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Abstract

Non-destructive testing (NDT) is a vital part of aerospace manufacturing due to
high demands for quality and safety. Advances in materials science have given
rise to aerospace composites with highly improved properties compared to tradi-
tional materials. To ensure that materials can be used safely, NDT techniques are
continuously improved to follow advances in materials. This has also spurred de-
velopment of new NDT techniques. One suggestion for improving NDT techniques
is based on combining several phenomena. One such combination is acoustics and
electromagnetics, such as ultrasound and mm-waves. This work explores inter-
action between acoustic and electromagnetic waves and attempts to connect this
with possibilities for novel NDT techniques. The focus is on photoelastic interac-
tion, meaning that an acoustic wave alters dielectric properties of a medium which
in turn scatters electromagnetic waves. Existing techniques such as acousto-optics
and Radio Acoustic Sounding System are used as a starting point for exploring
this interaction mechanism.

Analytical models for photoelastic interaction are developed from basic electro-
magnetism and photoelasticity theory. Two important results are a phase matching
condition for maximum scattering and a frequency shift of scattered waves, both
of which are also present in acousto-optics. Numerical simulations are used to
verify the phase matching condition and compare scattering power with analytical
models. Defects with electric or acoustic contrast are simulated to explore NDT
possibilities. Both types of contrast are shown to affect the interaction, which
could be an advantage over some existing NDT techniques. However, more work
is required to determine the utility for NDT.
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Chapter 1
Introduction

1.1 Background
The aerospace industry sets high requirements on quality and reliability, and non-
destructive testing (NDT) is a crucial part of the manufacturing process [1]. The
International Committee for Non-Destructive Testing states that “Non-destructive
testing is the branch of engineering concerned with all methods of detecting and
evaluating flaws in materials” and that “The essential feature of NDT is that the
test process itself produces no deleterious effects on the material or structure under
test” [2]. In aircraft construction, NDT allows for inspection of the structural
integrity of parts both in manufacturing and during service [1, 3].

Aircraft construction has traditionally relied heavily on aluminum alloys, but
these have increasingly been replaced by composite materials [1]. The advantages
of using composites are many, such as higher strength, lighter weight and resistance
to corrosion to mention a few [1]. However, the possible modes of failure are
different in composites than for aluminum alloys which puts other demands on
NDT [1, 4]. To be able to keep reliability high, many NDT techniques have been
developed for composites [4, 5]. Ultrasonic testing is one of the most established
methods used for aerospace composites [3, 4], and has been used in many other
fields as well [6]. Most techniques in ultrasonic testing require coupling between
the transducer and sample using for example water [6]. However, in some cases
the ultrasonic wave can be coupled through air, giving a contactless method [7].

One NDT technique which has become more popular relatively recently is
microwave and mm-wave imaging [8, 9]. Better microwave electronics due to ad-
vances in semiconductor devices has made this field increasingly attractive [9].
One of the main benefits of mm-wave imaging is its high resolution [8, 10]. In
the field of aerospace NDT, mm-wave imaging is interesting due to its ability to
detect flaws in low loss dielectric composites [10], and particularly in honeycomb
composites [11].

In medical imaging, the combination of multiple techniques has been pro-
posed as a way of improving performance. One example is multimodality imaging,
where two techniques are used to produce images separately to be combined in
post-processing [12]. However, if two wave phenomena are utilized simultaneously
a single image can be produced with combined benefits of the two [12]. There is a
large overlap between NDT and medical imaging, and similar techniques are often
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2 Introduction

used in both fields [13, 14, 15]. Due to their existing usage and potential, a combi-
nation of ultrasonic testing with modern mm-wave imaging could be of interest in
NDT for aerospace composites. The combination of acoustic and electromagnetic
waves has been proposed for NDT before [16, 17], but no signs of practical use
could be found by the author.

Interaction between acoustic and electromagnetic phenomena has been known
since at least the earlier half of the 20th century in the form of acousto-optics
[18]. This type of interaction has been used practically in photonic devices since
the 1960s and is well-understood [18].Typical acoustic waves are then ultrasound
in the MHz frequency range, and electromagnetic waves are at optical frequencies
[18]. Interaction at completely different frequency ranges is used in meteorology
under the name Radio Acoustic Sounding System (RASS) [19, 20, 21]. The electro-
magnetic waves are in this case radio waves in the MHz-GHz range, while acoustic
waves are audible sound [20]. The original purpose of this system was to measure
atmospheric temperatures [19], but it has also been used to measure other param-
eters such as wind phenomena [21]. Other mechanisms for interaction between
acoustic and electromagnetic waves exist with possible applications such as land
mine detection [22], breast tumor detection [23] and optical sensing in medicine
[24].

1.2 Related Work
A mm-wave imaging system was developed and tested on composite panels at the
Department of Electrical and Information Technology, Lund University [10]. While
not directly connected, the current work is inspired by the mm-wave imaging work
made at the department. Additionally, the simulations and experiments described
in the paper were highly useful for understanding properties of a mm-wave NDT
system and relevant test materials. For an overview of microwave and mm-wave
imaging for use in NDT, [8] and [9] introduce techniques and applications while
not delving too deep into specifics.

For the well established technique of ultrasonic testing, the book by Schmerr
[6] is a good reference and introduction to the general topic. More specifically,
modern aerospace NDT is described in [3, 4] and [7]. These papers compare
various NDT techniques, of which ultrasonic testing is one.

For acousto-optics, the dedicated chapter in [25] provides a good overview of
the topic. For more detailed study, the monography by Korpel [26] covers much
of the topic in great detail and with different approaches.

A type of acousto-electromagnetic phenomena where the wavelengths involved
are on the same order of magnitude is described in the RASS literature. Early
work in [27] contains electromagnetic derivations related to the problem. Good
descriptions of functional RASS systems can be found in [19] and [20], although
they do not present much theoretical background. A good reference deriving basic
theory for RASS performance is [28], which describes the problem with a beginning
in basic electromagnetic scattering. An earlier work related to this is the book by
Tatarskii [29] which is focused on turbulence and wave propagation. Much of the
theory it presents regarding the effect of turbulence on electromagnetic waves is
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easily transferable to the acousto-electromagnetic problem, and chapter 2 of the
book was heavily used for parts of this work.

Another acousto-electromagnetic interaction mechanism is based on acousti-
cally exciting radar targets. This was investigated as a way of detecting land
mines by Scott and Martin [22]. More mathematical modeling of this problem was
performed by Buerkle, Sarabandi and Lawrence in [30, 31] and [16] where the last
one relates the mechanism to NDT. The thesis by Buerkle [15] provides a good
summary of this interaction mechanism, possible applications and techniques.

Vibrations can also be caused inside an object through acoustic radiation pres-
sure. This has been used in multiple medical imaging methods described in [32].
One well-known method using ultrasound to cause vibrations in tissue is vibro-
acoustography, which was introduced by Fatemi and Greenleaf [13]. A method
combining acoustic radiation pressure and microwave imaging, Harmonic Motion
Microwave Doppler Imaging (HMMDI), was proposed by Top and Gençer as a way
of to improve breast tumor detection [33]. The method was tested successfully on
imaging phantoms (artificial model of human tissue) in [23] and [34].

1.3 Purpose and Goals
Three goals were set up before starting the work in the form of questions to be
answered by the thesis:

1. How does acousto-electromagnetic interaction differ from acousto-optic the-
ory with wavelengths in the same order of magnitude?

2. What properties do acoustic and electromagnetic waves have in homoge-
neous materials and laminated composites?

3. How can ultrasound improve mm-wave imaging of defects in composites?

The goals were not written in a very specific way due to them being decided before
a thorough review of the literature. However, during the literature review process
more information was obtained and the goals were appended with more specific
questions and sub-goals.

1.4 Outline
There are 7 chapters and an appendix in this thesis. This chapter serves as a
background to the subject and purpose of the thesis. Chapter 2 gives a background
on some pieces of technology with relation to the subject. Chapter 3 describes the
theory required for the rest of the thesis. Chapter 4 presents an analytical model
based on the theory from chapter 3. Chapter 5 describes numerical simulations
used in part to verify models from chapter 4. Chapter 6 presents results from
chapters 4 and 5, discusses these and conclusions are drawn. Chapter 7 presents
some possible ways of continuing this work. Appendix A presents full derivations
for the models in 4.
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Chapter 2
Technology

This chapter introduces some pieces of technology which are of interest for under-
standing the topic and further chapters.

2.1 Aerospace Composites
Composites are manufactured materials composed of multiple distinct material
components. Together, the composite material obtains characteristics not present
in the individual components [35]. In aerospace, composites have been used in
military aircraft for a long time but more recently commercial aircraft have also
seen large-scale adoption of composites [1]. The advantages of using composites
over traditional aluminum alloys are many, which is the reason for their increased
adoption. The composite materials used in aerospace are often made out of the
two major components fibers and matrix [1]. The fibers, or reinforcement, provide
high strength and stiffness while the matrix is used to bind the fibers together
[1]. A common type of composite is the polymer-matrix composite, which uses a
polymer material matrix reinforced by glass- or carbon-fiber [35, 1].

Structures are often constructed by layering composites on top of each other
as laminates [1]. The individual layers, or lamina, can be made of different types
of composites with fibers oriented in different directions for optimal strength and
stiffness [1]. An important type of laminated composite is the sandwich composite,
which is composed of a lightweight panel of core material with thin sheets of stiffer
material bonded to the two faces of the core [36]. This type of construction allows
for a very lightweight, but still strong composite laminate which is of great interest
to the aerospace industry where weight is critical [36, 1]. The sheet material is
often fiber-reinforced polymer-matrix composites while cores are often constructed
with a cellular structure, meaning that it contains cells of open space [36, 11]. This
cellular structure is commonly achieved by using foams or honeycomb structures
[36].

2.2 Acousto-EM in Established Technology
Mechanisms for interaction between acoustics and electromagnetism have been
known for a long time, primarily through acousto-optics [18]. Beyond knowledge
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6 Technology

of the phenomena there are also applications in technology which are investigated
in this section. Two examples are given: acousto-optics and the Radio Acoustic
Sounding System. These operate at very different frequencies (both acoustic and
electromagnetic) which can be of interest when investigating the possibility of
using mm-wave frequencies.

2.2.1 Acousto-Optics
Acousto-optics is a phenomenon based on the refractive index varying due to an
acoustic wave [25]. If a beam of light is incident on an acoustic beam in a material,
it will be diffracted by this periodic change in refractive index. There are multiple
types of acousto-optic diffraction, but one of the more common types is Bragg
diffraction which occurs for thick acoustic beams [26]. One characteristic of this
phenomenon is that phase matching is required for strong diffraction, and this is
described by the so called Bragg condition

sin θB =
λ

2Λ

where θB is the optical angle of incidence with reference to the acoustic beam,
λ is the optical wavelength and Λ is the acoustic wavelength [25]. The angle of
diffraction is also θB [25]. Acousto-optics was first investigated in the early 20th
century [18], and today it is used in many photonic devices [25]. Examples of
applications for acousto-optics are modulators, scanners and filters [25]. Acousto-
optic modulators use the Bragg condition to amplitude-modulate light by varying
the acoustic frequency [25]. Scanners also vary the acoustic frequency, but are used
to change the direction θB of the diffracted beam of light [25]. Acousto-optic filters
use a constant acoustic frequency, and a wide spectrum of light can be filtered by
selecting a specific angle θB [25].

2.2.2 Radio Acoustic Sounding System
One application of acousto-electromagnetic interaction can be found in meteorol-
ogy through the Radio Acoustic Sounding System (RASS). The purpose of the
system is to utilize the interaction between radio and acoustic waves for tempera-
ture sounding of the atmosphere [20]. The Bragg condition in acousto-optics also
holds here, and is in fact the main mechanism allowing for the measurement of
temperature. As explained in the introduction of the thesis, the frequencies used
in RASS are highly different from those used in acousto-optics. The ratio between
them is also different as the two waves are parallel and their sources co-located in
RASS [19]. This reduces the Bragg condition to [19]

Λ =
λ

2

A fulfilled Bragg condition then leads to the electromagnetic wave being backscat-
tered. The mechanism allowing for temperature measurement is that the acoustic
wavelength depends on temperature, which affects the Bragg condition [19]. For
given acoustic and electromagnetic frequencies, the Bragg condition therefore only
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holds at a specific temperature. There are multiple ways of measuring the temper-
ature at certain heights using this fact, using different types of acoustic excitation
[20]. For example, one method is based on modulating the acoustic frequency con-
tinuously, giving different acoustic frequency at different heights. A pulsed radar
system is then used to detect the altitude at where the Bragg condition is fulfilled,
and since the acoustic frequency is known at every altitude the speed of sound can
be determined [20].
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Chapter 3
Theory

This chapter presents some of the theory required to analytically derive a model
for acousto-electromagnetic interaction. Some different interaction mechanisms
between the two phenomena are presented in the beginning, but the rest of the
theory is mostly related to the mechanism actually used in the analytical model.

3.1 Overview of Interaction Mechanisms
To introduce the subject, four types of interaction mechanisms between acoustic
and electromagnetic waves are presented. This is by no means a complete list of
possible ways of combining the phenomena. Instead, these mechanisms are those
which could be found in the literature relatively easily.

3.1.1 Target Boundary Perturbation
This mechanism is based on a discrete target under acoustic resonance. The reso-
nance of the target leads to vibration, which is seen as a time-dependent boundary
perturbation [15]. An electromagnetic wave scattered against this vibrating tar-
get resembles a frequency modulated signal, where the strongest frequency com-
ponents being those of the original frequency shifted by the acoustic resonance
frequency [31, 37]. This is seen as a Doppler shift, which could be used for some
types of NDT [16]. One issue with this mechanism is that it is based on a target
being under acoustic resonance. This might be interesting in some cases, but for
complex objects it could be time-consuming to find resonances which is not ideal
for a production environment. The mechanism is also not very similar to ultrasonic
testing, so while the interaction is based on acoustic and electromagnetic waves it
is not a reasonable combination of ultrasonic testing and mm-wave imaging.

3.1.2 Localized Harmonic Motion
Interaction based on Localized Harmonic Motion is similar to the previous one
based on boundary perturbation in that it uses scattering from harmonic motion.
The difference is that harmonic motion is introduced in a bulk material instead
of a resonating discrete target. The acoustic part of the mechanism has been
utilized in various medical methods such as vibro-acoustography and harmonic

9
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motion imaging [32]. Both techniques use amplitude modulated ultrasound to
produce a time-harmonic force acting on a localized region of a sample. This
generates time-harmonic displacement, or vibration. In the acoustic methods the
vibrating region emits elastic waves which can be detected [13, 38]. A method using
the combination of acoustics and electromagnetics is Harmonic Motion Microwave
Doppler Imaging (HMMDI) which was introduced as a method for detecting breast
tumors [33]. Advantages over other single-phenomenon imaging methods would be
that the interaction gives the method ability to detect contrast in both dielectric
and elastic properties [23].

An electromagnetic wave incident towards the vibrating region will scatter with
a frequency shift which corresponds to the frequency of vibration [33]. This is very
similar to the boundary perturbation mechanism described before. The frequency
shifted signal is in reality the first harmonic of a phase modulated signal due to the
micro-Doppler effect [15]. Weaker harmonics can often be ignored, leaving only
the original frequency component and those shifted up or down by the vibration
frequency [23]. The micro-Doppler effect mentioned is an addition to the regular
Doppler effect which comes into play when a target undergoes micro-motion [39].
The regular Doppler effect prescribes a constant frequency shift for a target in
constant motion, while the micro-motion required for the micro-Doppler effect
can be vibrations or rotations of a target [39].

The localized harmonic motion mechanism is fundamentally based on gener-
ating a force locally using amplitude modulated ultrasound. This is possible due
to the effect of acoustic radiation force, or acoustic radiation pressure, which is
an effect of nonlinear acoustics [33, 32]. A plane wave model for the acoustic
radiation force gives a linear relationship between the force in the propagation
direction of the wave and acoustic intensity [32, 40]. To explain the fundamentals
of acoustic radiation force many different models have been developed [41, 42],
but due to their complexity they are not presented here. Nevertheless, the simple
linear model is used successfully in medical applications of acoustic radiation force
[13, 43, 38, 34].

