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Abstract

Ultra-dilute self bound droplets in Bose-Einstein condensates have been of great interest since
their first prediction in 2015. The self-bound nature of these bosonic gases combined with
their extremely low densities make them a prime target of investigation for both experimen-
talists and theoreticians. In this thesis work dipole-dipole interacting gases are simulated
using the Gross-Pitaevskii equation applying a fourth order, split-operator imaginary time
method in two dimensions. First, the systems are studied at collapse for dipoles aligned
with a magnetic field that tilts the dipoles in the two-dimensional plane. For some angles
the dipole interaction becomes partly attractive which can lead to the collapse of the mean
field solution. However, quantum fluctuations can stabilize the gas. Introducing the so-called
Lee-Huang-Yang (LHY) correction, the system can be stabilized and self-bound droplets may
form. Here, we investigate this stabilization for a quasi two-dimensional set-up.



Popular science

Ultra-cold droplets intrigue physicists

A hot topic within ultra-cold atom physics has been the recent discovery of
droplets formed out of Bose-Einstein condensates, a specific form of a super
cold and very dilute gas. The condensate is however very different from any
gas encountered in everyday life. A normal gas can be thought of as atoms or
molecules moving around in all directions. If you cool this gas, all the particles
move slower until they either form a liquid or freeze and become a solid.

This is not the case for the Bose-Einstein condensate. Instead they spread through space
due to quantum mechanics and together they form one entity. This entity, the so called
condensate, behaves like no classical gas, as it is mainly governed by quantum mechanics and
not by the random chance of a lot of small particles moving about.

To add to this strangeness, droplets now seem to form out of these condensates. The ex-
istence of these droplets was quite a surprise. Among experimentalists working with creating
Bose-Einstein condensates the expected result was a collapse of the system if forces pushing
the condensate together won against the forces pushing it apart. However, experimentalists
revealed that some other internal force stabilized drops inside the condensate. Not only that,
this force seemed to be able to create drops that could exist outside a "trap", which usually
is a number of lasers and magnets that keep the condensate together. Some droplets could
not be formed without a trap, but instead formed crystal structures, a very intriguing result.

This has led to an excited mood within the field of cold atom physics. But what to
expect from this anti-collapse force, mainly being described as quantum fluctuations, and
the droplets it creates needs further study to find out. In this thesis work we simulate the
anti-collapse force and possible droplet systems solving the underlying quantum-mechanical
many-particle equations numerically.

One system of interest is the very thin disc of condensate, or a quasi two-dimensional
condensate. This system is excellent for rotating the condensate in. Why? Imagine having
a piece of pizza dough that in this case represents a condensate. If you spin this dough as
a skilled pizza maker does, the pizza will become flat due to rotational forces. The same
goes for the condensate. As you rotate it it will become flat anyways and therefore having a
model where our very cold gas is already flat makes it easier to simulate rotating systems.

But before you start rotating your drops, you have to find the drops. And to find the
drops you have to study the forces pushing the condensate together and the forces pushing
it apart. Therefore we presently aim at studying possible droplet formation in these pizza
crust shaped condensates, to make way for the study of rotational excitations. Initial results
show some promise that droplets can be found in these quasi two-dimensional systems.
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Chapter 1 | Introduction

The study of Bose-Einstein condensation has given us access to new fascinating physical
systems where quantum mechanical laws can be studied up close. Much effort has been
put into realizing and studying these systems during the past years [1, 2]. A recent and
interesting development within the field of research is droplet formation in Bose-Einstein
condensates [4, 5, 6]. These droplets are seemingly meta-stable outside their trap-based
experimental set-ups. The reason for this unexpected stability lies in quantum fluctuations
that until now have been disregarded as higher terms that can be omitted from leading
mean-field theories. These droplets share some physical characteristics. Most importantly
all droplets have several competing interactions, either dipole-dipole interactions or inter-
species forces, competing with a contact interaction. The dipole-dipole interaction force has
both repulsive and attractive regions that can, if tuned correctly, overcome the repulsive
contact interaction. In the most common mean field descriptions this leads to an unphysical
collapse of the condensate. However, this collapse is stopped by quantum fluctuations, often
described by the Lee-Huang-Yang correction [3]. With this correction the collapse instead
becomes droplet formation. The existence of these stable, self-bound quantum systems has
opened a new horizon for the physics of ultra-cold quantum gases.

So far, the main area of investigation for dipolar condensates has been droplet crystalliza-
tion where the droplets are not self-bound but are instead confined. In a trapping potential
these droplets form crystal structure [4]. In two-component gases, the study of self-bound
droplets has been a main interest, where the theoretical proposal [5] and the experimental
realization [6] were only two years apart. The LHY term for dipolar gases has been theo-
retically derived by Lima and Pelster [7] whose work has been used to explain the droplet
crystallization [8]. Their main area of study was however the regime of three-dimensional
condensates. What has yet to be thoroughly investigated are low-dimensional dipolar Bose
gases where the contact interaction is tuned such that the dipole-dipole interaction, accord-
ing to first order mean field theories, would cause a collapse of the condensate. The LHY
correction term might have a large impact in such a system, with one possibility being that
self-bound droplets can be found. Both quasi two-dimensional and exact two-dimensional
condensates are relatively unexplored compared to three-dimensional systems.

In this thesis work a quasi two-dimensional (quasi 2D) dipole-dipole interacting Bose
gas has been studied in the regime where the dipolar interaction overcomes the contact
interaction. For this task a fourth order, split-operator, imaginary time propagation method
[9] has been used to solve the Gross-Pitaevskii equation. A LHY term was introduced into this
framework to see how it affected the condensate shape and energy and whether a collapse
of the wave function was hindered. If collapse was hindered the wave function from that
calculation was used as initial state in a calculation where the external trap was removed.
This to see if the state was self bound. Several different dipole interaction strengths were
tested with varying contact interaction strengths. Before discussing our main findings, this
thesis begins with a brief review of the subject of Bose-Einstein condensates, their theoretical
simulation and droplet formation in Bose gases.
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Chapter 2 | Bose-Einstein condensation
in theory and experiments

Due to the possibility for bosons to inhabit the same quantum state, systems consisting
of very cold bosons behave as if they were one quantum mechanical object. These Bose-
Einstein condensates (BEC:s) were proposed in 1925 [10] but were not experimentally realized
until 1995 [11]. In the mean time, the theories of the condensate have given insight into
fundamental properties of both super-fluids and super-conductors [1].

