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Abstract

System testing is performedwhen developing 3D graphics hardware and drivers
for GPUs. A crucial aspect when performing system testing is comparing a
given output image of a specific scene to its corresponding reference image.
There are many methods of quantifying the difference between two images,
most of which only produce a scalar value as a measurement. To save time
in the development process by speeding up the (usually manual) classification
of the graphical artefacts in these images, an automated classification tool was
produced, which is described in this paper. Given a relatively small set of data,
a certain number of classes were determined based on the similarities of the
artefacts. The classification of the test set of images gave an accuracy of 78%.
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Chapter 1
Introduction

System testing is performed when developing 3D graphics hardware and drivers. A crucial
aspect when performing system testing is comparing a given output image of a specific
scene to its corresponding reference image. The main tool used in this comparison is
Peak Signal-to-Noise Ratio (PSNR). PSNR can only be used to tell whether there is a
difference between the two images or not, and of what magnitude it is. As PSNR does
not give any information what the difference is in terms of different possible graphical
artefacts, one cannot know what faulty images are in fact due to the same bug. With this
as motivation, the main aim and purpose of this thesis is to create a tool which can provide
such information, as it would speed up the time to market of the product by more efficiently
finding errors that correlate to each other and give an additional measurement to ensure
whether or not any bugs are present.

This will be done by classifying what graphical artefacts might be contained in a given
faulty image through image analysis and determining if the found errors correlate to any
predetermined class. Since the artefacts that emerge are so different, as they depend on
the choice of scene and frame of a test and due to the relatively small amount of images
to test on, and also that the number of images in the reference set was only 112, a normal
machine learning algorithm would not be sufficient to get a robust classification. That is
why more general image analysis methods are used instead in this thesis. In addition to
the classification, other information related to each class will be reported, e.g. the number
of faulty pixels when classifying the pixel error class and other information describing the
nature of the class.

The work of this thesis is divided into the following parts:

• Review. Both authors have reviewed each others code and writing throughout the
thesis.

• Implementation. Both authors participated in most code and sometimes pairpro-
grammed, but the heaviest algorithms are implemented by A. Carlman.
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1. Introduction

• Evaluation. Aspects in the discussion have been added by both authors, but mostly
evaluated by D. Cheveyo.

• Writing. Both have written parts of all sections and rewritten sections so that the
text proved satisfactory, but most of the writing was performed by D. Cheveyo.

• Generation of test images were carried out by A. Carlman and other figures were
made by D. Cheveyo.

The disposition of this thesis is the following:
We will start by presenting and explaining the theory of the concepts and the methods,

used in this thesis, in the Theory chapter. After that we will introduce theMethods chapter,
which will contain a description of how the data used were processed and collected. The
chapter will also provide an overview of the data flow through the implemented algorithms,
and the chosen approach to the given problem. The actual description of the implemented
algorithms is written in the Implementation chapter. This will be done on a high level, to
easier grasp the ideas and the aim of the algorithms. This chapter will provide motivations
for and examples of the developed algorithms, connected with the Theory and Methods
chapters. The outcome of the classification of the reference data is going to be presented
in the Experimental evaluation chapter. It will also be evaluated by the metric of being
classified correctly or incorrectly, and a model of the computation time when executing
the identification of the classes. The chapter after, discussion, will be a discussion about
how well the results were and possible improvements. The last chapter, Summary and
conclusions, will contain a brief summary of important discoveries, that we found during
the development, and conclusions about the outcome of this master thesis in general.

1.1 Related work
Since the chosen approach to solve the classification in this thesis does not includemachine
learning, a large portion of today’s academic work in image classification is mostly not
related. Instead image segmentation and other image analysis concepts are very relevant
to this thesis. This sectionwill state examples of work, that uses core concepts andmethods
used in this thesis.

A report, that has similar methods as this thesis, is written by S. Joseph et. al. [1]. In
the report, histograms are created to adjust thresholds and edge maps are used to segment
a given image.

In an article, written by J.-C. Yoo and C.W. Ahn, they use PSNR to match images [2].
In their article, they use the methods to detect occluded objects, but it is also relevant to
the background of the thesis because PSNR is a central component to detect differences
in images.

Many concepts and methods, that are used throughout this thesis, can also be found in
a book written by Burger and Burge [3]. In their book, they describe how histograms are
created and interpreted, how edges are detected from an image and what makes an edge
map, and the concepts and properties of morphological and other common filters.
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Chapter 2
Theory

Necessary information and description of used concepts and methods are here explained.
It can be ignored at first reading and instead be used as reference for methods that the reader
would like to receive further understanding of. The sections in this chapter are ordered as
they are mentioned in other chapters.

2.1 Reference and output image
The reference image of a specific frame from an application is extracted and stored before-
hand from a test run which could be considered to be completely correct.

The test is run once more under other circumstances and a new output image is ex-
tracted, which is to be evaluated. These new circumstances could mean a new driver
revision, other hardware or some other change.

2.2 Peak signal-to-noise ratio
According to Zhou Wang and Bovik, A.C., Peak signal-to-noise ratio (PSNR) is a ratio
between the maximum possible power of a signal and the power of corrupting noise that
affects the fidelity of its representation [4]. PSNR is defined as follows:

PSNR = 10 ∗ log10

(MAX2
intensity

MSE

)
(2.1)

Where MAXintensity is the maximum intensity in the images, in this case, 255 since the
given images are coded in 8 bits per pixel. MSE stands for the mean square error, which
is simply defined as:
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2. Theory

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

(Ire f (i, j) − Iout(i, j))2 (2.2)

Where m specifies the number of rows, and n number of columns of the given reference
image, Ire f , and output image, Iout. In the case of the data used in this thesis, an image is
in RGB format (three color values for each pixel), and therefore for each m ∗ n pixels its
RGB values are summed and divided by three to receive a weighted value for each pixel.
With these weighted values for each pixel, the MSE is calculated as described and then
the PSNR value.

In other terms, PSNR detects if there is any difference between two images, and that
is enough to trigger our classification algorithms. Korhonen and You state that PSNR
predicts the perceived subjective quality of images almost as well as more complex quality
models [5].

2.3 Difference images
Difference images are the result of comparing images against each other. A pixel in one
image against its corresponding pixel in the second image. The use of difference images
can either be to know the magnitude of the difference at certain positions or using the
image as a mask to segment important parts of the arbitrary image.

2.3.1 Euclidean difference image
The Euclidean difference image (EDI) is an RGB image containing the Euclidean differ-
ence between the output, Iout, and the reference image, Ire f , for every pixel value i ∈ m,
j ∈ n. Where m is the number of rows and n is the number of columns of the images. This
is done in every RGB channel for Ire f and Iout. The resulting image is simply defined as:

Imageeuclidean(i, j) = abs(Ire f (i, j) − Iout(i, j)) (2.3)

2.3.2 Binary difference image
The Binary difference image (BDI) has only zeros and ones, hence binary. There is a one
in every position corresponding to a pixel that has a value greater than zero in the EDI. This
is also done for every RGB channel, as for the EDI. The formal definition is as follows:

Imagebinary(i, j) =
1, EDI(i, j) > 0
0, otherwise

(2.4)

2.3.3 Signed difference image
The signed difference image (SDI) is very similar to the EDI, but instead of taking the
absolute value of the difference, one only take the subtraction between Ire f and Iout for
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2.3 Difference images

every pixel in the image, see equation 2.3. This is to be able to monitor if the output image
has either increased or decreased its intensity at a certain pixel.

2.3.4 Edge map
An edge map is a binary image containing ones at edges, indicating a great difference
between its neighboring pixels. The technique serves to simplify the analysis of images by
drastically reducing the amount of data to be processed, while at the same time preserving
useful structural information about object boundaries [6]. The edge map contains useful
information when deciding if errors are aligned with geometry in the given images.

Sobel edge map
Matlab’s default method is the Sobel edge detection. It has some advantages compared
to other edge detection methods. Wenshuo G. et al claim that it has two main advantages
[7]. First, it has some smoothing effect on the random noise of the image. Second, the
elements of the edge on both sides have been enhanced, so that the edge seems thick and
bright. The Sobel operator is also highly recommended for massive data communication
found in image data transfer by Gupta et. al. [8].

In short, the operator calculates the orthogonal gradients in both x- and y-direction
across the image. It uses two corresponding convolution filters, see matrix 2.1a and 2.1b.
They are 3x3 templates which slide through all the pixels and weights its neighbors cor-
respondingly as seen in table 2.1. Results from the convolutions are combined to find the
absolute magnitude of the gradients, which is seen as the edges in the edge map [7], [8].

Table 2.1: Matrices used in the convolutions performed for the
Sobel edge detection algorithm.−1 0 1
−2 0 2
−1 0 1


(a) Template for estimating gradient in the
x-direction.

−1 −2 −1
0 0 0
1 2 1


(b) Template for estimating gradient in the
y-direction.

