
Machine-learning-assisted
scene detection

Tony Ngo, Axel Bojrup

MASTER’S THESIS | LUND UNIVERSITY 2018

Department of Computer Science
Faculty of Engineering LTH

ISSN 1650-2884
LU-CS-EX 2018-40

Machine-learning-assisted scene detection

Tony Ngo
mas13tng@student.lu.se

Axel Bojrup
dat15abo@student.lu.se

September 6, 2018

Master’s thesis work carried out at Sony Mobile.

Supervisors: Pierre Nugues, pierre.nugues@cs.lth.se
Sebastian Raase, sebastian.raase@sonymobile.com

Examiner: Jacek Malec, jacek.malec@cs.lth.se

mailto:mas13tng@student.lu.se
mailto:dat15abo@student.lu.s
mailto:pierre.nugues@cs.lth.se
mailto:sebastian.raase@sonymobile.com
mailto:jacek.malec@cs.lth.se

Abstract

In this thesis, we explored the possibility of using machine learning to do
scene recognition on a mobile device. In order to train our scene recogni-
tion model, through machine learning, we first created a dataset. Then, we
deployed the model on a mobile device. The deployed model takes as an in-
put a preview from the camera sensor, and outputs a scene. Our model was
created using convolutional neural networks (CNN). We investigated different
CNN architectures which we will present evaluations of. We demonstrate that
it is feasible to use CNN to do scene recognition on a mobile device. With a
CNN architecture called MobilenetV1-1, we achieved an F1-score of 86.9%.
We used an ensemble method, where the collective result achieved a higher
F1-score than what any of the networks did separately. Runtime results for in-
ference of various architectures on Sony Xperia Z3 are also presented, ranging
from 41 ms to 2750 ms.

Keywords: machine learning, convolutional neural network, mobilenets, scene recog-
nition

2

Acknowledgements

We would like to thank Pierre Nugues for his guidance and helpful insights throughout
this thesis. We would also like to thank Sebastian Raase at Sony Mobile for his valuable
feedback on our thesis and discussions of project progression. Lastly, thanks to the Sony
Mobile camera team for help and input throughout the project and NercivanMahmudovska
and Sony Mobile for making this project possible.

3

4

Contents

1 Introduction 7
1.1 Problem definition . 8
1.2 Contributions . 9
1.3 Related work . 9

2 Background 11
2.1 Scene Recognition . 11
2.2 Data representation of an image . 11
2.3 Neural network . 11

2.3.1 Learning algorithm . 12
2.3.2 Hyperparameters . 13
2.3.3 Activation function . 14
2.3.4 Convolutional Neural Network 16

2.4 Architectures . 21
2.5 Transfer learning . 24
2.6 Ensemble learning . 24
2.7 Framework . 25
2.8 Data sources . 27

3 Metrics 29
3.1 Confusion Matrix . 29
3.2 F1-Score . 29
3.3 Evaluation graphs . 30
3.4 Underfit and Overfit . 31
3.5 Stratified sampling . 31

4 Method 33
4.1 Model . 33
4.2 Preprocessing . 33
4.3 Experiment . 34

5

CONTENTS

4.4 Android app . 34
4.5 Data . 35

5 Results 39
5.1 Comparison of networks . 39

5.1.1 InceptionV4 . 39
5.1.2 MobilenetV1 . 42

5.2 Dataset modifications . 44
5.3 ADAM and fine tuning . 44
5.4 Places dataset . 44
5.5 Learning curve . 46
5.6 Ensemble learning . 47

6 Discussion 49
6.1 Comparison of networks . 49
6.2 Dataset modifications . 49
6.3 ADAM and fine tuning . 50
6.4 Places dataset . 50
6.5 Learning curve . 50
6.6 Ensemble learning . 50

7 Conclusions & Future work 53
7.1 Conclusions . 53
7.2 Future work . 54

Bibliography 55

6

Chapter 1
Introduction

Scene recognition is a computer vision task which, given an image, will label that image
as a scene. Consider Figure 1.1, where the left image represents a beach scene and the
right image represents a snow scene. The task is then to construct a scene recognition
model which labels the images accordingly. This comes natural to humans and is a rather
effortless task, but for computers it is a more challenging task (Ballard and Sabbah, 1983).
Computer vision has been through a breakthrough in recent years and is now one of the
most active research areas for deep learning applications (Goodfellow et al., 2016).

Automatic image captioning is another computer vision task (See Figure 1.2). For this
task, a system is provided with an image which then will be annotated with an appropriate
caption. This system learned how various objects in an image related to each other by a
detailed accompanied caption for each image. This is closely related to a more traditional

(a) A beach
scene.

(b) A snow
scene.

Figure 1.1: Two images with their corresponding scene label.

7

1. Introduction

(a) "man in
blue wetsuit
is surfing on
wave."

(b) "baseball
player is
throwing ball
in game."

Figure 1.2: Two captions generated by Karpathy and Fei-Fei’s
model and their corresponding image.

computer vision task, namely object recognition, where an given image is labelled for each
object in the image (Karpathy and Fei-Fei, 2017).

The idea of this thesis is to create a scene recognition model through deep learning
which will be deployed to a mobile phone. The deployed model should only be concerned
with inference, thus all learning will be performed on an separate machine. The model
should be able to access the preview image from the camera, which will be used as an
input to the scene recognitionmodel. Wewill not investigate any application for the created
model in this thesis. One application could be to map the scene returned from the model
to a pre-defined camera parameter setting.

1.1 Problem definition
The goal of this work is to explore the possibility of using machine learning, and in partic-
ular, neural networks to do scene detection. The focus will be to determine what currently
available architectures will be most suitable to run on a mobile device. That is, in this
thesis we will not construct any new network architectures, we will only evaluate already
existing publicly available architectures. By investigating different architectures, we want
to make evaluations based on number of parameters, speed and accuracy. Our research
questions are the following:

• What existing neural network architecture works best on a mobile device?

• What is the relation between the number of parameters, speed and accuracy?

8

1.2 Contributions

1.2 Contributions
In this project we have created a scene recognition model. We have evaluated some state-
of-the-art architectures on a new dataset which we created. We also tried an ensemble
method - stacking which, as expected, improved the result.

In this project most of the work was equally divided. The only thing that required
individual work was when we were working with the data. This required us to create our
own scripts for data management.

1.3 Related work
Interest and development in computer vision, especially in deep learning, have been in-
creasing as it looks promising for the problems that have been impractical to handle before.
During this decade, research in deep learning has made huge progress. Advancements in
hardware performance, GPUs in particular, played a big part inmaking deep learning faster
and more accessible.

A major breakthrough came in 2012 when Krizhevsky et al. presented AlexNet, a
large, deep convolutional neural network (CNN) that won the ILSVRC-2012 competitors
(ImageNet Large Scale Visual Recognition Challenge). It achieved a top-5 test error rate
of 15.3%, compared to the 26% achieved by their competition. The paper found that using
the ReLU instead of hyperbolic tangent for nonlinearity function decreased training time.
It also used data augmentation and dropout and showed that it prevented overfitting.

In 2015a, Szegedy et al. introduced GoogLeNet (Inception architecture), a 22-layer
CNN which won the ILSVRC-2014 with top 5 error rate of 6.7%, performing close to
humans of 5.1% (Andrej Karpathy). This network used 12x fewer parameters thanAlexNet
and used what is called Inception modules, which are explained further in Section 2.4.

Recent research has been done in deep learning for mobile vision applications. There
exists a family of architectures called MobileNet, which have shown promising results for
Mobile applications (Howard et al., 2017). That work was revised in Sandler et al. (2018),
resulting in even smaller networks and with higher accuracies.

Many of these networks have performed well on the ImageNet dataset which is an
object-centric dataset. Zhou et al. showed in 2017 that networks based on object-centric
data will have different internal representations than networks based on scene-centric data
(Zhou et al., 2014, 2017). Object-centric data is defined as images that contains an object
in this case. Accordingly, scene-centric data is defined as images that contain scenes,
consistent with the description of scenes that was provided earlier.

9

1. Introduction

10

Chapter 2
Background

2.1 Scene Recognition
Scene recognition is a part of computer vision. It might be as useful to know what scene
a particular object is present in as what object it is. For instance, a table (object) in a
kitchen (scene) serves another purpose than what a table does in a classroom. Applying
deep learning solutions to such problems has proven promising. In this chapter will we
present key constituents to deep learning.

2.2 Data representation of an image
In computing, images are generally represented as arrays of numbers. One such represen-
tation uses a 3-dimensional array where the dimensions refer to the three color channels
red, green blue (RGB). Each number in the array will have a value ranging from 0 (byte)
to 255 (byte). For instance, a 100x100 pixel image will contain 30’000 (100 · 100 · 3)
numbers.

2.3 Neural network
A neural network is a model used in machine learning which has references to neuro-
science. It is generally arranged in layers, where each layer consists of a number of neu-
rons. There is an input layer and an output layer. In a feedforward neural network, the
neurons are connected in a directed acyclic graph. A single-layer feedforward network
consists of an input layer and an output layer, while a multi-layer feedforward network
consists of least one layer called hidden layer between the input and output layer. A neu-
ron receives input from other neurons and computes its own value. Neurons in a layer are
connected to the neurons of the next layer (feedforward network). Each connection to a

11

2. Background

x1Input #1

x2Input #2

h1

h2

h3

Output

w1

..

w6

Hidden
layer

Input
layer

Output
layer

Figure 2.1: A neural network with input layer, output layer and
one hidden layer

neuron has a weight (also called parameter) which is adjusted as the network is training.
Training means that finding the weights that the network will correctly map the input to
the desired output. The output h of a hidden layer is calculated as:

h = WT x + b, (2.1)

where W is the weight matrix, x is the input and b is a bias term. An example of a feed-
forward network is shown in Figure 2.1. The figure also shows that neurons in the hidden
layer have connections to all the neurons in the previous layer. Such hidden layers are
called fully connected layers. In the example, the input x would be a vector of size 2x1,
the weight vector W of size 3x2 and the bias b would be of size 3x1. Applying Equation
2.1 would then result in a vector h of size 3x1.