In this chapter we will provide a brief overview of the BEC, concerning experiments and
theory. In section 2.1 we will discuss the general phenomenon of Bose-Einstein condensation,
looking at its field-like properties and introduce the contact interaction. Then, we discuss the
Gross-Pitaevskii equation in section 2.2. In section 2.3 we look at the realization of BEC:s
in extremely dilute alkali gases and what results came from studying them.

2.1 The Bose-Einstein condensate

Bose-Einstein condensation was proposed in 1925 by Albert Einstein in a paper elaborating
the ideas of Satyendra Bose concerning particles with integer spin [2]. These particles, called
bosons, are not confined to one particle per quantum state, as prescribed by the Pauli prin-
ciple for fermions, but can share a single-particle state with each other. In the case of a gas
of bosons the particle distribution over states is governed by the Bose distribution

f 0(ευ) =
1

e(ευ−µ)/kT − 1
(2.1)

where f 0 is the occupation number, ευ is the energy of the state, µ is the chemical potential
(as the particle number is constant), k is the Boltzmann constant and T is the temperature.
µ varies with temperature and the number of particles [1]. The chemical potential is however
limited in how much it can vary as the lowest energy level, εmin, cannot be surpassed due to
the distribution function then turning negative, which is an unphysical result. Instead, when
very low temperatures are reached we find that the particle number decreases if we integrate
the distribution over all energy levels. The particles that have seemingly vanished have all
fallen down in the lowest energy state where they form a peak in the distribution that is not
included in the integral. These particles have condensed into a BEC and the gas now has a
condensate fraction, given by

N0 = N
(

1−
[ T
Tc

]3)
(2.2)

in the case of a three-dimensional harmonic trap. Here N is the number of particles, T is the
temperature and Tc is the transition temperature, the temperature at which a condensate
fraction first starts appearing [1].
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We now turn to the description of this condensate as described in Ref. [2]. As the gas
descends into condensate form, the one-body density matrix can be described by

n1(r, r′) = N0φ
∗
0(r)φ0(r′) +

∑
i 6=0

niφ
∗
i (r)φi(r

′) (2.3)

where N0 is the number of particles in the single particle ground state φ0(r) and the sum
describes the contribution from higher single particle states, φi where i 6= 0. This is especially
convenient when N0 is of the order N and ni is of order one. This can in turn be used to go
from a particle to a field description. Using Eq. (2.3) one can rewrite the second quantization
field operator Ψ̂(r) as a sum of creation operators, âi, weighted by individual particle wave
functions, φi(r),

Ψ̂(r) = φ0(r)â0 +
∑
i 6=0

φi(r)âi (2.4)

where one starts by separating out the condensate state. Now, for the case where N0 is close
to N one can use the Bogoliubov approximation where â0 =

√
N0 [2]. Here one uses the fact

that 〈a†0a0〉 ≈ N0 and the commutation relation [a†0, a0] being one, which means that one
can approximate that the two operators commute. This turns the separate condensate state
operator term in Eq. (2.4) into a field, turning the field operator in Eq. (2.4) into

Ψ̂(r) =
√
N0φ0(r) + δΨ̂(r). (2.5)

When only the condensate state is occupied, the gas can be seen as a classical field, much
like photons for some limits can be seen as electro-magnetic fields [2].

Before moving on to the mean field theories of BEC:s, we will quickly look through the
energies involved in the condensate. In the case of the individual particle in a non-interacting
ideal gas the Hamiltonian is simply

Ĥ = − ~2

2m
∇2 + U(r). (2.6)

In this thesis, however, the main topic is the weakly interacting Bose gas, where there is
a contribution to energy from the interactions between the particles. To avoid high order
interactions with three or more particles interacting one assumes a dilute gas. The diluteness,
combined with the low temperature, also leads to the s-wave scattering length as being the
one governing variable when it comes to interactions. Using the second quantization operator,
one can set up a Hamiltonian for the entire system with contact interaction [2],

Ĥ = − ~2

2m

∫
dr∇Ψ̂†(r, t)∇Ψ̂(r, t) +

∫
drΨ̂†(r, t)U(r)Ψ̂(t) (2.7)

+
1

2

∫
Ψ̂†(r, t)Ψ̂†′(r′, t)VCon(r′ − r)Ψ̂(r′, t)Ψ̂′(r, t)dr′dr

where VCon(r′ − r) is the contact interaction potential and U(r) is an external potential. If
one Fourier transforms the system into momentum space and plugs in the right hand side of
Eq. (2.4) in Eq. (2.7) one obtains

Ĥ =
∑
p

p̂2

2m
â†pâp + U +

1

2V

∑
p1,p2,q

ConVqâ
†
p1+qâ

†
p2−qâp1 âp2 (2.8)
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where U is the external potential in momentum space, V is the volume of the system, ConVq
is the contact interaction with q being the transferred momentum in a certain interaction
and âp/â†p being the momentum-space annihilation/creation operators.

Now we look at at all the possible interactions between two particles with momenta p1, p2

and with the momentum exchange q. In the case of a condensate at zero temperature all
particles will be in the p1 = p2 = q = 0 state. This means that by using the Bogoliubov
approximation we obtain the following expression for the contact interaction energy:

ĤCon =
Nn ConV0

2
(2.9)

where n is the density of the system. The inter-particle potential ConV0 is usually denoted
as the interaction strength g and can, for three dimensions, be shown to be

ConV0 = g =
4π~2as
m

(2.10)

where as is the s-wave scattering length and m is the mass of the individual bosons [2].
The s-wave scattering length is a measure connected to the cross-section and therefore to

the probability of a particle interaction. If the interaction is weak we can approximate the
interacting particles wave function as a free particle wave. This is called the lowest order
Born approximation and gives us the following scattering length relation to the differential
cross-section as

dσ

dΩ
= |as|2 (2.11)

where dσ is the the number of particles per unit area and dΩ is the differential solid-angle
element [12]. For higher orders of Born approximations we create the transition operator T ,
defined as

V |ψ〉 = T |φ〉 (2.12)
where V is the interaction potential, |ψ〉 is the scattered particle state and φ is a free particle
state. We now use the Lippmann-Schwinger equation to approximate the scattered particle
state, |ψ〉, as

|ψ〉 = |φ〉+ V
1

E −H0 − iε
|ψ〉 (2.13)

where E is the energy of the interaction, H0 is the free particle Hamiltonian and ε is a very
small variable creating ań imaginary pole making the Lippmann-Schwinger equation possible
to solve when E−H0 = 0. By multiplying the Lippmann-Schwinger equation with V we find
T to be