Canny edge map
Sobel did not work very well for finding the somewhat blurred edges of the geometry
class, see section 3.3.2, so the edge algorithm was changed to Canny instead, as it is more
edge sensitive. It is simply an extension of the Sobel edge detection. Canny uses the
same algorithm as Sobel when calculating the gradients, but after that Canny thins out the
edges to be one pixel wide. This enables more edges to fit into the image, the thickness
of the edge is irrelevant. The local maximum of an edge is found by comparing a pixel’s
gradient to its neighboring pixels. Next step, two thresholds are introduced. One for high
magnitudes and one for low magnitudes. The pixels that have a magnitude over the high
threshold is automatically included in the final binary image, and the pixels lower than the
low threshold is automatically excluded. The pixels between is determined if it belongs
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2. Theory

to pixels that have a connection with the ones that are over the high threshold, if not, the
pixels are excluded [6].

2.4 Mipmapping
The first suggestion of this theory was provided by Ed Catmull in his Ph.D. thesis, 1974,
reported by Paul Heckbert [9]. The general idea of mipmapping is to create a pyramid
of images at levels with decreasing resolution as the pyramid goes up, with the original
image at the bottom, level 0. The next image, level 1, is a low-pass filtered and then down-
sampled version of that image. The size of this level 1 image is half the size of the original
image, both in width and height. This continues to the next level, level 2, with the level
1 image as a base, and so on. As Akenine-Möller describes, the key to mipmapping is to
compute which level(s) in this pyramid should be accessed to texture an object [10]. The
technique is especially used when textures are far away from the camera in a 3D scene,
and therefore a scaled down version of the texture is needed to avoid flickering. When
mipmapping goes wrong, artefacts that has a blocky appearance usually show up in the
object’s texture.

2.5 Pixel connectivity
Segmentation consists of using a binary value matrix (zeros and ones) and measuring the
connectivity of each non-zero value to determine what can be said to be the individual
non-zero segments of the image.

2.5.1 4-Connected Segmentation
In the case of 4-connected segmentation, each non-zero value is determined to be con-
nected to its horizontal and vertical non-zero neighbors.

When the individual segments are determined they are labeled in the order that they
where found so that they can be iterated.

An example of 4-connected segmentation. The matrix:



0 1 0 0 0 0 0
1 1 1 0 0 0 0
0 1 0 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 0 1 0
0 1 0 0 1 1 1
0 0 0 0 0 1 0


(2.5)
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2.6 Morphological operations

will, when segmented and labeled, result in:

0 1 0 0 0 0 0
1 1 1 0 0 0 0
0 1 0 3 0 0 0
0 0 3 3 3 0 0
0 0 0 3 0 4 0
0 2 0 0 4 4 4
0 0 0 0 0 4 0


(2.6)

2.5.2 8-Connected Segmentation
In the case of 8-connected segmentation, each non-zero value is determined to be con-
nected to its horizontal, vertical and diagonal non-zero neighbors.

When the individual segments are determined they are labeled in the order that they
where found so that they can be iterated.

An example of 8-connected segmentation. The matrix:

0 1 0 0 0 0 0
1 1 1 0 0 0 0
0 1 0 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 0 1 0
0 1 0 0 1 1 1
0 0 0 0 0 1 0


(2.7)

will, when segmented and labeled, result in:

0 1 0 0 0 0 0
1 1 1 0 0 0 0
0 1 0 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 0 1 0
0 2 0 0 1 1 1
0 0 0 0 0 1 0


(2.8)

2.6 Morphological operations
Mathematical morphology was first introduced by Georges Matheron and Jean Serra and
is today used for several reasons, such as filtering, sampling and segmentation [11]. Math-
ematical morphology analyses the shape and form of objects based on set theory, lattice
theory, topology and random functions. Examples of two operations risen from Mathe-
matical morphology, that are used in this thesis, are erosion and dilation. For the curious
reader, the following articles review morphological operators [12] and [3]. A structure
element, B, is needed to perform the operations. It is a smaller binary image, and deter-
mines how the dilation and erosion will form the objects in the given binary image. Note
that the descriptions of erosion and dilation below will only change the binary image if
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2. Theory

¬(∀i, j |Binary(i, j) = 1) ∨ ¬(∀i, j |Binary(i, j) = 0), i.e. if the binary image does not
solely consist of ones or if the binary image does not solely consist of zeros.

2.6.1 Dilation
Given a binary image A and a structure element, B. Dilation is defined as:

A ⊕ B =
⋃
d∈A

Bd (2.9)

where Bd represents a translation (shifting) for the structure element B by d, i.e. for posi-
tion p, Bd ≡ {(p + d)|p ∈ B}. This results in larger segments, because B iterates inside A
for each pixel acting as a center of B, and include pixels that contain B. A larger B results,
therefore, in a larger A.

An example of dilation. Given the binary image, A:

0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 1 1 1 0 0
0 1 1 1 1 1 0
0 0 1 1 1 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0


(2.10)

and the structure element, B: 1 1 1
1 1 1
1 1 1

 (2.11)

will result in the following binary image, where the bold numbers aremarking the positions
of the original binary image’s ones:

0 0 1 1 1 0 0
0 1 1 1 1 1 0
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
0 1 1 1 1 1 0
0 0 1 1 1 0 0


(2.12)

2.6.2 Erosion
Given a binary image A and a structure element, B. Erosion is defined as:

A 	 B ≡ {p ∈ Z2|Bp ⊂ A} (2.13)

for position p. This results in smaller segments, because B iterates inside A for each pixel
acting as a center of B, and exclude pixels that can not contain B inside A. A larger B
results, therefore, in a smaller A.
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2.7 Skeleton image

An example of erosion. Given the binary image, A:



0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 1 1 1 0 0
0 1 1 1 1 1 0
0 0 1 1 1 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0


(2.14)

and the structure element, B: 1 1 1
1 1 1
1 1 1

 (2.15)

will result in the following binary image, where the bold numbers aremarking the positions
of the original binary image’s ones:



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


(2.16)

2.7 Skeleton image
The procedure to achieve this image is a thinning methodology. The goal is to reduce
information to a minimum while it is still possible to recognize the original pattern. The
term skeleton means in this case a representation of a binary pattern with a collection of
thin arcs and curves. The skeleton depends on how pixel’s neighboring pixels are con-
nected, using 8-connectivity in this case, see subsection 2.5.2. By iteratively removing
neighboring pixels that does not belong to the skeleton, the skeleton image is constructed.
Lam et. al. investigate different thinning algorithms and compare them by subjectively
comparing their resulting skeletons [13].

In this thesis, Medial Axis Transform (MAT) algorithm is used to decide if a point or
a pixel belong to an object’s skeleton. In short, the MAT algorithm determines, for each
point, if a point’s 8-connected points is in an object. A point belongs to the skeleton if it
has at least two points connected to it this way [13], [14]. In other words, one could think
the procedure as successive eroding away pixels from the boundary of the object, while
preserving the end points, until no more thinning is possible.
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2. Theory

For example, the given binary image:



0 0 0 0 0 0 0
0 1 1 1 1 1 0
0 1 1 1 1 1 0
0 1 1 1 1 1 0
0 1 1 1 1 1 0
0 1 1 1 1 1 0
0 0 0 0 0 0 0


(2.17)

will result in the following skeleton image, where the bold numbers are marking the posi-
tions of the original binary image’s ones:



0 0 0 0 0 0 0
0 1 0 0 0 1 0
0 0 1 0 1 0 0
0 0 1 1 1 0 0
0 0 1 0 1 0 0
0 1 0 0 0 1 0
0 0 0 0 0 0 0


(2.18)

2.8 Hough transform
The algorithmwas founded by Paul Hough to recognize complex patterns [15]. TheHough
transform is used to find aligned points in images that create lines and even curves and
complex shapes [16]. The most simple case is for straight lines. Consider the following
example seen in figure 2.1. The line in the figure can be described with the coordinates
x and y and the parameters a and b as y = a ∗ x + b. The parameters are used to define
the angle of the line. a and b are in this case unknown and x and y are known. In the
coordinate space, the parameters are fixed and generate different coordinates for example
(x1, y1) and (x2, y2).

If one converts (x1, y1) and (x2, y2) in figure 2.1 into the parameter space, one would
receive figure 2.2. In this space, the coordinates are fixed and generate possible combina-
tions of parameters that correspond to the given coordinates. If two points in the coordinate
space define a line in that space, the parameters of that line can be found by finding the
intersection of the generated lines in the parameter space for those points, (a, b).

This is the basics of the Hough transform. Straight lines in the coordinate space are
found by looking after the strongest local maxima, so-called peaks, in the corresponding
parameter space after all points in the coordinate space are iterated.

Using the Hough transform, the parameters ρ and θ are instead used for the parameters
a and b to represent lines, see figure 2.3, where ρ is the distance from the origin and θ is
the angle. The principle is still the same as explained with a and b.
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2.8 Hough transform

Figure 2.1: A straight line seen in the coordinate space with two
points marked out, (x1, y1) and (x2, y2).

Figure 2.2: Corresponding lines for the points (x1, y1) and (x2, y2)
in the parameter space, intersecting in a point (a, b), which are the
parameters for the straight line in figure 2.1.

Figure 2.3: Illustration of an alternative way of defining a line, by
using the parameters ρ and θ.
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2. Theory

2.9 Performance metrics

For evaluating the performance of a classifier one has to choose a suitable metric. The
metrics we have chosen to use in this paper are precision, recall, accuracy and F1-score.
They are commonly used together with classification and are simple to calculate and to
interpret, see [17] and [18].

