
Entity-based Search

Erik Zander

BACHELOR’S THESIS | LUND UNIVERSITY

Department of Computer Science
Faculty of Engineering LTH

ISSN 1650-2884
LU-CS-EX 2018-22

Entity-based Search

(A take on the intelligent book)

Erik Zander
one@zandernet.net

July 8, 2018

Bachelor’s thesis work carried out at
the Department of Computer Science, Lund University.

Supervisors: Pierre Nugues, Pierre.Nugues@cs.lth.se
Markus Klang, Marcus.Klang@cs.lth.se

Examiner: Jacek Malec, Jacek.Malec@cs.lth.se

mailto:one@zandernet.net
mailto:Pierre.Nugues@cs.lth.se
mailto:Marcus.Klang@cs.lth.se
mailto:Jacek.Malec@cs.lth.se

Abstract

This document describes a system to search entities in text, where we used
named entity recognition to complement a traditional full text search. The
named entities improve search by enabling a user to formulate queries with
concepts and proper nouns and thus increase the precision of the search. Us-
ing concept and entity search, we can eliminate more easily name ambiguity
and expand the search vocabulary to term variation. To carry this out, the
application needs to have unique identifiers of concepts and names that are
provides by wikidata. We use these identifiers to annotate the documents, in
our case a corpus of textbooks in Swedish. To annotate the documents with
entities, the application uses external entity linkers through APIs. Addition-
ally we can combine the search with the information available on the semantic
web. In the future, we should be able to use the entities within the content to
link content to content in the documents but also content to the web and create
a product with these.

Keywords: Entity discovery and linking, Natural-language processing, Structured
content, Wikidata, Semantic web

2

Acknowledgements

Thanks goes out to Pierre Nugues and Markus Klang for their help and input and access
to the Langforia API. Thanks is also in place to Studentlitteratur for allowing the use of
their content.

3

4

Contents

1 Introduction 7
1.1 Related Work . 7

1.1.1 Papers and research . 7
1.1.2 Semantic Scholar . 8
1.1.3 AlphaSense . 8

2 Approach 9
2.1 Background . 9

2.1.1 Entity search . 9
2.1.2 Semantic Web . 10
2.1.3 Formats . 10
2.1.4 Wikidata and DBpedia . 12

3 Implementation 17
3.1 Overview . 17
3.2 Enricher . 17

3.2.1 Extractor . 18
3.2.2 IBM Natural Language Processing API 18
3.2.3 Langforia . 18
3.2.4 Wikidata connection . 19
3.2.5 Insert data as RDFa . 19

3.3 Search . 19
3.3.1 Facets . 20
3.3.2 Infobox . 21
3.3.3 Search result . 22

4 Evaluation 25
4.1 Evaluation strategy . 25
4.2 Result . 25
4.3 Discussion . 27

5

CONTENTS

5 Conclusions 31
5.1 Improvements . 31

5.1.1 GUI . 31
5.1.2 Facets and concept search . 32
5.1.3 Search results . 32
5.1.4 Concept tagging and information gathering 32
5.1.5 Speed . 33

5.2 Summary . 33

Bibliography 37

6

Chapter 1
Introduction

The world is digitizing at an incredible speed and this affects how people expect informa-
tion to be delivered. This thesis explores how to provide enhanced results when accessing
and searching a large collection of documents.

1.1 Related Work
The idea to use some form of Natural-language processing (NLP) to make sense of content
has been tried out in various places and some of the more related works to this project are
presented in the following sections.

1.1.1 Papers and research
Silviu Cucerzan has made numerous contributions to the field of entity identification and
linking. Cucerzan (2007) describes one of the first working methods for large scale entity
dissambiguation using data from Wikipedia.

Cucerzan later improved on this system and Cucerzan (2011) describes the improved
system. The system focus on extracting entities for the whole document and disambiguate
these globally for later finding the correct placement for the entity. This system was sub-
mitted to Text Analysis Conference 2011 confenrence.

In Rao et al. (2013), the authors provides a summary of the work in the field of entity
linking. They also present a system for entity linking that use the max-margin ranking.

Sil et al. (2017) describe an Entity Discovery and Linking system were they discuss
how to make entity discovery language independent.

7

1. Introduction

1.1.2 Semantic Scholar
Semantic Scholar1 is a search engine for academic papers, it uses machine learning to
identify key data in papers. They aims to improve the discoverability of research papers.
Semantic Scholar describes their goal as:

What if a cure for an intractable cancer is hidden within the results of thou-
sands of clinical studies? We believe that in 20 years’ time, AI will be able
to connect the dots between studies to identify hypotheses and suggest exper-
iments that would otherwise be missed. That’s why we’re building Semantic
Scholar and making it free and open to researchers everywhere.

Currently Semantic scholar only works for papers written in English and has heavy focus
on finding references between the papers and on citations.

1.1.3 AlphaSense
AlphaSense2 is a commercial search application, it describes it self as “Using a blend of
artificial intelligence (AI), plus advanced linguistic search and natural language processing
algorithms” however as it is a commercial product little information is available.

1https://www.semanticscholar.org/
2https://www.alpha-sense.com/

8

https://www.semanticscholar.org/
https://www.alpha-sense.com/

Chapter 2
Approach

2.1 Background
In this section, we give the needed background for understanding the project. We describe
entity search, what it is and the benefits of it. The formats we used for the documents and
data are also presented. We also describe Wikidata, DBpedia, and the semantic web.