Two methods of generating radiation force locally are described in the liter-
ature. The first method uses amplitude modulated focused ultrasound with its
focus on the region of interest [23]. Since amplitude modulated ultrasound ex-
ists throughout the beam a force is generated in that entire region. However, the
intensity is much higher in the focus so the force is stronger there. The second
method instead uses two single-frequency ultrasonic beams which intersect at the
region of interest. The frequencies of the two beams differ by a small amount
∆Ω [13]. The acoustic pressure at the intersection is given by the superposition
of the two beams, and amplitude modulation by ∆Ω is obtained in the acoustic
intensity [13]. For a linear model between intensity and acoustic radiation force,
the resulting force varies with the frequency ∆Ω [33].

The foundations for this mechanism have been explored primarily in medical
imaging but as described in the introduction of this thesis, medical imaging and
NDT share many techniques and this might be the case for this technology as
well. The possible advantages in contrast presented for HMMDI are valid for
NDT as well as for medical applications, so this interaction mechanism should be
interesting to investigate for NDT.



Theory 11

3.1.3 Acousto-Optics
Acousto-optics is an interaction mechanism often explained using simple elasticity
models and wave optics [25, 18]. The main idea is that there is a relation between
the strain in a material and its index of refraction. Since an acoustic wave con-
sists of periodic compression and rarefaction in a medium (which can be related
to strain), a consequence is that the index of refraction varies with the same pe-
riod [25]. This periodic structure of varying index of refraction acts as a Bragg
reflector scattering incident light [25]. The Bragg condition determines the angle
of incidence θB required for the light

sin θB =
λ

2Λ

where λ is the light wavelength and Λ is the acoustic wavelength [25]. As for the
previously mentioned mechanisms, the scattered wave is frequency shifted by the
acoustic frequency [26].

There is nothing in the basic theory suggesting that optical frequencies are
required for this interaction. At microwave frequencies permittivity is more com-
mon to use than index of refraction, but they are related and the principle is the
same. An application which uses this principle and has been used for many years
is the radio acoustic sounding system [15]. Additionally, though not using the ex-
act Bragg formulation for modeling interaction, some authors have explored other
ways of using similar interaction at microwave frequencies [30, 17]. It has been
stated, however, that this interaction is very small and resonance is often required
(giving rise to boundary perturbation) [15].

It is common to assume near-perpendicularity between the acoustic and elec-
tromagnetic wavevectors in acousto-optic theory [26]. For modeling at other an-
gles, which makes for other wavelength ratios through the Bragg conditions, this
interaction mechanism is studied further. A full electromagnetic model based on
Maxwell’s equations is presented in section 4.1.

3.1.4 Scatterer Displacement
This is a mechanism mostly presented in the field of ultrasound-optical tomog-
raphy. The mechanism is based on dynamic multiple scattering of light, which
occurs if many scatterers undergoing Brownian motion are considered [44]. If an
ultrasonic beam is incident on such a sample the scatterers will move due to both
Brownian motion and ultrasound, giving rise to a frequency shift in affected pho-
tons [44, 24]. In medical applications, movement of the scatterers due to acoustic
waves is very straight-forward: their displacement directly follows the acoustic
wave [44]. For small scatterers in fluids such as blood (which is considered in
much of the literature), this movement might occur easily. However, larger scat-
terers in solids would require more energy to be moved in this way and this might
limit relevance for NDT.

For this work, a mechanism needs to be relevant at microwave frequencies
to be considered. The assumption on which the theory rests is that of dynamic
multiple light scattering [44]. In the existing mm-wave imaging system there is
an assumption of sparse defects being the only scatterers [10]. This is in complete
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contrast to the theory of dynamic multiple light scattering, which is based on
a large number of moving scatterers [44]. Since the basic assumptions of the
problem and theory are in such stark contrast, it seems likely that this interaction
mechanism holds little relevance to the problem at hand.

3.1.5 Main Subjects of Interest
The mechanisms presented above were the major ones found in a wide search
of the literature. Of the four presented, two could be ruled out for not being
applicable to the problem of interest. The localized harmonic motion and acousto-
optics interaction mechanisms were considered to be relevant to the NDT problem.
However, due to time constraints the acousto-optics mechanism was given the
main focus. Therefore, the rest of this work is mostly dedicated to this interaction
mechanism.

3.2 Ultrasonic Wave Propagation
The fundamental problem in this work is to combine acoustic and electromagnetic
waves. In particular, ultrasound and micro/mm-waves are of interest and therefore
ultrasonic wave propagation is presented here. In many NDT applications the
ultrasonic waves are generated in some transducer, coupled into a fluid medium
and then coupled further into the solid medium of the test object [6]. This requires
knowledge of wave propagation in both fluid and solid media. The word acoustics
is sometimes used in the literature for propagation in both types of media, and
sometimes only for fluid media. When distinction between waves in the two media
is required in this work, “acoustic waves” is used for fluids and “elastic waves” for
solids.

3.2.1 Propagation in a Fluid Medium
In a compressible fluid ultrasound can be described by a standard acoustic model.
The main variable for describing the wave motion is pressure in this case. In turn,
this can be converted into other variables such as displacement or strain. The
theory of acoustics originates in continuum mechanics, but a restriction to fluids
and a linearization leads to the most commonly used model - linear acoustics [45].
The acoustic wave equation which lies at the heart of the model of linear acoustics
can be written as [45, 6, 46]

∇2p− 1

v2
∂2p

∂t2
= 0 (3.1)

where p is pressure and v is the speed of sound in the fluid. In addition to
linearization, this equation assumes no body forces and a homogeneous density of
the medium [45]. The speed of sound can be written as v =

√
K/ρ0 where K is

the bulk modulus of the fluid and ρ0 is the unperturbed density of the fluid [46].
This model is directly useful for NDT in some cases. One is in immersion test-

ing, where a test object is immersed in water and ultrasound propagates through
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the water into the object [6]. The other is in coupling ultrasound from a trans-
ducer to an object through a thin layer of coupling fluid [6]. However, this model
is also useful for understanding one special case of propagation in an elastic solid,
namely p-wave propagation [45]. This will be described further in the next part.

While the pressure is the main quantity describing acoustic waves in a fluid,
one of the more common quantities is instead sound pressure level (SPL). This is
a relative quantity measured in dB, which is defined as

Lp = 20 log10
p

pref

where pref is a reference pressure which is defined as 20 µPa in air [45]. Another
quantity, which was introduced earlier when discussing acoustic radiation force is
acoustic intensity. This is defined as the acoustic power per unit area [45]. An
instantaneous value for this is

I(t) = p(t)vpart(t)

where vpart(t) is the particle velocity [45]. However, it is more common to use the
time-average value [47]. For plane waves, a relation for this can be written as

Is =
p2p
2ρ0v

where pp is the peak pressure amplitude of the plane wave, ρ0 is the density and
v the acoustic wave speed [45]. One thing to note is that this is a scalar, and not
a vector as before. The direction in this case is understood to be the same as the
propagation direction of the plane wave [45]. Related to acoustic intensity is the
sound intensity level (SIL), which is analogous to SPL. This is measured in dB
and defined as

LI = 10 log10
Is

Is,ref

where Is,ref is a reference intensity which is defined as 10−12 W/m2 in air [45].

3.2.2 Propagation in a Solid Medium
In an elastic medium the acoustic model is no longer sufficient. That model only
considers pressure since one main assumption for volume elements in the fluid is
that they only transmit force in the direction of the force [46]. The volume elements
in an elastic solid are more strongly coupled to each other, and this assumption
does not hold anymore [48]. The equations of elastic waves are instead based on
solid mechanics. There is no simple wave equation as in acoustics, instead the
model is described by Navier’s equations

µ∇2u+ (λ+ µ)∇(∇ · u) + f = ρ0
∂2u

∂t2

where u is the displacement vector, λ and µ are the Lamé parameters of the
material and f is the body force [6]. To obtain wave equations from this, a
Helmholtz decomposition is made as

u = ∇ϕ+∇×ψ
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where ϕ is a scalar potential and ψ is a vector potential [6]. For Navier’s equations
to be fulfilled, the following must hold for the potentials [6]:

∇2ϕ− 1

c2p

∂2ϕ

∂t2
= 0

∇2ψ − 1

c2s

∂2ψ

∂t2
= 0

These are two wave equations with the wave speeds [6]

cp =
√
(λ+ 2µ)/ρ0

cs =
√

µ/ρ0

By further investigation, the waves can be identified as p-waves with speed cp and
s-waves with speed cs [6]. The p-waves are very similar to acoustic waves in fluids,
and it can be shown that the dilatation of the solid (the sum of linear strains,
∇ ·u) travels at cp [6]. The s-waves on the other hand, do not have an analogy in
acoustics. The local rotation of the solid (half the curl of the displacement vector,
(∇ × u)/2) follows the s-wave equation [6]. This local rotation is always zero
in acoustics due to the weak coupling between volume elements [46], so s-waves
cannot propagate in fluids. When it comes to actually generating ultrasonic elastic
waves, transducers are available both for generation of p-waves and s-waves [6].

One important detail when working with solid materials capable of supporting
both p- and s-waves is that conversion between the two is possible [6]. Mode
conversion is a phenomena where even pure p-waves will generate a combination
of p- and s-waves. Whenever a p-wave is incident at an interface at oblique angles,
mode conversion will take place [6].

The elastic waves described above are called bulk waves since they only fully
describe waves in the bulk of an elastic solid [48]. Other wave phenomena exist
such as surface waves (Rayleigh, Stoneley, Love) [48] and plate waves (SH, Lamb)
[6]. These waves are not insignificant and are used in some branches of ultrasonic
testing [6]. However, only bulk waves are considered here.

To be able to easily relate elastic p-waves to acoustic waves in fluids, a relation
between pressure and dilatation is required. In a fluid at rest, the pressure can be
related to the linear stresses in the Cauchy stress tensor as [49]σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

 =

−p 0 0
0 −p 0
0 0 −p


where σab are stress components written in Cartesian coordinates. All linear
stresses are equal for that case, which does not hold in general. However, the
pressure can still be related to the Cauchy stress tensor for cases where linear
stresses are not equal (and even in solids) by [50]

p = −1

3
(σxx + σyy + σzz)
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which is just the negative of the mean value of the linear stresses. For an isotropic
solid, these can be written using Lamé parameters and displacements as [6]

σxx = λ∇ · u+ 2µ
∂ux

∂x

σyy = λ∇ · u+ 2µ
∂uy

∂y

σzz = λ∇ · u+ 2µ
∂uz

∂z

The pressure can then be written as

p = −1

3

(
λ∇ · u+ 2µ

∂ux

∂x
+ λ∇ · u+ 2µ

∂uy

∂y
+ λ∇ · u+ 2µ

∂uz

∂z

)
= −

(
λ∇ · u+

2µ

3

(
∂ux

∂x
+

∂uy

∂y
+

∂uz

∂z

))
= −

(
λ+

2µ

3

)
∇ · u

The Lamé parameters are related to the bulk modulus by K = λ+2µ/3 [49] which
simplifies the equation above to

p = −K∇ · u (3.2)

With this it is straight-forward to calculate the pressure for a given displacement.
The dilatation follows the wave equation with the p-wave speed [6]

∇2(∇ · u)− 1

c2p

∂2(∇ · u)
∂t2

= 0

If equation (3.2) is inserted, and the wave equation is multiplied by −K, the result
is

∇2p− 1

c2p

∂2p

∂t2
= 0

This is the same as the acoustic wave equation in fluids (3.1), with the exception of
the wave speeds which are v =

√
K/ρ0 =

√
(λ+ 2µ/3)/ρ0 for acoustic waves and

cp =
√

(λ+ 2µ)/ρ0 for p-waves. Written using bulk modulus and shear modulus
(µ is equal to the shear modulus [50]) this is then cp =

√
(K + 4µ/3)/ρ0

3.3 Photoelasticity
To understand how the basic interaction from acousto-optics works, the first step is
to understand how an elastic wave affects electromagnetic properties. The theory
of photoelasticity relates strains from linear elasticity with the relative permittivity
of a material. With a starting point in solid mechanics, a tensor-based theory is
somewhat inevitable. However, a simplified model is shown later which condenses
the tensor relations down to a scalar relation. Since the interaction between elastic
and electromagnetic waves in this case is based on photoelasticity, it will be called
“photoelastic interaction” further on in the text instead of “acousto-optics” even
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though the underlying physics are the same. The reason for this is that “acousto-
optics” is a misnomer for non-optical frequencies.

A starting point can be found in the literature on acousto-optics in the relation
[26]

∆

(
1

n2
i

)
= pijsj

where sj are strains and i, j = 1, . . . , 6. The double indexation of j in both p
and e indicates a summation over j. The notation ∆α indicates the difference
between a perturbed quantity α and its unperturbed value. Since refractive index
and relative permittivity are related by εri = n2

i in a non-magnetic material, the
relation is rewritten as

∆

(
1

εri

)
= pijsj

The LHS is the difference of an inverse quantity, which is cumbersome to use. To
find ∆εri instead of ∆(1/εri) it is assumed that the difference ∆εri is small when
compared with the non-perturbed value εri . With that assumption, the difference
∆εri is approximated as a differential. This allows use of the chain rule as

∆εri ≈ dεri =
dεri
dα

dα ≈ dεri
dα

∆α

where α is some variable with a small difference ∆α ≈ dα. If α is selected as
α = 1/εri this leads to

∆εri ≈
dεri
dα

∆α = −1/α∆α = −ε2ripijsj

The tensor notation used above is a simplified form described by the 1949 IRE
standards. The relation to full tensor notation is shown below for an arbitrary
tensor a [26]

a1 = a11, a2 = a22, a3 = a33,

a4 = a23, a5 = a31, a6 = a12

If the strains are considered, it is clear that indices 1-3 are tensile and 4-6 are
shear. For the photoelastic tensor it can be seen that it is of rank 4, being pijkl
in standard notation. One thing to note is that the 4 indices in standard notation
should allow for many more components of the photoelastic tensor than those
possible using this compact notation (81 instead of 36). This is due to symmetry
of the photoelastic tensor in this particular model [25]. It should also be noted
that this model does break down in some cases, and more advanced descriptions of
the phenomena exist [51]. However, this model was considered advanced enough
as a starting point for this problem, especially since it is quite heavily simplified
in the end.

This model of the photoelastic tensor allows for up to 36 independent compo-
nents, but for the simple case of an isotropic solid the tensor simplifies to [26]

p11 = p22 = p33, p12 = p21 = p13 = p23 = p32

p44 = p55 = p66 =
1

2
(p11 − p12), pij = 0 for others
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The simplest material to consider would be an isotropic solid with isotropic per-
mittivity εr. There is then no preferred axis and a coordinate system can be
selected arbitrarily. A longitudinal elastic wave is defined using strain as

s1(x1, t) = sp cos(Ωt− qx1)

It is propagating in the x1 direction and is thus a strain s1, and all other strains are
assumed to be zero. The relation ∆εri = −ε2ripijsj together with the photoelastic
tensor for isotropic solids then gives

∆εr1 = −ε2rp11sp cos(Ωt− qx1)

∆εr2 = ∆εr3 = −ε2rp12sp cos(Ωt− qx1)

It is clear that the permittivity now has an axis x1 where it has another value than
in x2 and x3. So even for a material which is nominally completely isotropic, a
preferred axis arises for the permittivity! This type of anisotropy causes birefrin-
gence in optics, and in this case it is caused by dipoles aligning themselves parallel
to the strain [26]. Practically, the effect of this is that the interaction strength
of this mechanism depends on the EM polarization with respect to the elastic
wave polarization. In longitudinal elastic waves the polarization and propagation
direction coincide, which makes analysis easier.

For a very simplistic model, the anisotropy can be ignored if it is assumed that
p11 = p12. This assumption reduces the photoelastic tensor to

p11 = p22 = p33 = p12 = p21 = p13 = p23 = p32 = p

pij = 0 for others

where p was introduced as a scalar photoelastic constant. One thing to note is that
since p33 = p44 = p55 = 0, shear strain does not have any effect in this simplified
model. If the unperturbed permittivity is isotropic (εr1 = εr2 = εr3 = εr, εri = 0
for i = 4, 5, 6) a scalar relation can be written as

ε1 = −ε2rp(s1 + s2 + s3)

Here ε1 was introduced as the isotropic change in relative permittivity, ε1 = ∆εr1 =
∆εr2 = ∆εr3 . At this stage it is more practical to use Cartesian coordinates than
index notation since much other theory uses that convention. Vector notation is
also used when appropriate. Using this convention, it follows that

ε1 = −ε2rp(sxx + syy + szz) = −ε2rp

(
∂ux

∂x
+

∂uy

∂y
+

∂uz

∂z

)
= −ε2rp(∇ · u)

(3.3)

Using equation (3.2) this relation can now be expressed using pressure

ε1 =
ε2rp

K
p (3.4)

Scalar models such as this might seem unreasonably simplified when the starting
point is a much more complicated tensor relationship. However, in acousto-optics
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scalar relations similar to this are used [25, 26], and in many cases the only quantity
used might be a scalar figure of merit for the interaction strength [26].

