-socket, and this connection was used when transferring data. The
choice to used TCP-sockets was made based on the fact that there already existed support
for it in C. So using this would reduce development times.

When an event happened on the device the daemon looped through all key-value pairs,
and concatenated them together in a large string, separating each pair with the ";" character
to enable easy parsing, see listing 12.

"key1=value1;key2=value2;key3=value3;timestamp"

Listing 12: How events are structured before being sent to a VMS

Instead of this custom data format, XML or JSON structures could be used instead see
listing 5.2, this was also tested.

{
<event>

<key1>value1</key1>
<key2>value2</key2>
<key3>value3</key3>
<timestamp>timestamp</timestamp>

</event>
}

(a) XML representation

{
"key1": "value1",
"key2": "value2",
"key3": "value3",
"timestamp": timestamp,

}

(b) JSON representation

Figure 5.2: (a)XML and (b)JSON representation of an event

When all key-value pairs had been processed a time stamp was added, and the resulting
string were sent to the VMS through the TCP-socket.

One problem with this method is that during the time it takes to send the event through
the socket new events could have been triggered. To combat the real-time programming
problem that the new events are editing the string currently being sent a mutex was used.
This mutex protects the string from being edited by other threads[5].

46

5.2 API

To enable clients to retrieve the list with filters the VMS could connect to another
port. The daemon listens to the connection, and if a client connect, the daemon then sends
the list with filters and filter names, and then terminates the connection. This system
could potentially be extendable in the future, and the device could receive data from this
connection as well and send other responses, e.g., if a ’2’ is received only the filter names
could be sent instead of the whole filter.

The daemon also used the publisher part of the event2 system to create events on its
own. The daemon will generate an event each time a client connects to it. This event
was made to be able to have total control of it, from the declaration stage to sending it to
the VMS without modifying too much of the device’s software, thus isolating as much as
possible of our changes to this daemon. These events were used as a base when testing
different event structures, such as adding additional keys to events.

5.1.2 Event2
The event2 system needed to be modified to be able to support some solutions. The edits
were however small and simple. The following functions were added

1. event_set_value_nice_names - Allows the developer to edit nice name of a value
after the declaration stage.

2. events_get_filter_list - Retrieves all events filters from a list on the device.

3. event_generate_value_map_string - Generates a value map string for a provided
key and values/nice names.

The first function only edits the nice name property of the event, and will be used to
set values nice names dynamically during run time, to help the VMS display it better to
end users.

The second function returns a list of all filters along with corresponding nice names.
This list is a local string and is updated each time an event is declared. When the event is
declared, the event’s topics along with the new filterNiceName key is added to the end of
the string.

The third function was previously described in section 4.4.1.

5.2 API
To aid with the development surrounding events and to hopefully enable faster develop-
ment times for VMS vendors, an API was developed. This API will take care of every-
thing event related and provide ready to use data to the VMS, such as parsed nice names.
It makes it easier for VMS developers as they don’t need to understand the event system
and are able to only use the API functions that they need.

One challenge to consider for the API is to design it in a good way and make it easy to
use and possibly extend. Because when an API is distributed, you can only add function-
ality, never remove as that would displease a lot of customers. Because of this, it is good
practice to only include the most basic required functionality to avoid later regrets[6]. To

47

5. Prototyping

ensure a good design and that only functionality that’s really needed were added, ideas
from Test Driven Development(TDD) was used. The idea behind TDD is to write test
cases before the actual code, and this forces the developer to think everything through and
avoid unnecessary "just in case" code and get a better understanding of the requirements,
thus achieving better code[4].

Using this idea as a starting point pseudo code was written on paper by the authors
of this thesis. The objective of the code was to implement a log from a VMS developers
perspective. This code took the role of the test cases in TDD and allowed the authors to
get an understanding of what features should be included in the API. The most desired
features were the following.

1. ConnectToDevice - Connects to a deivce.

2. GetAllEvents - Retrieves all events received from the device.

3. GetEvent - Get a single event.

4. GetFilterList - Retrieves a list of available filters.

5. ApplyFilter - Applies a filter to only get certain events.

This information was used as a base when considering what functionally to actually
include in the API and what is appropriate to have the VMS developers implement them-
selves, such as apply their own styling when presenting the data.