Each class is interpreted independently, and the outcome of each class can either be a
positive or a negative classification (binary). This is a two-class classification problem and
the coincidence matrix can be seen in figure 2.4. In the figure, True positive (TP) means
that the classifier, that generates the predicted outcome, has classified an image as positive,
when it should, according to the ground truth. False positive (FP) means that the classifier,
has classified an image as positive, when it should not. True negative (TN) means that the
classifier, has classified an image as negative, when it should. False negative (FN) means
that the classifier, has classified an image as negative, when it should not.

Given the coincidence matrix for a class, the precision, recall, accuracy and the F1-
score can be calculated. The following definitions for them are respectively:

Precision =
TP

TP + FP
(2.19)

Recall =
TP

TP + FN
(2.20)

Accuracy =
TP + TN

TP + FP + FN + TN
(2.21)

F1 − score =
2

1
recall

+
1

precision

(2.22)

In other words, precision displays how many images that got a positive classification are
right. Recall tells how many images, which are positive in the ground truth, were clas-
sified positively. Accuracy and F1-score estimates how many images received the right
classification overall.
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2.9 Performance metrics

Figure 2.4: Possible outcomes for a two-class classification, re-
sulting in this illustrated coincidence matrix.
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Chapter 3
Methods

As mentioned in the introduction, this chapter will contain a description of how the used
data were processed and collected. This chapter will also provide an overview of the data
flow through the implemented algorithms, and the chosen approach to the given problem.

3.1 Data collection
Most of the output images and their corresponding reference images are in PNG-format.
The exception to this are images given in TGA-format. These are converted to PNG via a
small script sinceMatlab cannot handle TGA. The conversion is done in a lossless fashion,
since it is of great importance to not add noise to the data in any way.

A debug feature in the GPU driver is used to dump the frame buffer to a file. The
buffers contain frames of the 3D scene, that are being rendered on the screen. A reference
image and a corresponding output image, see section 2.1, from the same frame and 3D
scene are gathered this way.

3.2 Approach
Recently most types of image classification problems are solved by using different machine
learning techniques. An article of such approach can be found in [19]. Since the given
images are extracted from various arbitrary benchmarks and 3D scenes, and the types of
emerging errors are similarly arbitrary in their appearance, the task of deciding suitable
features for a machine learning algorithm is a very hard task. It is assumed that machine
learning will most likely not give a satisfactory result, therefore, a pure image analysis
approach was chosen. There are multiple reasons for this. The main reason is that the
reference data is too diverse to converge into meaningful features, due to the shortage of
collected data. Machine learning algorithms most often demand a large collection of data
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3. Methods

to perform well. Most of the time there only exists a couple of images per subclass, and in
some cases only one. It is assumed that machine learning will most likely fail to classify
the majority of the images, see chapter 6 for further discussion. A positive aspect with the
chosen approach is that it does not need any further reference data, but then again it does
not correct itself, when the collection of data expands, like a machine learning method
would do.

With these assumptions in mind, we decided to develop algorithms that utilize image
analysis methods. The problem was looked at on a class to class basis, by implementing
the classification for each class of errors individually.

For the experimental evaluation, see chapter 5, the necessary data was first collected,
as described in the section above.

We manually classified the given output images, containing errors, to act as a ground
truth for what a specific class of error should look like. In this process, professional advice
and perspectives from the CV team were given, especially on things such as how common
or uncommon a specific error might be. An important observation was that one output
image may contain several classes of errors at the same time. Therefore, a solution where
all the classes are checked for each image pair was needed. After we spent time to read
and understand enough relevant papers, we started to implement the algorithms. This was
done in development cycles for each class, meaning that we spent a few days to find relevant
facts and ideas about each class, implementing the algorithms and constantly testing them
on all of the collected data. Testing the implemented algorithms one could minimize the
number of false positives and maximize the number of images that should be classified as
its corresponding class and subclass. This was done by adjusting thresholds, verifying the
code, validating the outputs and thereby improving the accuracy of the algorithms.

After a development cycle has been performed for every class, we ran the scripts for
the reference and test set to get the final results and execution times, see chapter 5. Some
optimization of the already written and functioning code was performed to improve com-
putation time and performance.

3.3 Data flow
This is an overview of the data flow of the algorithms. The adopted process of classifying
image pairs (output and reference image) for the determined classes, with different kind
of errors, is split up into three phases:

1. Preprocessing phase. The name hints that this is done before the classification and
everything else. The major part of this phase is to set up the output text files for
the classification and stating where the image pairs are located, to be able to process
them in the following phase. This phase also includes the generation of the difference
images, see section 2.3.

2. Identification phase. This contains the actual methods and algorithms for detecting
the errors and update parameters used for the final classification.

3. Classification phase. This is the final phase where identified classes are compared
with each other to point out a class that is the most dominant in the output image.
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3.3 Data flow

As the main tool, we used Matlab, with its associated image processing toolbox [20].
Matlab is a software used for algorithm development and in this case used to implement
all the phases above.

3.3.1 Preprocessing phase
Before the execution of the Matlab scripts, the PSNR analysis detects any difference be-
tween the output image and its corresponding reference image, see section 2.2. If there
is a difference, the main Matlab script is called and uses methods to generate necessary
images for the next phase. A list of these methods is presented below.

General images generation

In this step, images, that are necessary for every class identification, are generated. This is
done directly after PSNR gives a positive number for an image pair, whichmeans that a dif-
ference between the image pair has been detected. From a given image pair the following
images are generated:

• Euclidean difference image, see subsection 2.3.1.

• Binary difference image, see subsection 2.3.2.

• Signed difference image, see subsection 2.3.3.

• Edge map of the Euclidean difference, output, and reference image, see subsection
2.3.4.

3.3.2 Identification phase
At this point, the essential parts of the data needed for identifying the error classes are
generated. More specific data is generated for the individual classifications from now on.
In this subsection, every class is presented with its characteristics, a brief description, and
observations of the class. This determined how each specific class was approached. The
description of a class will include image examples, created to give a better understanding
of the class. Note that these examples are not images produced from tests at ARM due to
confidentiality reasons, but created by us and is a part of the test set to verify our solution
in chapter 5. Figure 3.1 shows the reference image we used throughout the thesis to give
examples of error classes.
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3. Methods

Figure 3.1: Reference image for the class examples. The image
is also the reference image used for the first scene in the test data.

Characteristics of the Pixel class Output images with broken pixels are
the target for this class. Broken pixels in the image are defined here as sudden (meaning
non-gradual changes in this case) and significantly different color values compared to the
reference image. This is often the color black/white/blue, which most of the time is a
result of pixels keeping the color assigned from the image buffer clearing or a completely
random color. This can either be interpreted as a small or a big scale pixel error:

• At a small scale, it means that the image has small clusters with broken pixels. The
largest cluster is not larger than a 16x16 block of pixels (size of a tile).

• On a big scale, the majority of all pixels in an image are broken.

When classifying an artifact as this class, the pixels should not be following a geometry
and in general be in a random pattern and placement.

Figure 3.2, 3.3, 3.4 and 3.5 are image examples of the Pixel class at a small and a big
scale, with the previously given reference image as a reference, figure 3.1.

Figure 3.2: An example of the Pixel class at a small scale. Notice
the error, which is a small sized black cluster to the lower right of
the TV.
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3.3 Data flow

Figure 3.3: Another example of the Pixel class at a small scale.
Notice the error, which is a small sized cluster with various colors
to the upper left of the TV.

Figure 3.4: An example of the Pixel class on a big scale. The error
in the figure is the black pixels over the majority of the image.

Figure 3.5: Another example of the Pixel class on a big scale. The
error in the figure is the black pixels, that covers almost the whole
image.
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Characteristics of the Precision class

An image pair is classified as this if there exist small differences in color and/or in the
position of textures, often along certain geometries. Like the pixel identification, this can
be subdivided into a small and a big scale. As well as being on a small or big scale, the
pixels with precision error could appear in a sporadic or non-sporadic pattern in the output
image. Another subgroup to this classification is the output image having a faulty constant
layer with an arbitrary color. Note that this is unrelated to the other subgroups. Below is
a summary of the different subgroups:

• On a small scale, the image pair has most of its errors in a small range of intensity
that is not visible to the human eye. It could also mean that only a few pixels, with
precision errors, are present.

• On a big scale, most of the output image contains small differences between the
output and the reference image.

• An image pair with a sporadic pattern appears to have "tiny dots" with a small dif-
ference, scattered in a random fashion around the image, see figure 3.6.

• An image pair with a non-sporadic pattern appears to have clusters with a small
difference, often corresponding with a geometry at a specific position in the image
pair, see figure 3.7.

• In the output image with a constant layer error, it appears to have an arbitrary color
filter at a mostly constant rate over the image compared to its corresponding refer-
ence image, see figure 3.8.

Another instance of a precision error is when mipmapping goes wrong and picks out a
down-scaled texture for an object, see figure 3.9 and section 2.4. Note that this is not
classified as an individual subgroup. In many cases of a precision error, the difference
is not visible to the human eye, but the error consists of slight changes in color. Image
examples of this class can be found in figure 3.6, 3.7, 3.8 and 3.9.
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3.3 Data flow

Figure 3.6: Example of Precision class with a sporadic error. For
illustration purposes, a semi-transparent one channel BDI is lay-
ered over the reference image (as most precision errors of this sort
are not visible to the human eye) with red pixels to represent er-
rors. In this case, the errors are appearing randomly across the
image.