2.1.1 Entity search
Nadeau and Sekine (2007) explained the term named entity as:

The term “Named Entity”, now widely used in Natural Language Process-
ing, was coined for the Sixth Message Understanding Conference (MUC -6)
(Grishman and Sundheim, 1996). At that time, MUC was focusing on Infor-
mation Extraction (IE) tasks where structured information of company activ-
ities and defense related activities is extracted from unstructured text, such as
newspaper articles. In defining the task, people noticed that it is essential to
recognize information units like names, including person, organization and
location names, and numeric expressions including time, date, money and
percent expressions. Identifying references to these entities in text was rec-
ognized as one of the important sub-tasks of IE and was called “Named Entity
Recognition and Classification (NERC)”.

The concept of entity-based search revolves around the idea to use identified and disam-
biguated named entities as the base of the search. This stands in contrast to the traditional
“full text search” where a match is defined as matching the letters in the search string and
the scope of the search is most of the text.

Entity-based search, on the other hand, uses the uniqueness of each entity. This needs
a system to input the specific entity the user is looking for. The search results all relate to

9

2. Approach

the entity searched for but the relation can vary. The relation can be of varying degree of
closeness from the specific entity to many steps away.

2.1.2 Semantic Web
Researchers started talking about the idea of a semantic web as early as the 1960s. There-
fore, although the semantic web is a development and extension of the “World Wide Web”,
there has been a coexisting thought on how to provide a web for data for a long time.

In early 2000s, the W3C worked on the standards for Resource Description Framework
(RDF) 1 (see 2.1.3), Resource Description Framework Schema (RDFS) and Web Ontology
Language (OWL) 2, standards that are core components of today’s idea and implementation
of the semantic web.

Allemang and Hendler (2011) is a good overview of what the semantic web is from a
usability perspective, however we define it as follows:

The Semantic web is the idea to provide a machine readable web. This is
guided by the specifications for RDF, RDFS and OWL. They are aimed to
provide a very flexible representation of the data to increase adaption and of
such the end result is heavily dependent on the publisher.

2.1.3 Formats
In this section, we give insight into the docbook and RDF formats that we use in the project.

Docbook
Docbook is a XML standard that provides a way of encoding the structure of a book/article
or a set of books/articles. The docbook standard used in this thesis project is of version 5.1
and version 5.0. The standard for version 5.0 was first published by OASIS in November
20093. One of the key features of version 5 is that it uses RELAX NG schemas in contrast
to previous versions Document Type Definition (DTD).

As an example the excerpt consisting of the first paragraph (see below) of the book
Globaliseringens idéhistoria by Svante Nordin is shown in Figure 2.1 in the docbook
format.

Ingenstans finner man en så långvarig kulturell och politisk kontinuitet som i
Kina. Det kinesiska bildskriftspråket med fullt igenkännbara om än givetvis
inte oförändrade tecken går tillbaka åtminstone tre och ett halvt årtusende.
Det kinesiska kejsardömet har en förmodligen lika lång historia. Reservatio-
nen hänger samman med svårigheten att skilja mellan legend och verklighet
i Kinas äldsta historieskrivning.

The complete docbook standard can be found at DocBookTC (2009). In addition to
this, Walsh (2010) wrote a useful book to build concrete implementations.

1https://www.w3.org/RDF/
2https://www.w3.org/OWL/
3http://docbook.org/specs/docbook-5.0-spec-os.html

10

https://www.w3.org/RDF/
https://www.w3.org/OWL/
http://docbook.org/specs/docbook-5.0-spec-os.html

2.1 Background

1 <?xml version="1.0" encoding="UTF-8"?>
2 <book xml:lang="sv" version="5.0"
3 xmlns="http://docbook.org/ns/docbook">
4 <?anchor xml:id="orgPage.1"/?>
5 <title>Globaliseringens idéhistoria</title>
6 <info>
7 <biblioid class="isbn"
8 >9789144004211</biblioid>
9 <biblioid class="pubsnumber"

10 >32497-01</biblioid>
11 <authorgroup>
12 <author>
13 <personname>Svante
14 Nordin</personname>
15 </author>
16 </authorgroup>
17 </info>
18 <?anchor xml:id="orgPage.2"/?>
19
20 <?anchor xml:id="orgPage.21"/?>
21 <chapter xml:id="isbn_9789144004211_ch_2"
22 label="2">
23 <title>De stora civilisationerna</title>
24 <section>
25 <title>Kina och Japan</title>
26 <section>
27 <title>Politik och religion i
28 Kina</title>
29 <para>Ingenstans finner man en så
30 långvarig kulturell och
31 politisk kontinuitet som i
32 Kina. Det kinesiska
33 bildskriftspråket med fullt
34 igenkännbara om än givetvis
35 inte oförändrade tecken går
36 tillbaka åtminstone tre och
37 ett halvt årtusende. Det
38 kinesiska kejsardömet har en
39 förmodligen lika lång
40 historia. Reservationen hänger
41 samman med svårigheten att
42 skilja mellan legend och
43 verklighet i Kinas äldsta
44 historieskrivning.</para>
45 </section>
46 </section>
47 </chapter>
48 </book>

Figure 2.1: Example of a DocBook encoding

RDF
The Resource Description Framework (RDF) 4 is an idea on how to represent data in a
graph so that anyone can contribute and publish what they want. RDF also helps those with
access the data to know what it is about. The idea revolves around the concept of a triple.
This is data represented as Subject - Predicate - Object, as example I - has_name -
Erik Zander.