T |φ〉 = V |φ〉+ V
1

E −H0 − iε
T |φ〉 (2.14)

If one uses this transition operator and calculates the scattering length a one gets

a =
2mr

2π~2
(2π)2 〈k′|T |k〉 (2.15)

where mr is the reduced mass (in the case of equal mass between the interacting particles
mr = m/2), |k′〉 , |k〉 are the incoming/outgoing momentum states and T is

T = V + V
1

E −H0 − iε

[
V + V

1

E −H0 − iε
(
V + V

1

E −H0 − iε
...
)]

(2.16)
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The sum described by the combination of Eq. (2.15) and Eq. (2.16) is called the Born series
[12]. In most of this work we only use the first order term of the sum, V and get the s-wave
scattering length in Eq. (2.10), if we set k′ = k = 0. Higher order Born series terms will make
a small appearance later as we move onto the effect of quantum fluctuations for the contact
interaction energy. But for the moment, we only look at the perfectly condensed BEC that
introduces us to a more simplified version of the weakly interacting gas energy. When we
later encounter effects by quantum fluctuations we will have to revisit this theory and do a
more stringent derivation of the two-particle interaction. For now, it is however sufficient
to only look at the basic contact interaction in order to introduce the mean-field equation
whose solutions will be the main results of this thesis work: the Gross-Pitaevskii equation.

2.2 Gross-Pitaevskii equation in three and two dimen-
sions

The Gross-Pitaevskii equation (GPe) was derived individually by Gross and Pitaevskii in
1961 in the quest to find a mean-field equation of motion for the condensate as a whole
[2]. To obtain this we first find the time derivative for the creation/annihilation operator
Ψ̂(r, t)/Ψ̂†(r, t) for which we have the commutation relations

[Ψ̂(r, t), Ψ̂†(r′, t)] = δ(r − r′) (2.17)

[Ψ̂(r, t), Ψ̂(r′, t)] = 0 (2.18)

In the Heisenberg representation the time derivative for Ψ̂ is given by

i~
∂Ψ̂(r, t)

∂t
= [Ψ̂(r, t), Ĥ]. (2.19)

Inserting the Hamiltonian in Eq. (2.7) into Eq. (2.19) we obtain by way of Eq. (2.17) and
Eq. (2.18) the expression

i~
∂Ψ̂(r, t)

∂t
=
[
− ~2∇2

2m
+ U(r, t) +

∫
Ψ̂†(r′, t)VCon(r′ − r)Ψ̂(r′, t)dr′

]
Ψ̂(r, t). (2.20)

Now the Bogoliubov approximation in Eq. (2.5) is employed, transforming the operator Ψ̂(r, t)
into the mean field Ψ(r, t). The interbosonic potential matrix element, represented by the
integral in Eq. (2.20), is set to g as in Eq. (2.10) and turn Eq. (2.20) into

i~
∂Ψ(r, t)

∂t
=
[
− ~2∇2

2m
+ U(r, t) + g|Ψ(r, t)|2

]
Ψ(r, t) (2.21)

which is the GPe. For this model to hold the system needs to be very cold, very dilute and
have a large particle number (due to the underlying Bogoliubov approximation). If one wants
to utilize Eq. (2.10) to obtain the coupling strength one also needs to introduce the healing
length, usually denoted by ξ. The healing length is a measure of length within which the
condensate tends to its bulk value. It is given by

ξ =
1√

8πnas
(2.22)
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where n is the density of the condensate and as is the s-wave scattering length. ξ needs to be
larger then the mean distance between particles [1]. This value becomes especially important
as we now take the GPe into a quasi 2D realm.

Let us assume that the confining potential U is a harmonic oscillator. If strongly confined
in the z-direction the mean-field wave function for the condensate can be written as

Ψp(r) = φ(x, y)× Z(z) (2.23)

where the confinement in z-direction is so strong that no movement is allowed. The z-
direction wave function is assumed to be that of the lowest level in the one-dimensional
harmonic oscillator. In coordinate space that wave function is

Z(z) =
1

π1/4l
1/2
z

e−z
2/2l2z (2.24)

where lz is the oscillator length in z-direction. When the confinement is large enough in
the z-direction the distance between particles is d = 1/

√
n2D where n2D is the density in

the xy-plane. Therefore, for the healing length ξ to be much larger then the inter-bosonic
distance d one gets

ξ

dparticle
=

√
lz

8
√
πas
→ lz � as (2.25)

This is a necessary condition for one to be able to use the GPe in its three-dimensional form
for 2D systems. This will be taken into consideration during calculations. lz can also not be
too large as that would render the approximation in Eq. (2.23) invalid. Well within these
bounds one can use the GPe in Eq. (2.21) with the difference being that the wave function
is the effective 2D wave function and the coupling strength is g = N

√
8π as

lz
where as is the

s-wave scattering length, lz is the oscillator length in z-direction and N is the number of
particles. N enters as we normalize the density to one [2]. This definition means that as is
going to be very small compared to lz as long as g < 102 and N > 103, which we assume
them to be in this work.

The GPe can include other inter-bosonic potentials, such as the dipolar, interspecies or
spin-orbit coupled potentials. The dipolar interaction will be handled in section 3.2 as it is
the main potential studied in this thesis work. The quasi 2D version of the dipole interaction
will be the one of greatest interest as it is the potential used in this work. In turn the ability
to add further mean-field terms will also help when we look at higher orders of two-particle
interactions [1, 2].

Experimental results for the models described above were not obtained until 1995 when an
ultra-dilute system of rubidium atoms was cooled with lasers to the point where a condensate
were observed [11]. As we shall see in the next section, the first experimental data were quickly
followed by other successful experiments performed on ultra-dilute alkali gases [1].
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2.3 Experimental realization in extremely dilute alkali
gases

The theory of Bose-Einstein condensation was early on used to partly explain the properties
of liquid helium [1]. The pure condensate however was not realized until 1995 when three
different research groups [11, 13, 14], using magneto-optical cooling techniques, managed to
produce ultra-dilute, very cold gases of alkali metals. These gases showed several signs of
Bose-Einstein condensation such as a clear density peak at zero-momenta and a high stability
(they were observed for times up to 15 seconds) [11, 13, 14].