2.3.1 Learning algorithm
The training of a convolutional neural network is based on 3 concepts, which are: loss
function, back-progation algorithm & optimization. Through the various transformations
employed by the different network layers, information is propagated forward in the network
(forward propagation). While training a network, this phase is carried out until the loss
function can be computed. The information from the loss function will propagate back-
ward through the network, to calculate the gradient. Using this gradient an optimization
is performed, typically by a stochastic gradient descent algorithm, or a variant of it.

Loss function
A loss function is used to measure the quality of the network output. It compares the
predictions with the true labels. The lower the loss, the better the model will classify the
training data. Depending on application, this is could be done by a function called cross-
entropy, which can be intepreted as a notion of difference between two distributions and
is shown in 2.2 (Goodfellow et al., 2016).

H(P,Q) = −Ex∼PlogQ(x) (2.2)

12

2.3 Neural network

Back-propagation
The chain-rule of calculus is used to calculate the derivative of function compositions
(analogous to layers in succession in a neural network). Back-propagation is an algorithm
that computes the chain-rule of calculus efficiently. In more general terms, it is used to
calculate the gradient, which is used for optimization (Goodfellow et al., 2016).

Optimization
In the context of neural networks, an optimizer is trying to find the weights of the net-
work that minimizes the loss function. Two different optimizers have been used during
the project. These two optizimers are based on the stochastic gradient descent and have
shown to perform really well.

• RMSProp: RMSProp is an optimization method where each of the weights has a
learning rate. The learning rate is divided by a running average of the squares of the
previous gradients for that particular weight (Tieleman, 2018):

MeanSquare(w, t) = 0.9MeanSquare(w, t − 1) + (0.1)(∇Qi(w))2

The parameter/weight is updated:

w = w −
η√

MeanSquare(w, t) + δ
(∇Qi(w))

RMSProp can converge faster by using the exponentially decaying average to remove
history from the extreme past. An advantage of RMSProp is that it works well in
non-stationary settings (Kingma and Ba, 2014).

• ADAM: Adam is another optimization method in which the adaptive learning rate
is calculated for each parameter. It is related to both RMSProp and momentum.
Momentum is used to accelerate learning, particularly when there exist noisy gradi-
ents, high curvature or small but consistent gradients. Momentum accumulates an
exponentially decaying moving average of past gradients and move in their direc-
tion which dampen oscillations. Adam computes the exponential moving average
of the gradient (estimate of first order moment) and squared gradient (similar to
RMSProp). However, ADAM uses bias-correction terms to the first-order moments
and the second-order moments which are missing in RMSProp. It could cause the
second-order moment estimate of RMSProp to have high bias early in training due
to not having the correction term (Goodfellow et al., 2016). An advantage of ADAM
is that works well with sparse gradients, due to the bias correction.

2.3.2 Hyperparameters
The hyperparameters that are described in this section are defined as variables that are set
prior to training. These parameters are not part of the model, but instead affect the training
process.

13

2. Background

Batch size
Batch size is the subset of the dataset that is used when doing one update to the model pa-
rameters. A recommendation of a batch size is between 2 and 32 training samples (Bengio,
2012).

Epoch
Epoch is the number of times the whole training set has been passed in to the network
when training.

2.3.3 Activation function
The activation function is a transformation that is performed on the output of a layer, to
induce the network to nonlinearities, which is important for the network. If this property
would be omitted, then every layer would be a linear transformation, and the network as
a whole would just be a linear transformation. Hence it won’t be able to capture all the
complexities of the given problem the networks tries to solve. The output of an activation
function on a hidden layer is referred to as a hidden unit. There are several commonly used
activation functions, which are shown in Equation 2.3 and 2.4:

g1(z) = σ(z) =
1

1 + e−x (2.3)

Figure 2.2: Plot of Logistic function, from Equation 2.3

g2(z) = tanh(z) = 2σ(2z) − 1 (2.4)

g1(z) is called the logistic function and g2(z) is the closely related hyperbolic tangent
(See visualization in Figure 2.2 and 2.3 respectively). Both functions saturate across parts
of their domain, which makes gradient based learning difficult. For this reason attention
has shifted to Rectified Linear Units (ReLU), g3(z), shown in Equation 2.5 and visualized
in Figure 2.4.

14

2.3 Neural network

Figure 2.3: Plot of Hyperbolic tangent, from Equation 2.4

g3(z) = max{0, z} =
0, z < 0
z, z ≥ 0

(2.5)

The ReLU activation function won’t suffer from saturation. It is also very similiar to a
linear function, which makes it easier to optimize.

The softmax function g4(zi), shown in Equation 2.6, is commonly used on the output
of the last layer for a classifier to provide the probability distribution of the various classes
(Goodfellow et al., 2016).

g4(zi) =
ezi∑
j ez j

(2.6)

This function returns values in the range 0 < g4(zi) ≤ 1 with
∑

i zi = 1. See following
example, where z = [1, 2, 3, 4, 1, 2, 3]:

Figure 2.4: Plot of Rectified Linear Unit, from Equation 2.5

15

2. Background

g(z0) = g(1) =
e

e + e2 + e3 + e4 + e + e2 + e3 ≈ 0.024

...

g(z6) = g(3) =
e3

e + e2 + e3 + e4 + e + e2 + e3 ≈ 0.175

g(z) = [0.024, 0.064, 0.175, 0.475, 0.024, 0.064, 0.175]

2.3.4 Convolutional Neural Network
Deep Learning makes it possible for models that consist of multiple layers to learn repre-
sentations of data with multiple levels of abstraction (LeCun et al., 2015). "Deep" refers to
the depth of the network; the number of hidden layers representing the model. The layers
are describing different functions that form the network (Goodfellow et al., 2016). A deep
neural network is one of many different types of networks used in deep learning. A Con-
volutional Neural Network (CNN) is one type of deep neural network. In addition to using
multiple hidden layers, there are four concepts of using a CNN, namely convolution layers,
parameter sharing, sparse connections and pooling. A convolutional neural network uses
an operation called convolution instead of a general matrix multiplication (Equation 2.1)
in at least one of the layers.

Convolutional Layer
The core block of a convolutional neural network is the convolutional layer which uses
a convolution operation. Convolution is a mathematical operation on two functions to
produce a third function. In CNNS, the convolution operation is applied on the input data
of the layer with a filter (or kernel). This is done by sliding the filter along the width and
height of the entire input. The output is called feature/activation map. The output size is
controlled by three hyperparameters: depth, zero-padding and stride.

• The depth corresponds to the number of filters.

• Zero padding is whether the input is padded with zeros around the border.

• Stride refers to how many pixels a filter is moved per step.

The process can be seen in Figure 2.5. The convolution layer computes the convolution
between the input data X and the filterW (consisting of weights) and creates an activation
map (X∗W). Each step the filter is moved leads to an activation of the neuron on that
specific location of the input. The output is stored in an activation map. The figure shows
that zero padding and a stride of 1 were used. Note that if stride was 2, the output matrix
X∗W would have been of size 3x3.

Depending on the input and the hyperparameters to a convolution layer, the convolution
could be performedwith different filters, where the output of the layer would then be a stack
of activation’s maps.

16

2.3 Neural network

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1

0 0 0 0 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 1 1 0 0
0 0 1 1 0 0 0
0 1 1 0 0 0 0
0 0 0 0 0 0 0

∗

1 0 1
0 1 0
1 0 1

=

0 2 3 3 1
1 2 4 3 3
1 2 3 4 1
1 3 3 1 1
2 2 1 1 0

X W X ∗W

Figure 2.5: Example how a convolution is performed. The grey
cells are added due to zero padding.

h1 h2 h3 h4 h5

x1 x2 x3 x4 x5

(a) Parameter
sharing (same
colors denote
same weights)

h1 h2 h3 h4 h5

x1 x2 x3 x4 x5

(b) Sparse con-
nections (h3 is
only connected to
x2, x3, x4)

Figure 2.6: Concepts in a CNN

The input size of a convolutional layer is thereby a DF x DF x M, where DF is the
width and height (assuming the input is a square) of the input and M is the number of
input channels. The convolutional filter K is of size DK x DK x M where DK is the size
(assuming it is a square) of the filter and M is the number of input channels (see Figure
2.7 a). The output size of the convolutional layer is DG x DG x N where N is the number
of output channels (number of filters/activations maps) and DG is the width and height of
the output. The number of add and multiply operations (referred to operations henceforth)
of standard convolutions in terms of number of multiplications are therefore:

DG · DG · DK · DK · M · N = D2
G · D

2
K · M · N (2.7)

Parameter sharing
A convolution network uses parameter sharing which refers to using the same parameter
for more than one function (Goodfellow et al., 2016). In a classic neural network, weights
are independent. Parameter sharing reduces the number of independent parameters, thus
allowing for faster implementation. Figure 2.7a shows an example of parameter sharing,
where edges of same color share weights.

17

2. Background

Sparse Connectivity
In a regular neural network, every output neuron is interacting with every input neuron
(fully-connected layer). In a convolution layer, nodes often only interact with a few other
neurons because of convolution. These neurons are called the receptive field of the output
node. Having sparse connections means that fewer operations are required to calculate the
output (Goodfellow et al., 2016). Figure 2.7b shows that only the inputs x2, x3 and x4 are
connected to the output neuron h3.