There are many ways to encode the RDF information and different serialization for-
mats. The most popular formats are N-Triples, Turtle, and RDF/XML. Given the example:

4https://www.w3.org/RDF/

11

https://www.w3.org/RDF/

2. Approach

Figure 2.2: Information about a book as a graph

• the document has the title N-Triples

• the authors are Art Barstow and Dave Beckett

• both A.Barstow and D.Beckett are persons

The RDF-graph of this example can be seen in Figure 2.2 and Figure 2.3 shows the en-
coding.

In Figure 2.3, we can also see that, RDF uses the concept of Internationalized Resource
Identifier (IRI)s to have a unified way of identifying what the subject-predicate-object is.
IRIs are by design unique, and it is easy to produce and control IRIs. It is recommended
that when creating IRIs this is done under a domain under the control of the creator. For ex-
ample the IRIs created in this project all starts with http://zandernet.net/namespaces/bsc/.
This way we have ensured that they will be internationally unique, as long as everyone fol-
lows the standard and recommendations. The publisher of information is responsible for
keeping the IRIs unique within the domain. By having this structure, the uniqueness of
each IRI is maintained without any central coordination.

2.1.4 Wikidata and DBpedia
In the project, we have used two large information resources, DBpedia and Wikidata. We
present them in this section.

12

2.1 Background

N-triples
<http://www.w3.org/2001/sw/RDFCore/ntriples/> §
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type> §
<http://xmlns.com/foaf/0.1/Document> .
<http://www.w3.org/2001/sw/RDFCore/ntriples/> §
<http://purl.org/dc/terms/title> "N-Triples"@en-US .
<http://www.w3.org/2001/sw/RDFCore/ntriples/> §
<http://xmlns.com/foaf/0.1/maker> _:genid1 .
<http://www.w3.org/2001/sw/RDFCore/ntriples/> §
<http://xmlns.com/foaf/0.1/maker> _:genid2 .
_:genid1 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>§
<http://xmlns.com/foaf/0.1/Person> .
_:genid1 <http://xmlns.com/foaf/0.1/name> "Art Barstow" .
_:genid2 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>§
<http://xmlns.com/foaf/0.1/Person> .
_:genid2 <http://xmlns.com/foaf/0.1/name> "Dave Beckett" .

The § indicate a line-break added for publication purposes N-triples does not allow line-
breaks in a triple

Turtle
1 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
2 @prefix dc: <http://purl.org/dc/terms/> .
3
4 <http://www.w3.org/2001/sw/RDFCore/ntriples/>
5 a foaf:Document ;
6 dc:title "N-Triples"@en-US ;
7 foaf:maker [
8 a foaf:Person ;
9 foaf:name "Art Barstow"

10], [
11 a foaf:Person ;
12 foaf:name "Dave Beckett"
13] .

RDF/XML
1 <rdf:RDF xmlns="http://xmlns.com/foaf/0.1/"
2 xmlns:dc="http://purl.org/dc/terms/"
3 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" >
4 <Document rdf:about="http://www.w3.org/2001/sw/RDFCore/ntriples/">
5 <dc:title xml:lang="en-US">N-Triples</dc:title>
6 <maker>
7 <Person rdf:nodeID="art">
8 <name>Art Barstow</name>
9 </Person>

10 </maker>
11 <maker>
12 <Person rdf:nodeID="dave">
13 <name>Dave Beckett</name>
14 </Person>
15 </maker>
16 </Document>
17 </rdf:RDF>

Figure 2.3: RDF Serialization

13

2. Approach

Wikidata
Wikidata started out as a link cloud to link the different languages of Wikipedia articles
to one identifier. The community has since added information to this identifier. As the
information is crowd sourced and there is no responsible body, the data quality is very
dependent on knowledge and interest of the contributing community. As of writing this
(February 2018) wikidata has 43,827,650 total items.(wmflabs, 2018)

Wikidata has the property that it uses it is own scheme for IRIs of entities. This lets
Wikidata talk about entities and properties unrelated to Wikimedia projects.

DBpedia
DBpedia is a collection of statements and datapoints that together make up a knowledge
graph. DBpedia web-page describes DBpedia as follows:

DBpedia is a crowd-sourced community effort to extract structured content
from the information created in various Wikimedia projects. This structured
information resembles an Open Knowledge Graph (OKG) which is available
for everyone on the Web. A knowledge graph is a special kind of database
which stores knowledge in a machine-readable form and provides a means for
information to be collected, organised, shared, searched and utilised. Google
uses a similar approach to create those knowledge cards during search. We
hope that this work will make it easier for the huge amount of information in
Wikimedia projects to be used in some new interesting ways.

Figure 2.4 shows an example of what information is available in DBpedia. The aim is
to do this in a controlled way so that data quality can be enforced. To help with the project,
DBpedia is governed by The DBpedia Association founded in 2014.

The goal of the DBpedia Association is to professionalize DBpedia to surpass size
and quality of closed, commercial providers (The DBpedia Association, 2018). The size
of DBpedia is on the dataset download page5 described as follows

Altogether the DBpedia 2016-10 release consists of 13 billion (2016-04: 11.5
billion) pieces of information (RDF triples) out of which 1.7 billion (2016-
04: 1.6 billion) were extracted from the English edition of Wikipedia, 6.6
billion (2016-04: 6 billion) were extracted from other language editions and
4.8 billion (2016-04: 4 billion) from Wikipedia Commons and Wikidata.