Figure 3.7: Example of Precision class with a non-sporadic error.
For illustration purposes, a semi-transparent one channel BDI is
layered over the reference imagewith red pixels to represent errors.
The errors in the figure are following along the geometry of the TV
screen.
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Figure 3.8: Example of Precision class with a faulty constant
layer. The figure’s error is a turquoise color filter over the image.

Figure 3.9: Example of Precision class with a faulty mipmapping
level. Note that in a real input like this the mipmapping error is
usually confined to specific textures and not to the whole image.

Characteristics of the Geometry class

This class takes whole objects into account or when there are major changes in the scene’s
geometry. Usually the errors to be classified to this class are:

• Missing geometries, see figure 3.10 and 3.11.

• Unexpected added geometries, see figure 3.12 and 3.11.

• Deformed geometries, see figure 3.13.

• Geometries with wrong color, or significantly faulty textures for whole geometries,
see figure 3.14.
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Figure 3.10: Example of Geometry class with a missing geome-
try. Notice that the antennas on the TV are missing.

Figure 3.11: Example of Geometry class with a misplaced ge-
ometry. A combination of appearing and missing geometry. The
error in the figure is that the TV screen has moved up to the left.

Figure 3.12: Example of Geometry class with an appearing ge-
ometry. The error in the figure is that a light bulb has appeared in
the image above the TV.
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Figure 3.13: Example of Geometry class with a deformed geom-
etry. The error in the figure is that vertices and faces of the TV
geometry have the wrong position.

Figure 3.14: Example of Geometry class with a miscolored ge-
ometry. Notice the error, the TV body has changed color.

Characteristics of the Tile class
Clusters of errors appear in specific patterns over the image in square-shaped blocks. This
class is a mixture of the pixel and the precision class because sometimes there are distinct
corners around the block, and sometimes not. Tile errors may show up at fixed positions.
A grid is here defined with its bars spaced equal to a tile’s size, both in x- and y-direction.
Note that the starting pixel position (upper left corner of a tile) of an error tile, PStart, has
the following property: PStarti mod 8 = 0,PStart j mod 8 = 0. A visualization of the grid
can be found in figure 4.11.

The tile class can be divided into two subgroups:

• Fixed positioned tiles. One could look for a staircase-looking pattern because the
blocks are positioned in conjunction to a fixed grid. Distinct corners around the
block often show up, see figure 3.15.

• Unexpected angular appearance. If the blocks do not coincide with the grid, it is
probably this subgroup.
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3.3 Data flow

Figure 3.15: Example of Tile class (smallest error tile is of the
size 8× 8). The errors are the miscolored tiles in the upper corner
and on top of the TV screen.

Characteristics of the Primitive class

When parts of an object receive an incorrect color or shading it is usually caused by a
few faulty primitives. The error appears in a triangular shape in the case of one single
primitive and in polygons with few corners relative to a geometric object in the case of
multiple primitives.

The primitive class can be divided into the following subgroups:

• Faulty primitive. This subclass contains two primitive related errors. Faulty posi-
tioned vertices and faulty faces of a primitive. Faulty positioned vertices are vertices
with a faulty position that generate triangle-shaped errors. See figure 3.16 for illus-
tration. Faulty faces of a primitive is when faces of a primitive are either transparent
or colored in a faulty way. See figure 3.17 for illustration.

• Visible mesh. This can either be the case when an object’s mesh become visible by
having an arbitrary assigned color or errors are aligned along the mesh. A mesh is
defined as a polygonmesh, which is a collection of vertices and edges connecting the
vertices. This defines a shape in 3D-space consisting of polygons, usually triangles.
See figure 3.18 for illustration.
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Figure 3.16: Example of Primitive class. Notice the error, some
of the vertices in the primitives on the TV have faulty position
values.

Figure 3.17: Example of Primitive class. Notice the error, some
of the faces of the primitives on the TV’s top side have not been
rendered.

Figure 3.18: Example of Primitive class. Notice the error, parts
of the mesh is outlined on the TV.
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Characteristics of the Lighting class
This class represents output images with major light or light effect errors at several places
in the image.

Faulty rendered reflections could be a part of this class, but since the error usually lies
in that which is reflected, the error should be viewed as that specific error instead. For
instance, if an object is rendered in a faulty way and this shows in the reflection, it should
be classified as Geometry.

• Major lighting error. This type of error has pixels with shadow or light related errors
at most of or the whole output image. See figure 3.19 and 3.20 for illustration.

• Spotted lighting error. Small spots of pixels with shadow or light related errors at
several positions in the output image.

Figure 3.19: Example of Lighting class. The error covers most of
the image because of a bright light behind the TV makes the TV
cast a sharp shadow.

Figure 3.20: Example of Lighting class. Notice the error, the
lights in the scene have different colors, and therefore makes the
whole image different.
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Characteristics of the Alpha class
An error is identified as an Alpha error if the transparency in the alpha channel for the
output image is different from the reference image’s.

User interfaces (UI) and transparent textures, with any kind of error, usually goes in
this class.

3.3.3 Classification phase
The aim of this phase is to eliminate false positives from the identification phase. All
identified classes contribute with their metadata, that could be for instance the number of
present edge pixels or a specifically found subclass, to filter out the most obvious false
positives using information from all classes at once. The classes with a big intensity error,
which are pixel, geometry, tile, primitive and lighting, are prioritized over the classes with
a small intensity error, which is only precision.

The alpha class cannot be compared with the other classes, because the error is in an
image’s alpha channel, which is separate from the RGB channels. Therefore the alpha class
is added as a most likely dominant class with one other class mentioned if it is identified.
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Chapter 4

Implementation

The chapter is structured by going through every class. By first giving a high-level descrip-
tion of its corresponding algorithm, and then a motivation behind the implementation, the
implementation of our developed algorithms will be introduced. Figure 4.1 describes the
most important binary images, we will call them masks, throughout the implementation.
The figure is supposed to act as an overview when reading about how the different classes
are implemented. It is placed here at the beginning of the chapter because it belongs to
several classes, not only one, and could be ignored for the first time seeing it.

Figure 4.1: Visualization of value ranges of masks used in our
solution. The figure shows which mask an arbitrary pixel belongs
to depending on its intensity value in the EDI. γ can be found in
section 4.1, α and β can be found in section 4.2, θ can be found in
section 4.3 and ξ can be found in section 4.5.
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4.1 Pixel class

4.1.1 High-level description

From the characteristics of the pixel class in subsection 3.3.2, all the subclasses were im-
plemented.

The algorithm finds pixels with a sudden change between the reference and the output
image. These pixels are contained in γ, see figure 4.1. The found pixels are grouped by
8-connected segmentation, see subsection 2.5.2. The segments that have a gradual change
at the borders of the segment are removed. The remaining segments are then iterated
segment-wise to determine if a segment belongs to a small or a big pixel error.

4.1.2 Motivation

Choosing a good threshold for obtaining a desired γ was first decided by analyzing the
values in the EDI, relating to pixel and precision errors. The resulting γ did not become as
precise as desired. Instead of just testing different thresholds and adjust after, histograms
of the EDI were created, see figure A.1 in appendix A. The chosen lower threshold for γ
was a value that separated the small from the big intensity values, see figure 4.1 at intensity
value 50.

To group neighboring pixels in γ, 4-connected segmentation was first used. As 4-
connected segmentation generated many small and unnecessary segments, the segmenta-
tion was switched to 8-connected. Since the algorithm executes segment-wise to identify
a subclass, having fewer segments will shorten the compute time. This makes a significant
difference for some big pixel errors with images similar to figure 3.5.

In the early stage of the development of this algorithm, only γ was used to identify the
pixel class. Since geometry class errors also generate big intensity differences, this algo-
rithm would identify those as pixel errors. Facing this problem, an important discovery
was found. A pixel error is always sudden. This property varies from the geometry class
since geometry related errors often are blurred out at its edges. By removing segments,
that have gradual changes at its edges, only the sudden segments would remain. One can
see this in figure 4.2, 4.3, 4.4 and 4.5.

After testing the solution of removing segments, that is not sudden, it was discovered
that some pixels did not get removed when they should be. As illustrated by figure 4.6 and
4.7, these pixels was looked at a more detail.
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Figure 4.2: Example of an output image (zoom in of upper right
corner of the appearing light bulb in figure 3.11) containing an
error with a gradual change due to an appearing geometry.

Figure 4.3: Visual representation how γ is used in the solution,
by adding a semi-transparent layer to figure 4.2. The totally trans-
parent pixels, compared to figure 4.2, represents non-zero values
in γ. The darker semi-transparent pixels represent zero values in γ
and zero values in the EDI. The red semi-transparent pixels repre-
sent zero values in γ and non-zero values in the EDI. This segment
will be removed, as the red semi-transparent pixels are neighbors
to the non-zero-segment in γ.