Depthwise Separable convolution
Depthwise separable convolution is another type of convolution which is used in deep
learning. It combines a depthwise convolution and a pointwise convolution. The depth-
wise separable convolution is divided into two layers, one layer responsible for applying
a single filter to each input channel (depthwise convolution) and the other combines the
outputs of the depthwise convolution by applying a 1x1 convolution (pointwise convolu-
tion). This technique is applied instead of a regular convolution due to the reduction in the
number of operations and model size (Howard et al., 2017). The following can be divided
in two different stages:

• For depthwise convolution: The difference between a standard and a depthwise con-
volution is that in depthwise convolution, it applies a single filter to one input chan-
nel whereas in the standard convolution, a filter is applied over all input channels.
A depthwise convolution filter of size DK x DK will yield the number of operations
DK · DK · DG · DG when applied to the mth input channel where DG is the width and
the height of the output (see Figure 2.7 b). When applied to M number of filters,
the output size of depthwise convolution is DG x DG x M and the total number of
operations is:

DK · DK · DG · DG · M (2.8)

• For pointwise convolution: The previous step filtered the input channels but did
not combine them to create new features. This step called pointwise convolution
computes a linear combination of the output of the depthwise convolution by using
a 1 x 1 convolution. A convolution filter of size 1 x 1 x M (Shown in Figure 2.7 c)),
where M is the number of input channels (the number of channels from the output
of the depthwise convolution) is applied to the output of the previous step which
will give the new and final output of size DG x DG x N where N is number of 1 x 1
filters. The total number of operations for pointwise convolution is:

DG · DG · M · N (2.9)

Depthwise separable convolution number of operations is therefore:

DK · DK · DG · DG · M + DG · DG · M · N = M · D2
G(D2

K + N) (2.10)

which is the sum of depthwise convolution and pointwise convolution. The relation
between depthwise separable convolution and standard convolution can be written as:

M · D2
G(D2

K + N)
M · D2

G(D2
K · N)

=
1
N
+

1
D2

K
(2.11)

18

2.3 Neural network

(a) Standard convolution filter

(b)Depthwise convolution fil-
ter

(c) Pointwise convolution filter

Figure 2.7: The different types of convolution filters. Images
taken from MobilenetV1 paper

For example, if DK=3 and N=512, it would give the ratio 1/512 + 1/9= 0.111 which
means depthwise separable convolution has around 9 times fewer operations than the stan-
dard convolution.

Pooling layer
A pooling layer is responsible for reducing (downsampling) the spatial dimensions (width
and height) of each activation/feature map. Pooling can be performed by different oper-
ations such as max pooling or average pooling, where max pooling is the most common.
The pooling layer needs two hyperparameters: the size of the filter F and the stride S. A
common shape of a pooling layer is with filters of size 2x2 with stride 2 using max pooling.
For this setup, the filter will then slide by 2 cells along the width and height and calculat-
ing the max value (max pooling) over the 2x2 region (4 numbers). Average pooling would
instead calculate the average value. It will produce an output of size W x H x D where W
and H are the new width and height in which 75% of the activations have been removed.
D is the same depth as the input (see Figure 2.8). Pooling has the advantage of reducing
the number of parameters and reduce the computation in the network and also decreases
the risk of overfitting (see Chapter 3) (Karpathy, 2018).

Dropout
Applying a dropout to a unit in a network means you give that unit a probability to be
dropped. Consider Figure 2.9, where this is visualized, the x1 unit will be kept with a
probability µ, otherwise it will be multiplied with 0. Thus being droppped, which is one
way of utilizing dropout. If dropout is used, it is used during training. When the model is

19

2. Background

2 2 2 0
3 5 7 3
1 9 6 1
4 2 0 1

Max pooling

2 2 2 0
3 5 7 3
1 9 6 1
4 2 0 1

Average pooling

↓ ↓

5 7
9 6

3 3
4 2

Figure 2.8: An example of max and average pooling. Filter size
is 2x2 with stride 2

x1Input #1
µ

x2Input #2
µ

x̂1

x̂2

h1

h2

h3

... y Output

Input
layer

Dropout
layer

Hidden
layer

Output
layer

Figure 2.9: An example of a dropout, µ is probability that is a
multiplied with the the inputs x1 and x2.

used for inference (including testing) dropout is not used. Dropout is an effective regular-
ization concept which prevents overfit (Chollet, 2017).

Batch normalization
In machine learning, the concept of normalization is used to make the data samples passed
to the model be more similar to each other. In this context, the most common form of
normalization is where you center data on 0. That can be achieved by first subtracting the
mean of the data, and dividing the difference by the standard deviation of the data. With X
being the data, µ being the mean and σ the standard deviation. Then the normalized data,
z, is calculated by:

z =
X − µ
σ

(2.12)

Applying this normalization on a batch of data, as well as scaling and shifting the
data, gets you the full definition of batch normalization (Chollet, 2017; Ioffe and Szegedy,

20

2.4 Architectures

layer D

concatenate

layer C

layer B

layer A

Figure 2.10: A residual connection; the output of layer A & Cj is
concatenated.

2015):

BNγ,β = γz + β (2.13)

Residual connection
A residual connection consist of concatenating two data representations. This is shown
in Figure 2.10 where a previous data representation, that of layer A, is concatenated with
a data representation from a layer deeper into the network, layer C. This helps to prevent
information loss in the network (Chollet, 2017).

2.4 Architectures
In this section, various state of the art architectures will be explained. The architectures
that will be described here are selected on the basis of how they performed on the ImageNet
dataset which is shown in Table 2.1.

To increase the accuracy of neural networks, a lot of work has been put into making
networks that are deeper and more complicated, but not necessarily making them more
efficient with respect to size and speed. The Mobilenet family of neural networks is de-
signed to be more efficient (Howard et al., 2017). Inception (published 2014) is also an
architechture which was developed in this style. In fact, it had 12x less parameters than the
winning entry of ILSVRC 2012, yet achieving a higher accuracy (Szegedy et al., 2015a).

MobilenetV1
What is distinctive for the mobilenet architectures is the depthwise separable convolution.
It is composed of 13 blocks (or 26, counting the parts separately - see Figure 2.11) in
succession. They either have stride 1 or stride 2 for their convolution and are surrounded
by one fully connected convolution in the front, and a softmax classifier at the end. Each
layer (excluding the last) is followed by a batch normalization and a rectified linear unit. As

21

2. Background

Architecture Number of Parameters [Millions] Operations [Millions] Accuracy [%]
MobilenetV2_0.25 0.68 (approx.) 27 n/a
MobilenetV1_0.25 0.47 41 49.8
MobilenetV1_0.5 1.34 150 63.3
MobilenetV2_0.5 1.95 97 65.4
MobilenetV1_0.75 2.59 317 68.4
MobilenetV2_0.75 2.61 209 69.8
MobilenetV1_1.0 4.24 569 70.9
MobilenetV2_1.0 3.47 300 71.8
NASnet-Mobile 5.3 564 74.0
MobilenetV2_1.4 6.06 582 75.0

InceptionV4 ∼ 25 (approx) 5000 80.2

Table 2.1: Number of Parameters - learnable weights, Number of
Operations [E.g. Multiply-accumulate (MAC)] and Accuracy of
various architectures on Imagenet dataset. For MobilenetV2_0.25
no accuracy on ImageNet was found.

can be seen in Table 2.1 MobilenetV1 comes in a few variants. The decimal at the end of
each name is what value a hyperparameter called width multiplier is provided. The width
multiplier is used to scale the number of input/output channels in a certain layer. There is
also another hyperparameter called resolution multiplier which is used to set input size.
The models displayed in 2.1 all use a fixed resolution multiplier of 224 (Howard et al.,
2017).

In Figure 2.11, a comparison between a conventional convolutional block and the block
used in the MobilenetV1 architechture is visualized.

MobilenetV2
In the MobilenetV1 architecture each convolutional operation is followed by a ReLU op-
eration. This is necessary to introduce non-linearities to the network. By definition, the
ReLU operation also discards information. In the construction of the MobilenetV2 archi-
tecture this is considered. The team behind this architecture shows that if the input can be
embedded into lower-dimensional subspaces of the activation space, then the ReLU trans-
formation preserves this information. This is captured by including linear bottlenecks in
the MobilenetV2 architecture. It is also empirically shown that non-linear bottlenecks will
harm performance, thus the choice of a linear bottleneck. A residual connection is also
new to the MobilenetV2 architecture, which is shown in Figure 2.12 (Sandler et al., 2018).

InceptionV4
InceptionV4 is one of the architectures that has achieved the highest accuracy on
ImageNet (See Table 2.1). With its new framework (new for this version - Tensorflow)
this architecture becomes free from inherent constraints of previous versions, enabling
architecture simplifications. Thus it also consists of more inception blocks (Szegedy et al.,
2016).

22

2.4 Architectures

Convolution

BN

ReLU

3x3 DW Conv

BN

ReLU

1x1 Conv

BN

ReLU

Figure 2.11: Convolutions blocks. Left: Conventional convolu-
tional layer. Right: Depthwise separable convolutional layer fol-
lowed by convolutional layer, as used in Mobilenet. Abbrevia-
tions: DW Conv; Depthwise Convolution, BN; Batch Normaliza-
tion & ReLU; Rectified Linear Unit.

The Inception-X blocks in Figure 2.13 are from earlier versions of Inception. In gen-
eral, these blocks distinguish the Inception architectures from other architectures.