DBpedia uses the Wikimedia Project identifiers as IRIs for entities however there’s an
ongoing effort to introduce an independent IRI scheme to be able to talk about entities
not on Wikipedia. Similar and related project is also to unify information from different
languages.

5http://wiki.dbpedia.org/datasets/dbpedia-version-2016-10

14

http://wiki.dbpedia.org/datasets/dbpedia-version-2016-10

2.1 Background

Figure 2.4: DBpedia information about Douglas Adams

15

2. Approach

16

Chapter 3
Implementation

3.1 Overview
The application consists of following main components (also shown in Figure 3.1):

• A document ingestion engine (found in EXT) that takes docbook XML documents
and run them through steps for enriching and ingestion;

The engine makes use of the Langforia API(Algoritm) and a SPARQL endpoint for
wikidata (Wiki db) for some of the tasks;

• A Marklogic1 database server (with a database containing xml documents Bok XML
and graph data Graf) that helps with the search and indexing;

• Enriching queries that bring in additional data into the search results (triggerd by
the ingestion engine EXT);

• A search application that runs in the browser.

3.2 Enricher
The enricher (part of the ingestion engine) is responsible for the collection of data, anno-
tation into the documents and populating the graph database with semantic triples. The
enricher starts from the assumption that the documents that are to be enriched already
have been ingested into the database. They are therefore accessible by the database abso-
lute URL.

1http://www.marklogic.com

17

http://www.marklogic.com

3. Implementation

Sök

Bok xml

Graf

EXT

Algoritm

Wiki db

Para Qid

QidNamn

RDF

Cache

Qid

Berikad
xml

Figure 3.1: An overview of the enricher and how it fits into the
application

3.2.1 Extractor
The extractor (also a ingestion engine part) has the capability to use two APIs for extract-
ing information about the text. These are IBM Natural Language Processing API and
Langforia API

In addition to extracting what the text is about, the extractor also connects to Wiki-
data.org to extract information about the entities returned from the APIs. The extractor
adds this information to the database. This way when the extractor makes a subsequent
call for the same entity (identified by its Wikidata QId) the database can respond without
querying the APIs.

The last thing the extractor does is inserting the data into the document and inserting
this enriched document into the database.

3.2.2 IBM Natural Language Processing API
In the project, we have looked at IBM’s NLP API. It was formerly know as Alchemy
NLP API but IBM has since they bought renamed and integrated it into their portfolio of
Artificial Intelligence and Machine Learning tools. The API has two different functions,
one for named entity identification and one that delivers disambiguated concepts. The one
that delivers the concepts is the one the application need. However it is not available for
Swedish. As a result IBM API was never used more than in a trial run.

3.2.3 Langforia
In our application, we use the Langforia API for analyzing text. This API was developed
by Markus Klang at LTH (Klang and Nugues, 2016). The extractor in the application sends
the text to the API.

Our program consists of a loop, where, for each paragraph of a book:

18

3.3 Search

1. We send the text of the paragraph to Langforia;

2. Langforia returns several layers of information. We extract the disambiguated enti-
ties;

3. The extractor then inserts them in the corresponding paragraph of the book.

Langforia uses Wikidata as knowledge graph and builds a graph of links from Wikipedia.
From these graphs, it builds the model that is later used to identify and link the named en-
tities. Langforia uses the page-ranks from Wikipedia and how many pages that links into
a concept to determine the internal ranking of concepts. Langforia stores this information
in an internal graph format.

When we send text to Langforia, it looks for mentions in the text. A mention is the term
used for something that the algorithm considers a candidate to be an entity. These mentions
may overlap and Langforia determines what mentions to keep using a model trained on
links in Wikipedia pages. The model uses statistics as how many links referees the entity
to determine what are good entities. As a second step, Langforia links the mentions to the
entities in its knowledge-graph. These entities are linked to Wikidata. It then ranks the
candidate entities using a local page rank. For more details on Langforia, see Klang and
Nugues (2016).

3.2.4 Wikidata connection
As part of the enrichment process, the Wikidata connection queries the Wikidata SPARQL
endpoint2 for a predefined set of properties. The application does this for each of entities
discovered by the Langforia API. The application stores the result in the database. For sub-
sequent queries on the same entity, the application gets the data from the internal database.
One of the properties extracted from Wikidata is the rdfs:label3, Wikidata connector re-
turns this to the calling method.

3.2.5 Insert data as RDFa
RDFa is a way to encode RDF information as attributes in a document. Here we describe
the part of the enrichment engine that inserts the data as Resource Description Framework
in Attributes (RDFa) in the Docbook document. As the subjectset element isn’t used in
the base content, the information is inserted as such under the para element; see Figure
3.2.

3.3 Search
The Search is the application that an end-user sees and that is the entry-point into the data
on the normal day-to-day usage. The frontpage of the application can be seen in Figure
3.3.

2https://query.wikidata.org/sparql
3http://www.w3.org/2000/01/rdf-schema#label

19

http://tdg.docbook.org/tdg/5.1/subjectset.html
https://query.wikidata.org/sparql
http://www.w3.org/2000/01/rdf-schema#label

3. Implementation

1 <para>
2 <info xmlns:json="http://marklogic.com/xdmp/json/basic"
3 xmlns:zt="http://zandernet.net/namespaces/bsc/elements/transfer">
4 <subjectset prefix="zid: http://zandernet.net/namespaces/bsc/zid#"
5 resource="zid:urn:uuid:f0831681-c680-4724-b7e3-14689fe2a89a">
6 <subject>
7 <subjectterm property="http://purl.org/dc/terms/subject"
8 resource="http://www.wikidata.org/entity/wd:Q9235">
9 Friedrich Hegel

10 </subjectterm>
11 </subject>
12 </subjectset>
13 </info> Den förste av dessa är G.W.F. Hegel (1770–1831),
14 det tyska 1800-talets dominerande filosof och den
15 förste västerländske filosof som ställde historien och
16 dess problem i centrum för sitt tänkande.
17 </para>

Figure 3.2: An example of RDFa in docbook

Figure 3.3: Application frontpage

It runs on a Marklogic Server and is configured to use both full text indices and a
specific field index to provide the ability to search for specific entities. These entities are
used to provide the user with a fluent way of constraining the search by entity. How this
is done is described under the following section 3.3.1.