To obtain a model for calculating the scalar constant p, another starting point
for the problem is utilized. This is the Lorentz-Lorenz relation, which can be used
to obtain the following equations for photoelasticity [26]

∆n = C ′S

C ′ =

[
(n2 − 1)(n2 + 2)

6n

]
(1− Λ0)

Λ0 = −
( ρ
α

) dα

dρ

where S is the condensation (relative change in density), ρ is the density and
α is the molecular polarizability. Here the anisotropic effects are contained in
the parameter Λ0 [26]. If anisotropy should be considered, the tensor model is
probably better to use, but if Λ0 is neglected a simplified model is obtained. This
type of model is usually accurate for liquids, but many solids do not have this
behavior [26]. Nevertheless, the simplified relation can be written for permittivity
(using εr = n2 and ε1 = 2n∆n) as

ε1 =
1

3
(εr − 1)(εr + 2)S

In a fluid model, the condensation can be related to dilatation using the relation
−ρa/ρ0 = ∇·u where ρa is the change in density [46]. Since the condensation can
be written as S = ρa/ρ0 [26] the relation is rewritten as

ε1 = −1

3
(εr − 1)(εr + 2)(∇ · u)

This can be compared with equation (3.3) to obtain an equivalent photoelasticity

p =
(εr − 1)(εr + 2)

3ε2r
(3.5)

A plot of p as a function of εr is shown in figure 3.1. It can be seen clearly that
the interaction strength increases with εr close to 1. However, at around εr = 4
an extreme is reached, and further on p levels out. Thus, there is a bound on
the interaction strength for this relation. It should be noted that this model is
extremely simplistic and is probably only accurate for a limited range of materials.

This simple model can be compared with a model for dry air found in the
RASS literature. The perturbation in relative permittivity can then be related to
pressure as [52]

ε1 =
1.13 · 10−6p

T
where p is the pressure in Pa and T is the temperature in K (which would give
the constant a unit of K/Pa). The equations (3.4) and (3.5) can be combined to
give the simple model

ε1 =
ε2rp

K
p =

(εr − 1)(εr + 2)

3ρ0v2
p
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Figure 3.1: Simplified photoelastic constant p as a function of εr.

where K = ρ0v
2 (which holds for fluids) was used [6]. Dry air at 0 ◦C (273 K)

has the properties ρ0 = 1.293 kg/m3 and v = 331.3 m/s [45]. In addition, the
relative permittivity cannot be approximated to 1 for this case, so the value of
εr ≈ 1.00059 is used [53]. The simple model presented here can then be written as

ε1 ≈ 4.2 · 10−9p

while the model from [52] at 273 K gives

ε1 ≈ 4.1 · 10−9p

Thus, the simple model presented here shows good agreement with another model
from the literature in air.
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Chapter 4
Analytical Modeling

This chapter utilizes the theory of photoelasticity together with electromagnetics
to derive a model for the scattering of an electromagnetic wave against a photo-
elastic perturbation. First, a general equation is derived from Maxwell’s equations,
and later this is used in a simple geometry to arrive at a radar equation. What
is presented here is fairly condensed, with the full derivations being presented in
appendix A.

4.1 Scattering in a perturbed dielectric
Scattering of electromagnetic waves in a dielectric perturbation is now considered
in general. A full derivation can be found in appendix A.1, and only the main
results are shown here. The starting point is Maxwell’s equations for a linear,
non-magnetic, source-free, isotropic dielectric. Note that the permittivity is not
homogeneous.

∇× E = −µ0
∂H
∂t

∇×H =
∂(εE)
∂t

∇ · (εE) = 0

∇ ·H = 0

The script letters are used here to indicate a time dependence as

E(r, t) = E(r, t)e−iωt

H(r, t) =H(r, t)e−iωt

A dielectric perturbation is defined as

ε = ε0(εr + ε1)

where ε0 is the permittivity of free space, εr is the unperturbed value for relative
permittivity in the material and ε1 is a small perturbation around εr.

The electric field is split up into an incident field Ei and a scattered field Esc

such that E = Ei +Esc. If the scattered field is considered to be small compared

21
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to the incident field (Born approximation), Maxwell’s equations in this perturbed
dielectric can be rewritten as (see appendix A.1.1-A.1.2)

∇2Esc + k2Esc = −k2
ε1
εr
Ei −

1

εr
∇(Ei · ∇ε1)−

k2

εr
Edi

where k = ω/c is the wavenumber, c = 1/
√
µ0ε0εr = c0/

√
εr is the speed of light

in the material and Edi contains terms with time derivatives. An integral form is
written as (see appendix A.1.2)

Esc(r, t) =
1

4πεr

∫
Vsc

eik|r−r′|

|r − r′|
·
(
k2ε1(r

′, t)Ei(r
′, t) +∇ (Ei(r

′, t) · ∇ε1(r
′, t)) + k2Edi(r

′, t)
)
dv′

(4.1)

where

Edi(r
′, t) =

2iεr
ω

∂

∂t
(Ei(r

′, t)) +
2i

ω

∂

∂t
(ε1(r

′, t)Ei(r
′, t))

− εr
ω2

∂2

∂t2
(Ei(r

′, t))− 1

ω2

∂2

∂t2
(ε1(r

′, t)Ei(r
′, t))

This gives the scattered field due to a small perturbation ε1 in a single-scattering
(Born) approximation.

4.2 Radar equation for simple photoelastic interaction
The scattering integral is now solved for a simple geometry and material model
to obtain a radar equation. A full derivation can be found in A.2, while only the
main results are shown here. First, the geometry is defined as shown in figure
4.1. The xy-plane is defined as the plane formed by the acoustic and electromag-
netic wavevectors (they are assumed to be non-parallel). The scattering volume
is a cuboid with dimensions Lx, Ly and Lz. It is centered in the origin of the
coordinate system, and both the acoustic and electromagnetic waves are approxi-
mated as plane waves close to the origin. Thus, the electromagnetic and dielectric
perturbation fields near the origin are defined as

Ei(r
′, t) = Ei(r

′) = Ei0e
ik·r′

ε1(r
′, t) =

ε2rp

K
p0 cos(q · r′ − Ωt)

Here, Ei0 is the complex field amplitude at the origin (−iωt time-dependence sep-
arated) and k is the electromagnetic wavevector. The scalar photoelastic relation
from equation (3.4) has been used, where p is the photoelastic constant, p0 is the
acoustic pressure amplitude at the origin, K is the bulk modulus, q is the acoustic
wavevector and Ω the acoustic frequency.

The electromagnetic polarization is assumed to be in z, Ei0 ∥ ẑ, far-field is
assumed and the condition Ω ≪ ω is assumed to hold. For this problem, equation
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q
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r = xx̂+ yŷ + zẑ

EM rx

Figure 4.1: Geometry for the scattering problem.

(4.1) is written as (see appendix A.2.1)

Esc(r, t) =
εrk

2eikrEi0pp0
8πrK

·
(
e−iΩt

∫
Vsc

ei(k(k̂−r̂)+q)·r′
dv′ + eiΩt

∫
Vsc

ei(k(k̂−r̂)−q)·r′
dv′
)

Given the geometry in figure 4.1, the solution to this integral is written as (see
appendix A.2.1)

Esc(r, t) = Ei0

(
E+

A (r, t) + E−
A (r, t)

)
where

E±
A (r, t) =

εrk
2eikrpp0
8πrK

LxLyLze
∓iΩtΦ±(θ, ϕ)

and

Φ±(θ, ϕ) =sinc
(
Lx

2π
(k − k sin θ cosϕ± q cosα)

)
·sinc

(
Ly

2π
(−k sin θ sinϕ± q sinα)

)
·sinc

(
−Lz

2π
k cos θ

)
One important detail to note is that two distinct frequency components arise: one
where the frequency is shifted up by Ω (E+

A ) and one where it is shifted down by
Ω (E−

A ).
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To obtain a more practical expression, the equations are now transformed into
power. For this, the time-averaged Poynting vector is calculated as (see appendix
A.2.2)

⟨
S±
sc

⟩
(r) =

1

2
Re
{
E±

sc(r, t)×H±∗
sc (r, t)

}
=

r̂

2η0η
|Ei0|2|E±

A (r, t)|2

where the time-dependence was removed by the absolute value. |E±
A (r, t)|2 is given

by

|E±
A (r, t)|2 =

ε2rk
4p2p20

64π2r2K2
L2
xL

2
yL

2
zΦ

±(θ, ϕ)2

Using standard antenna parameters, the incident field can be written as (see ap-
pendix A.2.2)

|Ei0|2 = 2η0η
PTGT

4πR2
T

where η0 is the wave impedance of free space, η is the relative wave impedance in
the material, PT is the power accepted by the antenna, GT is the maximum gain
of the antenna and RT is the distance from the antenna to the scattering center.
This is inserted into the time-average of the power density, giving

⟨
S±
sc

⟩
(r) = r̂

PTGT

4πR2
T

ε2rk
4p2p20

64π2r2K2
L2
xL

2
yL

2
zΦ

±(θ, ϕ)2

Now the effects of the receiving antenna are considered. It is assumed that this
antenna is optimally directed towards the scattering center. The received power
can then be written as (see appendix A.2.2)

P±
R =

λ2
RGR

4π

PTGT

4πR2
T

ε2rk
4p2p20

64π2R2
RK

2
L2
xL

2
yL

2
zΦ

±(θ, ϕ)2

where GR is the gain of the receiving antenna, λR the wavelength at the antenna
(not necessarily the same as in the material) and RR the distance between the
scattering center and the receiver. The receiver is located in the direction (θ, ϕ)
as seen from the scattering center. For a more traditional bistatic radar equation
[54] this can be written as

P±
R =

PTGTGRλ
2
Rσ

±(θ, ϕ)

(4π)3R2
TR

2
R

with the radar cross-section given by

σ±(θ, ϕ) =
ε2rk

4p2p20
16πK2

L2
xL

2
yL

2
zΦ

±(θ, ϕ)2

When actually measuring a signal, signal-to-noise ratio (SNR) is an important
quantity. The equation can be rewritten using SNR (see appendix A.2.3) as:

SNR±
N =

PTGTGRλ
2
Rσ

±(θ, ϕ)

(4π)3R2
TR

2
RkBT0BF

N (4.2)
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where kB is Boltzmann’s constant, T0 is the standard temperature 290 K, B is
the receiver bandwidth, F is the noise ratio of the receiver and N is the num-
ber of samples recorded. This equation assumes that coherent demodulation and
integration is used to boost the SNR.

Inspection of the equations for either scattered power or SNR shows that all
angular dependence is contained in the function Φ±. This depends on the obser-
vation angles θ, ϕ and the angle between EM and Ac. wavevectors α. Conditions
for the angles maximizing Φ± are derived in appendix A.3 and summarized as

θ = π/2 (4.3)

cosα = ∓ q

2k
= ∓ λ

2Λ
(4.4)

ϕ = ∓π + 2α (4.5)

The ∓-sign here is related to the ±-sign indicating frequency shift of the scattered
wave. These equations correspond directly to the Bragg condition used in acousto-
optics (see appendix A.3). This gives the model some validation since the acousto-
optic Bragg condition is derived from a slightly different starting point, but for
the same basic phenomenon [25].

4.2.1 Refined interaction region
The analytical results presented above are based on a cuboid interaction region.
This makes for simple calculations and is fairly straight-forward at a conceptual
level. However, it is difficult to find good dimensions Lx, Ly, Lz based on a real-life
system using electromagnetic antennas and ultrasonic transducers. For this reason,
the interaction region was refined for simple adaptation to real-life parameters.
Other idealizations such as plane waves were still kept. The interaction region was
now based on abrupt beams where the fields behave as plane waves inside of the
beam diameter and are zero outside. Two crossing beams form a parallelogram as
shown in figure 4.2. This new interaction region alters the derivation somewhat in
that the scattering integral (4.1) is calculated over another region. The resulting
scattered field is given by (see appendix A.2.4)

Esc,p(r, t) = Ei0

(
E+

A,p(r, t) + E−
A,p(r, t)

)
where

E±
A,p(r, t) =

εrk
2eikrpp0
8πrK

dadeLz

sinα
e∓iΩtΦ±

p (θ, ϕ)

and

Φ±
p =sinc

(
da

2π sinα
(k − k sin θ cosϕ± q cosα)

)
· sinc

(
de

2π tanα
(k − k sin θ(cosϕ+ sinϕ tanα)± q(cosα+ sinα tanα))

)
· sinc

(
−Lz

2π
k cos θ

)
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Figure 4.2: Parallelogram interaction region. Electromagnetic
beam diameter de, acoustic beam diameter da, angle between
wavevectors α.

This is quite similar to the cuboid result, with the differences being in the inter-
action volume factor dadeLz/ sinα instead of LxLyLz in EA and the function for
angular dependence Φ±. This result is easily transferable to radar equations for
power and SNR by using a new radar cross-section, written as

σ±
p (θ, ϕ) =

ε2rk
4p2p20

16πK2

d2ad
2
eL

2
z

sin2 α
Φ±

p (θ, ϕ)
2 (4.6)

It can be shown (see appendix A.3.4) that the same conditions for maximizing
Φ hold for this refined interaction region as for the cuboid interaction region, i.e.
equations (4.3), (4.4) and (4.5). One thing to keep in mind though, is that the
parallelogram geometry has a factor 1/ sinα in the interaction region which is not
present in the cuboid geometry. The effect of this is that the angle α for maximum
scattering can be shifted down in the (−) case and up in the (+) case. The exact
shift depends highly on the geometry of the interaction region (see appendix A.3.4).

4.2.2 2D solution
When comparing analytical results to simulation results it is important to use
the same assumptions for both. In the analytical derivations, 3D space has been
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assumed while simulations are done in 2D. To be able to compare results, a 2D
solution to the problem was calculated. Much of the derivations are similar, and
only the results are shown here (see appendix A.2.5 for full derivations). The
Poynting vector of the scattered field in 2D can be written as (see appendix A.2.5)⟨

S±
sc,2D

⟩
(r) =

r̂

2η0η
|Ei0|2|E±

A,2D(r, t)|
2 (4.7)

where |E±
A,2D(r, t)|2 is given by

|E±
A,2D(r, t)|

2 =
ε2rk

3p2p20
8πrK2

L2
xL

2
yΦ

±
2D(θ, ϕ)

2

and

Φ±
2D(θ, ϕ) = sinc

(
Lx

2π
(k − k cosϕ± q cosα)

)
sinc

(
Ly

2π
(−k sinϕ± q sinα)

)
As for the 3D solution, the interaction region can be refined using a parallelogram
geometry. This leads to the Poynting vector (see appendix A.2.5)⟨

S±
sc,2D,p

⟩
(r) =

r̂

2η0η
|Ei0|2|E±

A,2D,p(r, t)|
2 (4.8)

where |E±
A,2D,p(r, t)|2 is given by

|E±
A,2D,p(r, t)|

2 =
ε2rk

3p2p20
8πrK2

d2ad
2
e

sin2 α
Φ±

2D(θ, ϕ)
2

and

Φ±
2D,p(θ, ϕ) =sinc

(
da

2π sinα
(k − k cosϕ± q cosα)

)
·sinc

(
de

2π tanα
(k − k(cosϕ+ sinϕ tanα)± q(cosα+ sinα tanα))

)
These results are useful when comparing with simulation results since 2D geome-
tries are much easier to simulate than 3D geometries.
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Chapter 5
Numerical Simulation

This chapter describes the numerical simulations used to verify analytical models
and understand the problem better. Some general characteristics for all simula-
tions are described first, with specifics for the individual studies presented later.