5.2.1 C# API
The API made was done in C# and provided as a separate dll[3] file that other C# projects
can use by just importing it. This choice was made on the basis that ACS is developed
in C# and implementation into this software is desired for the future. The API was thus
powered by .net[8] which proved a valuable tool because it provided a lot of functionality
that helped with parsing and network sockets.

Communication with the custom daemon on the device was done through TCP sockets.
Two different connections were made possible, the first one only connects and listens to
the event stream and nothing more. The second one has a two-way communication and is
used to retrieve the list with filters and their nice names.

When an event is received the API will construct the events nice name. There are two
ways to do this, as desribed in section 4.1.1. Both of these approaches, value map and
changing the event2 system, was implemented and tested.

Filtering was done as described in section 4.2.2. The API connected to the device and
recieved a list of filters. The list was parsed and when a filter was applied, only events with
a topic combination matching the filters, were provided when a VMS requested events.

When an event has been received and parsed, it will be saved in a local SQL database.
The API takes care of everything from saving to the database and retrieving the events
again. When a filter is applied, only the events with the correct topics are retrieved, and if
a value filter is also used, the events are further filtered by the API before being displayed.

48

5.3 Mock UI

5.2.2 REST API
An alternative to using a native C# API is to use a REST API, just as OSC does. The
device already implements VAPIX, and the idea would be to extend this API to support
the new event system. For this thesis no REST API was made, but the pros and cons of a
REST API is discussed in chapter 7.

5.3 Mock UI
An event log is the perfect way to test that the solutions were working, and was able to
present events in a way useful to humans. However, it was deemed that it was too much
work not related to this thesis to implement this log in ACS. Instead a mock GUI was made
that implemented the C# API and used this to create an event log. The resulting event log
is displayed in figure 5.3

Figure 5.3: Top pane: List of events presented in a human-
readable format. Lower pane: List of all the events keys and their
values.

The GUI has three buttons. One to connect to the device, the device IP is hardcoded
as only one device was running the custom daemon necessary for the GUI to work, but
it can easily be extended to allow the user to enter their own IP address. Once connected

49

5. Prototyping

another button is used to disconnect and close the connection. Lastly, there is a "Get topic
filter" button that uses the API to fetch all available filters from the device.

A dropdown list is also present, and when the user clicks on this, the GUI will use the
API to fetch all available filters from the device just as with the "Get topic filter"-button,
these are then shown in the list. When a filter is selected the log is cleared, and the API
will fetch all events with that filter’s topic combination from the API database, only these
events are then shown in the log. The get filter button was used to test functionality during
development of the GUI, and is not actually necessary as clicking on this dropdown list
does the exact same thing.

There GUI also has two textboxes. When connected to a device, each time an event is
triggered on the device it will be displayed in the upper one. It is presented in this textbox
first with the time at which it triggered and then the parsed nice name.

The user can click on an event to select it. Once selected the event’s keys along with
the key values, is shown in the lower textbox. Keys that had been deemed advanced are
not shown unless the "Show Advanced Data"-box has been ticked.

50

Chapter 6
Evaluation and Results

This chapter will go into detail about how the different parts of the project was evaluated.
The results from said evaluations will also be presented but will be discussed further in
chapter 7.

6.1 Generic event descriptions
The first thing tested was if the event could be displayed in a log, with generically generated
nice names, and still be useful to a human. Figure 6.1 shows the event log displayed
locally on a A1001 device, this log has hardcoded event descriptions. The A1001 log was
compared to the mock GUI log shown in figure 6.2.

Figure 6.1: The old event log on an A1001 device. With hard-
coded event names

51

6. Evaluation and Results

Figure 6.2: The mock GUIs event log with generically generated
nice names.

This was achieved by adding a new key to all events, called "NiceName" and this key’s
value was a short descriptive string. The main problem with this was if an event meant
different things depending on what value some keys had. To combat this problem two
methdos were tested, first the use of a value map. The second was to use the existing nice
name tag but modifying the event2 system to allow this tag to be changed during runtime.