The magneto-optical trap is a combination of several cooling techniques, including evap-
orative cooling, laser induced cooling and magnetic trapping [1]. The evaporative cooling
technique is the most straightforward and consists of letting high energy particles escape,
leaving the entire gas less energetic. The laser techniques involve shooting detuned lasers
from six perpendicular or anti-parallel directions, getting higher absorption for particles mov-
ing towards the incoming laser light. When the photons are absorbed, the particle is slowed
due to momentum conservation [1]. In the magnetic trap the degenerate hyper-fine levels in
the atom are manipulated as to have a spatial preference for the middle of the trap. The
hyper-fine levels are increased (by the magnetic field) as an atom gets closer to the trap
boundary. This creates a force that spatially traps the atoms [1]. There are also other
mechanisms at work, such as Sisyphus cooling, where the electrons get pumped into a higher
energy level and then spontaneously decay, making the atoms loose energy [1].

In these initial experiments merely contact interactions were studied but in 2005 Ref. [15]
created a stable condensate with chromium atoms. The special electric properties of chromium
made it possible for researchers to study dipole-dipole interactions in BEC:s. The systems
became more tunable as Feschbach resonances became better understood, giving experimen-
talists the ability to test several strength ratios between the different interactions [4]. In 2011
a condensate was created using the most dipolar atom, dysprosium (Dy) [16] that finally led
to experiments in 2015 by Ref. [4] with crystallization of droplets in a dipole interacting
BEC. These experiments however led to much more stable droplets and a much more long
lived system than anticipated by the GPe [4]. As this finding is the foundation of the area
of interest that this thesis handles we now turn our attention to droplet formation and the
changes to the GPe that now become necessary to better simulate the observed behaviour.
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Chapter 3 | Droplets in dipolar bosonic
gases

In 2015 a team at Stuttgart University managed to investigate the area where existing mean
field models predicted a collapse of a dipolar BEC [4]. However, the experiments revealed
ultra-dilute, self-bound droplet formations. These droplets showed a remarkable stability
and ferro-fluid 1 crystalline structure that did not coalesce with theoretical calculations [4].
The stability of the system was attributed to higher order quantum fluctuations, with the
Lee-Huang-Yang (LHY) correction term leading to stabilization of the droplets. This in turn
started a search for self-bound states where forces such as inter-species or dipolar attractions,
as studied in this thesis work, combined with the contact interaction made droplet formation
possible [8, 17].

In section 3.1 we will first discuss experimental and theoretical results obtained in the
area of quantum droplets. In section 3.2 we will look at the dipole interaction in BEC:s and
see how it can be added to the GPe mean field theory. Lastly, in section 3.3 we survey an
derivation of the LHY term by Ref. [18] in the framework of Bogoliubov theory.

3.1 Ferro-fluid crystals and self-bound droplet formation

The area of droplet formation in cold atom physics started with the study of strongly dipolar
gases in a “pancake” potential, i.e, a harmonic potential more strongly confined in the z-
direction. This is not to be confused with a quasi 2D system, as the lz oscillator length in
the pancake system is too large to fulfill the criterion of Eq. (2.23). The 164Dy atoms used
in the experiments conducted by Ref. [4] had their contact interaction controlled by strong
magnetic fields so that the scattering length resulting from contact interaction became on
par with the dipolar interaction (the specifics of the dipole-dipole interaction are discussed in
detail in the following section). The standard GPe picture however predicts a destabilization
of the condensate at add > as, where add is the dipole-dipole scattering length and as is
the s-wave scattering length. This is due to the dipolar interaction having both regions of
repulsive interaction and regions of attractive interaction, leading to a collapse when the
attractive part of the dipolar interaction overcomes the repulsive contact interaction. Here,
system collapse in the physical sense is the compression of the condensate by the attractive
force leading to high densities and temperature increase [4].

The droplets that emerged despite the anticipation of system collapse ordered themselves
into a triangular pattern in which the droplets remained stable for about 300 ms. These
lifetimes were well beyond what was expected and the enhanced stability of the system was
very surprising [4].

To explain these findings two theoretical approaches were taken; quantum fluctuations in
the contact interaction, the LHY energy, [8] and three-body interactions [19]. It was however

1Ferro-fluids are fluids consisting of highly magnetic atoms or molecules.
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concluded that the higher orders of the contact interaction was the main contributor to the
stabilization of the droplets with the three-body interaction being the reason for particle
losses in the somewhat denser droplets [8]. The LHY correction will be discussed in greater
depth in section 3.3 but what can be said is that for the case of the broad “pancake” confined
droplets the system has been reproduced numerically for a condensate in three dimensions
[8].

Following the above mentioned discoveries the higher order interactions were scrutinized
also for two-component gases. In 2015 Petrov suggested that for BEC:s with attractive
inter-species interactions larger than the repulsive intra-species interaction, the LHY energy
correction could stabilize them. If it did, the system could become a self-bound droplet
[5]. This suggestion led to the experimental realization of these droplets in 2016 [6]. The
two-component droplets shared a number of features with droplets discovered in the dipolar
Dy condensate, with long lifetimes and a lower dependence on the number of particles than
expected [20]. Further experimentation is presently being pursued, with an example being
the creation of a system were the interspecies and intraspecies contact interaction cancel out
and one is left with a system purely dependent on the Lee-Huang-Yang fluctuations [21].

This rapid experimental progress has continued to present date with a recent development
being the study of the LHY term in cigar-shaped dipolar Bose-Einstein condensates [22]. Here
a self-bound droplet was created in a three-dimensional "cigar" potential. The potentials
shape gave way for not only droplet formation but also the formation of oblong stripes much
more correlated then the crystalline droplets in the experiment by for example Ref. [4].

To better understand the physical behaviour of these experimental systems we first turn
to the dipole interaction. This anisotropic potential let us create systems where the partly
attractive dipole force overcomes the contact interaction, making way for systems where
the LHY interaction becomes vital to maintain computational stability at the boundaries of
system collapse.

3.2 The dipole interaction

Figure 3.1: The disc shaped quasi 2D dipolar
system, as here depicted in the few-body limit.
The dipoles are at Φ = 90◦ in case a) (dipoles
perpendicular to the xy-plane and in case b)
the dipole angle Φ = 55◦. This figure is taken
from Ref. [23].

The dipole interacting system consists of a
number of trapped dipolar particles where
the particles are aligned by an external mag-
netic or electric field. We will only consider
magnetic dipoles. For cases of anisotropic
trapping potentials the dipoles are often
aligned with the z-axis but the dipoles can
be tilted, as we will see later in this section.