Figure 4.4: Example of an output image (zoom in of pixel error
in figure 3.3) containing an error with a non-gradual change due
to a pixel error.

37



4. Implementation

Figure 4.5: Visual representation how γ is used in the solution,
by adding a semi-transparent layer to the figure above. The to-
tally transparent pixels, compared to figure 4.4, represents non-
zero values in the mask. The darker semi-transparent pixels rep-
resents zero values in the mask. Note that there are no gradual
changes in this segment’s edge, therefore, no semi-transparent red
pixels as in figure 4.3, hence the segment will not be removed.

Figure 4.6: Zoom in of the upper part of the right antenna in the
reference image, see figure 3.1. In figure 3.10 this antenna is miss-
ing, this results in the segmentation of the errors seen in figure 4.7.

Figure 4.7: Here one can see pixels belonging to γ in yellow; pix-
els that do not belong to γ, but still have positive difference values
of the BDI in turquoise; and pixels with zero values in blue. The
larger yellow segment here will be removed as it has neighboring
pixels with non-zero values in the BDI. The single yellow pixel
here will also be removed since it lies in the close vicinity of a
geometry error segment.

38



4.2 Precision class

4.2 Precision class
4.2.1 High-level description
From the characteristics of the precision class in subsection 3.3.2, all the subclasses were
implemented.

The algorithm finds pixels, that have a small difference in intensity between the refer-
ence and the output image. These pixels are contained in either α or β, where β is a subset
of α: β ⊆ α, see figure 4.1. Depending on the characteristics of α and β, the error will be
identified as a big, small, sporadic or non-sporadic precision error. In other cases, an error
may be identified as a constant layer precision error if the majority of the faulty pixels in
the EDI are close to a constant color.

4.2.2 Motivation
At the start of the development of the algorithm, faulty geometries sometimes generated
false precision errors. For example, when geometries are appearing in the output image,
the added geometries could have a similar color to the background, and therefore add false
precision errors to the masks. When geometries are missing, the background, that should
not be visible, could also be affected by precision errors. This results in false precision
errors. An approach that proved to be good, even in the implementation of the geometry
class itself, was to ignore these errors using the BDI mask to detect these geometries.

As specified in the paragraph about the precision error, see subsection 3.3.2, the mean-
ing of the term sporadic is referring to "tiny dots" of errors, that are scattered around the
output image. By "tiny dots" we mean single pixels. An intuitive way to see a sporadic
pattern of dots was that the dots in α should together form a mean point close to the im-
age’s center. This would mostly occur if the dots were evenly distributed around the output
image.

The reader may have noticed that the α and β mask are very similar in their intensity
span, see figure 4.1. Identifying big precision errors, the result became better when ex-
cluding the smallest of errors in intensity. As many of our images in the reference set have
small errors in intensity, many images would be identified as a big precision error if those
errors were not excluded, by using β instead of α. In other cases, such as trying to find the
sporadic, non-sporadic and small precision errors, only α was needed. This is because a
large portion of the errors in these subclasses has a very small intensity value in the EDI
and could not get detected in the β mask.

4.3 Geometry class
4.3.1 High-level description
From the characteristics of the geometry class in subsection 3.3.2, only missing, appearing
and miscolored geometry subclasses were implemented.

The algorithm finds pixels, that are present in θ, which contains pixels with a big dif-
ference in the EDI and has an error in all of the BDI’s color channels. The found pixels are

39



4. Implementation

grouped and iterated segment-wise. A segment is identified as an appearing or missing
geometry, depending on how many pixels that are present in the outer edges of the faulty
geometry in the output or the reference edge map, respectively. In other cases, an error
may be identified as a miscolored geometry error if the error follows the reference image’s
edge map, and that the majority of the faulty pixels are close to a constant color.

4.3.2 Motivation
First θ was identical to γ in section 4.1. As this version of themaskwould capture toomany
irrelevant pixels, the usage of the BDI was included. Since a faulty geometry is most likely
to give an error in all channels, only pixels, that are present in all color channels of the
BDI, are included in θ.

In some cases errors coincide with the reference image by having the same color, re-
sulting in gaps in segments of θ, or zero-segments so to speak, that is not desired. The
zero-segments could generate more segments, making computing time longer, or even
falsely identify a big pixel error for a geometry error. To counter this, one has to fill those
zero-segments. An illustration of this can be seen in figure 4.8, 4.9 and 4.10. Since the
blue areas in figure 4.9 are not desired, because for example the TV screen just happens
to be black as the error in the output image, those areas have to be filled.

At the point when the zero-segments have been filled, θ is most likely to contain small
segments, that did not connect with a bigger segment. These segments will most likely
be detected as geometry errors. Therefore are those segments removed from θ before
iterating. Experimenting with this, it was found that geometries sometimes appear as small
segments. This occurs when a geometry error is for example far away or a particle. In most
of these cases for geometry errors, they are "slender", meaning that their area of pixels is
spread out. If this is the case, it indicates that the segment is most likely a geometry
error by comparing with the other classes’ characteristics. One important property these
segments must have is a gradual change. This is checked in a similar manner as for the
pixel identification, but the opposite result is expected, see section 4.1.

A faulty geometry has most likely a texture. The texture itself could generate edges
in the output image’s edge map. This will give false edges inside the geometry and may
change the outcome of the identification. Only the relevant parts are interesting, which are
the edges that surround the faulty geometry. The found solution for this was to perform a
dilation of the segment to exclude the pixels inside the segment’s outer edges.

At this stage, one knows that there is a faulty geometry at a segment. The decision
to determine if a faulty segment is a missing or an appearing geometry was clear. The
difference between the edge maps for the output and the reference image at the relevant
parts granted the desired information. For pixels that belong to an appearing geometry,
they are visible in the output image but not in the reference image, and for pixels that belong
to a missing geometry, it is the opposite. Which subclass a segment belongs to becomes
simple to check, by counting which image has the most visible pixels and identify the error
correspondingly.

For the third subclass of the geometry class, miscolored geometry, the whole image
is checked at once, instead of iterating segment-wise. Since this subclass was rare in the
reference data, the algorithm to detect it became tailored according to that small set of
data. It was also found when experimenting that iterating the whole image gives a shorter
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computation time compared to iterating segment-wise.
It is worth mentioning that the computation algorithm of the edge maps throughout the

geometry class was changed from Sobel to Canny. Working with the Sobel operator gave
fewer edges than desired, which made the geometry class clumsy. It was therefore needed
to switch to another more sensitive operator, like Canny. The difference between them can
be read in section 2.3.4.

Figure 4.8: A big pixel error consisting of mainly black pixels
with some seemingly random lines at the bottom left corner.

Figure 4.9: The resulting θ when evaluating figure 4.8. The yel-
low areas represent ones in the mask and the blue zeros.

Figure 4.10: The resulting θ when the faulty zero-segments are
filled. The yellow areas represent ones in the mask and the blue
zeros. Note that there still are some single zero pixels present.
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4.4 Tile class

4.4.1 High-level description
From the characteristics of the tile class in subsection 3.3.2 only fixed position tile subclass
was implemented.

The algorithm finds pixels that form distinct corners at fixed points in the output image.
These pixels are contained in ω, which is a subtraction between the output’s edge map and
the reference’s. If the algorithm finds any pixels, the error is identified as a fixed position
tile error.

More specifically, the fixed points are specified as shown in figure 4.11, where every 4-
junction is iterated and checked if two straight lines connect in one of the grid’s 4-junctions.

Figure 4.11: Visualization of the grid, that captures the fixed po-
sition tile errors in ω. Origin starts at an image’s upper left corner.

4.4.2 Motivation
Searching for tile errors, it is assumed that the change in intensity, at the border of two
tiles, is large enough to generate a clear edge. So after subtracting the edge maps, the
faulty edges in the output image are visible and can be interpreted.

The first thought, that came to mind, was to find the square-shaped tiles directly. Since
a faulty tile almost never appears with all its corners clearly visible, searching for squares
is a more complex and time-consuming task than just search for a corner that aligns with
the grid defined by the size of a tile.

One big issue with this solution was the number of false positives. Every 4-junction
was iterated and it was not unlikely that a non-tile error happens to have a corner at a
4-junction. To remove false positives, the algorithm segments a small area around where
there is a possible corner and evaluates the segment’s edge map. Since the identification is
quite accurate, the only necessary check after that is to check if any corner was registered.
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4.5 Primitive class

4.5.1 High-level description
From the characteristics of the primitive class in subsection 3.3.2, all the subclasses were
implemented.

The algorithm finds pixels present in ξ, which contains pixels with a moderate inten-
sity error in EDI and have errors in all color channels in the BDI, see figure 4.1. The
found pixels are grouped into segments and iterated segment-wise. If the segment closely
resembles the skeleton image of the segment, see section 2.7, the image is classified as a
primitive error with the visible mesh error subclass. Otherwise, the edge of each segment
is searched for straight lines. Each straight line found is paired with other straight lines
that form a triangle together. Triangles which are not aligning with the segment are dis-
carded. The areas of the largest triangles, that do not intersect with each other, are found
and summed. If this sum divided by the area of the segment is above a certain ratio, the
image is classified as a primitive error with the faulty primitive subclass.