6.1.1 Results
When comparing figure 6.1 and figure 6.2, the generically generated nice names are just
as descriptive as the hardcoded ones, and this part of the thesis wasa deemed a success.

In the log, it made no difference what solution was used, value map and nice name tag
both produced the same result on the VMS side. The difference between them were more
notiacble on the device side, as will be discussed in chapter 7.

6.2 Event filtering
Another requested feature was the ability to filter events, and to have these filters displayed
to the user in a understandable way. This was done using the ONVIF topics do distinguish
between events and filter them based on this. The device would also generate list of all
the topic combinations possible together with a nice name for each combination, and the
VMS could use the prototype API to request this list.

ThemockGUIwas used to evaluate the solution. First the GUI connected to the custom
daemon on the device, then a card was scanned and a door was opened and closed. After
this a filter was applied to only get the door opened event.

6.2.1 Results
Good results were obtained and the mock GUI used the API to filter events without any
problems. The filters, seen in figure 6.3, had descriptive names and as a user it is not hard

52

6.3 Event aggregation

to understand what the filter does.
Using the value map solution described in section 4.1.1 also enabled to further filter

events based on values. Each event also came with a timestamp allowing to filter based on
time as well.

Figure 6.3: The mock GUIs filter list

6.3 Event aggregation
The main goal of the work was to come up with a concept for aggregating the events
on a Axis device. It was a complex task to accomplish, and no complete concept was
developed. This was due to first of all lack of time. The thesis work contained a lot of
different problems and the aggregated event problem was low prioritized and the problem
was underrated by us.

A good starting point was analyzed, which resulted in the emergence of important and
relevant questions that needed to be solved or taken into consideration when developing
the aggregation concept. The three main questions was ”where should the aggregation
take place?”, ”when should the aggregation take place?” and ”how should the aggregation
be done?”.

Different use-cases was made up for illustrate the need and use off aggregation, and
the problem that could occur. Our concept consisted of that the device should do the
aggregation, it was logical because of all events are produced by the device and we also
wanted to make the VMS thinner and have the logic on the device.

The events should be changed providing some sort of identification, so that the aggre-
gated event can consists of reference values to the events that the aggregated event is made
from. This would mean that the VMS can connect the events to the aggregated event.

53

6. Evaluation and Results

Different processes on the devices needs to be added, one process that will need to lis-
ten to all events, knowing when the start event of an aggregation occur. The process needs
knowledge of all definitions of aggregated events, and needs to handle parallel creation of
these events. It was suggested that the process creates state machines for keeping track of
the state of the aggregated event.

Problems was introduced on how to handle definitions of aggregated events that was
a sub part of other definitions. The work has resulted in a concept in the making, and can
be used as a starting point for future development. More details on future work will be
discussed in section 8. More discussions of the results will be discussed in section 7.

6.4 XML vs JSON vs Custom notation
Today the standard way to send data through the internet is to either use JSON or XML.
But this thesis custom daemon uses its own custom structure to send the events, described
in section 5.1.1. To evaluate what way is the most effective one, a test program was written
in C#. To parse JSON an extern library was used called JSON.net, which is free for com-
mercial use as well as one of the fastest[7]. C# which is powered by .net, has support for
XML parsing, this native XML parser was used. To parse the custom notation the same
parsing code used when developing the API was used.

The event used is the same as used throughout the report, shown in figure 3.1. The
event data was converted into XML and JSON compatible format. The program parsed
each format while measuring the time it took, it then printed the times for easy comparison
between them.

6.4.1 Results
The results are shown in table 6.1. Not surprisingly it shows that the custom structure was
a lot faster. This performance is because the parsing of the custom format only consists
of splitting strings when the other formats need to deserialise the data into objects. The
amount of data sent over the network is also less when using the custom format.

Table 6.1: Benchmarking results

Notation Elapsed time(ms) Characters
XML 9 584
JSON 216 469
Custom <0 163

54

Chapter 7
Discussion

This chapter will provide a thorough analysis of the results obtained in the previous section.
It will discuss if all the problems in chapter 4 was solved or if future work needs to be done.