3.3.1 Facets
The application implements an advanced form of filtering called faceted search. In the case
of the application one facet corresponds to an entity. To find books with one specific facet
the application relies on a field index. The server indexes the subjects of some of the RDFa
triples stored in the documents. The subjects are stored as XML attributes. To specify the
attributes in the documents we use XPath. XPath is a query language for selecting nodes
from an XML document. The specific XPath for the attributes is:

//db:subjectterm
[@property = "http://purl.org/dc/terms/subject"]
/ @resource

20

3.3 Search

Figure 3.4: Concept based facets

This xpath looks for each docbook:subjectterm that has the attribute property
whit the value http://purl.org/dc/terms/subject. A docbook:subjectterm
matching this criterion has a rdf:subject resource attribute. The value of this attribute
is what is put into the index. As the server indexes these resources, it is possible to search
for specific values of rdf:subject. We can then present the results in a sidebar in the
form of facets. Given the example search:

voltaire kafka Subject:http://www.wikidata.org/entity/Q6527

This search is an and search of the text strings voltaire, kafka and the concept wd:Q6527
that represents Jean-Jacques Rousseau.

The wd:Q6527 is the compact form of the IRI http://www.wikidata.org/entity/Q6527,
this IRI is the identifier for the concept in the domain of Wikidata. We refer to this as the
QId and it consists of the prefix wd and the unique identifier Q6527. The prefix wd is just
short for http://www.wikidata.org/entity/.

Figure 3.4 shows the facets corresponding to the search in the example.

3.3.2 Infobox
The infobox, see Figure 3.5, shows information about the entity in the search term (if
multiple entities are present, it takes the first term and displays the information for that
term). The information present in the infobox is taken from the graph database connected
to the application server. This way, the information in the database can be controlled so
that it is possible to use the Marklogic xdmp:describe command which is similar to a
SPARQL describe but only returns directly related triples for that specific IRI. Take note

21

https://docs.marklogic.com/xdmp:describe

3. Implementation

that the SPARQL standard does not specify how much information SPARQL returns, this
is up to the implementation.

Figure 3.5: Example of the infobox

As the infobox uses the xdmp:describe, it takes all triples from the database that
have the IRI from the search query as subject in the triple. It then looks up the predicate
and makes a human readable text out of it. The look-up is handled by the wikidata API as
the current data is only sourced from there. If needed, when the object is an IRI, another
look-up is made for the object to provide a human readable result.

3.3.3 Search result
The complete result is both the facets, infobox, and the main search result that presents
the documents that match the query. In the search result, relevant information is presented
along with a snippet. As the documents in this project are books metadata such as ISBN,
title and author are presented. Figure3.6 shows the full result.

22

https://docs.marklogic.com/xdmp:describe

3.3 Search

Figure 3.6: The full search result

23

3. Implementation

24

Chapter 4
Evaluation

We conducted a qualitative evaluation of the system. We defined a search experiment and
asked users to give their feedback on the system.

4.1 Evaluation strategy
To evaluate the application, we presented it to five users of various background and let
each user perform a test of the application. The test has not been predetermined as to what
they should search for or in what order to look at the different components. We have been
available during the whole test to answer questions that have arisen. After the test, we
asked the participants to fill in a form about their experience.

4.2 Result
In this section we present the result of the evaluation of the application. The results are in
Swedish with translations. The questions asked are:

• Jag förstår vad applikationen skall vara bra för

– Kommentarer om användning

• Jag tycker applikationen ser bra ut

– Kommentarer om utsende

• Jag tycker applikationen verkar vara användbar för mig

– Kommentarer om andvändbarhet

25

4. Evaluation

• Jag tycker konceptsöken på sidan var användbar

– Kommentarer om konceptsök

• Jag vet vad du menar med konceptsök

• Jag tycker informationsboxen bidrog till upplevelsen

– Kommentarer om infobox

• Fler kommentarer

• Jag upplevde problem med

– Lång tid för sökningen
– Fel resultat när jag sökte
– Annat …

• Övriga problem

Figure 4.1: Left part: How useful is the application to me; Right
part: I think the application looks good

Figure 4.2: Left part: I found the concept search useful; Right
part: I know the meaning of concept search

26

4.3 Discussion

Figure 4.3: Left part: I think the infobox enhance the experience;
Right part: I experienced problems with

In Figures 4.1 to 4.3, the result of the evaluation is presented in a graphical summary.
If we look closer at this we see that the lowest score in any question is 2. In Figure 4.1 we
can see that the average score for both “how useful the application is” and “how good the
application looks” is 4 but that the distribution is different. In the right part of Figure 4.3,
we can see that the search time was an issue that most users experienced. We follow up
this and some reasoning about this in section 4.3.

Comments In the evaluation form, there was the ability to comment the specifics of
the application. The comments made are presented with translation in Table 4.1.