The simplest of these blocks can be seen in Figure 2.14 which was what the first In-
ception architecture was based on. This block was revised in Szegedy et al. (2015b), re-
sulting in the three types of blocks that InceptionV4 consist of (Inception-A, Inception-B,
& Inception-C in Figure 2.13). The block called "stem" is a special block due to it being
close to the input.

NASNet
NASNet is an architecture which was created in an automated process (Zoph et al., 2017).
The search method called Neural Architecture Search (NAS) makes use of a control neural
net to find the best convolutional architecture for a given dataset. The search for the best
convolutional layer (refered to cell in the paper) is done on small dataset (CIFAR-10) first
due to cost if applied on a large dataset. Subsequently, the layer is transferred to a larger
dataset (ImageNet) where copies of the layer are stacked together (each with their own
parameters) to form a convolutional architecture. Two types of convolutional cells were
used in the architecture. The normal cell returns a feature map of the same input and
the reduction cell returns a feature map where the height and width of the feature map
is reduced by a factor of two. The architecture for CIFAR-10 and ImageNet can be seen

23

2. Background

Concat

Conv 1x1, Linear

Dw 3x3, ReLU

Conv 1x1, ReLU

Input

Conv 1x1, Linear

Dw 3x3, ReLU

Conv 1x1, ReLU

Input

Figure 2.12: The two blocks that are used in MobilenetV2. The
operation followed by its activation are shown for each layer in the
block. Compare with 2.11. Left: Stride=1 block, Right: Stride=2
block. Abbreviations: DW; Depthwise Convolution, Conv; Con-
volution, Concat; Concatenation & ReLU; Rectified Linear Unit.

in Figure 2.15. For NASNet-mobile, the normal cells are stacked 12 times between the
reduction cells.

2.5 Transfer learning
We use a method called Transfer learning, to transfer knowledge from one solved problem
to a different but related one. To do that, we used models which were already pre-trained
on the ImageNet dataset. A pretrained model can give advantage if it has been trained
originally on a large and general dataset, that is, you do not need to train a network en-
tirely from scratch. Usually, a pretrained model is preferred when there is no big dataset
available. Those networks can be seen a a generic model of the visual world, because fea-
tures learned by the network can be practical for various computer vision problems. We
employed two ways of transfer learning: feature extraction and fine-tuning.

• Feature extraction: This technique removes the last fully connected layer and uses
the rest of the network to extract features by training a new classifier on top of the
"frozen" network (Chollet, 2017).

• Fine-tuning: Instead of freezing the whole network (except the fully connected
layer), fine-tuning does unfreeze some of the last layers and training is done on the
classifier and the unfrozen part.

2.6 Ensemble learning
Ensemble learning is an approach to create a set of classifiers to solve the same problem.
An ensemble consists of a number of independently trained classifiers (e.g. neural net-
works) called "base learners", whose outputs (e.g. predictions) are combined to classify
new data. The ensemble method is mainly used to improve performance and accuracy

24

2.7 Framework

Softmax

Dropout

Average Pooling

3 x Inception-C

Reduction

7 x Inception-B

Reduction

4 x Inception-A

Stem

Input

Figure 2.13: Overview of InceptionV4 architechture.

compared to any of the stand alone models. It has been shown that an ensemble usu-
ally outperforms each single classifier in the ensemble (Opitz and Maclin, 1999). In this
project, we have focused on an ensemble method called stacking. Stacking combines a
number of individual learners/models whose outputs are used to train another classifier
called a meta-learners. We begin by training the models using a training set. Then another
distinctive dataset is used as an input to the models to obtain the output which is used as
input to train the meta learner. The main idea is that some classifiers could learn features
incorrectly, thus misclassifying data. Other classifiers in the ensemble, which are better
at classifying (the previously mentioned features) can be used to correct the classification
(Opitz and Maclin, 1999; Zhou, 2012).

2.7 Framework
There are quite a few different machine learning frameworks suitable for deep learning
models. We considered three different frameworks: Tensorflow, Keras & Nnabla. All
three frameworks can be used with different programming languages. Our previous ex-
perience with machine learning comes from working with Python, hence we decided to
adopt it. All frameworks described below support accelerated execution.

• Tensorflow: Tensorflow (tf) is an open source software library for machine learn-
ing computations, and is mainly designed for deep neural network models. It was

25

2. Background

concatenation

3x3 convolution 5x5 convolution 1x1 convolution

1x1 convolution 1x1 convolution 1x1 convolution

3x3 max pooling

Input

Figure 2.14: The Inception block, containing various transforma-
tions which are then concatenated.

Normal cell

softmax

x N

Reduction cell

Normal cell x N

Reduction cell

Normal Cell x N

Image

Normal Cell

softmax

x N

Reduction Cell

Normal Cell x N

Reduction Cell

Normal Cell x N

Reduction cell x 2

3x3 conv, stride 2

Image

Figure 2.15: Left: Model architecture for CIFAR-10. Right:
Model architecture for ImageNet. For NASNet-mobile, N=12

also designed to be a deep learning solution for mobile platforms. Tensorflow is de-
veloped by Google Brain at Google, and adhere to a programming paradigm called
dataflow programming. That is achieved by first defining aGraph. When theGraph
has been defined, it can be fed with data and executed in a Session (Google, 2018).

• Keras: Keras is a high level API for deep learning. It requires to be loaded onto a
back-end. Eligible back-ends are: Tensorflow, Theano & CNTK (Keras, 2018).

• Nnabla: Nnabla is open source software developed by Sony. Python is used for
prototyping and experimentation, whereas C++ is used for deploying models to em-
bedded systems (Sony, 2018).

It was important for us that the framework we chose provided extensive documentation.
As Tensorflow has a large user base and was already known to us, we decided to adopt it.
It also seemed to be the framework with the most compatibility for mobile devices, which
also was important to us when selecting an appropriate framework. Tensorflow also in-
cludes a high-level API.

26

2.8 Data sources

We have used Scikit-learn to generate the metrics, which are discussed further in Sec-
tion 3. Scikit-learn is also a python framework for machine learning. Tensorflow does not
offer the same capabilities in this regard, and would have required us to instead manually
implement some of the functionalities that we required.

2.8 Data sources
As the potential of neural networks was realized for computer vision tasks, many datasets
were published by different organizations. There is the "Hello World" equivalent of ma-
chine learning, MNIST (Modified National Institute of Standards and Technology), which
contains handwritten digits with the intended use to classify the digits correctly. An-
other recognized dataset is the iris flower dataset (FISHER, 1936). Some of the published
datasets are related to a computer vision challenge.

Places
The Places dataset was used in the Places2 Challenge, which focused on scene recognition.
This dataset containsmore than 10million images spanningmore than 400 labels. We have
used a variant of this dataset called Places365-Standard, which is split into a training,
validation and test set (Bolei Zhou, 2017).

ImageNet
Similar to the Places dataset, the ImageNet dataset has also been published for a computer
vision challenge, the ImageNet Challenge. Rather than scene detection, it focus on object
detection and consists of more than 14 million images and more than 20000 labels (We
have employed the whole dataset for transfer learning only) (Olga Russakovsky, 2015).

Open Images
The Open Images dataset comes in a few increments and consists of both image label and
bounding boxes (object location annotations). It is split into a training, validation and test
set. It consists of more than 9 million images with 5000 labels (Krasin et al., 2017; Ope,
2017).

flickr
flickr is an application for photo management and sharing. It has a large user base with
an abundance of images and provides an API to interact with the data available on the
application. In the API, the functionality to download images with a keyword search is
provided.

27

2. Background

Other Datasets
The following datasets were all also used in the baseline datasets.

• CalTech 10’000 Web Faces: This is a dataset consisting of more than 10000 faces
in about 7000 images (Fink, 2007).

• Stanford 40 Actions: This dataset was used for human action recognition and its
images represents humans performing activities. It consists of more than 9000 im-
ages labelled as 40 different activities (B. Yao and Fei-Fei, 2011).

• University of Insubria’s Barcode collection: This dataset consists of 364 images
of barcodes (of insubria, 2016).

• University of Hong Kong’s Blur Detection Dataset: This dataset was used in a
study to find which features of an image can be used to effectively differentiate be-
tween blurred and unblurred image regions. It consists of 1000 images (Jianping Shi,
2014).

28

Chapter 3
Metrics

3.1 Confusion Matrix
A confusion matrix shows the accuracy of a classifier for each label, and also allows inden-
tifying problematic labels. A confusion matrix is generated after evaluation. An example
can be seen in Figure 3.1, where true labels are plotted against predicted labels. Entries
on the diagonal correspond to correctly predicted labels. That means that the sum of each
row corresponds to the amount of images carrying that label, and the sum of each column
is the amount of images that were predicted for that label. In the figure, there are three cat
images and three dog images. All of the cat images were correctly predicted as cats (3 in
absolute and 1 in normalized confusion matrix). On the other hand, one dog image was
predicted as a cat and the rest as dog (1 and 2 in absolute and 0.33 and 0.67 in normalized
confusion matrix). A confusion matrix makes it possible to evaluate the performance for
each label separately, accounting for uneven distributions in the validation set.