7.1 Generic event description
To display events generically was a success and events could be displayed in a log with-
out specific integration for each one. This was achieved both by using a value map and
by making changes to the event2 system allowing values to be tagged with a nice name
dynamically during runtime. While producing identical results on the VMS side, the dif-
ference between them are large on the device side.

The solution thas was used in the end was to have each event require a value map. The
reasoning behind this will be explained here.

7.1.1 Value map VS nice name tag
One of the largest problems of this thesis was to chose between adding a "ValueMap" key
to all events versus changing the event2 API to allow developers to change nice names
during run-time. Both of which produced identical results on the VMS. The difference
between them are more noticeable on the device.

Size of events
One thing to consider is howmuch extra data each event will send to the VMS. The solution
that enables the event to have changing nice names will not add anything extra to the keys
and values, it will simply only modify an already existing tag. The value map solution will
require the events to have two additional keys and a value for each key, making the event
package larger than before.

55

7. Discussion

The size difference is however negligible as it is so small, and modern networks will
handle it with no problems at all.

Changes to strings
Events can be changed and updated at any time, and new values could be made possible
or old ones could become impossible. When this happens, the code needs to be changed.
If a value map were used this would be pretty straightforward, the developer only needs to
go to one place, the events declaration, and update the value map.

A lot more work needs to be done if the values nice name changed dynamically because
changes would be required in different parts of the code, and there is always a risk of
missing an entry. When the value map changes it can be guaranteed that all values are
updated.

Filtering
To allow a user to filter events based on values, the VMS side needs to know what values
are available. To achieve this the VMS needs to be able to get this information from the
device. Currently theres no way to for the device to know every value a event-key can have.
But this is made possible with the value map solution, because at the declaration stage the
value map is also declared, if this map is concatenated on the corresponding event’s filter.
The VMS could parse this and extract each possible value, with the added benefit of a nice
name to this value.

With the nice name tag solution, the value will only have one nice name, but it will be
changed during run time. Rendering it impossible to have a list with the values that could
be sent to the VMS. And filtering on values would not be possible.

7.1.2 Reduction of irrelevant data
The advanced data tag used to single out certain event keys and simply not display them
works well. The problem with this solution is that there is no way of knowing who is an
advanced user, and there could be different advanced users with different needs as well.
A software developer and a police officer are both advanced user, but may want to view
different keys.

It would be nice to be able to separate these users, but it would be impossible. However,
if a user is advanced enough to have the need to view all event keys, they can distinguish
the unnecessary keys from the relevant ones themselves.

7.2 Ease of use
One problem faced during the development of this new event system was that the solutions
should be as easy to use as possible. If a system is too complex to use, no one wants to
implement it rendering the whole thing useless and it should be a preferred alternative to
make hardcoded event specific changes each time a new event is added.

56

7.2 Ease of use

7.2.1 Device side development
On the device side the event system works largely in the same way as before. The only
difference is that a value map key is needed along with a nice name. The structure of
these keys are very strict and is prone to human error, making development a bit harder.
However, this was solved by providing helper functions that performed the formatting for
the developers.

7.2.2 VMS side API
To ease development on the device side an API was developed, and this API took care of
everything event related and worked as intended. One problem with the API solution is to
decide which kind of API it should be, it can be a REST API or it can be a C# API.

The solution developed in this thesis is based on the use of a C# API that a VMS could
implement. Another way is to use a web-based structure such as REST. There is no clear
winner here as both the C# API and RESTful services have pros and cons. These pros and
cons to both approaches as will be discussed in this section.

Web vs Local
The biggest difference between using REST and a C# API is where the code is executed.
When using a REST API the code is run on the device instead of locally on the computer
the VMS is running on. What this means is that the VMS developer themselves would
have to parse the event and filter them themselves, something the C# API would do for
them. This could however be solved by adding another layer and providing a C# API that
did this using the REST API.

Another problem is that REST is stateless, meaning that no session information is
stored on the device, each API call will result in the same response, no matter when the
call was made, or by who. What this means in practice is that each time a VMS wants to
get events that has happened from the device, the device has to respond with all events that
has happened, even old ones that the VMS already know about, causing a lot of redundant
parsing and unnecessary network traffic.