5.1 General Information
The problem was simulated in COMSOL Multiphysics for verification and fur-
ther investigation of more complex scenarios than the one modeled analytically.
The two physics interfaces used were the ”Pressure Acoustics, Frequency Domain“
from the basic COMSOL Multiphysics and ”Electromagnetic Waves, Frequency
Domain“ from the RF Module. Models were built in 2D for computational speed.
One simulation required 1 acoustic and 2 electromagnetic frequency domain sim-
ulations to be run, and parameter sweeps would multiply the number required.
It was decided that 3D simulations would be too time consuming with little gain
when compared with 2D.

The pressure acoustics model was used even though propagation in a solid
medium was to be modeled. This was done under an assumption of pure p-wave
propagation, which can be modeled using acoustic pressure with a different wave
speed as shown in section 3.2.2. However, in these simulations the wave speed
was calculated using the acoustic wave speed v =

√
K/ρ0 which is only correct

for p-waves in materials with negligible shear modulus [6]. The reason for this
was that wave speed and density entered the COMSOL physics model at multiple
places such as the boundary conditions which made it more difficult to determine
exactly how to change the wave speed without affecting other parameters.

For all simulations the acoustic frequency was set to 450 kHz, which was used in
acoustic frequency domain simulations. From this value and material properties,
the acoustic wavelength Λ was determined. Using the desired angle α between
beams and equation (4.4), the electromagnetic wavelength λ was calculated. From
λ and material properties the electromagnetic frequency was calculated, which
was used in electromagnetic frequency domain simulations. The electromagnetic
frequency was approximately 61.29 GHz, where it was matched to the angles
α = 40◦ (negative frequency shift) or α = 140◦ (positive frequency shift).

Since frequency domain simulations were used, individual simulation studies
could only use one frequency at at time. The acoustic simulation used 450 kHz
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while the electromagnetic simulations used 61.29 GHz (approximately). One ef-
fect of this was that when the relative permittivity change ε1 was entered in the
electromagnetic simulation, it was as a snapshot of the propagating wave. This
was due to the very nature of frequency domain simulations where explicit time-
dependence is separated from the equations. Without time-dependence, a result
showing frequency shifts explicitly was not possible. For these kinds of results, a
time-domain simulation with simultaneous calculation of acoustic and electromag-
netic fields would be necessary.

5.1.1 Geometry and boundary conditions
The basic geometry is shown in figure 5.1 for the acoustic and electromagnetic
simulations. The only difference in geometry between the two is the Perfectly
Matched Layer (PML) which is used in the electromagnetic simulation but not the
acoustic simulation. Additionally, the boundary conditions are different for the two
simulations which is also shown. One boundary of special interest is that marked
with measurement boundary in the figure. This is where the physics domain ends,
and the fields were measured at this boundary for post-processing. The radius of
the measurement boundary was 30Λ everywhere except for the apertures which
were chords of this circle.

The PML was used to emulate an open boundary at the measurement bound-
ary for the electromagnetic problem. It was a cylindrical type with center in the
center of the geometry and a width of 2λ. It used polynomial coordinate stretching
with a typical wavelength taken from the electromagnetic physics interface. The
PML scaling factor and PML scaling curvature parameter were both set to 1. At
the exterior boundary, a Perfect Electric Conductor (PEC) boundary condition
was used.

The PML function was not available for the basic pressure acoustics interface
used here. However, the Cylindrical Wave Radiation boundary condition was
available and was used for the same purpose as a PML.

5.1.2 Tapering of apertures
To reduce sidelobe levels, both the electromagnetic and acoustic apertures had
amplitude tapers applied to them. This had the effect of lowering the electric field
or acoustic acceleration near the edges of apertures. The specific taper used was a
Gaussian taper, which multiplies values at the aperture with a Gaussian function
given by

e−(Ay′)2

where A affects the width of the taper and y′ is a coordinate along the aperture
with 0 in the center. Since the model was based on a circle and all apertures were
modeled as straight lines on the edge of the circle, y′ can be found by rotation of
the original coordinate y by the angle ϕ. This transformation is given by[

x′

y′

]
=

[
cosϕ sinϕ
− sinϕ cosϕ

] [
x
y

]
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Physics domain

Normal Acceleration

Cylindrical Wave Radiation
(Measurement boundary)

Ac.
geometry

Physics domain

PML domain

PEC

Port

Interior boundary
(Measurement boundary)

EM
geometry

Figure 5.1: Simulation geometry with boundary conditions for Ac.
and EM simulations.
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which gives the equation for y′

y′ = −x sinϕ+ y cosϕ

The geometry is the same as previously shown in figure 4.1. As such, ϕ = π for
EM and ϕ = π + α for Ac. For the coefficient A, it was found that A = 4/D gave
a good taper for an aperture width D (the value of the taper function was close
to zero at the edge of the aperture).

5.1.3 Modeling of Electromagnetic Aperture
An electromagnetic aperture was designed to produce a fairly low beam width
while not taking up too much space on the boundary. The model used a ”Port“
boundary condition on a boundary segment with length D = 8λ. The port options
”User Defined“ and wave excitation were turned on. The port input power was
set to 15 dBm. Due to it being located on an interior boundary, the slit condition
was activated with a domain-backed slit. For the port mode, the electric field was
set as the input quantity with a tapered field in z defined as

E0z = e−(4y′/D)2

where y′ is the coordinate −y (since the electromagnetic aperture is fixed at ϕ =
π). The propagation constant was set to the wavenumber in the material using
”emw.k“.

5.1.4 Modeling of Acoustic Aperture
The qualities of beam width and space usage for the electromagnetic aperture
were also taken into consideration in the design of the acoustic aperture. The
model used a ”Normal Acceleration“ boundary condition on a boundary segment
with length D = 8Λ. The acceleration was set to ”Inward acceleration“. The
value of the acceleration amplitude was calculated from a displacement amplitude
up using a0 = Ω2up (obtained by differentiating a plane wave by time twice).
The displacement amplitude was set to 5 nm. The acoustic intensity obtained
in COMSOL at this displacement amplitude was well within the levels of actual
transducers [55]. The acceleration was tapered as

an = a0e
−(4(x sinα−y cosα)/D)2

where x and y are coordinates and α the angle between wavevectors.

5.1.5 Photoelasticity model
To model photoelasticity in COMSOL, equation (3.4) was used with the photo-
elastic constant defined by equation (3.5). This was implemented using variables
depending on the acoustic pressure. When an acoustic pressure field was available
to COMSOL (i.e. after a finished acoustic simulation) the ε1 field was calcu-
lated. This could then be added to εr of the material for use in electromagnetic
simulations.
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5.1.6 Material
The material model used was based on a foam core for sandwiched composite
structures. The reason for this was that foam material is fairly homogeneous
and isotropic compared to honeycombs. The specific core selected was Divinycell
HT251 from Diab Group, which is an aerospace core with applications described
as ”Primary structures, radomes, control surfaces and interior components“ [56].
The relevant material properties were density (ρ0), bulk modulus (K) and rel-
ative permittivity (εr). These were ρ0 = 250 kg/m3, K = 400 MPa (nominal)
and εr = 1.29 [56]. In COMSOL, the required properties were density, speed of
sound, relative permittivity, relative permeability and electrical conductivity. The
speed of sound was calculated using v =

√
K/ρ0, the relative permeability was

set to 1 and the conductivity to 0. The assumption was that the material was
perfectly non-conducting and non-magnetic. The relative permittivity was able
to be perturbed by acoustic pressure using the variables from the photoelasticity
model.

5.1.7 Mesh
Two meshes were used in simulations: one for the acoustic simulation and one for
the electromagnetic simulation. The reason for this was primarily the difference
in wavelength.

The acoustic mesh was defined on both the physics domain and PML domain
even though only the physics domain was simulated in this case. A free triangular
mesh was used with element size between Λ/10 and Λ/10·3·10−2 in the physics do-
main, and ”Fine“ in the PML domain. Before running the free triangular meshing,
the mesh was defined on the measurement boundary.

The electromagnetic mesh used a free triangular mesh in the physics domain
and a mapped mesh in the PML domain. The element size in the physics domain
was between λ/10 and λ/10 · 3 · 10−2. Before running the free triangular meshing,
the mesh was defined on the measurement boundary.

5.1.8 Simulation studies
Before starting simulations, the frequencies, material and geometry were defined.
The geometry was in many parts defined as a function of the frequencies and
material properties in order to obtain reasonably sized domains and apertures
placed according to the Bragg condition.

For the actual simulations, the work flow is illustrated in figure 5.2. First, an
acoustic frequency domain study was run using the acoustic frequency and mesh.
The result from this was a complex pressure field. Real part convention was used
when relating this complex field to the actual pressure.

To transform the pressure to relative permittivity, a variable was used in the
material model to define the relative permittivity. This variable took the real part
of the pressure field as its input, and used equations (3.3) and (3.4) to calculate a
corresponding field for ε1.

An electromagnetic frequency domain study was now run using the electro-
magnetic frequency and mesh. The acoustic study was used for calculating initial
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values for variables not solved for. This was necessary for the pressure field to be
available in both studies. Since the photoelastic effect is usually very small, the
scattered field was not possible to distinguish with the incident field present. To be
able to isolate the scattered field, two simulations were run: one where the relative
permittivity of the material was unperturbed and one where it was perturbed by
ε1. The difference between fields resulting from these simulations were identified
as the scattered fields.

Due to limitations in the post-processing capabilities of COMSOL, the Ez, Hx

and Hy fields at the boundary were exported together with x and y coordinates
after the electromagnetic simulation was finished. This was done both for the
simulation with and without perturbation.

Pressure acoustics,
frequency domain

Ac.
Simulation

p field

Calculation
on real

part

ε1 field

Electromagnetic waves,
frequency domain

EM
Simulation

w/o PE

Ei, Hi fields

EM
Simulation

w/ PE

E, H fields

Difference

Esc, Hsc fields

Figure 5.2: Simulation flow chart

5.1.9 Post-processing
The simulation results were further processed in SciPy for better visualization
of the results than what was possible in COMSOL. The Ez, Hx and Hy fields
(both with and without photoelastic perturbation) on the domain boundary were
exported from COMSOL and loaded in SciPy. The differences between the fields
were calculated to obtain the scattered fields. The time-averaged Poynting vector
(for scattered fields) was then calculated as

⟨Ssc,x⟩ = −1

2
Re{Esc,zH

∗
sc,y}

⟨Ssc,y⟩ =
1

2
Re{Esc,zH

∗
sc,x}
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Due to it being easier to visualize, the magnitude of the time-averaged Poynting
vector was also calculated. Using the x and y coordinates, the observation angle
ϕobs for each point was calculated and the data was sorted according to this. To
calculate the total scattered power, the normal component of the time-averaged
Poynting vector at the measurement boundary was calculated. This was done
using

n̂ · ⟨S⟩ ≈ ⟨Ssc,x⟩ cos(ϕobs) + ⟨Ssc,y⟩ sin(ϕobs)

where n̂ is the normal vector to the measurement boundary. This is an approx-
imate relation since the normal vector n̂ = x̂ cosϕ + ŷ sinϕ holds for a circular
boundary. Due to the apertures, the measurement boundary is not perfectly cir-
cular, but it is still fairly close. The normal component of the Poynting vector was
then integrated over the full measurement boundary using the trapezoidal method,
with distance between data points calculated from the coordinates.

For plotting of the time-averaged Poynting vector magnitude, the propagation
angle ϕprop was calculated for each data point. The two angles ϕobs and ϕprop are
shown in figure 5.3 together with the geometry of the problem. From this figure it
can be seen that the observation angle depends highly on the measurement point
while the propagation angle is a property of the scattered field. For this reason,
the propagation angle was used in plots for the angle ϕ.

ϕprop

ϕobs

EM aperture

Ac. aperture

Scattered EM

Figure 5.3: Propagation and observation angle near the edge of the
scattered beam.
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5.2 Specific Studies
This section contains details specific to the different studies run in COMSOL.

5.2.1 Sweep of angle α

To compare with the results from section 4.2 the frequencies of the acoustic and
electromagnetic waves were matched to a Bragg angle of 40◦ while the angle α
between the wavevectors was swept between ±5◦ of the optimal angle. This was
done both for (+) and (−) scattering by sweeping around either α = 40◦ or
α = 140◦, as these angles are the ones given by equation (4.4) as angles for
maximum scattering.

The maximum Poynting vector magnitude was calculated for each α and plot-
ted against this angle. This was done to find the angle α giving maximum scatter-
ing. For comparison, the 2D versions of Poynting vector were also plotted for both
cuboid and parallelogram geometries using equation (4.7) and (4.8). The dimen-
sions were selected such that da was the acoustic aperture width, de the electrical
aperture width and Lx = de, Ly = da. These dimensions were selected since they
were easy to relate to the model, but had some drawbacks since the interaction
regions were not that well reproduced. The equations (4.7) and (4.8) also require
values for Ei0 and p0. These were selected as the peak field values from the COM-
SOL simulations. The effect of this was obviously that the analytical comparisons
became dependent on some part of the simulations. These peak field values would
not be correct amplitudes for use in the equations since the waves in simulations
were tapered. Due to this, the Poynting vector was multiplied by a correction
factor to ensure that the plane waves in analytical solutions would have the same
total power as the tapered beams where the peak amplitudes were obtained.

To obtain the correction factor, it was assumed that the total power in a
simulated beam Pbeam would be related to the taper function as

Pbeam = Sbeam

∫ ∞

−∞

(
e−(4y′/D)2

)2
dy′

= Sbeam

∫ ∞

−∞
e−(4

√
2y′/D)2dy′ = SbeamD

√
π

32

where Sbeam is a power density amplitude and a standard Gaussian integral solu-
tion was used. The taper function was assumed to be zero outside of the region
−D/2 < y′ < D/2 so that an infinite integral could be used. Since the taper
function was defined to have this property, it was not an issue. The goal of the
correction factor was to ensure that the total power of a plane wave inside a beam
diameter D was equal to the total power of the simulated beam. For this plane
wave, the total power is simply a power density amplitude Splane multiplied with
the beam diameter. For equal power it should then hold that

SplaneD = SbeamD

√
π

32

If D is canceled out, the correction factor when going from a beam amplitude
to a plane wave amplitude is

√
π/32. Since this was done for both the acoustic
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and electromagnetic fields, a total correction factor of π/32 was applied to the
analytical 2D Poynting vector.

To compare the simulated values for total scattered power with the analytical
ones, the normal component of the analytical Poynting vector at the measurement
boundary was calculated. The measurement boundary was approximated by a
circle with the radius 30Λ, which was also the value for r. Due to the circular
boundary and the vectors in equations (4.7) and (4.8) being directed in r̂, the
normal component of the Poynting vector was equal to its magnitude. The nor-
mal component was then integrated over the full boundary numerically using the
trapezoid method.

5.2.2 Conductive Defect
To examine the effect of a defect with electromagnetic contrast but no acoustic
contrast, simulations were run with a conductive defect. The geometry of this
problem was based on the basic geometry shown in figure 5.1. The addition was
a circle in the center of the physics domain representing a defect. This had the
diameter equal to the electromagnetic wavelength λ. The material in this region
was the same as in the physics domain, but with a nonzero electric conductivity.

To demonstrate the effect of conductivity, the electric conductivity of the defect
was swept between 0 and 10 S/m in steps of 1 S/m. The angle α was fixed at 40◦

with λ matched to Λ and this angle.

5.2.3 Mechanical Defect
To examine the effect of a defect with acoustic contrast but no electromagnetic
contrast, simulations were run with a mechanical defect. The mechanical property
which was altered was the density since this does not affect the photoelastic relation
from equation (3.4) (for a constant bulk modulus). Since the bulk modulus was
kept constant, the acoustic wave speed was changed as the density changed. The
geometry of this problem was the same as for the conductive defect simulation.
The material inside of the defect region was the same as in the physics domain,
but with altered density.

To demonstrate the effect of density change, the density was swept between
100 and 400 kg/m3 in steps of 25 kg/m3. The angle α was fixed at 40◦ with λ
matched to Λ and this angle.
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Chapter 6
Results and Discussion

This chapter presents results from the numerical simulations with comparisons to
the analytical models. These are discussed and related to the problem of NDT.
Discussions for possible experiments in the future are also presented here, with
some examples of power estimates related to these. Finally, the work is summarized
and conclusions are drawn.

6.1 Numerical Simulation Results
In this section, the results from the numerical simulations described in chapter 5
are shown and described. Comparisons are made with the analytical models from
chapter 4. These analytical models were all based on the assumption that Ω ≪ ω,
which is the case for the frequencies 450 kHz and 61.29 GHz which were used.