4.3 Discussion
In the result, we can see that there is a general understanding of the search application and
how it can be of benefit. There is however some confusion on the concept search. The
general opinion is overall positive and the idea to search by concept instead of just a text
string have been attractive during discussions after trying the application.

Looks and feels There was a common opinion that the application was clean and
not cluttered. There are elements lacking in the application that would have been necessary
for a production ready application, such as pagination of results and some indication on
number of results.

An issue that was commonly reported was that the search was slow, sometimes up to
several minutes. This is most likely caused by how the documents are represented in the
database (as the whole document, not split into smaller chunks) in combination with using
a filtered search so every hit has to be verified. In the section about improvements 5.1, this
thought is followed up on.

Infobox When asked about the information box there were different opinions. Some
thought it only partly contributed to the experience, while others wished it displayed much
more and really liked it. We noticed that this was to some extent depending on the search
terms and concepts explored, as this also regulates the information shown in the box. In

27

4. Evaluation

the application, we use an API to guess the correct Qid based on the search term. As this
guess is independent of the concepts previously identified in the books, there can be a
mismatch. A mismatch results in a very limited infobox as there is no information in the
database for that concept. We lack information about these entities as we in application
only have captured information for the concepts identified to be present in the books. In
retrospect, this is not an optimal solution.

Concept search Regarding the concept search, there was, as stated, some confu-
sion on the function some of the users used. Some users saw the facets as their primary
result view. Other users found them to be of limited use. A note is that the facets usually
sparked questions and requests for explanation about the idea of concepts. As we gave the
explanation on how to use the application verbally, the margin of error of how well the
intentions are understood is quite large here.

One obvious problem was the sorting and prioritization of the concepts in the facet
box. The Langforia API in combination with the books have a high hit-rate for countries
and some other specific concepts. This result in an all too common situation where the
concepts listed are very broad and mostly a list of countries. This has to do with how the
facet table is limiting to only the facets with a high count. In retrospect this is not the ideal
ranking.

Search result In the project, we are aware that to study the quality of the search
result, there is a high requirement on domain knowledge. However when we selected the
users to test the application we did not have this as a criteria. Some users did anyhow some
statements and were able to identify some strange results.

When we investigated these strange results, we concluded that it was due to that the
first search is a text search. We made a trade-of so that the search is not limited to identified
concepts that an auto-complete to concept could lead to. One solution could be to auto-
complete if the concept was known but do a text if not, another alternative could be to give
the user a choice of text or concept search.

28

4.3 Discussion

Table 4.1: Comments

Kommentarer om utsende (About looks)
Kan förbättras designmässigt
samt förenkla sökandet med t.ex.
att sökning börjar när
användaren trycker enter.

The design could be improved
and so could the
searchexperience i.e. by starting
the search when the user press
enter

konceptsöks kolumnen till
vänster i bilden kändes lite störig
pga olika långa fält

The concept column to the left
in the picture felt a bit messy due
to uneven length on the buttons

Kommentarer om användbarhet (About usability)
Känns mer företagsinriktat
alternativt användning vid
djupgående
informationssökning.

Feels more targeted at use in
corporations alternative in
deeper searches for information.

Kommentarer om konceptsök (About concept search)
det känns som om jag finner
svaret på min fråga där

Feels like I find the answer to my
question there

Kommentarer om infobox (About infobox)
Sökningarna tar väl mycket tid,
man är van vid snabbare då man
söker i andra databaser.

one is used to faster searches in
other databases.

Absolut gav det ett fylligare svar,
extra info!

Absolutely it provide a more
elaborated answer, extra info!

Fler kommentarer (More comments)
Mycket önskvärt att kunna
komma in i texten kring det man
sökt i de olika böckerna.

It is very desirable to be able to
get into (read) the texts that
appears in the search result.

hittade trots stavfel i sökningen,
använder nog inte applikationen
fullt ut.

Returned results even thou the
search term was misspelled, I
probably doesn’t use the
application fully.

Fler infoboxar , eller fler flikar
på infoboxen att välja på

More infoboxes of tabs to choose
from on the infobox

Övriga problem (Other problems)
Söksättet ger mersmak men
behöver utvecklas.

The search method gives you
wanting more, but needs to be
developed.

29

4. Evaluation

30

Chapter 5
Conclusions

This project has shown that the users like the idea of a concept-based search. When the
users make a search that matches the right conditions the results are improved over string
search. However, the users find that the idea of concepts is something new and needs an
explanation.

We need to address the nature of entity identification and that there is a balancing
act that has to be made between precision and how many “types of entities” that can be
identified. This means that for the application to be as relevant as possible, we should
ideally use an algorithm that is suited to the content. This could be that the application
adapts the current algorithm with some parameters or that the application uses different
algorithms for different types of content. If the application uses a relevant algorithm, it
delivers the concepts that are both precise and relevant to the users.

The evaluation unearthed some issues in the application but we deemed that we could
rectify those in a future development. We discuss this in the following improvements
section.

5.1 Improvements
There are several improvements that could be made to the application to make it more pro-
duction ready. In this section, we take a look at the different parts and what improvements
that can be made.

5.1.1 GUI
The graphic interface is a bit rough with some buttons like those of the facets being of
unequal length. And although it uses bootstrap1 as a framework some problems with the

1https://getbootstrap.com/

31

https://getbootstrap.com/

5. Conclusions

responsiveness of the design exists.
One suggestion made is that when applying a facet via the buttons the facet should not

be concatenated to the search term but instead be presented as buttons after the search box.
This way it would be easy to remove a facet from a search.