Timing
The main usage of AXIS devices is security systems, making timing a critical factor to
consider. The person monitoring the system needs to know what happens as soon as they
happen. The solution using the C# API will always have an open TCP connection to the
devices. The daemon running on the device will then send events through this connection
as soon as they appear on the device, causing little to no delay.

If a web-based solution were used, the VMS would have to poll each device to check
if new information is available. Deciding the poll-rate would be hard, as too often would
cause unnecessary network traffic and too long would cause a delay in the event presenta-
tion.

There exists a way of designing REST APIs allowing clients to subscribe and be noti-
fied of changes without polling, called RESTHOOKs, which is a REST compatible variant

57

7. Discussion

of webhooks. The idea behind this is that a client will use HTTP POST to update a list of
subscriptions on the server with a callback URL. When an event happens on the server, it
will POST the event data to this URL[13]. Efficiently creating a subscription system and
eliminating the need for polling. The drawback is that this would be a huge commitment
for the VMS vendors, because this would create vulnerabilities, such as the VMS could
now be the target of a DDoS (Distributed Denial of Service) attack that would force the
developers to implement security measures not previously needed[2].

Parsing
Every event has the same structure, a lot of keys with corresponding values, and no event
can be structured in any other way. To send an event to a VMS, all that the device need
to do is to concatenate these keys and values after each other into a long string. Parsing
is then easy, just split the string twice, once for the key value pair and one more time to
separate them.

A customway of representing the data is harder when using aweb-basedAPI. Everyone
needs to be able to handle the data, and to ensure this a standard response format is often
used, such as JSON or XML. Both of these formats are powerful and could easily be used
to represent the events. In fact, they could be too powerful for the simple event structure.
Packaging the event and then parsing it takes more resources when using JSON/XML than
merely sending the events directly. This is usually worth it if the object to be transmitted
has many different properties, or if these properties would change. But the event structure
is static, and it will only ever be keys followed by values. However, the time difference
between the different formats was so tiny that for a human it is not noticeable. The benefit
of using a standard format that everyone can use far outweighs the performance penalty,
which would not even be noticeable.

7.3 Aggregation of events
The whole idea behind this master thesis was to make the VMS lighter, taking away logic
from it and transfer it to the devices, so that the VMS does not need to make specific
integration for when events changes or when new events are introduced.

With aggregated events the idea to move the logic of how aggregation are made, to the
devices was a logical choice. With this choice the VMS does not need to implement this
aggregation logic. However it still needs tomake a integration for linking and showing how
an aggregated event would look like on the VMS. It is a good trade off because the device
give supports for the VMS how to find the events, the aggregated event contains a list of
reference to its events. The VMS then needs to search for the events in the log and link
them to the aggregated event and display it as it like. This give the VMS more flexibility
on how to show the aggregated event, it could be that the aggregated event becomes a drop
box containing the events or something else that could be descriptive for the end-user.

It could also be so that the linking of the events to the aggregated event does not happen
directly when arriving to the VMS. The device may save these references in a database
for retrieving later when asked by the VMS (for example when the end-user clicks the
aggregated event). This could however be slow, due to high load on the database, but

58

7.3 Aggregation of events

more performance friendly for the VMS if a lot of aggregated events occur and needs to
be displayed directly together with its events, and the VMS needs to iterate several times
over the log finding these events.

Another aspect of the master thesis was that everything was to happen dynamically.
Finding potential aggregated event definition needs to be done manually by developers,
for every device. Also defining them into the device needs to be done manually, giving
them a descriptive name. This work may becomes tedious, but it would be interesting
to see the possibilities of machine learning in this area. It may be so that the device can
learn how events relates to each other and can aggregate them dynamically giving them
descriptive names but at the moment it seems to difficult to accomplish.

59

7. Discussion

60

Chapter 8
Future work

This chapter will explain what needs to be done in the future. What shortcomings the
solutions had and will propose ways to fix them.