3.2 F1-Score
From the python library scikit-learnwe use the modulemetrics to calculate a metric called
F1 (Sklearn, 2017). F1 is a harmonic mean of two other metrics, Recall and Precision,
which are defined as true positives (TP), true negatives (TN), false positives (FP) and false
negatives (FN). True positives are predictions that are labeled correctly and true negatives
are correctly not predicted. False positives are "false alarms", predictions that are incor-
rectly labeled. False negatives are "missed" predictions, predictions that are incorrectly
not labeled. Intuitively put, precision and recall takes two different perspectives, where
precision is from the model and recall is from the samples. Thus, precision is a fraction
of correct predictions, and recall is a fraction of how much of the ground truths that were

29

3. Metrics

(a) Absolute (b) Normal-
ized

Figure 3.1: A small example of a confusion matrix

Actual
Positive Negative

ic
te
d

Positive True Positive False Positive

Pr
ed Negative False Negative True Negative

Figure 3.2: Precision and recall

captured. Precision and recall can be visualized in Figure 3.2. The definitions of these
three metrics as well as accuracy are shown in equations below (Goodfellow et al., 2016).
Accuracy is the fraction of true labels and the total of labels.

Recall =
TP

TP+FN
Precision =

TP
TP+FP

Accuracy =
TP + TN
Total

F1 = 2 ·
Precision · Recall
Precision + Recall

3.3 Evaluation graphs
To visualize our result, we plot a score on the y-axis and epoch on the x-axis. The score
can either be an averaged F1-score (where a mean for all classes are used), per-label F1-
score or accuracy. Both the scores for the training and validation data are shown. We are
mostly interested in how a model performs for the F1-score, as it is a more comprehensive
metric. A graph with the F1-score for each class is also used, showing the score for each
class seperately. These graphs helps us draw conclusions about the dataset, that is, if more
training is necessary and if there is a bias or variance error. The performance of a model
can be shown in graph called learning curve. It displays how the score is affected by

30

3.4 Underfit and Overfit

Epochs

F1 − score
Training accuracy
Validation accuracy

Validation accuracy

Figure 3.3: Red curve is overfit, the beginning of blue curve is
underfit

varying the number of training examples seen by the model. The score is on the y-axis
and the number of training examples is on the x-axis. There are two curves in the graph
that shows the score for training set and the validation set. If both the curves are reaching
a plateau, more training examples would not benefit the model.

3.4 Underfit and Overfit
An important step when training is to evaluate the relation between validation and training
F1-score in a graph. The graph gives us understanding whether the model is overfitting
or underfitting. Underfitting means that the model is not capable of understanding the
relation of the input data and the corresponding target values. Overfitting is when the
model has learned the pattern of the data it has seen but is not able to perform well on data
it has never seen before. In Figure 3.3, there are two curves under the training accuracy
(red). In the beginning, the green and blue curve is very close to each other which tells us
that the model underfitting. A cue is that it is performing bad on both the training set and
validation set. This particular figure shows that there is still room for improvement because
it has not modeled all pattern of the data which can be seen as the graph is still going up.
Training more epochs could solve underfitting. The gap between the green curve and red
curve shows that there is an overfit on the model. This means the model is performing
good on the training set but poorly on the validation set. Collecting more data could solve
overfitting (Chollet, 2017).

3.5 Stratified sampling
Stratified sampling was used when generating the learning curve. It is a method of sam-
pling from a dataset, which is beneficial if number of the samples in categories vary. The
train and test sets have the same percentage of samples for each category. For instance, a

31

3. Metrics

category representing 10% of the train set would also represent 10% of the test set.

32

Chapter 4
Method

4.1 Model
The Tensorflow git repository contains a multitude of resources useful for working with
machine learning. Provided are various types of models, categorized as official, research,
sample or tutorial, as well as tools to train and evaluate them. Also, access is given to
multiple state of the art architectures and comparisons between research models. All the
networks that are a part of the comparison are trained on the ImageNet dataset. The net-
works are compared in terms of accuracy, size and the number of multiply-accumulate
(MACs) operations needed to perform inference (see Table 2.1). The architectures as well
as the parameters achieved through training are all publicly available. In this project we
have utilized both. The architectures available in this repository were used for the various
networks that was evaluated. The parameters available were used in the pre-trained mod-
els for transfer learning. We have focused on smaller networks, which are assumed to be
more suitable for mobile platforms.

4.2 Preprocessing
Before feeding the data to our networks we performed different preprocessing steps: down-
sizing of the images, converting images to TFRecords and data augmentation. Downsizing
is a fairly straight forward process, where the resolution was downscaled but the aspect
ratio was preserved. This was achieved by the python package called Python Imaging Li-
brary (PIL). In that package there is the option to create a thumbnail of a specified image
by the provided thumbnail method. This method comes with various resampling filters,
which if not specified defaults to a bicubic filter (Pillow, 2016). The bicubic filter was the
filter that we used in this preprocessing step.

With Tensorflow’s data API, it is possible to construct an input pipline to process large

33

4. Method

dataset that otherwise wouldn’t fit in memory. For this purpose the recommended format is
TFRecords, which is a binary file. To convert data to this format, the data has to be loaded
into a buffer, which is then serialized and where following the output string is written to
TFRecord file (Tensorflow, 2018).

As is explained in Section 3.4, overfit is a prevalent problem in machine learning. Data
augmentation is one way of facing this issue, it’s a concept of artificially constructing more
data than what is at hand. More data is conctructed by random transformation of each data
sample creating similar looking data (but different) to its original (Chollet, 2017). Data
augmentation was used on our data by color distortion and cropping.

4.3 Experiment
During this thesis, experiments were done in order to answer the research questions. The
purpose of the experiments were to find out which architecture to use and whether the
model should be a pretrained model (if there exists one) or a model trained from scratch.
After training a network, we evaluated the F1 score for each of the categories for all the
epochs. We also looked at how well each category performed on the best epoch of the
model. We chose the network that had the best average F1-score and did further improve-
ments, such as dataset modifications. After a dataset modification, the network was re-
evaluated. For the dataset modifications, we examined whether the categories contained
enough images and how meaningful they were. We also investigated if using an ensemble
method improves the F1-score. Two ways of transfer learning and optimizers were evalu-
ated. We investigated how well a model trained on the Places dataset could perform on our
dataset. Lastly, we investigated how well our model performed in real life using a mobile
device.

4.4 Android app
An Android app was developed because we wanted to evaluate the performance of the
architectures on the mobile device. The app was primarily used to extract the time it took
to run inference on one image. The trained models must be prepared first before deploying
them to Android. The preparations are the following:

• Freezing: During training, separate checkpoints are generated which contain the
weights of the model. When they are initialized, the latest values are loaded by
Variables ops. However, it is not appropriate to have separate files when deploying
to mobile device. Instead what we do is called freezing, which load a Graph and
retrieve the variables from the latest checkpoint. Then, it will output a Graph where
every Variable op is replaced with a Const op which will contain the values of the
variables. The script freeze_graph.py by Tensorflow was used.

• Optimizing: There are some computations done by the network during training
which is not needed when running inference. Parts of the graph can be removed
then, to make the network optimized. For instance: Training-only operations like
checkpoint saving can be removed and parts of the graph that are never reached/used
can also be removed. The script optimize_for_inference.py by Tensorflow was used.

34

4.5 Data

(a) Preview (b) Image captured

Figure 4.1: Android app

• Converting: Lastly, the optimized frozen graph is converted to a Tensorflow Lite
Flatbuffer which perform inference. Tensorflow Lite is a lightweight solution for
mobile devices from Tensorflow. It allows inference with low latency and small
binary size.

The best performing models of all the evaluated architectures are then exported to
Android for inference. The Android app captures an image from the camera when the user
presses the capture button. The Android app is shown in 4.1. The image is then used as
an input to the model for inference. The output of the model are shown in the interface of
the app. They are described below:

• Probabilites: The top 4 predictions. The four classes which performed best are
shown together with their respective probability.

• Time: The time it took for the model to run inference on one image in milliseconds.

4.5 Data
For this project we had to collect data that would fit to the problem that is to be solved by a
neural network. Since the problem was to classify a certain image to a pre-defined scene,
we had to create a dataset that had labels which corresponds to those scenes. Through dis-
cussions with our supervisor we decided to base those labels on the various scenes that are
briefly defined in the Android Camera2 API (developer.google, 2018). In the following, a
description of how our dataset was constructed will be provided. We constructed two base-
line datasets, which we refer to as Dataset500 and Dataset5000. Dataset500 was mostly
used for our own practice, to get acquainted to the framework, whereas Dataset5000 was
used for our comparison of networks.

Our Dataset
We have based our dataset on the scenes supported by the Android Camera2 API which
are listed in Table 4.1.

35

4. Method

Scene Definition
Action Take photos of fast moving objects.
Auto Scene mode is off.
Barcode Applications are looking for a barcode.
Beach Take pictures on the beach.
Candles Capture the naturally warm color of scenes lit by candles.
Fireworks For shooting firework displays.
HDR Capture a scene using high dynamic range imaging techniques.
Landscapes Take pictures on distant objects.
Night Take photos at night.
Night Portrait Take people pictures at night.
Party Take indoor low-light shot.
Portrait Take people pictures.
Snow Take pictures on the snow.
Sports Take photos of fast moving objects.
Steadyphoto Avoid blurry pictures (for example, due to hand shake).
Sunset Take sunset photos.
Theatre Take photos in a theater.

Table 4.1: The definition of the scenes from the Android Camera2
API (developer.google, 2018)

These definitions works as guideline to what the images included in each label should
be representations of. There is some overlapping between certain labels. The problems
we faced are the following:

• Night Portrait, Party and Portrait should all contain peoples, but in different light
conditions. Due to that, finding images that fits the definition of Night Portrait was
difficult, and we decided to exclude that label.

• Action and Sports have the same definition. We made a distinction between them by
having Sports contain all sport events and Action contain everything else that still fits
the definition. Detecting fast moving object is more of a video processing problem,
but blur is often a cue (Rozumnyi et al., 2016). Hence Steadyphoto also overlaps
with Action and Sports. In the baseline datasets blurry images were included in
Steadyphoto.