5.1.2 Facets and concept search
The facets and the concept search are the main part of the whole application so there is
obviously quite many improvements that we could make. We find some of them in the
evaluation.

Facets should be more related to the actual search term instead of relying on the count
of occurrences in the document. It would also be neat if the facets were more related to
each other. This way it would be possible to link related concepts in the GUI.

Concepts could be improved in several ways. There is one fundamental limitation
on using machine learning algorithms for identifying concepts. This is that if the training
for the algorithm is too general with data from every type of subject. It will not be as good
as an algorithm trained on more specific subject, this makes a generally trained algorithm
prone to produce some errors. However if the training is more specific only the concepts
within the domain are identified. To solve this, it would be possible to be more specific
in what documents are loaded and to combine this with training the algorithm with regard
to the type of documents, but this requires more control of the Langforia API than was
available in this project.

5.1.3 Search results
In the discussion part, we noticed that we could improve how easy and understandable the
concept search is. We can improve multiple things. For example, we could improve the
instructions on the idea of concepts. We could also hide some of the details i.e. displaying
them as buttons with the prefix and name instead of the IRI.

One improvement to the search result would be the possibility to go deeper into the
results. When we display the results, we should ideally show the section where the hit
is and combine this with relevant information to the text. The application should display
related sections so that text can be connected via concepts. Much of the needed information
is already available in the current application database.

5.1.4 Concept tagging and information gathering
The enrichment process in the current application is triggered manually so the concepts
in the application do not benefit of any updates to the API or wikidata. This should in a
production version be automatic. As the RDF data used in the infobox is collected at the
same time as the concept tagging the data is not updated with any regularity.

32

5.2 Summary

Infobox Regarding the infobox, we have thoughts about some ways to improve this.
One might be to capture the data directly from the semantic web in every request. Another
solution might be to increase the amount of data we capture and to capture data for concepts
related to those identified in the book. Finally, we thought about a third solution that is a
combination of the two previous. In this alternative, we would still use the database but
whenever the application gets a request for a Qid not in the database, it makes a request to
Wikidata about the missing information.

5.1.5 Speed
One frequent comment that came up during evaluation was that the search is slow. This
has to do with several factors like how the snippets are calculated; how the documents are
represented in the database; and how the indices are configured. To improve the speed
documents could be split into smaller parts. This however has some drawbacks as and
searches will only match the smaller parts. This will give more precise but not as many
search matches something that could potentially be a very good thing if the division is
done in a good way.

The indices can also be used in a much better way as the current application uses few
indices and filters for the search. This means that the database has to read the documents
from the hard drive and not only rely on in memory indices. If the indices were configured
more optimally it would be possible to do an unfiltered search returning results without
touching the disk.

The snippets currently are calculated with the built in function. This is a good but not
the fastest. A simpler snippeting function could be faster.

5.2 Summary
We have explored the viability of a concept-based search and we can conclude that there
is a demand and a possibility for it. We have seen that there is a great potential in the
information available at the semantic web. We also see that if we would improve our
application whit this data, we would be able to create an application that really helped
in the discovery of information. However, we also discovered the non-triviality of the
problem. It is a challenge to create a search that is both fast and precise. In addition, we
have as discussed earlier seen that the search needs to be adapted to the content so it will
never meet the requirements of a general search.

33

5. Conclusions

34

Glossary

DTD Document Type Definition. 10, 35

EDL Entity Discovery and Linking. 7

IRI Internationalized Resource Identifier. 12, 14, 21, 22, 32

MUC Message Understanding Conference. 9

NERC Named Entity Recognition and Classification. 9

NLP Natural-language processing. 7, 18

OKG Open Knowledge Graph. 14

OWL Web Ontology Language. 10

QId Identifier for entities on Wikidata. 18, 21

RDF Resource Description Framework. 10–14, 19, 32

RDFa Resource Description Framework in Attributes. 5, 19, 20

RDFS Resource Description Framework Schema. 10

RELAX NG RELAX NG (REgular LAnguage for XML Next Generation) is a schema
language for XML. RELAX NG is aimed to be both more powerful and easier to
write than a DTD. 10

SPARQL SPARQL is a query language for RDF data. With SPARQL it is possible to
query many different types of data sources.. 19, 22

TAC Text Analysis Conference. 7

XML Extensible Markup Language. 10, 17

35

Glossary

36

Bibliography

Allemang, D. and Hendler, J. (2011). Semantic Web for the Working Ontologist, Second
Edition: Effective Modeling in RDFS and OWL. Morgan Kaufmann.

Cucerzan, S. (2007). Large-scale named entity disambiguation based on wikipedia data.
In EMNLP-CoNLL.

Cucerzan, S. (2011). TAC entity linking by performing full-document entity extraction and
disambiguation. In Proceedings of the Text Analysis Conference (TAC), Gaithersburg,
Maryland.

DocBookTC, O. (2009). Docbook-5.0 the docbook schema version 5.0. edited by norman
walsh. 1 november 2009. Technical report, OASIS DocBook TC.

Grishman, R. and Sundheim, B. (1996). Message understanding conference-6: A brief
history. In Proceedings of the 16th Conference on Computational Linguistics - Volume
1, COLING ’96, pages 466–471, Stroudsburg, PA, USA. Association for Computational
Linguistics.