We start, for convenience, by setting up
a system of units where ~ = ω0 = m = 1,
m being the boson mass, and length is mea-
sured in units of the oscillator length l0 which
is l0 =

√
1

~ω0
= 1. The dipole-dipole poten-
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tial can now be written as
Vdd = D2 1− 3 cos2 θ

r3
(3.1)

where D is the strength of the dipole-dipole interaction, θ is the angle between the dipole
and r which is the distance vector between two dipoles, r being this vectors norm. D is in the
magnetic case given by D = µ

~

√
µ0m
4πl0

which with our choice of units becomes D = µ
√

µ0
4π

[23].
For Eq. (3.1) to work it is presumed that all the dipoles are aligned in the same direction.

The matrix elements of Eq. (3.1) governing the form of the effective potential from
the dipole interaction is calculated in a similar way as the contact interaction potential in
Eq. (2.7). We start with stating that the external potential for the condensate is a harmonic
oscillator setting up the dipole potential matrix element as

DipVj,k,l,m(r) =

∫
dr′dr′′Ψ†j(r

′)Ψ†k(r
′′)Vdd(r

′′ − r′)Ψl(r
′)Ψm(r′′) (3.2)

where Ψj,Ψk,Ψl,Ψm indicate the different single particle harmonic oscillator states. We also
note that the integration limit for all integrals are over R. Here one can derive a general three-
dimensional expression but as this thesis work focuses on a quasi 2D (as seen in Figure 3.1)
approach we will take the route of squeezing the condensate tightly in the z-direction. This
tight confinement lets us use the approximation in Eq. (2.23) with the same wave function
in z-direction as in Eq. (2.24). This gives us

DipVj,k,l,m(r) =

∫
dr⊥′dr⊥′′φ†(r⊥′)φ†(r⊥′′) DipVeff(r⊥)φ(r⊥′)φ(r⊥′′) (3.3)

where φ(r⊥′′) is the xy-plane wave function in 2.23, r⊥ = r⊥′′ − r⊥′, and DipVeff(r⊥) is

DipVeff(r⊥) = D2 1

πl2z

∫
dze−z

2/2l2z
1− 3 cos2 θ

r3

∫
dz̃e−2z̃2/l2z (3.4)

where z = z′′ − z′, z̃ = (z′′ + z′)/2, r = r′′ − r′ and lz is the oscillator length in z-direction.
Now, the effective dipolar potential in the xy-plane can be obtained by integrating out the
z̃-variable, reducing the effective dipole potential to

DipVeff(r⊥) = D2 1

2
√

2πlz

∫
dze−z

2/2l2z
1− 3 cos2 θ

r3
(3.5)

Let’s assume that the dipole direction is somewhere in the xz-plane [23]. Then, this system
can be rewritten in cylindrical coordinates where we have (x, y, z) = (r⊥ cosφ, r⊥ sinφ, z).
Using the angle between the x-axis and the dipole direction, Φ and the polar coordinate φ
the value cos θ can be calculated by

cos θ =
1

r
(r⊥ cos Φ cosφ+ z sin Φ). (3.6)

Inserting the polar coordinates and Eq. (3.6) into Eq. (3.5) gives us the final expression for
the dipole-dipole effective potential:

DipVeff(r⊥) =
D2

2
√

2πl2z
ex/2[(2 + 2x)K0(x/2)− 2xK1(x/2) + cos Φ(−(3 + 2x)K0(x/2)+ (3.7)

(1 + 2x)K1(x/2) + 2 cos2 Φ cos2 φ(−xK0(x/2) + (x− 1)K1(x/2))]

10



where x = r⊥/2l
2
z and K0, K1 are Bessel functions created by integrating over the variable

t = z2/2a2
z. This effective potential can be implemented directly into the the GPe [23].

DipVeff described above has both repulsive and attractive regions with it being purely
repulsive between 90◦ and ΦCrit = 54.7◦, where ΦCrit is called the critical angle. At this critical
point, the dipole-dipole interaction becomes attractive for some regions in the condensate.
In the basic model, if the dipole-dipole interaction overcomes the contact interaction, the
system collapses. But, as in the case of two-component gases and the droplet crystallization
experiments [4, 20], quantum fluctuations might produce stability for the quasi 2D condensate
as well. With those words we finally arrive to the heart of the matter: the LHY correction.
Presented in 1947 [3], it has been derived in a multitude of ways since [2, 3, 5, 7, 18] for both
two-component and dipolar gases. We will start the next section with a general derivation
and then discuss the dipole-dipole interaction and its effect on the LHY term, ending our
theoretical background and moving on to a brief overview of the method.

3.3 Quantum fluctuations - the higher order interactions
in a BEC

In our original derivation of the contact interaction potential in section 2.1 we assumed that
all the particles could be found in the lowest state: the condensate. To correct this, we redo
the calculations in section 2.1 but we retain the momentum terms [2]. We will start with
going through a derivation made in Ref. [18] in 2004. There, the derivation is provided in
the framework of a soft potential, i.e, a potential without divergencies close to the atomic
boundaries. This can be done as long as the s-wave scattering length of this soft potential
is the same as for the "true" interparticle potential [2]. We are still using the same units
presented in the previous section.

We begin this by revisiting Eq. (2.8). The interactions of interest are the ones between two
states where at least two of the annihilation/creation operators involved are zero momentum
based, making them probable enough to affect our outcome. Implementing this we get a
modified version of Eq. (2.8)

Ĥ =
∑
q

q2

2
â†qâq +

1

2V
ConV0â

†
0â
†
0â0â0 +

1

2V

∑
q 6=0

[
ConV−qâ

†
qâ
†
−qâ0â0 + ConV−qâ

†
0â
†
0âqâ−q+

(3.8)
ConVqâ

†
0â
†
qâqâ0 + ConV0â

†
0â
†
qâ0âq + ConV0â

†
qâ
†
0âqâ0 + ConV−qâ

†
qâ
†
0â0âq

]
.