6.1.1 Sweep of angle α

The results from the sweep of the angle between wavevectors α are shown in figures
6.1 - 6.7 for both negative (−) and positive (+) frequency shifts. Figure 6.1 and 6.2
show the incident waves, scattered wave and Poynting vector for the entire domain
and for both (−) and (+). These are shown mostly to visualize the interaction
qualitatively while the results from post-processing of values at the measurement
boundary are more useful for quantitative results.

Figure 6.3 shows that the peak photoelastically scattered Poynting vector mag-
nitude was maximized at an angle α = 40◦ for (−) scattering (negative frequency
shift) and at α = 140◦ for (+) scattering (positive frequency shift). The analytical
comparisons are shown for the cuboid and parallelogram geometries. It can be
seen that the peak of the curves is at the same angle α for the simulated values
and the cuboid analytical model. Since the wavelengths were selected such that
these angles would maximize the scattering (using equation (4.4)), this would be
expected. The parallelogram analytical model has its maximum at another angle
α, but as discussed in section 4.2.1 there could be a slight change in this angle
α. The predicted change was that the angle α of maximum scattering would shift
down for (−) scattering and up for (+) scattering, which is what can be seen in
figure 6.3.
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If the analytical curves for (+) and (−) scattering are compared, the levels of
power density are the same. For the simulated values however, the (+) scattering
power density levels are lower than those for (−) scattering. This can be explained
using the width of the scattered beams. In figure 6.7 it can be seen that the total
scattered power is the same for both (+) and (−). A lower power density of the
(+) beam would require a wider scattered beam, which can be observed to be the
case if the scattered electric fields in figure 6.1 and 6.2 are compared.

Figure 6.1: Results of (−) scattering angle sweep for entire domain.
Top left: incident electric field [V/m]. Top right: incident pres-
sure [Pa]. Bottom left: Photoelastically scattered electric field
[V/m]. Bottom right: Photoelastically scattered Poynting vec-
tor [W/m2]

What is interesting is that the α shift for the parallelogram geometry is not
seen in the simulation results, even though the parallelogram geometry should be
more realistic than the cuboid one. This might be due to the length of the α shift
being strongly related to interaction region geometry. As described before, the
dimensions of the interaction regions were selected using the aperture widths. Since
the actual beam diameters were not constant, the dimensions of the interaction
region should be slightly larger. Increasing these dimensions slightly lead to the
parallelogram curve having its peak closer to the same α as simulations. If the
simulation curve is observed, a slight asymmetry can be seen around the α for the
peak (easier to see for (−) than for (+)). This might be indication of a very slight
shift in α compared with 40◦/140◦, but difficult to exactly replicate analytically
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with the geometry parameters available in the parallelogram model.

Figure 6.2: Results of (+) scattering angle sweep for entire domain.
Top left: incident electric field [V/m]. Top right: incident pres-
sure [Pa]. Bottom left: Photoelastically scattered electric field
[V/m]. Bottom right: Photoelastically scattered Poynting vec-
tor [W/m2]

While the angle α of the peak in figure 6.3 shows fair correspondence between
analytical and simulated cases, the magnitude of the Poynting vector is quite
different. Neither of the analytical geometries lead to a correct shape of the curve
or correct value for |⟨Ssc⟩|max when compared to the simulation. The reason
behind this might be the interaction region not being the correct size. Neither the
cuboid or parallelogram geometry takes into account the spreading nature of the
simulated beams which affects the interaction region. For better correspondence,
the dimensions of the interaction region might be estimated from the COMSOL
simulations. However, requiring more data from simulations is not a strength of
the analytical model.
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Figure 6.3: Peak value of Poynting vector magnitude for differ-
ent angles between wavevectors α. Analytical equivalents plot-
ted for both cuboid and parallelogram geometries. Logarithmic
scale.



Results and Discussion 43

Another reason for the difference in the shape of the curves in figure 6.3 might
be that the analytical model is based entirely on plane waves. This means that
a suboptimal angle α should not lead to much interaction. The simulation, on
the other hand, uses more realistic wave propagation with cylindrical waves. A
cylindrical wave can be decomposed into a sum of plane waves with different prop-
agation direction [25, 57]. This essentially means that the condition in equation
(4.4) is satisfied for every angle α for some combination of plane wave compo-
nents. However, the plane wave components have different amplitudes and the
strongest components are the ones with the same propagation direction as the
original beams. This causes the Poynting vector magnitude to be smaller for sub-
optimal α, but still larger than if there had been no Bragg matched components
at all.

Nevertheless, the peaks for simulation, cuboid and parallelogram cases in figure
6.3 are at angles α fairly close to each other and analytical values for |⟨Ssc⟩|max

are at most within two orders of magnitude from simulated values. This is the
case even though geometric parameters used in the analytical models could have
been selected with more care.

Figure 6.4 shows a linear relationship between the angle α between incident
wavevectors and the propagation angle ϕprop. This can be compared with the
analytical result in equation (4.5), which gives a relationship valid at the point of
maximum scattering. The propagation angles at α = 40◦ and α = 140◦ from the
plot (the angles which maximized scattering) are ϕprop = 260◦ and ϕprop = 100◦

respectively. This is in agreement with the analytical values from equation (4.5).
Further from these angles α, the analytical equation is no longer valid (since this
is not at the point of maximum scattering). However, as discussed before the
simulated beams can be decomposed as a sum of plane waves. This means that
equation (4.5) is valid for some pair of plane wave components at every angle α.

Figure 6.5 shows the angular behavior of the Poynting vector magnitude in a
simple way. What is clear is that the scattering is quite directive - the Poynting
vector magnitude drops sharply for propagation angles deviating from that of the
peak value. This could also be observed in figures 6.1 and 6.2 on the full domain.
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Figure 6.6 shows that the peak photoelastically scattered power was maximized
at an angle α = 40◦ for (−) scattering (negative frequency shift) and at α = 140◦

for (+) scattering (positive frequency shift). This shows that the angle α which
maximizes the peak value of the Poynting vector magnitude also maximizes the
total photoelastically scattered power. The analytical cases have their peaks close
to these as well, but there is a shift in the angle α for the parallelogram curve.
This shift is down in α for the (−) case and up for the (+) case, so it directly
follows the shift observed in figure 6.3 and explained in section 4.2.1.

The peaks of the total scattering power for simulation, cuboid and parallelo-
gram cases are well within 10 dB of each other, so in the same order of magnitude.
As explained before, the geometry parameters in the analytical models could be
selected with more care which might improve analytical results. One clear dif-
ference between simulated and analytical curves is that the analytical ones drop
much faster than the simulated when moving away from the peak. This can be
explained by the difference between plane and cylindrical waves. As explained ear-
lier, cylindrical waves can be decomposed as a sum of plane waves with different
propagation directions giving pairs of matched plane wave components at more
than one angle α. The higher scattering power away from the peak in the simu-
lated case could then simply be due to scattering of these other pairs of matched
components.

Figure 6.7 shows the same simulation results as in figure 6.6, but without the
analytical results. This makes it easier to compare (+) and (−) scattering. It
can be seen that the (+) and (−) scattering result in very similar total scattered
power levels. In absolute power, they are both close to -82.6 dBm . This can be
compared with the input power of 15 dBm, which means that the photoelastically
scattered power is 97.6 dB lower than the input electromagnetic power in these
simulations.
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Figure 6.6: Total scattered power for different angles between
wavevectors α. Analytical equivalents plotted for both cuboid
and parallelogram geometries.
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6.1.2 Conductive Defect

The results from the sweep of defect conductivity is shown in figure 6.8 and 6.9.
Figure 6.8 shows relevant plots for the entire domain: the incident electric field
and Poynting vector. The incident pressure was the same as in figure 6.1. It is
clear that the incident electric field is disturbed by the conductive defect, and the
propagation direction is heavily affected after the defect.

Figure 6.9 shows the total scattered power (calculated in the same way as
in the angle sweep) as a function of conductivity of the defect. It can be seen
that the scattered power decreases as the conductivity of the defect increases. As
conductivity increases, scattered power decreases. The rate of decrease is larger
at small conductivities, and the scattered power level seems to plateau at higher
levels.

Figure 6.8: Results of a 10 S/m conductive defect for entire domain.
Left: incident electric field [V/m]. Right: Photoelastically scat-
tered Poynting vector [W/m2]

The reasons behind the decrease in scattered power can be explained by com-
paring the electric field for a 10 S/m defect in figure 6.8 with the corresponding
field for no defect in figure 6.1. The field is affected by conductivity in two ways:
first, the field is pushed out of the defect as conductivity increases. Second, the
field is also scattered against the defect which causes the electromagnetic beam to
drastically change in appearance when compared to a defect-free case. One cru-
cial effect is the altered propagation directions of the beam after the defect. This
directly influences the Bragg condition, and then also the photoelastic scattering.

As figure 6.9 shows, there is a plateauing effect in that the decrease in power
is not as large at high conductivities as it is at lower conductivities. This can
be explained by the electric field being pushed out of the defect region. As the
field is pushed out, the defect behaves increasingly as a PEC sphere. As such, the
total scattering power also approaches the level obtained when the defect is a PEC
sphere, and cannot decrease any further than this.
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Figure 6.9: Poynting vector magnitude integrated over measure-
ment boundary for different conductivity σ of defect. Normal-
ized by maximum value.

6.1.3 Mechanical Defect
The results of the sweep of defect density is shown in figure 6.10-6.12. Figure
6.10 and 6.11 show relevant plots for the entire domain: the incident pressure
and Poynting vector, and for the two densities 100 and 400 kg/m3. The incident
electric field was the same as in figure 6.1. It is clear that the pressure is disturbed
by the defect, and the propagation direction is heavily affected after the defect.
This is the case for both densities, but the exact wave patterns are different.

Figure 6.12 shows the total scattered power (calculated in the same way as in
the angle sweep) as a function of density of the defect. For reference, the rest of
the domain had the density ρ0 = 250 kg/m3. It can be seen that the scattered
power is affected by a change in density in the defect area. At defect densities far
away from the background density 250 kg/m3 the effect is a decrease in scattered
power.

One interesting detail is that the maximum of the scattered power is not
obtained at a defect density of 250 kg/m3, but instead slightly higher at 275 kg/m3.
This can be understood by observing the pressure from COMSOL in figure 6.11.
Here the main lobe of pressure after the defect shows a high pressure right after
the defect if compared with the defect-free case in figure 6.1. In this case the effect
of the defect is large enough for clear nodal lines to appear, but at densities just
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Figure 6.10: Results of a 100 kg/m3 defect for entire domain.
Left: incident pressure [V/m]. Right: Photoelastically scattered
Poynting vector [W/m2]

Figure 6.11: Results of a 400 kg/m3 defect for entire domain.
Left: incident pressure [V/m]. Right: Photoelastically scattered
Poynting vector [W/m2]

slightly higher than the background, the effect is that the acoustic beam is focused
after the defect without nodal lines appearing. This can be understood by viewing
the defect as an acoustic lens. In geometrical optics, a lens is typically a region
with higher refractive index than its surroundings bounded by spherical surfaces
[25]. A higher refractive index in optics corresponds to a lower wave speed. In
acoustics, the wave speed is defined as v =

√
K/ρ0, so an increase in density while

the bulk modulus is kept constant (as in this study) has the effect of lowering
wave speed. The properties of the circular defect with a higher density than
the background should then give it some lens properties. A significant difference
between typical lenses and the case here is that the lens size is usually much larger
than the wavelength, while they are in the same order of magnitude here. This case
is very far from geometrical optics, and the physics required to explain focusing is
vastly different [58].

The lensing effect increases the scattered power for a small increase in defect
density as the beam spread is counteracted. However, for even higher defect densi-
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Figure 6.12: Poynting vector magnitude integrated over measure-
ment boundary for different density ρ0 of defect. Normalized
by maximum value.

ties other effects instead cause a decrease in scattered power. A diffraction pattern
appears behind the defect where regions of the wave with different propagation
direction are separated by nodal lines as seen in figure 6.11.

One thing to note is that the increase in scattered power from this lensing
phenomenon is not very large as the power at background density is less than
0.1 dB below the peak power. Additionally, this effect is highly dependent on
geometry as the circular shape of the defect causes the increase in power. This
effect should probably not be expected in general, but since it can exist for some
geometries it is good to be aware of.

6.2 Possibilities for NDT
From the simulations with defects it was clear that defects with both electric and
acoustic contrast had an effect on the photoelastic scattering. This indicates that
an acousto-electromagnetic system utilizing photoelastic interaction at least has
the ability to detect the presence of defects with either of those properties. This
ability alone does not tell much about the possible performance of a future system.
A good guideline is that an NDT system using both acoustic and electromagnetic
waves (e.g. ultrasound and mm-waves) should be at least as good as a system using
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only one of the phenomena. An acousto-electromagnetic system would probably be
more complicated and expensive than an ultrasonic testing or a mm-wave imaging
system, so in order to be useful it would have to offer better performance using
some metric.

One possible way an acousto-electromagnetic system might outperform acous-
tic or electromagnetic systems is due to its ability to detect both electric and
acoustic contrast. Directly, it allows for detection of more types of defects than
existing systems by themselves. However, the possibility of different types of
contrast leading to combined effects might be even more promising. The main
mechanism allowing detection using photoelastic interaction was determined to be
defects disrupting the incident beams, in turn leading to less advantageous condi-
tions for the interaction. If a defect has both electric and acoustic contrast, the
effect would be disruption of both the electromagnetic and acoustic beams. This
should lead to a larger effect on the photoelastically scattered field than for just
one mode of contrast. Due to this combination effect, it might be possible to detect
a region with weak acoustic and electric contrasts with the same performance as a
strong single contrast. If this is possible for acoustic and electric contrasts which
are weak enough, an acousto-electromagnetic system might outperform a system
using only one phenomenon for this type of defects. However, the photoelastic
scattering against a combination of contrasts was not simulated in this work.

A possible issue with photoelastic interaction in NDT is related to resolution.
One crucial factor affecting the interaction strength is the size of the interaction
region. To obtain a high photoelastically scattered power, this region should be
as large as possible. On the other hand, the possible resolution of the system
should decrease with large interaction regions. One of the advantages of mm-wave
imaging is that it provides high resolution, and it would be desirable to keep this
for a combined mm-wave/ultrasound system. One interesting detail related to
the resolution is that a small defect inside of a large interaction region mostly
affects the interaction behind it. The reason for this is that diffraction effects in
the shadow of the defect affect the propagation directions of waves, and thus the
Bragg condition. The location of a defect inside of the interaction region should
thus affect the strength of the photoelastic interaction, where a defect closer to
the wave sources in the interaction region results in lower photoelastic scattering.
There might be a way of utilizing this for improved resolution, but since no actual
NDT system has been proposed in this work it is difficult to draw any conclusions.

In the beginning of chapter 3, an interaction mechanism utilizing localized har-
monic motion was described as used in the experimental HMMDI medical imaging
method. This was identified as an interesting subject, but not explored further
due to time constraints. The possible issues with resolution for photoelastic in-
teraction might not be present for this other type of interaction due to dissimilar
underlying mechanisms. In HMMDI the scatterer is not the acoustic wave in itself,
but instead a vibrating region inside of a test object. This could be very small,
but of course this size might affect the strength of interaction. Nevertheless, the
mechanism utilizing localized harmonic motion needs to be investigated for a good
picture of the possibilities for acousto-electromagnetic interaction in NDT.
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6.3 Future experiments
The next logical step after analytical modeling and numerical simulations is ex-
perimental testing to compare with the analytical and numerical results. Two
important interaction properties to measure are the Bragg condition for inci-
dent/scattering angles (equations (4.3), (4.5) and (4.4)) and the frequency shift of
scattered waves. The other important property to measure would be the received
scattering power. However, measurement of the Bragg condition and frequency
shift should be more robust to variation in the test environment than the received
power. Bragg condition and frequency shift measurements could then be impor-
tant for verifying the analytical and/or simulation results. Specific measurement
values for received power might be useful for understanding the order of magnitude
of the interaction strength. However, comparison of received power at different
angles, frequencies etc. should be more interesting when comparing experiments
with analytical and simulation results.