8.1 Implementation into AXIS products
Throughout this project, a simple mock GUI has been used to test different approaches
regarding displaying the events. This mock UI worked great for testing, but it is not a full-
fledged VMS, for AXIS to use this thesis solution the API needs to be implemented into
ACS. As the API takes care of everything related to events, this is just a matter of applying
ACS specific styling and deciding where the log should be shown.

The custom daemon will also need to be distributed onto other AXIS devices. A lot
more work then needs to be done, as every event on the devices requires the new "Nice-
Name", "ValueMap" and "FilterNiceName" keys. But once the events are updated the
devices and ACS can communicate.

The API and the daemon communicate through a TCP socket, but the standard way for
AXIS products to interact is through RTSP, in the future this change may be needed.

8.2 Aggregation of events
Before making a proof of the concept, the concept needs to be more refined and fine-tuned,
finding more potential use-cases to identify more possible problems.

A lot of work needs to be done to identify possible actions that can be aggregated on
the devices. A good start would be to start with the A1001, identify which actions that
could be of use to have aggregated. This task could be tedious, and will probably be done
manually.

61

8. Future work

When the concept is done, a proof of concept may be the way to go before implement-
ing it on the devices.

8.3 REST API
While a C# API was used for this thesis a REST API could alos be made. While there are
no clear winner between the two types of APIs, a rest API could be made as an extension
to VAPIX. If the event API was included in VAPIX it would eliminate the need for AXIS
to maintain two types of APIs, but it would come at a larger commitment for the VMS
developers as as theywould need to do a lot of the work provided by the C#API themselves.

62

Chapter 9
Conclusion

This thesis introduced and compared different strategies to separate the development of
hardware events and presentation of these events in a VMS. But to only send data was not
enough as a machine is generating the events, and this makes it challenging for a human
to read and understand. A way of structuring the data was proposed to make sure a human
could read it without any problems, as well as other improvements necessary to increase
usefulness for a user. Such as filtering of the events, both on type and values, and the
ability to hide data that was deemed not important for the average user. To group related
events into a larger more meaningful one would also be useful.

A API was developed that provided the necessary functionality to parse and filter
events. To test this API a mock GUI was developed. In the end, good results were ob-
tained in the area of events describing themselves, and events were shown in a log on the
mock GUI perfectly understandable to a human, without any specific integration for each
event. The functionality tp filter and hide unwanted data was also achieved with good
results.

No real reliable way to aggregate events was found, but the resulting research revealed
some key problems. These problems are hopefully useful as a base if future work was to
be done on the subject.

63

9. Conclusion

64

Bibliography

[1] Daemon definition. http://www.linfo.org/daemon.html. Accessed:
2018-04-18.

[2] Ddos prevention on rest based web services. http://ijcsit.com/docs/
Volume%205/vol5issue06/ijcsit2014050689.pdf. Accessed: 2018-
05-14.

[3] Dynamic-link libraries. https://msdn.microsoft.com/en-us/
library/ms682589.aspx. Accessed: 2018-04-26.

[4] Effective tdd for complex embedded systems. http://www.
pathfindersolns.com/wp-content/uploads/2012/05/
Effective-TDD-Executive-Summary.pdf. Accessed: 2018-05-09.

[5] Gmutex documentation. https://developer.gnome.org/glib/
stable/glib-Threads.html#GMutex. Accessed: 2018-05-09.

[6] How to design a good api and why it matters. https://static.
googleusercontent.com/media/research.google.com/en/
/pubs/archive/32713.pdf. Accessed: 2018-05-04.

[7] Json.net. https://www.newtonsoft.com/json. Accessed: 2018-05-14.

[8] .net framework class library. https://msdn.microsoft.com/en-us/
library/gg145045(v=vs.110).aspx. Accessed: 2018-04-26.

[9] Onvif profile c specification. https://www.onvif.org/wp-content/
uploads/2017/01/2013_12_ONVIF_Profile_C_Specification_
v1-0.pdf. Accessed: 2018-04-26.

[10] Our mission. https://www.onvif.org/about/mission/. Accessed:
2018-04-26.