• Auto contains images that won’t fit any of the other used labels, hence it is treated a
bit differently (see below).

• HDR isn’t applicable to thewaywe have used these scenes, as it is a camera operation
mode rather than a scene.

Each label (except Auto) was directly mapped from their original dataset, as shown in
Table 4.2. For Auto, n images per label were extracted from the Places dataset. n was
chosen so that a uniform distribution was achieved. Out of the 365 labels which Places
consists of, 32 labels were excluded for Auto. All the excluded labels can be found in

36

4.5 Data

(a) dataset500 (b) dataset5000

Figure 4.2: Data distribution of the two baseline datasets.

Table 4.3. Some labels were already mapped to other labels in our dataset, while others
were too similar to already-mapped labels (e.g. landscape has many similiar labels such
as badlands, fields, glacier, etc.). The search for overlapping labels were done manually
by us.

37

4. Method

Table 4.2: The amount of images for each label and the total
amount for the two baseline datasets. From which data source the
images were retrieved from are also provided (see section 2.8).

Label Dataset500 Dataset5000 Original
Data source

Action 496 5000 Stanford
Auto 501 5328 Places
Barcode 364 364 Barcode
Beach 500 5000 Places
Candles 484 4615 OpenImages
Fireworks 484 5000 OpenImages
Landscapes 520 5000 Places
Night 514 1008 OpenImages
Party 488 5000 Places
Portrait 496 5000 CalTech
Snow 459 5000 Places
Sports 500 5000 Places
Steadyphoto 296 296 Blur
Sunset 491 2184 OpenImages
Theatre 500 5000 Places
Total 7093 58795 -

Scene in Places Label in our dataset Scene in Places Label in our dataset
Beach Beachb Igloo Snow

Badlands Landscape Ski slope Snow
Field - wild Landscape Ski resort Snow

Field - cultivated Landscape Snowfield Snow
Forest path Landscape Classroom Theatre
Golf course Landscape Movie theater Theatre
Hayfield Landscape Stage - indoor Theatre
Lagoon Landscape Stage - outdoor Theatre
Mountain Landscape Bar Party

Mountain path Landscape Discotheque Party
Ocean Landscape Pub Party
Pasture Landscape Boxing ring Sports
Tundra Landscape Baseball field Sports
Valley Landscape Basketball court Sports
Glacier Snow Soccer Sports

Soccer field Sports Volleyball court Sports

Table 4.3: The labels that were excluded from Places when con-
structing Auto.

38

Chapter 5
Results

All models were evaluated for 50 epochs, except when the average F1-score plateaued or
the gap between training and validation F1-score increased (overfitting). A batch size of
32 was used for all architectures except NasNet Large, which used a batch size of 8. This
section will present our result.

5.1 Comparison of networks
The comparison between the different networks can be seen in Table 5.1. The architecture
InceptionV4 achieved highest F1-score (78%) when trained from scratch. When feature
extraction was done, Mobilenet-v1 (80.6%) achieved the highest F1-score among the ar-
chitectures. This model achieved the highest F1-score among all the evaluated models.
Across all models feature extraction performed better than when trained from scratch. Ad-
ditional results are provided for the highest performing models for both feature extraction
and training from scratch in the following.

In the column "Time" in Table 5.1, each time was calculated from an average of 7
measurements. As can be seen, the Mobilenet v1 & v2 have inference runtimes on par
with corresponding depth-wise multipliers. See Table 2.1 for number of operations for
each model. The inference was executed on a Sony Xperia Z3.

5.1.1 InceptionV4
In Figure 5.2 it is clear that there is a steady increasing improvement, but at a point in
between epoch 25 and 35 the gap between training score and validation score starts to
increase. This suggest the presence of an overfit on the training data.

Across all models that were evaluated, steadyphoto, night, auto and action had the
lowest F1-score. This can be seen in Figure 5.3 and is true for the other models as well.

39

5. Results

Architechture F1-score (from
scratch)

F1-score (feature ex-
traction)

Time for inference
(ms)

Mobilenet-v1 0.754 0.806 168
Mobilenet-v1-0.75 0.732 0.798 110
Mobilenet-v1-0.5 0.723 0.792 64
Mobilenet-v1-0.25 0.638 - 41
Mobilenet-v2-1.4 0.768 0.799 243
Mobilenet-v2-1 0.744 0.764 167
Mobilenet-v2-0.75 0.756 - 141
Mobilenet-v2-0.5 0.756 - 86
Mobilenet-v2-0.25 0.724 - 43
NasNet-Mobile 0.735 0.756 735
NasNet-Large - - -
InceptionV4 0.780 0.793 2750

Table 5.1: The highest F1-score and corresponding epoch of vari-
ous architectures. Training was done from scratch or using feature
extraction from a pretrained model

(a) Red denotes
feature extraction
and blue from
scratch.

(b) Color expla-
nation: Green;
MobilenetV1,
Blue; Mo-
bilenetV2, Red;
NasNet, Yellow;
Inception.

Figure 5.1: The size of each dot corresponds to the number of
parameters for each architecture.

Consequently, the defects of the previously mentioned labels are present in Figure 5.4.
Where, 31% of the steadyphoto images are being labelled as action, and 12% as auto,
resulting in only 50% being labelled correctly. Night is confused a lot with fireworks,
where most of the images are labelled as fireworks. Auto has many of its true images spread
out across most other labels, in particular: action, beach & candlelight. These results are
consistent with the results of the other models that were evaluated on this dataset.

40

5.1 Comparison of networks

Figure 5.2: F1-score for InceptionV4 trained from scratch.

Figure 5.3: F1-scores for each class of InceptionV4 trained from
scratch.

41

5. Results

Figure 5.4: Normalized confusion matrix for InceptionV4 trained
from scratch.

5.1.2 MobilenetV1

Both of the curves in Figure 5.5 are fairly flat and congruous, hence no big improvements
are made on the pre-trained model by feature extraction. All evaluated pre-trained models
have the same behaviour for their F1-score.

Figure 5.5: F1-score for Mobilenet-v1 pre-trained on ImageNet.

42

5.1 Comparison of networks

Figure 5.6: F1-scores for each class of Mobilenet-v1 pre-trained
on ImageNet.

Figure 5.7: Normalized confusion matrix for Mobilenet-v1 pre-
trained on ImageNet. See appendix for corresponding confusion
matrix with absolute numbers.

Many of the same issues as for InceptionV4 are present in this model as well (Figure
5.6 & 5.7), except for Steadyphoto, which shows a big improvement. Also notable is that
all images of Barcode are labelled correctly, both in terms of precision and of recall.

43

5. Results

5.2 Dataset modifications

After comparing the architectures, modifications on the dataset were made in order to
improve the results. The most important dataset modification is listed below and the best
performed model from the previous result (Mobilenet-v1) was used to train on it. The
category Steadyphoto was removed and the number of images in the category Night was
increased. With this modification an F1-score of 84.1% was achieved.

5.3 ADAM and fine tuning

The optimizer was changed to investigate if the F1-score would improve. The dataset
which was modified as described in the previous subsection was chosen to train on. This
change resulted in an F1-score 84.7%, a small increase compared to the previous (84.1%).
Fine tuning was done to see if the result could further improve. The layer before the last
layer was also trained. By doing fine tuning, the F1-score increased to 86.9%.

Table 5.2: Performance of ADAM on datasetv1 using transfer
learning

Improvement F1-score
ADAM OPT + feature extraction 0.847
ADAM OPT + fine tune 0.869

5.4 Places dataset

The results from pre-training a model on the Places dataset, and feature extraction on
dataset5000v1 are provided here. We created the pre-trained model ourselves, based on
a modified variant of Places. Places was modified by removing the labels that are used
in dataset5000v1(see Table 4.2), except for auto. For auto all images used in dataset5000
were removed. This was done in order to prevent the network from being trained on an
images it already has been trained on.

With this model an F1-score of 83.2% was achieved, it can be compared to the result
of Section 5.2. Figure 5.8 and 5.9 shows that F1-score is constant throughout the whole
training session, with few modifications on the pre-trained model. As can be seen in 5.10,
there is a confusion between the labels sunset and beach. What is also notable is that action
"swallows" many of the images this model is provided with.

44

5.4 Places dataset

Figure 5.8: F1-score for Mobilenet-v1 pre-trained on places.

Figure 5.9: F1-scores for the separate classes in Mobilenet-v1
pre-trained on places.

45

5. Results

Figure 5.10: Normalized confusion matrix for Mobilenet-v1 pre-
trained on places. See appendix for corresponding confusion ma-
trix with absolute numbers.

5.5 Learning curve

A learning curve was created by training and evaluating the model Mobilenet-v1 for each
set of all training examples. Each training set contained 4960 images, where the set has a
proportional split percentage compared to the validation set by using stratified sampling.
The split percentage can be seen in Table 5.3. The total number of training examples
seen by the model is 49600 examples. The validation set contains 9920 examples. These
examples are extracted from Dataset5000v1 which is not composed of a perfect uniform
distribution. Corollary, Candles, Sunset and Barcode has lower percentages in Table 5.3.
That had no noticeable effect on the result.

Table 5.3: Stratified sampling.

Model Percentage Train size Validation
size

Candles 0.071 3550 710
Sunset 0.035 1750 350
Barcode 0.006 300 60
All other classes 0.08 4000 800

46

5.6 Ensemble learning

Figure 5.11: Learning curve. A stratified split was used.