Some parts in the analytical models and numerical simulations can be identi-
fied at this stage to be less certain than others. One in particular, the photoelastic
model is important to test experimentally since the model itself could not be veri-
fied in COMSOL. The coupling between acoustic pressure and relative permittivity
was done entirely using equations (3.4) and (3.5), which were admittedly very sim-
plified when compared to the full tensor model. Thorough experimentation would
give more insight to how accurate the simple model used here really is, and where
its main drawbacks might lie. Some points worth looking into are the assumption
of isotropy in the photoelastic tensor, the assumption of p11 = p12 in the isotropic
photoelastic tensor and the model for the photoelastic constant in equation (3.5).
All of these have connections to each other, so experiments should be designed
with this in mind.

A part which might be lacking in the analytical models and numerical simula-
tions is that of ultrasonic wave propagation. Most of the analytical modeling was
based on pure p-wave propagation, which might not be the case in reality. If also
a more complicated photoelastic model is required, using a photoelastic tensor
instead of the simplified photoelastic constant in equation (3.4), s-waves would
affect the interaction in a way not modeled analytically. Numerical simulations
were even more simplistic when it came to ultrasonic wave propagation, assuming
a negligible shear modulus. The result of this is that the wave speed equation is
equal to that in acoustics, which was used to model phenomena in the COMSOL
pressure acoustics interface. However, for a non-negligible shear modulus the true
p-wave speed is higher than that given by acoustics. This needs to be taken into
account when calculating angles and wavelengths for fulfilling the Bragg condition
in real materials.

Two proposals for sample materials to use in experiments are air and a compos-
ite foam core. Experiments with air as the sample would probably be the simplest
to set up using an air-coupled ultrasonic transducer and standard gain horn for
micro/mm-waves. The coupling of waves into the sample would be trivial, and
the sample would not need any preparation. A room with enough empty space
would suffice. Cheap air-coupled transducers are readily available for use as cheap
sensors for many consumer applications. These usually operate at 40 kHz, which
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would put the wavelength at Λ = 8.5 mm (for v = 340 m/s). The Bragg condition
puts the maximum electromagnetic wavelength at λ = 2Λ (for α = 0◦), which
corresponds to a minimum frequency of 17.6 GHz, so in the microwave range.

To obtain an estimate of the power levels required for this kind of experiment,
the analytical model from section 4.2 was used. More specifically, the radar equa-
tion for SNR (4.2) was used together with a cross-section for a refined interaction
region from equation (4.6). The parameters inserted in these equations were esti-
mated from various sources. For the ultrasonic transducer, a 40 kHz SensorComp
40KPT25 was considered. This has a circular aperture with diameter 25.1 mm,
beam angle 23◦ and a sound pressure level of 110 dB at a range of 30 cm from
the transducer [59]. The microwave antennas were assumed to have equal gains
of 20 dB at 24 GHz. The beam angle θ was calculated in radians using the gain
G as θ = 4/G [57]. The aperture length D (assuming a square gain horn) was
calculated using effective area as D =

√
Gλ2/4π [57]. At the frequencies of 40

kHz and 24 GHz in air, the Bragg angle is approximately 41◦. The relevant prop-
erties of dry air were ρ0 = 1.293 kg/m3, v = 331.1 m/s [45] and εr = 1.00059
[53]. The bulk modulus was calculated using K = ρ0v

2. The range from antenna
to the interaction region was assumed to be equal to the reference range 30 cm
of the ultrasonic transducer. The beam diameters at this range were calculated
by assuming diameters equal to the apertures at first, with a spread given by the
beam angles further from the apertures. The receiver was assumed to have a noise
figure of F = 5 dB with a bandwidth equal to the acoustic frequency at 40 kHz.
The bandwidth is necessarily small since it is important to filter out the frequency
shifted signal from the original. Using these parameters and the equations listed
before, the transmitted electromagnetic power required for a received SNR of 0 dB
using one received sample was calculated to be −4.7 dBm. This can be compared
to −7 dBm used in mm-wave imaging experiments at the Department of Electrical
and Information Technology, Lund University [10]. Looking at the results in figure
6.6, the simulation results had scattered power levels below that of the analytical
models. It would therefore be reasonable to expect higher power requirements in
experiments than −4.7 dBm. The range between antenna and interaction region
might also have to be larger than 30 cm, which would increase the power require-
ments further. Nevertheless, the calculated −4.7 dBm is not a very high power
and was calculated for only one sample at the receiver. With coherent integra-
tion using multiple samples there should be enough margin to be able to perform
experiments without power being an issue.

Experiments with a composite core as the sample would be more difficult
due to the requirements on the ultrasonic side. The low permittivity of the core
means that no special coupling would be required for micro/mm-waves. However,
coupling of ultrasound into a solid would require a transducer made for this type of
coupling. To the knowledge of the author, this requires transducers made for more
advanced purposes such as medical imaging or NDT. Aerospace composite cores
might be difficult to obtain since they are not consumer products. In simulations,
the foam core was from Diab AB’s Divinycell HT product range. Divinycell H is
another product range which is not aerospace graded, but still has fairly similar
properties [60]. The benefit of this is that it is used in leisure marine applications
and can be readily found in marine equipment stores, along with many other
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similar core materials.

6.4 Summary and Conclusions
To connect back to the introduction of the thesis, the three main questions de-
scribing the purpose of the work are restated

1. How does acousto-electromagnetic interaction differ from acousto-optic the-
ory with wavelengths in the same order of magnitude?

2. What properties do acoustic and electromagnetic waves have in homoge-
neous materials and laminated composites?

3. How can ultrasound improve mm-wave imaging of defects in composites?

The first question is answered well in some respects, since the analytical model de-
rived in this work did not have any conditions on the electromagnetic and acoustic
wavelengths. One of the main results from acousto-optics is the Bragg condi-
tion. The analytical and simulated results in this work showed that this condition
was at the very least a good approximation for the angles and wavevectors giving
maximum scattering. The main difference analytically was a shift in the required
angle between acoustic and electromagnetic beams for a parallelogram-based ge-
ometry. Simulations showed a very slight asymmetry eventually indicative of a
shift, though very small. This work also presented radar equations describing to-
tal received power and SNR based on standard antenna parameters. These might
be more useful than similar equations derived using optical parameters, even if
their results only give an order of magnitude estimation. Of course, experiments
are necessary to compare with both the analytical and simulated results.

The reason why this first question is only answered well in some respects is
that there are other interaction mechanisms which were not as deeply investigated
as the photoelastic interaction mechanism. In particular, the localized harmonic
motion mechanism was identified as worth investigating but ended up being in the
shadow of photoelastic interaction in this work. One reason was the difficulty of
modeling acoustic radiation force as well as time constraints.

The second question is only partly answered since laminated composites were
not considered to any greater extent. Properties of both types of waves were
required in the derivation of analytical models as well as for setting correct pa-
rameters for simulations. Properties of acoustic waves were examined in detail
since they are highly different in fluids and solids. Unfortunately, simulations
could only be run for acoustic waves in fluids, which limited possibilities of the
investigations. However, due to the similarity of p-waves and acoustic waves in
fluids, part of the problem in a solid could be simulated in a reasonable way.

The third question was discussed previously in this chapter. One main way
photoelastic interaction might be useful for improving NDT of composites is by
allowing detection of both acoustic and electric contrast. However, it has not been
discussed how a mm-wave imaging system might be improved using photoelastic
interaction with ultrasound. Models presented in this work were entirely based on
two crossing beams, which might be difficult to integrate with mm-wave imaging.
A possible issue with photoelastic interaction was discussed as good interaction



Results and Discussion 57

strength might be detrimental to resolution in a system. It might also be the
case that photoelastic interaction is not the most effective way of combining mm-
waves and ultrasound. Further investigation of localized harmonic motion should
be undertaken to understand the possibilities better.
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Chapter 7
Future Work

One issue which became apparent was related to the assumption of plane waves in
analytical models. This was discussed as being a possible reason for discrepancies
between simulated and analytical values. An idea for improving analytical results
is to utilize the fact that all waves can be decomposed into a sum of plane waves
with varying propagation directions. Using the same equations as before, it might
be possible to use more realistic incident beams by decomposing them into plane
waves before using the analytical equations.

More refined simulations would be interesting for future work. Some areas
with room for improvement are modeling of the electromagnetic antenna and ul-
trasonic transducer, interfaces between wave sources and the test object, modeling
of laminations around the composite core and modeling of elastodynamics instead
of acoustics. Most of these require more information on the physics involved than
what was used in this work. For use of COMSOL, most possible refinements in
the acoustic area would benefit from the Acoustics Module and Structural Me-
chanics Module, although it would be possible to enter the required equations and
boundary conditions manually with only the basic COMSOL distribution.

This work only considered homogeneous, isotropic materials with very simple
defects if any. For better knowledge of possibilities in NDT, the material should be
modeled in greater detail. In general, aerospace composites are laminated which
adds one piece of complexity to the problem. Laminations might cause reflections
of either the electromagnetic or acoustic wave, and for material dimensions on
the order of magnitude as the wavelengths these might cause significant effects.
Another issue might be anisotropy in core materials such as honeycombs. More
information on real defect properties might also be needed to accurately model
their influence

The bulk of this work was focused on acousto-electromagnetic interaction
based in photoelasticity. This was however only one of interaction mechanisms
found in the literature. While some mechanisms were discarded for use in NDT,
the localized harmonic motion mechanism was a possible candidate for this appli-
cation. To fully understand how ultrasound might be used in mm-wave imaging
systems, this interaction mechanism needs to be studied more closely.

Lastly, experiments are necessary for comparison with analytical models and
simulations. Especially the photoelastic model needs experimental investigation.
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Appendix A
Full Derivations

A.1 Derivation of scattering integral for perturbed di-
electrics

Here follows a formal derivation of the scattering of electromagnetic waves against
a perturbation in relative permittivity. This is useful in photoelastic interaction
since an acoustic wave in that case causes a periodic dielectric perturbation. Most
of this derivation is based on a similar derivation by Tatarskii which considers
scattering from turbulence in air [29].

A.1.1 General equation for electric field in perturbated dielectric

First, Maxwell’s equations for a linear, non-magnetic, source-free, isotropic dielec-
tric are presented. Note that the permittivity is not homogeneous.

∇× E = −µ0
∂H
∂t

∇×H =
∂(εE)
∂t

∇ · (εE) = 0

∇ ·H = 0

The script letters are used here to indicate a time dependence as

E(r, t) = E(r, t)e−iωt

H(r, t) =H(r, t)e−iωt

This is used to remove the e−iωt dependence in the equations and only keep time
dependencies associated with other phenomena (such as the dielectric perturbation

67



68 Full Derivations

here). The new equations are

∇×E = iωµ0H − µ0
∂H

∂t
(A.1)

∇×H = −iωεE + µ0
∂(εE)

∂t
(A.2)

∇ · (εE) = 0 (A.3)
∇ ·H = 0 (A.4)

Now ∇× is applied to ∇×E and it is combined with ∇×H, giving

∇× (∇×E) = ω2µ0εE + 2iωµ0
∂(εE)

∂t
− µ0

∂2(εE)

∂t2

The relation ∇× (∇×E) = −∇2E +∇(∇ ·E) is now used

∇2E + ω2µ0εE = ∇(∇ ·E)− 2iωµ0
∂(εE)

∂t
+ µ0

∂2(εE)

∂t2
(A.5)

Gauss’ law (A.3) is now expanded to ε(∇·E)+(∇ε) ·E = 0. This can be rewritten
as

∇ ·E = −E · ∇ε

ε
= −E · ∇(ln ε)

Inserting this into equation (A.5) gives

∇2E + ω2µ0εE = −∇(E · ∇(ln ε))− 2iωµ0
∂(εE)

∂t
+ µ0

∂2(εE)

∂t2
(A.6)

Now, the dielectric perturbation is defined as

ε = ε0(εr + ε1) (A.7)

where ε0 is the permittivity of free space, εr is the unperturbed value for relative
permittivity in the material and ε1 is a small perturbation around εr. For |ε1| ≪ εr
ln ε can be approximated as

ln ε = ln(ε0εr) + ln(1 +
ε1
εr
) ≈ ln(ε0εr) +

ε1
εr

Since ln(ε0εr) is constant, the gradient can be written as

∇(ln ε) = ∇
(
ε1
εr

)
=

1

εr
∇ε1

This is now inserted in equation (A.6) together with equation (A.7), giving

∇2E + ω2µ0ε0εrE = − ω2µ0ε0ε1E − 1

εr
∇(E · ∇ε1)− 2iωµ0

∂(εE)

∂t
+ µ0

∂2(εE)

∂t2

Now k is defined as k = ω/c where c is the speed of light in the material

c =
1

√
µ0ε0εr

=
c0√
εr
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This is now used to obtain

∇2E + k2E = − k2
ε1
εr
E − 1

εr
∇(E · ∇ε1)−

k2

εr
Ed

where Ed contains the time derivatives and is written as

Ed =
2i

ckε0

∂(εE)

∂t
− 1

c2k2ε0

∂2(εE)

∂t2

=
2iεr
ω

∂E

∂t
+

2i

ω

∂(ε1E)

∂t
− εr

ω2

∂2E

∂t2
− 1

ω2

∂2(ε1E)

∂t2

A.1.2 Born approximation and solution
Now the electric field is split up into an incident field Ei and a scattered field Esc

such that E = Ei +Esc. The scattered field is considered to be small compared
to the incident field (Born approximation). The incident field then approximately
obeys the source-free equation

∇2Ei + k2Ei = 0

If this is subtracted from the total equation and Esc is neglected in the RHS the
resulting equation is

∇2Esc + k2Esc = −k2
ε1
εr
Ei −

1

εr
∇(Ei · ∇ε1)−

k2

εr
Edi

This is an inhomogeneous Helmholtz equation which in three dimensions, and
under a Sommerfeld radiation condition, has the solution [61, 62]

Esc(r, t) =
1

4πεr

∫
Vsc

eik|r−r′|

|r − r′|
·
(
k2ε1(r

′, t)Ei(r
′, t) +∇ (Ei(r

′, t) · ∇ε1(r
′, t)) + k2Edi(r

′, t)
)
dv′

where

Edi(r
′, t) =

2iεr
ω

∂

∂t
(Ei(r

′, t)) +
2i

ω

∂

∂t
(ε1(r

′, t)Ei(r
′, t))

− εr
ω2

∂2

∂t2
(Ei(r

′, t))− 1

ω2

∂2

∂t2
(ε1(r

′, t)Ei(r
′, t))

This equation provides the scattered electric field when using the Born approxi-
mation.

A.2 Derivation of radar equation for simple photoelastic-
ity

The scattering integral derived in appendix A.1.2 is now solved for a simple ge-
ometry and material model to obtain a radar equation.
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x̂

ŷ

ẑ
Lx/2

Ly/2 Vsc

EM tx
k

Ac. tx

q

α

r = xx̂+ yŷ + zẑ

EM rx

Figure A.1: Geometry for the scattering problem.

A.2.1 Geometry and solution of scattering integral
First, the geometry is defined as shown in figure A.1. The xy-plane is defined
as the plane formed by the acoustic and electromagnetic wavevectors (they are
assumed to be non-parallel). The scattering volume is centered in the origin of the
coordinate system, and both the acoustic and electromagnetic waves are approxi-
mated as plane waves close to the origin. Thus, the electromagnetic and dielectric
perturbation fields near the origin are defined as

Ei(r
′, t) = Ei(r

′) = Ei0e
ik·r′

(A.8)

ε1(r
′, t) =

ε2rp

K
p0 cos(q · r′ − Ωt) (A.9)

Here, Ei0 is the complex field amplitude at the origin (−iωt time-dependence sep-
arated) and k is the electromagnetic wavevector. The scalar photoelastic relation
from equation (3.4) has been used, where p is the photoelastic constant, p0 is the
acoustic pressure amplitude at the origin, K is the bulk modulus, q is the acoustic
wavevector and Ω the acoustic frequency.