4.5.2 Motivation
The threshold used in ξ is lower than that used in θ, due to the fact that it is of higher
importance to capture the whole faulty segment in the case of a faulty primitive subclass
as it may otherwise not be seen as a primitive shape. In the case of geometry classification,
this is not of the same importance, since one only cares about the correlation of edges
and not so much the exact shape of the segment. This means that if the segment in the
geometry classification is an approximation of the real segment, the classifier will with a
high probability in at least one of its outer areas find a correlation of missing or appearing
edges.

In cases of the visible mesh subclass, one can see that the similarities between a skele-
ton image of the faulty segments, see section 2.7, and the faulty segments themselves are
almost identical. There will only be such similarity when the segments are line-shaped,
see image 3.18.

Developing the implementation of the primitive class, it was obvious to take advantage
of the characteristics of the primitive class. Most of the images with a faulty primitive error
have more sharp edges, forming triangles, compared to an arbitrary geometry segment.
To ensure that most of a segment had sharp edges, and therefore know that the error is a
faulty primitive error, the areas of the triangles aligning with the edge of the segment were
compared to the total area of the segment. In most cases, segments with a geometry error
have more non-linear edges, which often form multiple small triangles, in relation to the
total area of the segment. On the other hand, segments with a faulty primitive error have
fewer corners and more straight lines for their edges, resulting in a few large triangles, also
in relation to the total segment area.

To find the straight lines, a first attempt was made using the Hough transform, see
section 2.8. However, this proved to not be satisfactory as it did not capture the correct
lines necessary for a reasonable estimate of the triangles that we want to capture. Thus, a
custom algorithm for straight line searching was developed. This algorithm uses the linear
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equation to determine if pixels belong to a line and if there are enough pixels to form a
straight line.

It was discovered early that many found triangles were to be discarded as they did not
represent an area inside the segment. Before describing the motivation further and pre-
senting examples, there are some concepts and keywords which should be cleared out. In
figure 4.12, an example is given of what triangle is actually referred to when describing the
triangle created by two lines, as well as what point is meant when referring to a triangle’s
start point.

Figure 4.12: Visualization of two found lines, marked as solid
lines, with their start and end points marked with stars. The cen-
troid of the closest end or start point of the two lines, marked with
a dot and a surrounding circle, will act as the triangle start point.
The triangle whose area will be analyzed is the triangle marked
with dotted lines.

To know if a triangle is referring to an area outside the segment, it was determined whether
the centroid of the three points of the triangle was inside the given segment or not. An
example of this can be seen in figure 4.14, where one can note that no triangle start point
was produced in the area between the line points at x ≈ 175, y ≈ 275.

It is also worth tomention that the same area covered by triangles should not be counted
twice, and thus only the largest triangles with start points not in close proximity to a larger
triangle’s point, should be kept. An example of this can be seen in figure 4.14, where the
triangle with a start point at x ≈ 145, y ≈ 270 is not used (not marked in cyan) as the start
point is in close range to the endpoint of a larger triangle (whose start point is marked at
x ≈ 65, y ≈ 125).
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Figure 4.13: Visualization of the faulty primitive segment be-
longing to ξ layered in red on top of the image 3.16.

Figure 4.14: Visualization of the straight lines found at the edges
of a segment (marked in red, start and end points of the lines
marked as stars in magenta color) and the triangle start points
(marked as points with circles). The triangle start point that is
used is marked in cyan and the two unused marked in green.

4.6 Lighting class
4.6.1 High-level description
From the characteristics of the lighting class in subsection 3.3.2 only major lighting error
subclass was implemented.

The algorithm finds pixels that have an error in every color channel in the output image.
If the found pixels are the majority of the output image’s pixels, and the output and the
reference image’s edge maps have both similar edges and edges that differ, then the error
is identified as a major lighting error.

More specifically, edges that differ are edges that appear in the output image’s edge
map, but not in the reference’s, or vice versa. Similar edges are the opposite of edges that
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differ. This means an edge in the output image that appears in the reference image or vice
versa.

4.6.2 Motivation
At first sight, major lighting errors may look like a subclass to a geometry error. This is not
entirely true, as it most likely does not follow geometries that cover the output image, but
is present in the majority of the output image, which is the main criteria for this subclass.

It was quickly discovered that big pixel errors are almost covering the whole image,
similar to major lighting error. The found difference between a major lighting error and a
big pixel error is that the big pixel error has almost no similar edges when comparing the
images.

An important understanding of the major lighting error is that it does not only take
into account if the majority of the image’s pixels are faulty but also if these have major
intensity differences. The edges in the output compared to the edges in the reference image
will in these cases vary more than they coincide. By determining that this is the case, it
will constrain images that have a large enough intensity error to be able to change the edge
map, while still depicting the same geometry as a certain number of edges still need to
coincide.

4.7 Alpha class
4.7.1 High-level description
The algorithm extracts the alpha channel, also known as the transparency channel, as a
matrix from both images. If these matrices differ in any way, the image is classified with
an alpha error.

4.7.2 Motivation
This is the smallest classifier of all the classifiers. It could be any kind of error involved
with the transparency (alpha) channel. Note that this classification can never be wrong as
it should always classify positively if there is a difference in the alpha channel since only
this class looks at the channel.
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Chapter 5
Experimental evaluation

This chapter presents the performance of the classification. The primary metrics of mea-
suring this will be the number of correct classifications of each respective class and the
time used for the classification. All results in this section are generated from the proposed
solution.

The scripts for the classifications were executed with a dataset containing 112 output
images with their corresponding reference images, acting as a reference set, and a test set
with 36 images. The reference set is the original data set provided by Arm, that was used
to determine the classes and construct the classifiers. It was acquired as mentioned in
section 3.1, while the other set consists of manually created images, created with Blender.
This set consisted of the different class errors applied to three different scenes. The faulty
images of the first scene are referenced for visualization purposes in this paper, see chapter
3, but also used for testing of the classifiers as mentioned. The reference image for this
scene can be seen in figure 3.1. The reference images of the two other scenes are showed
in figure 5.1 and figure 5.2. These were created, in terms of their appearances, with the
aim to give a more varied data. The second scene, see figure 5.1, is, therefore, darker than
the first. The third scene, see figure 5.2, is more filled with textures (especially the wooden
and wall surfaces) and is of different proportions compared to the other two. If one would
want to take a closer look at these images, they can be found at [21].

It is worth to mention that not all images in the reference set were used to train our
algorithms, and therefore a portion of this set could also be viewed as a part of the test
set. They are not included in the actual test set, but one should keep this in mind when
analyzing the results.

The tables 5.1 and 5.2 contain models of the time to execute each respective classifier,
including the average time and the standard deviation for the executed code and the average
time to manually classify an artefact of respective class, estimated by the CV team, see
section 6.1. For the reference set, the average time and standard deviation when executing
all of the classifiers in table 5.1 is 4.44 seconds respective 19.659 seconds. For the test set,
the average time and standard deviation when executing all of the classifiers in table 5.2 is
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Figure 5.1: The reference image used for the second scene in the
test set.

Figure 5.2: The reference image used for the third scene in the
test set.

2.434 seconds respective 8.248 seconds.
The tables 5.3 and 5.4 are the classification results when executing each classifier in-

dividually. The classification results are generated by comparing the algorithms predicted
classification, a binary number whether it is the specific class or not, and the ground truth
classification, also a binary number whether it is the specific class or not. The metrics
used for this evaluation are the commonly used recall, precision, accuracy and F1-score,
see section 2.9. The total column is a sum for the integer values and a mean for the per-
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Table 5.1: Average timewith its corresponding standard deviation
when executing every class script separately for the reference set.
Measured in seconds.

Pixel Precision Geometry Tile Primitive Lighting Alpha
Average time 1.653 0.561 13.607 1.452 13.498 0.293 0.031
Standard deviation 1.408 0.559 42.581 1.253 25.933 0.159 0.021
Manual classification 5 30 5 30 5 5 5

Table 5.2: Average time with its corresponding standard devia-
tion when executing every class script separately for the test set.
Measured in seconds.

Pixel Precision Geometry Tile Primitive Lighting Alpha
Average time 0.874 0.168 8.201 0.826 6.775 0.202 0.002
Standard deviation 0.382 0.104 18.049 0.111 9.308 0.053 0.0002
Manual classification 5 30 5 30 5 5 5

centile values.

Table 5.3: The number of output images classified correctly or
incorrectly according to its corresponding ground truth class, for
the reference set.

Pixel Precision Geometry Tile Primitive Lighting Alpha Total
True positive 13 80 56 9 13 3 13 187
True negative 72 4 27 95 63 99 99 459
False positive 27 28 21 2 33 1 0 112
False negative 0 0 8 6 3 9 0 26
Precision (%) 32.5 74.1 72.7 81.8 28.3 75.0 100 62.5
Recall (%) 100 100 87.5 60.0 81.3 25.0 100 87.8
Accuracy (%) 75.9 75.0 74.1 92.9 67.9 91.1 100 82.4
F1-score (%) 49.1 85.1 79.4 69.2 42.0 37.5 100 73.0

Table 5.4: The number of output images classified correctly or
incorrectly according to its corresponding ground truth class, for
the test set.