Here we have used Eq. (2.8) and first set p1 = 0, p2 = 0 obtaining the first term in the sum
Eq. (3.8). After this we set p1 = q, p2 = −q obtaining the second term in in the sum. The
rest of the terms in Eq. (3.8) comes from applying the rule p1 + p2 = q where p1 or p2 has to
be 0. This to have at least two â0 operators in each term, as stated above. Adding to this,
we use Eq. (2.5) to obtain the approximate number of particles in the condensate, N0, by
using the fact that the total number of particles, N , can be found through Eq. (2.5) by way

11



of
∫
|Ψ|2dr = N . Squaring the number of particles in the condensate state we get

N2
0 = N2 − 2N

∑
q 6=0

â†qâq +
(∑
q 6=0

â†qâq
)2
. (3.9)

The last square in Eq. (3.9) can be discarded as it is very small, leaving us with the following
expression for N0,

N2
0 ≈ N2 − 2N

∑
q 6=0

â†qâq (3.10)

where N is the total number of particles. Inserting Eq. (3.10) into Eq. (3.8) a number of
terms cancel and all small terms of the form

∑
q 6=0 â

†
pâpâ

†
qâq are discarded. This leaves us

with the Hamiltonian

Ĥ =
Nn

2
ConV0 +

∑
q

q2

2
â†qâq +

n

2

∑
q 6=0

ConVq(â
†
qâ
†
−q + â−qâq + 2â†qâq) (3.11)

Important to note here is that ConVq = ConV−q [18].
To study this Hamiltonian, we turn to the Bogoliubov transformation. First, one creates

a Hamiltonian for each state dependent on q on the form

Hq = Aq +Bq(â
†
qâ
†
−q + âqâ−q + â†−qâ

†
q + â−qâq) + Cq(â

†
qâq + â†−qâ−q) (3.12)

where Aq = n2

2

ConV 2
q

q2/2
, Bq = n

2
ConVq and Cq = n ConVq + q2

2
. Here we have made use of what

Weiss et al. [18] refers to as a "fat 0" when using ConV0. Instead of setting ConV0 = 4πas
we use

ConV0 = 4π(as + a2) +
1

V

∑
q 6=0

ConV 2
q

q2
(3.13)

where a2 is the second order term in the Born series discussed in chapter 2. The sum in
Eq. (3.13) and the second order Born series term cancel each other, forming a "fat 0" and
allow us to set Aq = n2

2

ConV 2
q

q2/2
, which will prevent unphysical results encountered by Weiss et

al. in Ref. [18].
We now want to diagonalize Eq. (3.12) as follows

Hq = α(q) + ε(q)β†qβq (3.14)

where βq is a creation/annihilation operator for a quasi-particle with energy ε(q) and α(q)
is the energy shift. α(q) can be seen as the ground state energy for the quasi-particles in
a harmonic oscillator [18]. The operator βq has to follow the commutation rules of Bose
statistics and can be written as a combination between a−q and aq in the following fashion:

βq = uqâq + wqâ
†
−q (3.15)

β†q = uqâ
†
q + wqâ−q (3.16)

12



By using Eq. (3.15) and (3.16) and rewriting Eq. (3.12) in the form of Eq. (3.14) we find that
the quasi-particle energy ε, is

ε(q) =

√(q2

2

)2
+ n ConVqq2 (3.17)

with the energy shift α becoming

α(q) =
1

2

[
ε(q)− q2

2
− n ConVq

]
+
n2

2

ConV 2
q

q2/2
(3.18)

The Hamiltonian in Eq. (3.11) can now be written as

Ĥ =
Nn

2
ConV0 +

∑
q

Hq. (3.19)

At this point we want to look at all the Hamiltonian terms that are independent of the
momentum q. Therefore we discard any terms in the Hamiltonian, Eq. (3.19), that are
dependent on the momentum of a state, i.e βq dependent terms. This removes the quasi
particle energies, ε, which is physically motivated as higher momentum states will not be
occupied in any larger extent. The energy shift, brought about by higher momentum states,
remains the same no matter what state we apply the operator to. This leaves us with the
energy per particle

E

N
=

1

2
ConV0n+

1

nV

∑
q 6=0

α(q) (3.20)

where n is the density and V is the volume of the system. At this point we reaffirm that this
is being done at an ultra-dilute density, letting us Taylor expand the sum of energy shifts,
α(q), around n = 0 as follows

∑
q 6=0

α(q) =
∑
q 6=0

α(q)
∣∣∣
n=0

+
∑
q 6=0

∂

∂n
α(q)

∣∣∣
n=0

n+
1

2!

∑
q 6=0

∂2

∂n2
α(q)

∣∣∣
n=0

n2 + . . . (3.21)

The zeroth, first and second order terms of this Taylor expansion become 0. The third
term becomes an infrared-divergent integral which Weiss et al. describe as a “naive attempt
to consider” [18]. Instead we use the fact that ConVq is bounded and that we therefore can
use the following expression: ∑

q 6=0

∂

∂
√
n

∂2

∂n2
α(q)2 (3.22)

Using Eq. (3.18) for α(q) we find Eq. (3.22) to be

∑
q 6=0

∂

∂
√
n

∂2

∂n2
α(q)2 = lim

n→0

∑
q 6=0

3
(
q2

2
ConVq

)3√
n[

( q
2

2
)2 + 2n ConVq

q2

2

]5/2
(3.23)
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The boundness of ConVq means that the sum in Eq. (3.23) will converge and we can rewrite
it as an integral over q:

∑
q 6=0

∂

∂
√
n

∂2

∂n2
α(q)2 = lim

n→0

V

2π

∫
d3q

3
(
q2

2
ConVq

)3√
n[

( q
2

2
)2 + 2n ConVq

q2

2

]5/2
(3.24)

where V is the volume of the system that arises from the density in phase space. This
integral becomes simplified substituting the momentum vector q =

√
2m ConV0y2n where y

is a dimensionless variable. We also use that in the thermo dynamic limit, limn→0

ConVq
ConV0

= 1
and thus the problem reduces to∑

q 6=0

∂

∂
√
n

∂2

∂n2
α(q)2 = lim

n→0

3V

2π2
(2)3/2 ConV

5/2
0

∫ ∞
0

dy
y3

(y2 + 2)5/2
(3.25)

where the integral is simply equal to
√

2/3. Now we use this as any Taylor expansion term
and see that its expansion polynomial (with factorials) is 4

15
n5/2 as

∂

∂
√
n

∂2

∂n2

4

15
n5/2 = 1 (3.26)

Now, we combine the polynomial with the coefficient in Eq. (3.25) and change ConV0 to
the result in Eq. (2.10). We also remember the factor in-front of the shift energy sum in
Eq. (3.20). Combining all this leads to the expression

1

nV

∑
q 6=0

∂

∂
√
n

∂2α(q)

∂n2

∣∣
n=0
× 4

15
n5/2 = 2πas

128

15
√
π
n
√
na3

s. (3.27)

This energy shift can now be added to the the contact interaction energy and is called the
LHY energy correction [18].

The derivation above is from 2004 Ref. [18] but the same result has been obtained before,
most notably as its first iteration in 1947 by Lee, Huang and Yang [3]. In the 2004 paper a
soft potential was used, as was also done in Pitaevskii and Stringaris Ref. [2]. Lee, Huang
and Yang however used a hard sphere potential, but obtained the same results [2, 3, 18].