For simplicity, the electromagnetic polarization is assumed to be in z, Ei0 ∥ ẑ.
This is also in part done to avoid polarization changes in the scattered field [26].
Due to this ∇(Ei · ∇ε1) = 0 which simplifies the scattering integral to

Esc(r, t) =
k2

4πεr

∫
Vsc

eik|r−r′|

|r − r′|
(ε1(r

′, t)Ei(r
′, t) +Edi(r

′, t)) dv′

Since the incident electric field is time-independent, the term Edi can be simplified
to

Edi(r
′, t) =

2iEi(r
′)

ω

∂

∂t
(ε1(r

′, t))− Ei(r
′)

ω2

∂2

∂t2
(ε1(r

′, t))
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Insertion of equation (A.8) and (A.9) gives

Esc(r, t) =
k2

4πεr

∫
Vsc

eik|r−r′|

|r − r′|
Ei0e

ik·r′ ε2rp

K
p0f(r

′, t)dv′

where

f(r′, t) = cos(q · r′ − Ωt) +
2iΩ

ω
sin(q · r′ − Ωt) +

Ω2

ω2
cos(q · r′ − Ωt)

Assuming far-field gives an approximation for the Green’s function as [61]

eik|r−r′|

|r − r′|
≈ eikr

r
e−ikr̂·r′

where r = |r| and r̂ = r/r. The scattering integral is now written as

Esc(r, t) =
εrk

2eikrEi0pp0
4πrK

∫
Vsc

eik(k̂−r̂)·r′
f(r′, t)dv′

The function f(r′, t) can now be rewritten as complex exponentials giving

f(r′, t) =
1

2

(
ei(q·r

′−Ωt) + e−i(q·r′−Ωt)
)
+

Ω

ω

(
ei(q·r

′−Ωt) − e−i(q·r′−Ωt)
)

+
Ω2

2ω2

(
ei(q·r

′−Ωt) + e−i(q·r′−Ωt)
)

= ei(q·r
′−Ωt)ω

2 + 2ωΩ+ Ω2

2ω2
+ e−i(q·r′−Ωt)ω

2 − 2ωΩ+ Ω2

2ω2

=
1

2

(
(1 + Ω/ω)

2
ei(q·r

′−Ωt) + (1− Ω/ω)
2
e−i(q·r′−Ωt)

)
If it is assumed that Ω ≪ ω, the scattered field can be written as

Esc(r, t) =
εrk

2eikrEi0pp0
8πrK

·
(
e−iΩt

∫
Vsc

ei(k(k̂−r̂)+q)·r′
dv′ + eiΩt

∫
Vsc

ei(k(k̂−r̂)−q)·r′
dv′
)

The two integrals are of the same form,
∫
eiA·r′

dv′, where A is independent of r′.
This is solved in general below for the cuboid volume defined by −Lm/2 ≤ m ≤
Lm/2, m = x, y, z.∫

Vsc

eiA·r′
dv′ =

∫
Vsc

eiA·x̂x′
eiA·ŷy′

eiA·ẑz′
dv′

=
∏

m=x,y,z

1

iA · m̂

(
eiA·m̂Lm/2 − e−iA·m̂Lm/2

)
=

∏
m=x,y,z

2

A · m̂
sin

(
A · m̂Lm

2

)
=

∏
m=x,y,z

Lmsinc
(
A · m̂Lm

2π

)
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where sinc(x) = sin(πx)/(πx). To apply this result to A = k(k̂ − r̂) ± q this is
first simplified using the geometry defined earlier.

k(k̂ − r̂)± q = kx̂− k(x̂x+ ŷy + ẑz)/r ± q(x̂ cosα+ ŷ sinα)

where r is not written out fully. A ·m̂ are now calculated for the three coordinate
axes as

A · x̂ = k − kx/r ± q cosα = k − k sin θ cosϕ± q cosα

A · ŷ = −ky/r ± q sinα = −k sin θ sinϕ± q sinα

A · ẑ = −kz/r = −k cos θ

(A.10)

where a conversion to spherical coordinates was made. Insertion into the integral
solution gives:∫

Vsc

ei(k(k̂−r̂)±q)·r′
dv′

=Lxsinc
(
Lx

2π
(k − k sin θ cosϕ± q cosα)

)
· Lysinc

(
Ly

2π
(−k sin θ sinϕ± q sinα)

)
· Lzsinc

(
−Lz

2π
k cos θ

)
=LxLyLzΦ

±(θ, ϕ)

(A.11)

where all angular dependence has been gathered in the function Φ±(θ, ϕ). This
result is now inserted into the scattered field, giving

Esc(r, t) =
εrk

2eikrEi0pp0
8πrK

LxLyLz

(
e−iΩtΦ+(θ, ϕ) + eiΩtΦ−(θ, ϕ)

)
= Ei0EA(r, t)

By inspecting EA(r, t) it is clear that two frequency-shifted components arise.
Since the implied time-dependence is e−iωt, the factors e∓iΩt give a frequency shift
of ±Ω. The scattered field is written using two distinct components as

Esc(r, t) = E
+
sc(r, t) +E

−
sc(r, t) = Ei0

(
E+

A (r, t) + E−
A (r, t)

)
where

E±
A (r, t) =

εrk
2eikrpp0
8πrK

LxLyLze
∓iΩtΦ±(θ, ϕ)

is a unitless function giving the dependence on range r and direction (θ, ϕ).

A.2.2 Solution in terms of power
This treatment has primarily been focused at the electric field. To obtain a more
practical expression, this is now transformed into power. The power is calculated
for the individual frequency shifted components, since they are distinct and single-
frequency. The time average for one frequency component of the Poynting vector
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is [61] ⟨
S±
sc

⟩
(r) =

1

2
Re
{(
E±

sc(r, t)e
−iωt

)
×
(
H±

sc(r, t)e
−iωt

)∗}
=

1

2
Re
{
E±

sc(r, t)×H±
sc(r, t)

∗}
where the time-dependence of the incident electromagnetic wave was re-introduced.
The magnetic field H±

sc(r, t) is given by [61]

H±
sc(r, t) ≈

1

ikη0η
∇×E±

sc(r, t)

where η0 is the wave impedance of free space and η0η the wave impedance in
the material. An approximation has been made for k, where this is assumed to
have the same value as before scattering. Since there is a frequency shift this is
known to not be the case, but given a small acoustic frequency compared to the
electromagnetic frequency, the error is small. The curl of E±

sc(r, t) is now written
as

∇×E±
sc(r, t) = ∇× (Ei0E

±
A (r, t)) = ∇E±

A (r, t)×Ei0

In spherical coordinates the gradient is written as [63]

∇f =
∂f

∂r
r̂ +

1

r

∂f

∂θ
θ̂ +

1

r sin θ

∂f

∂ϕ
ϕ̂

E±
A (r, t) contains a factor 1/r, so the two last terms in the gradient will be ∼ 1/r2

and are neglected. The gradient is now written as

∇E±
A (r, t) ≈ ∂EA

∂r
r̂

=

(
ikeikr

r
− eikr

r2

)
εrk

2pp0
8πK

LxLyLze
∓iΩtΦ±(θ, ϕ)r̂

≈ ikE±
A (r, t)r̂

where the 1/r2 term was neglected. These results are inserted into the expression
for the magnetic field, giving

H±
sc(r, t) =

1

ikη0η
(ikE±

A (r, t)r̂ ×Ei0) =
E±

A (r, t)

η0η
r̂ ×Ei0

Now, the cross product with the electric field is calculated as

E±
sc(r, t)×H±

sc(r, t)
∗ = E±

A (r, t)Ei0 ×
(
E±

A (r, t)

η0η
r̂ ×Ei0

)∗

=
|E±

A (r, t)|2

η0η
(r̂(Ei0 ·E∗

i0)−E∗
i0(Ei0 · r̂))

If the wave propagates in r̂, Esc · r̂ = 0 and since Esc ∥ Ei0 the cross product is
simplified to

E±
sc(r, t)×H±

sc(r, t)
∗ =

r̂

η0η
|Ei0|2|E±

A (r, t)|2
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The time-averaged Poynting vector is now calculated as⟨
S±
sc

⟩
(r) =

1

2
Re
{
E±

sc(r, t)×H±
sc(r, t)

∗} =
r̂

2η0η
|Ei0|2|E±

A (r, t)|2

where the time-dependence was removed by the absolute value. |E±
A (r, t)|2 is given

by

|E±
A (r, t)|2 =

ε2rk
4p2p20

64π2r2K2
L2
xL

2
yL

2
zΦ

±(θ, ϕ)2

To find an expression for |Ei0|2, the field from the transmitter antenna is written
as (adapted from [57])

ET(r) = ikη0η
eikr

4πr
F⊥(r̂)

where F⊥ is the far-field amplitude. Now the coordinate system is not the same
as earlier in the derivation! Here it is a spherical coordinate system with origin at
the transmitting antenna. This corresponds to a translation in −x̂ of the original
coordinate system. Let RT be the distance between the two coordinate systems,
or equivalently the distance from the transmitter to the scattering center. The
direction to the scattering center in this new system is denoted r̂sc = rsc/RT. As-
suming that the orientations of the transmitter and scattering coordinate systems
are the same, |Ei0|2 can be written in the transmitter system as [57]

|Ei0|2 = |ET(rsc)|2 =

∣∣∣∣ikη0η eikRT

4πRT
F⊥(r̂sc)

∣∣∣∣2 =
k2η20η

2

16π2R2
T

|F⊥(r̂sc)|2 = 2η0ηP(r̂sc)

If the maximum gain GT of the antenna is in the direction r̂sc, it holds that [57]

P(r̂sc) =
PTGT

4πR2
T

where PT is the power accepted by the antenna. This is used to write

|Ei0|2 = 2η0η
PTGT

4πR2
T

Now this is inserted into the time-average of the power density⟨
S±
sc

⟩
(r) = r̂

PTGT

4πR2
T

ε2rk
4p2p20

64π2r2K2
L2
xL

2
yL

2
zΦ

±(θ, ϕ)2

Now the effects of the receiving antenna are considered. It is assumed that this
antenna is optimally directed towards the scattering center. The received power
is then

P±
R =

∣∣⟨S±
sc

⟩
(RR, θ, ϕ)

∣∣Ae

where RR is the distance between the scattering center and the receiver, and the
receiver is located in the direction (θ, ϕ) as seen from the scattering center [57].
Ae is the effective area of the antenna, which can be rewritten as

Ae =
λ2
RGR

4π
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where GR is the gain of the receiving antenna [57]. λR should be the wavelength at
the antenna here, which is not necessarily the same as in the material. Combining
this with earlier results gives a received power of

P±
R =

λ2
RGR

4π

PTGT

4πR2
T

ε2rk
4p2p20

64π2R2
RK

2
L2
xL

2
yL

2
zΦ

±(θ, ϕ)2

For a more traditional bistatic radar equation [54] this can be written as

P±
R =

PTGTGRλ
2
Rσ

±(θ, ϕ)

(4π)3R2
TR

2
R

with the radar cross-section given by

σ±(θ, ϕ) =
ε2rk

4p2p20
16πK2

L2
xL

2
yL

2
zΦ

±(θ, ϕ)2

A.2.3 Signal-to-noise ratio and coherent integration
An important quantity besides received power is signal-to-noise ratio (SNR). For
this, the average noise power is described as [64]

Pn = kBTB

where kB is Boltzmann’s constant, T is the temperature and B is the utilized
receiver bandwidth. The noise power picked up by the antenna is calculated using
the standard temperature T0 = 290 K. The SNR directly at the antenna can thus
be written as

SNR±
ant

PTGTGRλ
2
Rσ

±(θ, ϕ)

(4π)3R2
TR

2
RkBT0B

After the antenna is the RF front-end which usually contains a bandpass filter,
low-noise amplifier (LNA), and mixer. Here the received signal is amplified so
that it can be further processed. The amplification affects both the signal and
noise, but the electronic components add more noise which causes the SNR to
deteriorate. To quantify this, the concept of noise ratio and noise figure is used.
The noise ratio is defined as [64]

F =
SNRi

SNRo

where the SNR’s are in linear units, i denotes input and o denotes output. It is
more common to use the noise figure, which is simply the noise ratio expressed
in dB units, NF = 10 log10(F ). After the RF front-end the signal is often strong
enough to not be affected by further noise, so it is usually sufficient to use a noise
ratio/figure for that part of the receiver. The SNR after the receiver can now be
written using the noise ratio as

SNR± =
PTGTGRλ

2
Rσ

±(θ, ϕ)

(4π)3R2
TR

2
RkBT0B · F
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One more effect is added to this, and that is signal integration in the signal pro-
cessing following the receiver. Noise can often be modeled as a random process,
and if multiple samples are added together the noise can be averaged out. If co-
herent demodulation is used, N samples added together will cause the SNR to
improve by a factor N [54]. The SNR can then be written as

SNR±
N =

PTGTGRλ
2
Rσ

±(θ, ϕ)

(4π)3R2
TR

2
RkBT0BF

N

which is our final form of the SNR estimate.

A.2.4 Refined interaction region
The derivation in A.2.1 is based on plane waves and a very simple geometry. A
problem with the geometry used is that there is no easy way to obtain the param-
eters Lx, Ly and Lz from common parameters of the acoustic and electromagnetic
beams. To address this, a slightly different interaction geometry based on beams
is introduced as shown in figure A.2. Here the beam diameters de and da have
been introduced for the electromagnetic and acoustic plane waves. For simplicity,
it is assumed that the beam edges are infinitely sharp, i.e. inside the wave behaves
as a plane wave and outside it is zero. This way the previous derivation can be
used with the exception of the interaction region. Since plane waves are still used
the model is not based on real beams. However, for real beams it is still easy to
obtain widths at the overlap area and then the interaction region should be fairly
close using this model.

The integration limits corresponding to this parallelogram can be written as

x0 − x1 < x < x0 + x1

−de/2 < y < de/2

−Lz/2 < z < Lz/2

where

x0 =
y

tanα

x1 =
da

2 sinα

The solution to the integral for a general function on the form eiA·r is now written
as

I =

∫
Vsc

eiA·r′
dv′

=

∫ Lz/2

−Lz/2

eiA·ẑz′
dz′
∫ de/2

−de/2

(
eiA·ŷy′

∫ x0+x1

x0−x1

eiA·x̂x′
dx′
)
dy′

=

∫ Lz/2

−Lz/2

eiA·ẑz′
dz′ · I2
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de

da

da/ sinα

d e
/ s
in
α

α
x̂

ŷ

ẑ

Figure A.2: Parallelogram interaction region

using the solution to the integral from A.2.1, this integral can be written as

I = Lzsinc
(
A · ẑLz

2π

)
· I2

The integral I2 can be solved as

I2 =

∫ de/2

−de/2

eiA·ŷy′
· 1

iA · x̂

(
eiA·x̂(x0+x1) − eiA·x̂(x0−x1)

)
dy′

=

∫ de/2

−de/2

eiA·ŷy′
· eiA·x̂x0

2

A · x̂
sin(A · x̂x1)dy

′

=

∫ de/2

−de/2

eiA·(ŷy′+x̂x0) · 2x1sinc
(
A · x̂x1

π

)
dy′

=
da

sinα
sinc

(
A · x̂da
2π sinα

)∫ de/2

−de/2

eiA·(ŷ+x̂/ tanα)y′
dy′

=
da

sinα
sinc

(
A · x̂da
2π sinα

)
· I3
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The integral I3 can be solved analogously to the solution from A.2 as

I3 = desinc
(
A · (ŷ + x̂/ tanα)de

2π

)
Now the complete solution to I is written as

I =
da

sinα
sinc

(
A · x̂da
2π sinα

)
· desinc

(
A · (ŷ + x̂/ tanα)de

2π

)
· Lzsinc

(
A · ẑLz

2π

)
If the specific function of interest to the scattering problem is inserted, and spher-
ical coordinates are used as in equation (A.10) the solution is∫

Vsc

ei(k(k̂−r̂)±q)·r′
dv′

=
dadeLz

sinα
sinc

(
da

2π sinα
(k − k sin θ cosϕ± q cosα)

)
· sinc

(
de

2π tanα
(k − k sin θ(cosϕ+ sinϕ tanα)± q(cosα+ sinα tanα))

)
· sinc

(
−Lz

2π
k cos θ

)
=

dadeLz

sinα
Φ±

p (θ, ϕ)

where the function Φ±
p (θ, ϕ) was introduced similarly to Φ±(θ, ϕ) in equation

(A.11). In contrast to the derivation in A.2, Φ±
p (θ, ϕ) does not contain all an-

gular dependence since there is still a factor 1/ sinα not included. This is due
to that factor being directly related to the interaction volume. If the area of the
parallelogram is calculated and multiplied by the width in z, the result is

dadeLz

sinα

This means that the solution of the integral is the interaction volume multiplied
by Φ±

p (θ, ϕ). This is the same result as in equation (A.11).
For the major results of the derivations in section A.2, the interaction region is

easily changed from cuboid to beam-based. The geometry only matters in the cal-
culation of the integral, so the only necessary changes are from there. This means
that the interaction volume needs to be changed from LxLyLz to dadeLz/ sinα
and the function Φ± changed to Φ±

p . With this in mind, the results from section
A.2.1-A.2.3 are rewritten using these changes. First, the scattered power is written
as

Esc,p(r, t) = Ei0

(
E+

A,p(r, t) + E−
A,p(r, t)

)
where

E±
A,p(r, t) =

εrk
2eikrpp0
8πrK

dadeLz

sinα
e∓iΩtΦ±

p (θ, ϕ)
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The radar equations are unchanged if a new radar cross-section is used, written as

σ±
p (θ, ϕ) =

ε2rk
4p2p20

16πK2

d2ad
2
eL

2
z

sin2 α
Φ±

p (θ, ϕ)
2

As stated before, these equations are quite similar to those from the cuboid geom-
etry.