Pixel Precision Geometry Tile Primitive Lighting Alpha Total
True positive 5 10 22 3 4 3 3 50
True negative 32 8 17 42 29 45 47 220
False positive 11 29 9 4 12 1 0 66
False negative 2 3 2 1 5 1 0 12
Precision (%) 31.3 25.6 71.0 42.9 25.0 75.0 100 43.1
Recall (%) 71.4 76.9 91.7 75.0 44.4 75.0 100 80.7
Accuracy (%) 74.0 36.0 78.0 90.0 66.0 96.0 100 77.6
F1-score (%) 43.5 38.4 80.0 54.6 32.0 75.0 100 56.2
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Chapter 6
Discussion

In this chapter, the results in chapter 5 are discussed and analyzed. This is done by investi-
gating if the goal and scope of the thesis were met and analyzing the overall performance
of the implementation. Thoughts about subclasses that were not implemented, why some
classes were harder to classify than others and other important considerations one has to
think about when viewing the classification results is also discussed here. Finally a short
discussion about which optimizations one could do to the algorithms and notable thoughts
we had during the project development are presented.

6.1 Performance of classification
Themain goal and scope of the thesis were to implement algorithms that detect and classify
different graphical artefacts and quantify the result by some metric, compared with the
PSNR method, which does not provide such information. With a total of 82% and 78%
accuracy for the reference respective the test set for seven different classes, we see this
goal as fulfilled. The results are measurable and quantified as seen in tables 5.1, 5.2, 5.3
and 5.4.

One could argue that our created test set is not realistic and also biased. It is true in
a way. As mentioned, we are working with a very small set of images to develop our
algorithms, even only one image per subclass in some cases. It is therefore needed to
create more images in the same manner and not divide the given data into a test and a
training set as one would normally do. Since we have studied the errors at a very detailed
level, we create our images to have the same characteristics as the reference data. We still
have a great variation between images with the same artefact, both in scene selection and
the artefacts themselves. For example figure 3.1 is a relatively bright scene, figure 5.1 is a
relatively dark scene and figure 5.2 is a relatively texture-heavy scene.

Analyzing the tables 5.3 and 5.4 one can see that the precisionmetric receives the worst
results from the primitive and pixel classifiers and also from the precision classifier in table
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5.4. This suggests either that these classes are not specified enough and have too loose
constraints when classifying an image, or the ground truth is lacking partially incorrect,
meaning that the false positive is a truly positive and that an error of the corresponding
class is actually contained in the image. The former option could be said about the pixel
and primitive classes. Optimizations for these classes are presented and set for future
work. The latter option is mainly about the precision class. Precision errors occur in most
of the given images. It is difficult to spot these types of errors with the human perception,
therefore some of the positive classifications may be left out in the ground truth for this
class.

As the ground truth was manually created, there were as previously mentioned often
times where at first a perceived false positive classification actually proved to be a true
positive. An example of this was an image giving a perceived false positive from the
pixel classifier, which proved to be a true positive after an analysis, as the image actually
contained an unnoticed pixel error. If one would construct a more accurate ground truth,
which contains all viable classes for an output image instead of one (the most noticeable)
correct class per image, one would improve the classification results, such as the precision
metric.

The recall metric for table 5.3 has a relatively low value for the tile and lighting classes.
This is mainly because not all subclasses are implemented and taken into account, therefore
the images with those specific subclass errors are not identified nor classified. The specific
subclasses are summarized in section 6.2. For table 5.4, the recall metric gives a more
realistic value of how well the algorithms cover the classes.

Comparing the accuracy metric between the reference and test set one will notice that
they are quite similar for almost all classes. This is what we want since then we can assure
us that the classifiers are good enough as we have predicted with the reference set.

As PSNR alone does not provide any information about the artefacts, one can not use
the method to classify the artefacts nor compare its results with our solution’s. Though,
one could compare our result with the result when performing visual perception. Our
ground truth, that the solution should follow, is mostly based on our and the CV team’s
visual perception. As mentioned above in this section, human perception is almost certain
to not notice the smallest of changes in an image. For example, if there existed a change of
intensity by one for a large number of pixels or one single faulty pixel with a large intensity
change, visual perception would most likely not see the difference. It would, either way,
take a lot of time to perceive it, or just make an adequate guess that it is a certain type of
class. These types of artefacts will be detected by our solution, and it is here our solution
provides the most benefit.

Our solution will not only act like a detector when human perception is not enough. It
will guide the analyst to choose which images are suitable when searching for a specific
artefact or to inform the analyst with class-specific data. This is relevant as the set of
data received when running system tests are often of a large magnitude. In this way, the
proposed solution will save expensive engineer work hours.

At Arm, when running a benchmark, one may receive many errors in the early develop-
ment of a new product. In such cases the currently used method, PSNR, could give similar
values for multiple of the faulty images. As one seldom has the time to manually classify
all images if they are numerous, random checks on a couple are done. With this tool how-
ever, one could in such a case receive an estimate on whether all errors produced are in
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fact of similar nature, which otherwise may be taken for granted if one only performed a
random check. As this might reveal other anomalies in the perceived homogeneous errors,
the tool may also serve to improve the quality of verification and not only save time.

Not only the classification results are of great importance. The classification results
measure the validity of the developed algorithms, but not their quality in terms of execution
time. Analyzing the execution time of the algorithms is a way of measuring the processing
power needed. These values can be found in tables 5.1 and 5.2. The execution time informs
where there are possible "bottlenecks" in the code, meaning parts in the code that computes
for a significant time compared to other parts. These bottlenecks have a large impact on
the performance. The obvious bottlenecks in the code are found in the geometry and the
primitive class since their mean and standard deviation time are significantly longer than
the rest of the classes. This mainly depends on the segment-wise iteration approach, that is
implemented in both of the classes, instead of going through the whole image. An image
could have for example hundreds of segments that need to be analyzed independently and
therefore increase the time complexity significantly.

If one was to compare the time taken for the classifiers to execute to how long it would
take to manually classify the images, one should keep the arguments above in mind; that
the tool is able to improve the quality of the verification and to save engineer work hours.
The procedure of the manual classification evaluates in general one to a couple of random
images from a set of images, that PSNR has detected with a faulty artefact. The procedure
currently used is mostly only looking at output images, since the reference is often known
before hand, due to experience. The exception is when the errors are more subtle. Then
so-called hint images are needed. A hint image is an output image overlaid with a layer
enhancing where there are differences in the image pair. It functions like our BDI in this
paper overlaid on top of the output image. In such a case, a manual classification will take
more time. This was taken into account when estimating the mean times taken for each
classification performed manually, visible in table 5.1 and 5.2 as the last row, where longer
times indicate more cases where an analysis of the hint image was needed and/or longer
duration of the respective analysis.

6.2 Considerations regarding the classes
Due to the limited time scope, not all subclasses were implemented in this paper. The left
out subclasses are considered to not be as important as the implemented subclasses and
are expected to be unnecessary time-consuming or complex. There is still a possibility to
develop these subclasses, but they will only be discussed in this paper. These subclasses
are deformed geometry, unexpected angular appearance and spotted lighting.

• Deformed geometry error, see the characteristics of the geometry class in section
3.3.2. This error is a mixture of the appearing and missing geometry subclasses. To
correctly implement this subclass one has to be able to identify that an appearing
or missing edge belongs to a deformed geometry. The solution is not intuitive, but
it might be done by comparing color maps of the output and the reference image
to find matching colors of found geometries, and therefore map a geometry in the
reference image to a deformed geometry in the output image.
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• Unexpected angular appearance tile error, see the characteristics of the tile class in
section 3.3.2. An idea to identify this error is to find corners, like the other tile
subclass, but without the grid. The problem is that these errors often appear with
particle and light effects. This erases the corners of the error, because particles
overlap each other, and makes the error more precision related than tile related.

• Spotted lighting error, see the characteristics of the lighting class in section 3.3.2.
To separate this error from the geometry or precision errors seems very hard. A
possible solution might be to convert images from RGB to a YUV representation to
analyze the luminance level of the output image compared to the reference image’s
luminance level. This will probably highlight light spots with errors.

It is worth to mention that some subclasses are harder to classify than others from a com-
puter’s point of view, as the subclasses characteristics are very similar to other class char-
acteristics. This results in false positives that may prove difficult to correct. It is often edge
cases of classes that give these problems, but there are subclasses that are hard to separate
even when manually classifying them. An example of this is the sometimes vague distinc-
tion between the primitive and the geometry classes. A primitive error can be seen as a
specific edge case for the geometry class as it manipulates parts of a geometry. One edge
case where it is hard to differentiate the two is when a geometry error is cut off in some
manner so that is takes the shape of a primitive.

An example of subclasses, which are more difficult to differentiate than others, are the
miscolored geometry and the constant layer precision subclasses. They are very similar, as
they both identify errors that have a constant color change. The difference is that miscol-
ored geometry relates to geometries and the other relates to errors that cover the most of
the image. When miscolored geometries cover the majority of the image, these subclasses
are very hard to tell apart.