LHY energy corrections have also been derived for systems with other density dependent
interaction energies. In the case of the two-component gas Petrov derived a term dependent
on the interspecies coupling [5] and in the case of the dipolar condensate Lima and Pelster
produced LHY correction term in 2012 [7].

The dipolar LHY correction has the same form as Eq. (3.27) with a notable difference
being the equation Q5(ε) giving us the following expression for the dipolar LHY energy
correction per particle

ELHY
N

= 2πas
128

15
√
π
n
√
na3

sQ5(ε) (3.28)

where Q5(x) = (1−x)5/2
1F2(−5

2
, 1

2
; 3/2; 3x

x−1
) and 1F2 is the hyper geometric function. Lima

and Pelster call this term the "dipolar enhancement of the correction" [7] and it is the direct
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result of the dipole potential Eq. (3.1). There ε is the relative strength between the coupling
interaction and the dipole-dipole interaction strength seen in Eq. (3.1), where ε is given by

ε =
4πD2

3g
(3.29)

and notably ε is confined between 1 and 0 as the hypergeometric function is only defined in
said interval.

The implication of lower dimensionality on the LHY term (in the two-component case)
has been discussed by Petrov and Astrakharchik [17] and Zin et al. [26]. Here we see that
there are differences to the LHY term, most notably the adding of an logarithm term, but it
mostly affects the LHY strength for densities below n < 0.3, the norm of n being 1. Though
this might have consequences for the calculations, especially in regions towards the droplet
surface, the three-dimensional LHY term will still be used in this thesis work. The aim of
this project is merely to test the stabilization by the three-dimensional correction in order to
potentially compare with the 2D case later on.

We now turn to the numerical method used. The code will not be discussed in-depth,
but focus will instead be on the method and how the LHY term is implemented.
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Chapter 4 | Solving the Gross-Pitaevskii
equation for dipolar Bose-
Einstein condensate droplets
in two-dimensions

The theoretical study of the GPe is to a large extent dependent on numerical methods.
There are several approaches to solving it, with the fourth order, split operator imaginary
time method being one of the more efficient ones when it comes to obtaining the ground state
energy and density [9, 24]. Implementing the LHY correction in this framework is simple as
it only adds to the general mean field potential. In section 4.1 we go through the method,
quickly reviewing its basic structure. In section 4.2 the LHY implementation is handled with
some discussion around the choice of parameters and how to counteract at least some of the
discrepancies coming from using the three-dimensional LHY term in a quasi-2D setting.

4.1 The fourth order, split operator imaginary time method

To solve the GPe, a fourth order, split operator, imaginary time method is used [9]. It
involves iterating in imaginary time, minimizing the energy of the system and obtaining
the wave function. In our case the external potential is a harmonic oscillator trap, with a
quasi-2D shape.

Let’s say that we have a rotating single particle in a harmonic oscillator trap, squeezed in
the z-direction. The Hamiltonian will be described as (using atomic units ~ = m = ω0 = 1)

Ĥ =
1

2
(p̂2
x + p̂2

y) +
1

2
ω(x̂2 + ŷ2)− Ω(x̂p̂y − ŷp̂x) (4.1)

where p̂i is the momentum operators, x̂ and ŷ the spatial operators, ω is the harmonic
oscillator strength and Ω is the rotational momentum strength. In the method used this
Hamiltonian can be exchanged for a GPe version with the only adage to 4.1 being a contact
interaction term. The momentum, rotational and spatially dependent parts has the same
form in the single particle case and the mean-field description.

So let’s look at the mean-field time propagation. The time translation operator for this
system is simply eitĤ , where t is the time and Ĥ is the same form as the Hamiltonian in
Eq. (4.1), with an added contact interaction. As we want to use imaginary time-steps to
find the lowest energy state [9], we rewrite the time translation operator as e−τĤ . The
Hamiltonian is however not diagonalized, leading us to approximate it as a power series,
splitting the operator. We do this to the fourth order giving us

e−τH = e−
1
6
τVEff e−

1
2
τT e−

2
3
τŨe−

1
2
τT e−

1
6
τVEff +O(5), (4.2)
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where VEff is the effective potential

VEff =
1

2
ω(x2 + y2)− 1

2
Ω(x2 + y2) + g|φ|2, (4.3)

where g is the contact interaction strength and φ is the condensate wave function, T is the
kinetic energy

T =
1

2
(px + Ωy)2 +

1

2
(py − Ωy)2 =

1

2
(Tx + Ty) (4.4)

and Ũ is
Ũ = V +

1

48
τ 2VEff[VEff, T ]. (4.5)

For the 2D case Ũ can be rewritten

Ũ = V +
1

48
τ 2
[(∂U
∂x

)2
+
(∂U
∂y

)2
]
. (4.6)

The kinetic energy T is still not diagonalized however. But as it is on the same form as
a harmonic oscillator Hamiltonian (two quadratic operators added) we can use the exact
solution to the harmonic oscillator [24], giving us

e−τT = e−τ
1
2

(Tx+Ty) = e
1
2
CvTxe

1
2
CtTye

1
2
CvTx (4.7)

To calculate the kinetic energy we employ a system of Fast Fourier transforms, applying
e−

1
2
τT to the wave function by first Fourier transforming the wave function φ(x, y) into φ̃(px, y)

and multiplying by the partial evolution operator e−
1
4
Cv(px+Ωy)2 . After that we transform the

wave function back into x-space and then into py-space and multiplying with e−
1
4
CT (py−Ωx)2 .

Transforming our way back to φ̃(px, y) we once again multiply by e−
1
4
Cv(x+Ωy)2 and have now

evolved the function with regards to the kinetic energy [24]. This shows why we create the
operators Tx and Ty, as this reduces the amounts of Fast Fourier transforms that are needed
during one iteration.

CV and CT are variables that are found to be

CV =
cosh(Ωτ)− 1

Ωτ sinh(Ωτ)
(4.8)

CT =
sinh(Ωτ)

Ωτ
(4.9)

with Ω being the rotation of the system. This could be problematic if Ω is set to zero, as
it will in this case. However, for small τ the variables CV and CT can be Taylor expanded,
giving us Cv = 1/2 and Ct = 1 at Ω→ 0 [9]. After these iterations the wave function has to
be normalized as the time translation operator is not norm conserving.