65

http://www.linfo.org/daemon.html
http://ijcsit.com/docs/Volume%205/vol5issue06/ijcsit2014050689.pdf
http://ijcsit.com/docs/Volume%205/vol5issue06/ijcsit2014050689.pdf
https://msdn.microsoft.com/en-us/library/ms682589.aspx
https://msdn.microsoft.com/en-us/library/ms682589.aspx
http://www.pathfindersolns.com/wp-content/uploads/2012/05/Effective-TDD-Executive-Summary.pdf
http://www.pathfindersolns.com/wp-content/uploads/2012/05/Effective-TDD-Executive-Summary.pdf
http://www.pathfindersolns.com/wp-content/uploads/2012/05/Effective-TDD-Executive-Summary.pdf
https://developer.gnome.org/glib/stable/glib-Threads.html#GMutex
https://developer.gnome.org/glib/stable/glib-Threads.html#GMutex
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/32713.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/32713.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/32713.pdf
https://www.newtonsoft.com/json
https://msdn.microsoft.com/en-us/library/gg145045(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/gg145045(v=vs.110).aspx
https://www.onvif.org/wp-content/uploads/2017/01/2013_12_ONVIF_Profile_C_Specification_v1-0.pdf
https://www.onvif.org/wp-content/uploads/2017/01/2013_12_ONVIF_Profile_C_Specification_v1-0.pdf
https://www.onvif.org/wp-content/uploads/2017/01/2013_12_ONVIF_Profile_C_Specification_v1-0.pdf
https://www.onvif.org/about/mission/

BIBLIOGRAPHY

[11] Representational state transfer (rest). https://www.ics.uci.edu/
~fielding/pubs/dissertation/rest_arch_style.htm. Accessed:
2018-05-16.

[12] Time to market (ttm) — what it is and why you should care. https://www.
arenasolutions.com/resources/articles/time-to-market/.
Accessed: 2018-04-26.

[13] What is a webhook? https://webhooks.pbworks.com/w/page/
13385124/FrontPage. Accessed: 2010-05-16.

[14] Axis Communications. A1001. https://www.axis.com/files/
datasheet/ds_a1001_51155_en_1710.pdf. Accessed: 2018-04-18.

[15] Axis Communications. On-screen control documentation. https:
//www.axis.com/partner_pages/vapix_library/#/subjects/
t10037719/section/t10122383/display. Accessed: 2018-02-16.

[16] Axis Communications. Vapix library (internal). https://www.axis.com/
partner_pages/vapix_library/#/. Accessed: 2018-04-16.

[17] Axis Communications. What is acap? https://www.axis.com/support/
developer-support/axis-camera-application-platform. Ac-
cessed: 2018-04-16.

[18] Alexander Larsson SvenHerzberg SimonMcVittie Havoc Pennington, Anders Carls-
son and David Zeuthen. D-bus specification. https://dbus.freedesktop.
org/doc/dbus-specification.html. Accessed: 2018-01-30.

66

https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.arenasolutions.com/resources/articles/time-to-market/
https://www.arenasolutions.com/resources/articles/time-to-market/
https://webhooks.pbworks.com/w/page/13385124/FrontPage
https://webhooks.pbworks.com/w/page/13385124/FrontPage
https://www.axis.com/files/datasheet/ds_a1001_51155_en_1710.pdf
https://www.axis.com/files/datasheet/ds_a1001_51155_en_1710.pdf
https://www.axis.com/partner_pages/vapix_library/#/subjects/t10037719/section/t10122383/display
https://www.axis.com/partner_pages/vapix_library/#/subjects/t10037719/section/t10122383/display
https://www.axis.com/partner_pages/vapix_library/#/subjects/t10037719/section/t10122383/display
https://www.axis.com/partner_pages/vapix_library/#/
https://www.axis.com/partner_pages/vapix_library/#/
https://www.axis.com/support/developer-support/axis-camera-application-platform
https://www.axis.com/support/developer-support/axis-camera-application-platform
https://dbus.freedesktop.org/doc/dbus-specification.html
https://dbus.freedesktop.org/doc/dbus-specification.html