Another situation when this tool may be used to automatically provide information be-
tween an output and a reference image is when ray tracing is used. At the time of writing
ray tracing is very seldom used in real-time 3D graphics, due to the heavy computations
needed for each frame. But recently a breakthrough has been made in this area, as made
famous by the Unreal Engine 2018 Demo, see [22], allowing ray tracing to be more com-
monly used in real-time 3D graphics in the near future. Since most ray tracing methods
do not provide bit exact images when repeatedly rendering the same frame, due to the ran-
dom direction of bouncing rays, methods like PSNR in some cases provide a non-optimal
amount of information, concerning whether it, deemed by the human eye, actually exists a
difference between a given output and a reference image. In the case of the tool discussed
in this paper, one will receive a precision classification for all images created with ray
tracing, but one may still receive other information about the difference between an output
and a reference image, especially from those classifiers who require higher differences in
intensity in their thresholds.

6.3 Future work
There are multiple optimizations that could be done to shorten the time taken for the exe-
cution of the classifiers. For example, there are cases of the same calculations performed
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multiple times in different classifiers. This is due to the fact that the development of the
classifiers was done in a sequential fashion, with the plan to optimize so that each equal
calculation was only performed once a certain robustness in the accuracy was established.
Due to the limited time scope, this was not carried out.

As mentioned in chapter 5, to improve the classification results and the performance
metrics one has to mainly optimize the pixel and the primitive classifiers. For the primitive
and geometry class, one could use the image’s corresponding 3D mesh, if available, to
easier spot the edges of the faulty geometry. At the moment, there is a somewhat crude and
computationally heavy pattern recognition method implemented for the primitive class,
used to identify straight lines and triangles in an image.

For the pixel class, one could instead search for where the RGB colors channels for
faulty pixels are a combination of maximized and minimized values, For example (255,
255, 255), (255, 255, 0), (255, 0, 255) and so on. This was one of the initial development
ideas for the class, but it was canceled.

The choice to not include machine learning in the solution is discussed in section 3.2.
However for some classes, even though there is a limited amount of data, some machine
learning techniques could be applied. For instance, if one were to train an algorithm on the
segments of a faulty primitive or geometry image one could possibly improve the results
of the classes’ corresponding classifiers, as there are often more than one faulty segment
in these classes and one would, therefore, receive a much larger reference set. Another
aspect to apply machine learning could be to generate data sets by injecting errors in the
GPU pipelines or programs, instead of creating a test set. This would be more realistic and
non-biased, but since we do not have access to the GPU in this thesis, due to the black box
fashion the solution was developed in, this could not be carried out. A machine learning
solution would need to be able to classify multiple classes at once, to be comparative to
our approach. This could possibly discover other classes that we have not thought about.

Another approach to incorporate machine learning with our solution could be to create
"meta classes" by using the classifications produced as features. For instance when the
classification for an image pair is carried out one could produce a feature vector containing
ones and zeros at positions related to classes and sub-classes, indicating if they received a
positive classification result or not. The mentioned extensions of machine learning to this
thesis are left as future work.
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Chapter 7
Summary and conclusions

The implemented algorithms for detecting graphical artefacts proved to be overall quite
accurate. As mentioned in the discussion, we received 82% and 78% mean accuracy for
the seven classes for the reference and test set respectively.

Given a relatively small number of images with errors and their corresponding refer-
ence images, a solution using Matlab was implemented. With image analysis methods as
a basis, the characteristics of the different determined classes were identified and analyzed
independently of each other.

The classification result was as expected. The number of false negatives was relatively
low and the number of false positives was somewhat high for some specific classifiers.
The latter was mainly due to the constraints of these classes being too loose.

The goals and questions asked at the beginning of this master thesis are considered
to be fulfilled and answered. The implemented algorithms are able to detect and classify
different graphical artefacts with a fairly good result, which has been quantified by our
chosen performance metrics. An analysis of performance is discussed, which includes
thesemetrics and a comparison between relevant timemodels of our classifiers andmanual
classification. This analysis is presented together with thoughts about difficult parts of the
classifications, ideas that did not get implemented and future work with machine learning.
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Appendix A

Histograms and other plots

In this appendix, histograms and interesting graphs that we have used to determine im-
portant values and thresholds for different algorithms are displayed. A histogram is con-
structed by storing the frequency of a factor we want to examine closely in an image. The
factor could be for example a ratio between present pixels in an image, that is segmented
in different ways. The factor could also be intensity values for pixels in an image. These
histograms are mainly used to find correspondences between images, that belong to the
same class. They are also used to pinpoint threshold values for achieving the desired seg-
mentation of binary images: α, β and γ, seen in figure 4.1.

The data acquired for the histograms, that have ’number of output images’ as the y-
axis, is stored image-wise. This is done by placing a value in a histogram for each output
image.

For the figure A.1, the black bars correspond to the red color channel, the gray bars
correspond to the green color channel and the white bars correspond to the blue color
channel.
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A. Histograms and other plots

Figure A.1: Histogram for finding correspondences for classify-
ing pixel and precision errors. The data displayed is the whole
reference set. Note that 76% of the images have a value less than
30 in pixel intensity when measuring the average difference in in-
tensity between an output and a reference image. The value is
selected as the lower threshold for γ and upper threshold for β and
α.

Figure A.2: Histogram for finding correspondences for classify-
ing precision errors. The data displayed is the whole reference set.
Note that 71% of the images have a value less than 0.1 in ratio. The
ratio has an interval from zero to one, of how many pixels are in β
compared to α. Zero means that there are only pixels present in β
and one means that there are only pixels present in α.
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Figure A.3: Histogram for finding correspondences for classify-
ing precision errors. The data displayed is only the images with
a known precision error. By comparing with figure A.2, note that
28% of the images, that have a greater value than 0.1 in ratio, are
precision errors. The ratio has an interval from zero to one, of how
many pixels are in β compared to α. Zeromeans that there are only
pixels present in β and one means that there are only pixels present
in α.
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A. Histograms and other plots

Figure A.4: This plot was used to set a threshold to restrict the
primitive classifier, marked with a thick white and black striped
line. Note that the segments represented in this histogram are
those which first gave a positive primitive classification or the seg-
ment in the image which provided the highest ratio value, if the
image was not classified as a primitive error.

Figure A.5: This histogram was used to set a threshold to re-
strict the primitive classifier, marked with a thick white and black
striped line. Note that the segments represented in this histogram
are those, in images belonging to the primitive ground truth, which
first gave a positive primitive classification or the segment in the
image which provided the highest ratio value, if the image was not
classified as a primitive error.

66





INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTATIONSDAG 2018-05-31
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Automatiserad klassifikation av grafiska
artefakter inom 3D-grafik

POPULÄRVETENSKAPLIG SAMMANFATTNING Daniel Cheveyo, Arvid Carlman

AUTOMATISERING AV TIDIGARE MANUELLT UTFÖRDA UPPGIFTER ÄR IDAG ETT
POPULÄRT ÄMNE INOM UTVECKLINGSPROCESSER HOS DE FLESTA FÖRETAG. I
DENNA ANDA HAR VI UTVECKLAT ETT VERKTYG FÖR KLASSIFICERING AV FEL I
BILDER RENDERADE VIA 3D-GRAFIK.

System testning används när man utvecklar hård-
vara och drivrutiner för rendering av 3D-grafik.
En viktig aspekt när man utför system testning
är att jämföra en resulterande bild av en specifik
3D-scen mot dess korresponderande referensbild.
Huvudverktyget som används för denna jämförel-
se är Peak Signal-to-Noise Ratio (PSNR). PSNR
kan bara användas för att ge ett värde på skill-
naden mellan bilderna, men inte information som
exempelvis vilken typ av grafisk artefakt, vilket
innebär ett fel i bilden från renderingen av dess
3D-scen, som den felaktiga bilden innehåller.
I vårt examensarbete har vi implementerat och

skrivit algoritmer som kan klassificera grafiska ar-
tefakter med bildanalytiska metoder för förutbe-
stämda klasser. Eftersom artefakterna som dyker
upp är så olika och att vi var givna en liten mängd
av endast 112 bilder för utveckling av algoritmer-
na, så valde vi att inte använda oss av de popu-
lära maskininlärningsmetoderna. Istället skapades
egna skräddarsydda algoritmer för respektive ar-
tefakt, även kallad klass. Detta gav en nisch till
verktyget i och med att det är användbart även
om man inte har tillräckligt med relevant data till
hands.

Vi implementerade totalt 7 klasser med varie-
rande egenskaper och utseenden. Det svåra med

att hitta dessa utmärkande egenskaper var när bil-
der med artefakter från olika klasser hade många
detaljer gemensamt. Algoritmerna utvecklades ge-
nom att gränser och värden för olika parametrar
i bilderna valdes ut, funna genom analys av den
givna datan, som sedan testades för bilder med
liknande fel som vi själva genererade, för att sä-
kerställa att implementeringen var korrekt. En ex-
empelbild på hur en artefakt kan se ut är illustre-
rad i figur 1a, brevid bildens referensbild, det vill
säga hur den skulle ha sett ut i figur 1b.
Med detta verktyg kan man spara många dyra

ingenjörstimmmar och finna fel som inte kan ses
med blotta ögat.
Resultatet visar att 82% av alla bilder som har

använts för utvecklingen av algoritmerna klassifi-
cerades rätt, och 78% av alla testbilder blev kor-
rekt klassificerade.

(a) (b)

Figur 1
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