5.6 Ensemble learning
The result for the ensemble learning is shown in Table 5.4. There are two ensembles, each
containing two different models. Mobilenet-v1 was trained on a size of 36990 images,
using similar modifications as was done to Dataset5000v1 (see Section 5.2). Fine-tuning
was also done for that dataset. Mobilenet-v1 was also trained on a dataset with the follow-
ing modifications to the baseline dataset: more images for Night, Sunset and Auto (images
were added from the ImageNet dataset to increase diversity). We refer to this dataset as
Dataset5000v8. The ensemble containing of the feature extracted (fe) v1 and v8 achieved
F1-score of 85%. The ensemble containing of the fine tuned (ft) v1 and v8 achieved a
F1-score of 86.6%. The meta-learner was a fully-connected layer where the input was the
outputs from both the models (14 predictions each) making it the size of 28.

47

5. Results

Table 5.4: Ensemble learning. The architecture Mobilenet-v1
was used. A validation size of 10000 was used for each F1-score.

Model Train size F1-score
v1 (feature ex-
traction)

36990 0.845

v1 (fine tun-
ing)

36990 0.865

v8 44719 0.841
ensemble (v1
(fe)+v8)

15493 0.850

ensemble (v1
(ft)+v8)

15493 0.866

48

Chapter 6
Discussion

6.1 Comparison of networks
In the comparison of networks trained on ImageNet (see Table 2.1), NasNet-Large had
the highest accuracy. The performance then followed in descending order with regard to
number of operations. When looking at how the same networks performed on our dataset
when trained from scratch, that principle is still fairly accurate. With two exceptions,
Mobilenetv2-1.0 and NasNet-Mobile were both expected to performmuch better. Looking
at how the pre-trained models performed, these two networks are the two with the lowest
F1-score. The reason for this is hard to figure out since you generally don’t know what
networks learn. It could be possible to increase the score of these by individually tweaking
them. To have a fair assessment, it would then be required to have all networks individually
tweaked. Due to limited time we mainly considered the best performing networks for
further tweaking and investigation.

What is also interesting to note is that a small cut in F1-score, will correspond to a huge
cut in inference time. As an example, consider Mobilenet-V1-1 and Mobilenet-V1-0.5 in
Table 5.1. There is an difference in F1-score of 1%, but inference time takes more than
twice as long for the former (168 ms) as the latter (64 ms).

Table 5.1 is sparse because for some architectures, no pretrained models were found.
NASNet-Large was omitted, due to slow training.

6.2 Dataset modifications
More images were added to the Night category due to low F1-score according to the
class graph for all architectures. The category Steadyphoto was removed because it also
achieved a very low F1-score and the complexity and ambiguity led to the decision to try
and leave it out. The Android Camera API describe the scene as "Avoid blurry pictures

49

6. Discussion

(for example, due to hand shake)". It is hard to decide based from an image whether it
could be classified as a Steadyphoto. There is a difficulty for the network to classify im-
ages as Steadyphoto when there could be clashes between this class with sports and action
images which could all be a bit blurry but be more suited to sports and action due to the
fast movement.

Combining action and sports images was done because the action and sports scenes
were both described the same way by the Android Camera parameters as "Take photos of
fast moving objects".

6.3 ADAM and fine tuning
By changing the optimizer from RMSProp to ADAM, the model increased its F1-score
to 84.7%. This increase could be that ADAM is using momentum which gives a faster
convergence. Fine tuning also increased the performance of the model. Due to the features
of the last layers are more specialized (Chollet, 2017), it will fit our problem more by
training the last layers.

6.4 Places dataset
In (Zhou et al., 2017), they show that there is classification difference for object-centric and
scene-centric images. Since most of our images are scene-centric, we expected a higher
performance score for the pretrained model on places. Unfortunately it didn’t, it achieved
a result that was 0.9% points lower than the pretrained model on ImageNet.

6.5 Learning curve
The learning curve revealed that using more training examples would not be necessary.
Both the training and validation curves started to plateau at around 44640 examples seen
by the model.

6.6 Ensemble learning
Using stacking as an ensemble method gave a slight increase in F1-score when the ensem-
ble contained two models. One model was good at classifying the category auto (v8) and
the other one was an all round model (v1) but not good at auto images. However, the new
model is not desirable to run on a mobile device considering that it could take as long as
335ms (Mobilenet-v1) to run both (assuming it is run after each other) the base learners
and the meta-learner (time neglected). Also, the performance gain would only be 0.1% or
0.5% points.

In the context of convolutional networks and stacking, the choice of an ensemble size
may be a trade off between accuracy and inference time. In an ensemble of many networks,
it might not be desirable that each network has too long inference time. From the result in
Table 5.4, it can be seen that a small increase in accuracy corresponds to a large increase in

50

6.6 Ensemble learning

operations (see Table 2.1). For mobile devices, it might be preferable to choose a network
with lower performance if you can gain processing time, to preserve power consumption.
Considering that each model is running inference in sequence, too many models could
give a large combined inference time.

51

6. Discussion

52

Chapter 7
Conclusions & Future work

7.1 Conclusions
In this thesis, we have investigated the possibility of using machine learning to do scene
detection. Various convolutional neural networks have been evaluated on our dataset. The
networks have been trained from scratch and on pretrained models (feature extraction).
We chose to build our dataset by using the scenes defined by Android Camera API as
our labels. Metrics were used to measure the performances of the models. An ensemble
method and finetuningwere explored because it could potentially increase the performance
of a model.

We found that the best architecture was MobiletNet-v1-1 (feature extraction). Using a
pretrained model proved to be an advantage, though training can probably be cut down a
bit cause the F1-score was more or less constant throughout the training session. We also
created a pretrained model on another dataset, places, on MobiletNet-v1-1 architecture,
but no signifcant improvement was achieved.

Some dataset modifications improved the performance (increasing Night images) but
others did not show any significant improvements. Different changes to Auto wasmade but
none gave a better result in the end. We tried to increase the number of images in Auto four
times by retrieving images both from ImageNet (object centric images) and Places (scene
centric images). While leaving Auto out, the performance of the model increased. This
label was the one that caused us the most problem. If possible labels should be constructed
in such a way that labels of this kind (acting as other) can be avoided. We also found out
that the category Action did not perform well in reality. When a scene contained people,
it often said the scene was Action. This is most probably due to the images in the training
set for action always contain actions performed by people. We looked into the images
in Action closely, and realized that it was not always clear that an action was performed
according to the Android definition (fast moving object). There were some badly defined
scenes which led to Steadyphoto of them being removed from the dataset.

53

7. Conclusions & Future work

Finetuning and changing the optimizer from RMSProp to ADAM further improved the
result. The ensemble method stacking showed better performance than a separate model.
Thus, to achieve the highest performance on our dataset, networks in an ensemble should
be employed. With this solution we think it is a fair assumption to make that the inference
time will increase proportionately to the networks employed. This is something that has
to be considered due to the time constraint inherent for this type of problem.

On that note, you can even make a case for MobiletNet-v1-050 being the most suit-
able architecture. It has an inference time that is 2x less than MobiletNet-v1-1 while the
performance difference is only 1%.

7.2 Future work
We will present some suggestions of how to continue with this work

• Instead of predicting a scenewhich thenmaps to a camera parameter setting, amodel
which bypass scene prediction and instead directly predict a parameter setting would
be of interest. This kind of model could provide a spectrum of parameter settings,
rather than 15 discreet parameter settings as would be the case for our model.

• This task could be suitable for an application of an Generative Adverserial Network
(GAN). The generator network would then take a camera sensor reading as its input,
apply camera parameter settings to it and pass it to the discriminator. One problem
with this solution is that the discriminator requires a ground truth input which rep-
resents "good" camera parameter settings, but what are "good" camera parameter
settings?

• Using other ensemble methods. In this thesis, stacking was explored but there are
other ensemble methods that could perform even better. Each ensemble method
has its own weakness and strength. The size of the ensemble must also be chosen
carefully because they have an effect on the accuracy.

• Avoid overlap between scenes by having more clearly defined scenes and construct
them in such a way that an "other" scene is avoided. This could be achieved by a
multi-scene model, where each scene can be labelled with multiple labels. E.g, an
image that contain both a beach and fireworks, would be labelled accordingly as
"beach, fireworks".

54

Bibliography

(2017). Open Images Dataset V3. https://github.com/openimages/
dataset/blob/master/READMEV3.md. [Online; accessed 2018-07-19].

B. Yao, X. Jiang, A. K. A. L. L. G. and Fei-Fei, L. (2011). Human Action Recognition
by Learning Bases of Action Attributes and Parts. Internation Conference on Computer
Vision. Barcelona, Spain.

Ballard, D. H. and Sabbah, D. (1983). Viewer independent shape recognition. IEEE
Transactions on Pattern Analysis and Machine Intelligence, PAMI-5(6):653–660.

Bengio, Y. (2012). Practical recommendations for gradient-based training of deep archi-
tectures. In Neural networks: Tricks of the trade, pages 437–478. Springer.

Bolei Zhou, Agata Lapedriza, A. K. A. T. A. O. (2017). Places2: A Large-Scale Database
for Scene. http://places2.csail.mit.edu/challenge.html. [Online;
accessed 2018-07-19].

Chollet, F. (2017). Deep learning with Python. Manning Publications Co.

developer.google (2018). Android API: Camera.Parameters. https://developer.
android.com/reference/android/hardware/Camera.Parameters.
[Online; accessed 2018-07-19].

Fink, M. (2007). Caltech 10, 000 Web Faces. http://www.vision.caltech.
edu/Image_Datasets/Caltech_10K_WebFaces/. [Online; accessed 2018-
07-19].

FISHER, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals
of Eugenics, 7(2):179–188.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press. [Online;
accessed 2018-05-03].

Google (2018). TensorFlow. https://www.tensorflow.org/extend/tool_
developers/. [Online; accessed 2018-07-19].