A.2.5 2D derivations
The derivations leading to the radar equation in appendix A.1 and A.2.1-A.2.2 are
based on the assumption of three dimensional space. While this is reasonable for
modeling reality, simulations are often done in two dimensions for computational
speed and simplicity. If the analytical model is to be compared with 2D simulation
results, a 2D analytical model is necessary. The first thing to identify in order to
achieve this goal is where the first assumption of 3D space is done. This is in
the solution of the inhomogeneous Helmholtz equation, so that is where this 2D
derivation must start. The equation is written as (see appendix A.1.2)

∇2Esc + k2Esc = −k2
ε1
εr
Ei −

1

εr
∇(Ei · ∇ε1)−

k2

εr
Edi

This has a similar solution in 2D as in 3D, but with a different Green’s func-
tion. The solution to this in two dimensions, and under a Sommerfeld radiation
condition is instead [61, 62]

Esc,2D(r, t) =
1

εr

∫
Ssc

i

4
H

(1)
0 (k|r − r′|)

·
(
k2ε1(r

′, t)Ei(r
′, t) +∇ (Ei(r

′, t) · ∇ε1(r
′, t)) + k2Edi(r

′, t)
)
ds′

where H
(1)
0 is a Hankel function and

Edi(r
′, t) =

2iεr
ω

∂

∂t
(Ei(r

′, t)) +
2i

ω

∂

∂t
(ε1(r

′, t)Ei(r
′, t))

− εr
ω2

∂2

∂t2
(Ei(r

′, t))− 1

ω2

∂2

∂t2
(ε1(r

′, t)Ei(r
′, t))

The same geometry as in A.2.1 can now be used to calculate the scattered field
(see figure A.1). The change is that the interaction region is now limited to the
xy-plane, as are coordinates for the observation point. The incident fields are
defined as in equations (A.8) and (A.9), but with the coordinates r′ being 2D, i.e.
r′ = x′x̂ + y′ŷ. The polarization of the incident electric field, however, is still in
z regardless of the 2D geometry otherwise used. This can be done since it is not
dependent on the coordinate z, only the unit vector ẑ. Insertion of the incident
fields now gives

Esc,2D(r, t) =
k2

εr

∫
Ssc

i

4
H

(1)
0 (k|r − r′|)Ei0e

ik·r′ ε2rp

K
p0f(r

′, t)ds′
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where

f(r′, t) = cos(q · r′ − Ωt) +
2iΩ

ω
sin(q · r′ − Ωt) +

Ω2

ω2
cos(q · r′ − Ωt)

Assumption of far-field can be used to approximate the Hankel function. This is
done by adapting the method for the 3D Green’s function in [61] while using the
approximation from (9.2.3), p.364 in [65].

i

4
H

(1)
0 (k|r − r′|) ≈ ei(kr+π/4)

√
8πkr

e−ikr̂·r′

which is inserted in the integral, giving

Esc,2D(r, t) =
εrk

2ei(kr+π/4)Ei0pp0

K
√
8πkr

∫
Ssc

eik(k̂−r̂)·r′
f(r′, t)ds′

Inspection of this equation shows that it is the same integral as the one solved
in section A.2.1, but in 2D instead of 3D. All other differences are in the factor
in front of the integral. If it is assumed that Ω ≪ ω, the scattered field can be
written as

Esc,2D(r, t) = Ei0

(
E+

A,2D(r, t) + E−
A,2D(r, t)

)
where

E±
A,2D(r, t) =

εrk
2ei(kr+π/4)pp0

K
√
8πkr

LxLye
∓iΩtΦ±

2D(θ, ϕ)

and

Φ±
2D(θ, ϕ) = sinc

(
Lx

2π
(k − k cosϕ± q cosα)

)
sinc

(
Ly

2π
(−k sinϕ± q sinα)

)
Since the integral was calculated in 2D instead of 3D this time, the Lz factor
was removed as well as one of the sinc functions in Φ. The argument of the sinc
functions was also slightly altered since sin θ = 1 in the xy-plane. Calculation of
the Poynting vector is unaffected by the change from 3D to 2D, with an exception
being the change in E±

A . The time-average of the Poynting vector is then written
as ⟨

S±
sc,2D

⟩
(r) =

r̂

2η0η
|Ei0|2|E±

A,2D(r, t)|
2

where the time-dependence was removed by the absolute value. |E±
A,2D(r, t)|2 is

given by

|E±
A,2D(r, t)|

2 =
ε2rk

3p2p20
8πrK2

L2
xL

2
yΦ

±
2D(θ, ϕ)

2

The parallelogram geometry introduced in section A.2.4 can be used in 2D to
refine the interaction region. As discussed in section A.2.4, using this geometry
only affects the interaction region factors and the Φ function. The scattered field
using this interaction region is then written as

Esc,2D,p(r, t) = Ei0

(
E+

A,2D,p(r, t) + E−
A,2D,p(r, t)

)
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where
E±

A,2D,p(r, t) =
εrk

2ei(kr+π/4)pp0

K
√
8πkr

dade
sinα

e∓iΩtΦ±
2D,p(θ, ϕ)

and

Φ±
2D,p(θ, ϕ) =sinc

(
da

2π sinα
(k − k cosϕ± q cosα)

)
·sinc

(
de

2π tanα
(k − k(cosϕ+ sinϕ tanα)± q(cosα+ sinα tanα))

)
The Poynting vector is also written as⟨

S±
sc,2D,p

⟩
(r) =

r̂

2η0η
|Ei0|2|E±

A,2D,p(r, t)|
2

where the time-dependence was removed by the absolute value. |E±
A,2D,p(r, t)|2 is

given by

|E±
A,2D,p(r, t)|

2 =
ε2rk

3p2p20
8πrK2

d2ad
2
e

sin2 α
Φ±

2D(θ, ϕ)
2

The equations above are used for comparison with 2D simulations.

A.3 Geometry for maximum scattering
Let us begin with the Φ angular dependence function:

Φ±(θ, ϕ) =sinc
(
Lx

2π
(k − k sin θ cosϕ± q cosα)

)
·sinc

(
Ly

2π
(−k sin θ sinϕ± q sinα)

)
·sinc

(
−Lz

2π
k cos θ

)
The maximum of this function must be where all sinc-functions are maximum. For
a sinc the maximum is given when the argument is equal to 0, which simplifies the
process. Firstly, consider the third sinc:

sinc
(
−Lz

2π
k cos θ

)
The argument of this is obviously zero when cos θ = 0, which for 0 ≤ θ ≤ π
is when θ = π/2. This fixes the maximum to the plane formed by the incident
electromagnetic and acoustic wavevectors. What it means is that the scattering
occurs primarily in one single interaction plane, which simplifies analysis. Now
the arguments of the two other sinc functions are set to zero with the value for θ
being set to π/2:

k − k cosϕ± q cosα = 0 (A.12)
−k sinϕ± q sinα = 0 (A.13)

This relates the propagation direction ϕ of the scattered wave to the angle α and
the wavenumbers k and q.
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A.3.1 Condition for α

The system (A.12),(A.13) is now used to find the angle between wavevectors giving
a maximum. To avoid confusion, the positive and negative versions of the system
are considered separately.

(+) case
Begin with equation (A.12):

cosα =
k

q
(cosϕ− 1) =

k

q

(
±
√
1− sin2 ϕ− 1

)
Now equation (A.13) is inserted in the above as

cosα =
k

q

(
±
√

1− q2

k2
sin2 α− 1

)
This is rewritten as

±
√
k2 − q2 sin2 α = q cosα+ k

Squaring the equation implies

k2 − q2 sin2 α = q2 cos2 α+ 2kq cosα+ k2

After some simplification, the following equation is obtained:

cosα = − q

2k
(A.14)

Since q and k are non-negative it is clear that π/2 ≤ α ≤ π.

(−) case
This case is the same as the (+) case, but with some sign changes. Begin with
equation (A.12):

cosα =
k

q
(1− cosϕ) =

k

q

(
1±

√
1− sin2 ϕ

)
Now equation (A.13) is inserted in the above as

cosα =
k

q

(
1±

√
1− q2

k2
sin2 α

)
This is rewritten as

±
√
k2 − q2 sin2 α = q cosα− k

Squaring the equation implies

k2 − q2 sin2 α = q2 cos2 α− 2kq cosα+ k2

After some simplification, the following equation is obtained:

cosα =
q

2k
(A.15)

Since q and k are non-negative it is clear that 0 ≤ α ≤ π/2.
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A.3.2 Condition for ϕ

If either of equations (A.14) or (A.15) is inserted in the system (A.12), (A.13) the
following is obtained:

cosϕ = 1− 2 cos2 α = − cos 2α

sinϕ = −2 sinα cosα = − sin 2α

These can be written as

ϕ =

{
arccos(− cos 2α) + 2πn = π − 2α+ 2πn

2π − arccos(− cos 2α) + 2πn = π + 2α+ 2πn

ϕ =

{
arcsin(− sin 2α) + 2πn = −2α+ 2πn

π − arcsin(− sin 2α) + 2πn = π + 2α+ 2πn

Where n is an integer. From these equations it is clear that ϕ = π + 2α + 2πn is
the only valid solution. If ϕ is constrained by 0 ≤ ϕ ≤ 2π and α is constrained by
π/2 < α < π (+) or 0 < α < π/2 (−), ϕ can be written as

ϕ = −π + 2α (+ case)
ϕ = π + 2α (− case)

These two equations give the propagation direction of the scattered wave for (+)
or (−) scattering.

A.3.3 Summary
The equations for both the (+) and (−) case are very similar, and can be written
in a simple way using ± signs. The conditions define the geometry which gives
the maximum scattering through the angle α between EM and acoustic incident
waves and the angles θ and ϕ for the receiver direction. They are summarized
below:

θ = π/2 (A.16)

cosα = ∓ q

2k
= ∓ λ

2Λ
(A.17)

ϕ = ∓π + 2α (A.18)

In acousto-optics the interaction occurs in a single plane, which is what (A.16)
describes. There is also a Bragg condition defining the angle between an acoustic
and optic wave which is required for maximum reflection. This is presented in [25]
as

sin θB =
λ

2Λ

The relationship between the angles in acousto-optics and those used in this model
are shown in figure A.3 with ϕi = ϕr = θB [25]. From the figure it is clear that
α = π/2 ± θB. In this model (A.17) is used to obtain the optimal angle between
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electromagnetic and acoustic waves, and the transformation between α and θB can
be inserted as

cosα = cos(π/2± θB) = ∓ sin θB

The RHS of (A.17) is ∓λ/2Λ. This should be equal to the RHS above, which
directly gives the Bragg condition.

In acousto-optics it is assumed that the reflection angle equals the incidence
angle. This is not directly stated here, but can be obtained by changing from the
angles α, ϕ to the incidence angle ϕi and reflection angle ϕr shown in figure A.3.
It is clear from the figure that

ϕi = ±(α− π/2)

ϕr =

{
ϕ− ϕi (+ case)
2π − ϕ− ϕi (− case)

Now the condition for ϕi and (A.18) are inserted in the condition for ϕr, giving

ϕr =

{
−π + 2α− (α− π/2) = α− π/2 = ϕi (+ case)
2π − (π + 2α) + (α− π/2) = π/2− α = ϕi (− case)

and thus, the equation for α is also in agreement with acousto-optics. So, from
simple variable substitutions the same results as in acousto-optics are obtained.
This gives the model some validation since it is in agreement with an already
established theory.

ksc

q

k
ϕ

α

ϕi ϕr

(a) + case

ksc

q

k

ϕ

α

ϕi ϕr

(b) − case

Figure A.3: Comparison of angles used in this model and angles of
incidence and reflection. Both for the + and − cases.
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A.3.4 Refined interaction region
For the refined interaction region described in section A.2.4 the derivation for
finding a maximum scattering geometry is different than above. However, a first
hypothesis would be that the resulting condition would be the same. To test this,
the angles described by equations (A.16), (A.17), (A.18) are inserted in Φ±

p (θ, ϕ)
from section A.2.4. The function can be written as

Φ±
p (θ, ϕ) = sinc

(
da

2π sinα
(k − k sin θ cosϕ± q cosα)

)
· sinc

(
de

2π tanα
(k − k sin θ(cosϕ+ sinϕ tanα)± q(cosα+ sinα tanα))

)
· sinc

(
−Lz

2π
k cos θ

)
As for the function used in derivations for the cuboid geometry, the maximum
value of this function is 1. This happens only when the arguments of all sinc’s are
0. Due to this fact, the problem is simplified by only considering the parts of the
arguments required to be zero, namely

k − k sin θ cosϕ± q cosα (A.19)
k − k sin θ(cosϕ+ sinϕ tanα)± q(cosα+ sinα tanα (A.20)

−Lz

2π
k cos θ (A.21)

Now the equations (A.16), (A.17), (A.18) are inserted. In the derivations the
following relations are well used

cos(∓π + 2α) = sin2 α− cos2 α

sin(∓π + 2α) = −2 sinα cosα

q = ∓2k cosα

Argument (A.19) is now written as

k − k sin(π/2) cos(∓π + 2α)± q cosα = k
(
1− (sin2 α− cos2 α)± (∓2 cos2 α)

)
= k

(
1− sin2 α− cos2 α

)
= 0

Since it is equal to zero, the first sinc is maximized. Now argument (A.20) is
written as

k − k sin(π/2)(cos(∓π + 2α) + sin(∓π + 2α) tanα)± q(cosα+ sinα tanα

= k
(
1− (sin2 α− cos2 α− 2 sinα cosα tanα)± (∓2 cosα)(cosα+ sinα tanα)

)
= k

(
1− sin2 α+ cos2 α+ 2 sin2 α− 2 cos2 α− 2 sin2 α

)
= k

(
1− sin2 α− cos2 α

)
= 0

Since it is equal to zero, the second sinc is maximized. Finally, argument (A.21)
is written as

−Lz

2π
k cosπ/2 = 0
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Since it is equal to zero, the third sinc is also maximized. Thus, all sinc functions
are maximized which maximizes Φ±

p . This shows that the same condition (equa-
tions (A.16), (A.17), (A.18)) maximizes the Φ function for both the simple cuboid
geometry and the refined geometry based on beams.

One difference is that there is a factor 1/ sinα in the parallelogram interaction
region while the cuboid interaction region is constant. This should affect the angle
α giving maximum scattering in the parallelogram case. To find a maximum of
this and not just the function Φ would require other derivations than those done
for maximizing three sinc functions. Since this was not done, this factor should
be kept in mind when discussing Bragg matching. One thing which can be noted
though is how the factor might change the peak scattering qualitatively. The
square of the factor 1/ sin2 α is what matters for the scattered power. This has
a minimum at α = π/2 and increases as α tends towards 0 or π. What this
means for the total scattering is that the decrease in scattering when moving away
from the α given by equation (A.17) can be slightly counteracted. In the (−) case,
0 < α < π/2, so 1/ sin2 α is larger at smaller angles than the one given by equation
(A.17). Due to this, the maximum scattering can be shifted to a smaller angle α.
Similarly, in the (+) case, π/2 < α < π, so 1/ sin2 α is larger at larger angles than
from equation (A.17). Maximum scattering can then be shifted to a larger α. The
size of the shift in α depends on how fast Φ decreases when the angle α tends away
from that in equation (A.17). The function Φ is comprised of sinc functions, and
the main factor determining this is the width of the main lobe of the sinc’s. This
is determined from the argument of the functions, which in turn depend on the
geometry of the problem. Once again, the derivation is not done but it is noted
that the exact geometry can have an effect on how large the shift in α is when
compared to the Bragg maximum from equation (A.17).
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