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTATIONSDAG June 3, 2018

EXAMENSARBETE Generic event integration in Video Managment Software
STUDENT Julius Barendt och Kim Fransson
HANDLEDARE Boris Magnusson (LTH)
EXAMINATOR Ulf Asklund (LTH)

Generisk presentation av
hårdvaruhändelser på mjukvara

POPULÄRVETENSKAPLIG SAMMANFATTNING Julius Barendt och Kim Fransson

Idag består många säkerhetssytem utav stort antal hårdvaruenheter, så som kameror
eller passersystem. Med många enheter kan det vara svårt att hålla koll på allt som
händer. För att göra detta lättare så kan enheterna skicka ut meddelanden varje
gång något intressant har skett. I detta arbete analyserades ett system som idag har
problem med att visa upp dessa meddelanden på ett konsekvent sätt, på grund av
hård kopplad relation mellan hårdvaran och mjukvaran i systemet.

Detta arbetet har tagit fram och utvärderat ett
flertal strategier med att separera utveckling av
hårdvaruhändelse från utveckling av mjukvaran
för presentation av hårdvaruhändelser. Ett sätt
att strukturera data föreslogs för att säkerställa
att en person kunde läsa den utan några problem,
liksom andra förbättringar som var nödvändiga
för att öka användbarheten för användaren.
Såsom filtrering av händelser, både på typ och
värden, och förmågan att dölja data som inte
ansågs vara viktigt för användaren. Goda resultat
uppnådes i fråga om mänsklig läsbarhet och
händelser i en logg som är helt förståelig för
en människa utan någon specifik integration av
mjukvaran.

Dagens moderna säkerhetssystem kan bestå
utav stora kvantiter av hårdvaruenheter, som
till exempel nätverkskameror och passersystem.
Dessa enheter producerar massvis med informa-
tion dagligen i form av händelser. Specialiserad
programvara existerar för att kunna samla in
dessa händelser och presentera dessa för använ-
daren av systemet. Det är av stor vikt att dessa

händelser innehåller läsbar information så att
användaren kan förstå vad som har hänt. Det är
viktigt att dessa händelser enbart kan tolkas på
ett sätt och att det är fullständigt klart vad det
är för händelse. I ett säkerhetssystem finns det
inte rum för misstag och minsta feltolkning kan
leda till katastrof.

Lösningen erhölls genom flera olika viktiga
processer, med att först identifiera de nuvarande
problemen med systemet och analysera dessa.
Ett flertal prototyper konstruerades såsom ett
imiterad logg UI för att kunna utvärdera hän-
delsernas läsbarhet.

Som en del av examensarbetet har under-
sökningar om möjligheten till att aggregera
events gjorts. Denna undersökning tog upp
svårigheterna med aggregation och problemen
som kan uppstå vid detta.

Examensarbete genomfördes åt Axis Com-
munications AB, ett globalt marknadsledande
företag inom nätverkskameror.

	Introduction
	Problem description
	Current solution
	Thesis outline

	Background and related work
	Event
	Metadata
	Values

	Onvif
	VMS
	Event handling on ACS

	Axis devices
	A1001
	Event2
	VAPIX
	On-Screen Controls

	RESTful web services
	XML and JSON

	Problem identification methods
	Investigation of events on the device
	Further problem identification

	Problems and Approach
	Human Readable Events
	Approach - Event descriptions
	Approach - Irrelevant data reduction

	Filtering
	Approach - Filter and filter names
	Approach - Filter on values and time stamps

	Aggregation of Events
	Approach

	Ease of Use
	Approach - Device development
	Approach - VMS development

	Prototyping
	Device Software Extensions
	Daemon
	Event2

	API
	C# API
	REST API

	Mock UI

	Evaluation and Results
	Generic event descriptions
	Results

	Event filtering
	Results

	Event aggregation
	XML vs JSON vs Custom notation
	Results

	Discussion
	Generic event description
	Value map VS nice name tag
	Reduction of irrelevant data

	Ease of use
	Device side development
	VMS side API

	Aggregation of events

	Future work
	Implementation into AXIS products
	Aggregation of events
	REST API

	Conclusion
	Bibliography
	Tom sida
	Tom sida