Klang, M. and Nugues, P. (2016). Langforia: Language pipelines for annotating large col-
lections of documents. In Proceedings of COLING 2016, the 26th International Con-
ference on Computational Linguistics: System Demonstrations, pages 74–78, Osaka,
Japan. The COLING 2016 Organizing Committee.

Nadeau, D. and Sekine, S. (2007). A survey of named entity recognition and classification.
Lingvisticæ Investigationes, (30):3–26.

Rao, D., McNamee, P., and Dredze, M. (2013). Entity linking: Finding extracted en-
tities in a knowledge base. In Multi-source, Multilingual Information Extraction and
Summarization.

Sil, A., Dinu, G., Kundu, G., and Florian, R. (2017). The IBM systems for entity discov-
ery and linking at TAC 2017. In Proceedings of the Text Analysis Conference (TAC),
Gaithersburg, Maryland.

37

BIBLIOGRAPHY

The DBpedia Association (2018). What is DBpedia. http://blog.dbpedia.org/
sample-page/. Accessed: 2018-03-01.

Walsh, N. (2010). DocBook 5: The definitive guide. O’Reilly Media. Docbook 5.0.

wmflabs (2018). Wikidata statistic. https://tools.wmflabs.org/
wikidata-todo/stats.php. Accessed: 2018-02-28.

38

http://blog.dbpedia.org/sample-page/
http://blog.dbpedia.org/sample-page/
https://tools.wmflabs.org/wikidata-todo/stats.php
https://tools.wmflabs.org/wikidata-todo/stats.php

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTATIONSDAG 2018-06-01

EXAMENSARBETE Entity-based Search
A take on the intelligent book
STUDENT Erik Zander
HANDLEDARE Pierre Nugues (LTH), Markus Klang (LTH)
EXAMINATOR Jacek Malec (LTH)

Konceptbaserad sök

POPULÄRVETENSKAPLIG SAMMANFATTNING Erik Zander

Tänk dig att vi ska söka upp Paris, svaret kommer direkt - stad i Frankrike. Dock
är det personen Paris vi söker. Vi prövar igen, Paris personen, vi får nu träff på den
mytologiska personen Paris men vi sökte den fiktiva personen Tom Paris från Star
Trek. Det är uppenbart att det är svårt att veta vad vi söker efter, för datorer har
det varit omöjligt. Omöjligt är dock ett relativt begrepp när det gäller teknik. Detta
projekt har jobbat med att ta aktuella forskningsresultat om språkteknik och skapa
en sökmotorprototyp med hjälp av dessa.

Vår prototyp är en sökmotor där en användare kan
söka bland 3500 böcker. Det vanliga fallet är att
en sökning startar med en textsträng, sökningen
letar bara efter att bokstäverna skall vara rätt.
När sen resultatet presenteras, visas de koncept
som sökningen har hittat i anslutning till sökordet.
Ett koncept kan vara en person, ett land, en stad,
osv. Om vi återgår till vår sökning om Paris kan
till exempel sökmotorn presentera Paris (staden),
Paris (grekisk mytologi), Paris (Sci-fi karaktär).
Vi ser att om vi får dessa alternativ presenterade
kan vi som användare snabbare komma in på det
vi letade efter. Det vi inte är intresserade av filtr-
erar vi bort.

Hur går då detta till? För att svara på det
ger vi först en överblick vad som krävs för att det
skall vara möjligt. Vi behöver veta vilka koncept
en bok innehåller; vi behöver spara den informa-
tionen någonstans; vi vill kunna länka ut till on-
line resurser som Wikipedia, alternativt till graf-
varianter av Wikipedia så som Wikidata eller DB-
pedia.
För att veta vad en bok innehåller tar vi hjälp

av ett API (Langforia) som är skrivet av Markus
Klang på LTH. Till API:et skickar vi varje para-

graf i boken och får tillbaka vilka koncept den
inne-håller. Vi sparar denna information i samma
databas som vi har böckerna i. Mer precist sparar
vi informationen i varje digital bok genom att vi
berikar paragrafen.
När vi får informationen från Langforia får vi

även ett så kallat Qid. Ett Qid är en identifierare
på Wikidata.org och med den kan vi hitta mer in-
formation om ett specifikt koncept. Den komple-
menterande informationen kan till exempel vara
när en person dog eller hur stor befolkning ett land
har. I vår applikation visar vi denna information
i en informationsruta till höger.

Vad skall det vara bra för? Genom att veta
vilka koncept som texterna innehåller kan vi både
ge en precisare och mer berikad upplevelse. Det
krävs dock att applikationen arbetar med texterna
innan och begränsningar i hur det fungerar med
maskininlärning gör att vi inte kan jobba med alla
typer av texter samtidigt. Bäst blir det därför om
vi har ett material som vi vet ungefär vad det är
men som vi behöver kunna söka bättre i. Har vi
ett sådant material kan vi erbjuda en mycket bra
upplevelse till användaren.

	Introduction
	Related Work
	Papers and research
	Semantic Scholar
	AlphaSense

	Approach
	Background
	Entity search
	Semantic Web
	Formats
	Wikidata and DBpedia

	Implementation
	Overview
	Enricher
	Extractor
	IBM Natural Language Processing API
	Langforia
	Wikidata connection
	Insert data as rdfa

	Search
	Facets
	Infobox
	Search result

	Evaluation
	Evaluation strategy
	Result
	Discussion

	Conclusions
	Improvements
	GUI
	Facets and concept search
	Search results
	Concept tagging and information gathering
	Speed

	Summary

	Bibliography
	Tom sida
	Tom sida