55

https://github.com/openimages/dataset/blob/master/READMEV3.md
https://github.com/openimages/dataset/blob/master/READMEV3.md
http://places2.csail.mit.edu/challenge.html
https://developer.android.com/reference/android/hardware/Camera.Parameters
https://developer.android.com/reference/android/hardware/Camera.Parameters
http://www.vision.caltech.edu/Image_Datasets/Caltech_10K_WebFaces/
http://www.vision.caltech.edu/Image_Datasets/Caltech_10K_WebFaces/
https://www.tensorflow.org/extend/tool_developers/
https://www.tensorflow.org/extend/tool_developers/

BIBLIOGRAPHY

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto,
M., and Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network training
by reducing internal covariate shift. CoRR, abs/1502.03167.

Jianping Shi, Li Xu, J. J. (2014). University of Hong Kong: Blur De-
tection Dataset. http://www.cse.cuhk.edu.hk/leojia/projects/
dblurdetect/dataset.html. [Online; accessed 2018-07-19].

Karpathy, A. (2018). cs231n cnn. http://cs231n.github.io/
convolutional-networks/. [Online; accessed 2018-07-19].

Karpathy, A. and Fei-Fei, L. (2017). Deep visual-semantic alignments for generating im-
age descriptions. IEEE Transactions on Pattern Analysis and Machine Intelligence,
39(4):664–676.

Keras (2018). keras. https://keras.io/. [Online; accessed 2018-07-19].

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980.

Krasin, I., Duerig, T., Alldrin, N., Ferrari, V., Abu-El-Haija, S., Kuznetsova, A., Rom, H.,
Uijlings, J., Popov, S., Veit, A., Belongie, S., Gomes, V., Gupta, A., Sun, C., Chechik,
G., Cai, D., Feng, Z., Narayanan, D., and Murphy, K. (2017). Openimages: A public
dataset for large-scale multi-label and multi-class image classification. Dataset avail-
able from https://github.com/openimages.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems,
pages 1097–1105.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. nature, 521(7553):436.

of insubria, U. (2016). Medium 1D barcodes collection. http://artelab.dista.
uninsubria.it/downloads.html. [Online; accessed 2018-07-19].

Olga Russakovsky, J. D. (2015). ImageNet Large Scale Visual Recognition Chal-
lenge. http://www.image-net.org/challenges/LSVRC/. [Online; ac-
cessed 2018-07-19].

Opitz, D. and Maclin, R. (1999). Popular ensemble methods: An empirical study. Journal
of artificial intelligence research, 11:169–198.

Pillow (2016). Pillow: Image Module. https://pillow.readthedocs.io/en/
3.1.x/reference/Image.html. [Online; accessed 2018-07-19].

Rozumnyi, D., Kotera, J., Sroubek, F., Novotný, L., and Matas, J. (2016). The world of
fast moving objects. CoRR, abs/1611.07889.

56

http://www.cse.cuhk.edu.hk/leojia/projects/dblurdetect/dataset.html
http://www.cse.cuhk.edu.hk/leojia/projects/dblurdetect/dataset.html
http://cs231n.github.io/convolutional-networks/
http://cs231n.github.io/convolutional-networks/
https://keras.io/
http://artelab.dista.uninsubria.it/downloads.html
http://artelab.dista.uninsubria.it/downloads.html
http://www.image-net.org/challenges/LSVRC/
https://pillow.readthedocs.io/en/3.1.x/reference/Image.html
https://pillow.readthedocs.io/en/3.1.x/reference/Image.html

BIBLIOGRAPHY

Sandler, M., Howard, A. G., Zhu, M., Zhmoginov, A., and Chen, L. (2018). Inverted
residuals and linear bottlenecks: Mobile networks for classification, detection and seg-
mentation. CoRR, abs/1801.04381.

Sklearn (2017). sklearn metrics f1 score. http://scikit-learn.org/stable/
modules/generated/sklearn.metrics.f1_score.html. [Online; ac-
cessed 2018-07-19].

Sony (2018). nnabla. http://nnabla.readthedocs.io/en/latest/. [On-
line; accessed 2018-07-19].

Szegedy, C., Ioffe, S., and Vanhoucke, V. (2016). Inception-v4, inception-resnet and the
impact of residual connections on learning. CoRR, abs/1602.07261.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke,
V., Rabinovich, A., et al. (2015a). Going deeper with convolutions. Cvpr.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. (2015b). Rethinking the
inception architecture for computer vision. CoRR, abs/1512.00567.

Tensorflow (2018). Tensorflow: File formats. https://www.tensorflow.org/
api_guides/python/reading_data#file_formats. [Online; accessed
2018-07-19].

Tieleman, T. (2018). RMSPROP. https://www.cs.toronto.edu/~tijmen/
csc321/slides/lecture_slides_lec6.pdf. [Online; accessed 2018-07-
19].

Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., and Torralba, A. (2017). Places: A 10
million image database for scene recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence.

Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., and Oliva, A. (2014). Learning deep
features for scene recognition using places database. In Ghahramani, Z., Welling, M.,
Cortes, C., Lawrence, N. D., and Weinberger, K. Q., editors, Advances in Neural Infor-
mation Processing Systems 27, pages 487–495. Curran Associates, Inc.

Zhou, Z.-H. (2012). Ensemble methods: foundations and algorithms. Chapman and
Hall/CRC.

Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. (2017). Learning transferable architec-
tures for scalable image recognition. arXiv preprint arXiv:1707.07012, 2(6).

57

http://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
http://nnabla.readthedocs.io/en/latest/
https://www.tensorflow.org/api_guides/python/reading_data#file_formats
https://www.tensorflow.org/api_guides/python/reading_data#file_formats
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

INSTITUTIONEN FÖR DATAVETENSKAP & MATEMATIKCENTRUM | LUNDS TEKNISKA HÖGSKOLA |
PRESENTATIONSDAG 2018-08-23

EXAMENSARBETE Generation of Artificial Training Data for Deep Learning
STUDENTER Pontus Andersson, David Wessman
HANDLEDARE Michael Doggett (LTH), Kalle Åström (LTH)
EXAMINATOR Niels Christian Overgaard (LTH)

Konstgjorda träningsexempel för
artificiell intelligens

POPULÄRVETENSKAPLIG SAMMANFATTNING Pontus Andersson, David Wessman

Kan bilder av konstgjorda människor ersätta bilder av riktiga människor som tränings-
exempel för artificiell intelligens? Vi undersöker denna fråga och skapar ett ramverk
för att generera stora mängder konstgjorda träningsexempel.

Säg att vi vill träna upp en artificiell intelligens
(AI) för att hitta katter i bilder. Det viktigaste
som behövs är träningsexempel. Först behövs en
bild på en katt och sen måste en manuellt markera
var i bilden katten är. Helst behövs det hundra-
tusentals bilder, några med och några utan katter.
Hur löser vi detta?

Vårt förslag är att skapa konstgjorda trä-
ningsexempel! Istället för katter har vi tittat på
träningsexempel för att kunna avgöra om det är
samma människa som syns i två olika bilder. Bil-
derna genereras med datorgrafik, på samma sätt
som i dator- och TV-spel.
När vi testar vår AI, efter att den tränats en-

dast med genererade bilder, är resultatet inte lika
bra som när vi tränar på riktiga bilder. Detta kan
förklaras av skillnaderna som syns om man jäm-
för bilder vi genererar (A) med bilder från riktiga
övervakningskameror (C). Kan skillnaderna göras
mindre? Vi försöker åstadkomma detta genom att
sända alla våra egna bilder genom en processor
vars uppdrag är att förfina våra bilder, dvs. att
få dem att se ut som att de också var tagna med
riktiga övervakningskameror och innehöll verkliga
människor (B).
I våra resultat ser vi att konstgjorda bilder inte

kan ersätta riktiga bilder som träningsexempel
helt och hållet. Däremot upptäcker vi att förfinade

bilder utgör bättre träningsexempel än de som inte
förfinats.
Om konstgjorda bilder kunde ersätta riktiga,

skulle det bli mycket enklare att skapa färdiga
och uppmärkta träningsexempel, även för tillämp-
ningar där det idag inte finns bilder eller tränings-
exempel att använda. Till skillnad från bilder av
riktiga personer, är genererade bilder dessutom
inte integritetskränkande.
För att kunna generera stora mängder tränings-

exempel lånar vi våra kollegors datorer på natten.
Vi har byggt ett system där alla datorer genererar
bilder som automatisk skickas till vår dator. Detta
gör att vi kan generera hundratusen bilder varje
natt.

A B C

Bild (C) från bildsamlingen CUHK03.

http://www.ee.cuhk.edu.hk/~xgwang/CUHK_identification.html

	Introduction
	Problem definition
	Contributions
	Related work

	Background
	Scene Recognition
	Data representation of an image
	Neural network
	Learning algorithm
	Hyperparameters
	Activation function
	Convolutional Neural Network

	Architectures
	Transfer learning
	Ensemble learning
	Framework
	Data sources

	Metrics
	Confusion Matrix
	F1-Score
	Evaluation graphs
	Underfit and Overfit
	Stratified sampling

	Method
	Model
	Preprocessing
	Experiment
	Android app
	Data

	Results
	Comparison of networks
	InceptionV4
	MobilenetV1

	Dataset modifications
	ADAM and fine tuning
	Places dataset
	Learning curve
	Ensemble learning

	Discussion
	Comparison of networks
	Dataset modifications
	ADAM and fine tuning
	Places dataset
	Learning curve
	Ensemble learning

	Conclusions & Future work
	Conclusions
	Future work

	Bibliography
	Tom sida
	Tom sida