As we also have a dipole-dipole interaction in this particular case and the effective po-
tential functional VEff is therefore

VEff = VExt + VCon + VDip −
1

2
Ω(x̂2 + ŷ2) (4.10)
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where VExt is the external potential (in our case a harmonic oscillator), VCon is the contact
interaction potential defined in Eq. (2.21) and VDip is the dipolar interaction defined in
Eq. (3.7). The part furthest to the right is there to account for how Tx and Ty were defined
and prevent double counting. Last but not least, the LHY term has to be added to the
effective potential above. This however will be done with the three-dimensional functional
in 2D which leads to some changes to Eq. (3.28).

4.2 Implementing the Lee-Huang-Yang term

The local LHY correction for a BEC that will be implemented is

ELHY
N
· n · dr =

2πas
m

128

15
√
π
n2
√
na3

sQ5(ε)dr (4.11)

where ELHY /N is the LHY energy correction per particle arrived at in section 3.3. We note
the function Q5(ε), the spatial infinitesimal dr and that n has norm N [7]. As our calculations
are based on the 2D coupling strength g = N

√
8πas
lz

Eq. (4.11) becomes in terms of g

ELHY · n1 · dr = glz
35

15

√
l3zg

3

√
2π

3
2

n
5
2
1 dr (4.12)

where n1 is the 3D density with norm 1 and we set ~ = m = 1. The coupling constant for the
LHY correction term in the GPe is then obtained by taking the first derivative of the right
hand side of Eq. 3.28 with regards to n1 and removing the infinitesimal dr. However, the
density in Eq. (4.12) is based of the 3D wave function, ψ(r) and the code has the 2D wave
function, φ(x, y), implemented. This is not a problem when looking at the basic coupling
strength in Eq. (2.21) as the function in z-direction, Z(z), is normalized, i.e

∫
dz|Z(z)|2 = 1,

giving that ∫
dr|Ψ(r)|2 =

∫ ∫
dxdy|φ(x, y)| = 1 (4.13)

In the basic GPe, when calculating the contact interaction energy, the wave function is
to the power of four as

1

2
g

∫
dr|Ψ(r)|4 (4.14)

for which the integral
∫
dz|Z(z)|4 = 1√

2πlz
. This is solved already through the rewriting of

the three-dimensional g factor for 2D. We recall Eq. (2.23) and Eq. (2.24) and look at the
contact interaction energy in terms of g3D in a quasi 2D setting, integrate out z and get

1

2
g

∫
dr⊥

∫
dz|φ(x, y)|4 × |Z(z)|4 =

1

2
g

1√
2πz

∫
dr⊥|φ(x, y)|4 (4.15)

Using Eq. (2.10) for the three-dimensional g we get

1

2
g

∫
dr⊥

∫
dz|φ(x, y)|4 × |Z(z)|4 =

1

2

√
8πas
lz

∫
dr⊥|φ(x, y)|4 (4.16)
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where
√

8πas
lz

is the 2D coupling constant, also referred to as g. So, as we have corrected for the
integrated Z(z) for the contact interaction and its energy, we do the same for the LHY terms.
We therefore calculate a term for both

∫
dz|Z(z)|3, that will be multiplied with the LHY

functional in our extended GPe and
∫
dz|Z(z)|5 that will be used to calculate the LHY energy

ELHY . These correction terms are
∫
dz|Z(z)|3 =

√
2

3az
1

π1/4 and
∫
dz|Z(z)|5 =

√
2

5a
3/2
z

1
π3/4 [25].

The intervals chosen for D, the dipolar interaction strength, for our calculations are
between 0.25 and 2 [a.u]. These will in turn be checked for collapses for the lowest possible g,
given by Eq. (3.29). If collapses are found an LHY term will be implemented to see if it can
provide a remedy. These calculations will then be done within a grid of points, a mesh, where
each point represents a local density. The number of mesh-points and the spatial step-length
used will be discussed as we now turn to the results.
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Chapter 5 | Results

The results in this Bachelor thesis work are not yet conclusive but gives a brief overview of
the systems at the parameter region of collapse, both for dipolar and contact interaction.
The units used to measure the basic properties of these systems are defined by setting ~ =
ω0 = m = 1. ω0 is the unit of energy and m is the mass of the particles. Length is here
measured in units of l0 =

√
1

~ω0
= 1. These units will be referred to as [a.u], for atomic

units, and with pre-factors explaining the type of unit. The number of mesh points are for
all calculations 512× 512 and the oscillator length in z-direction, lz, is always set to 0.1.

First, we will look at systems with low values of D probing the stability of the GPe,
without a LHY correction term. With this information systems are chosen and checked for
the angle Φ at which the GPe breaks down. Lastly we will look at the effect of the LHY
in the cases where the GPe collapses and becomes unphysical. At times several spatial step
lengths are used in tandem but if nothing else is said the standard length is dl = 0.1.

Convergence in these tests will be determined by the system total energy. At 5000 it-
erations convergence to the 12 decimal was almost always achieved, with some exceptions.
Non-convergence in energy indicates a system without stable groundstate and will be counted
as unphysical and a possible sign of collapse. A collapse can however have a false, yet numer-
ically converged energy, which is why densities will be be checked for unphysical behaviour.
If either non-convergence or unphysical densities are present in a result it will be deemed as
erroneous.

5.1 Collapsing systems

Starting at lower values of the dipole-dipole interaction strength D we find that collapse of
the condensate is avoided even at the point where the dipoles lie in the xy-plane, as seen in
Table 1. In the first run D = 0.25, the harmonic confinement is ω = 0.5 (in units of ω0)
and the contact interaction, g, has a smallest possible value of around ∼ 0.27, as defined
by Eq. (3.29). The kinetic energy is approximately one order of magnitude larger than the
interaction terms. The same is true for D = 0.5, though the interaction energies are now
at least on the same scale as the kinetic energy, as can be seen in Table 5.1. It is not until
D = 1.0 that a collapse can be observed. Even though the energy converges numerically for
D = 1.0, the high energies and the density being confined to a decreasing number of mesh
points leading to an unphysical limit, indicates a collapse.

Table 5.1 shows the trapping energy, ETrap, becoming smaller than the dipolar energy
EDip, thus shaping the 2D density. The dipole interactions anisotropy leads to interesting
2D-density functions where the xz-density profile is narrower than the yz-density profile,
which is illustrated in Figure 5.1 and Figure 5.2. These asymmetries are however not seen in
the case of low D:s or for systems where the dipoles are not tilted sufficiently. Most systems
therefore have the same characteristics as Figure 5.1 and 5.2 but are less pronounced, as
Figure 5.2 shows a system very near a collapse.
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The dipole-dipole interaction is strongly attractive for the data shown in Figure 5.2. This
is however not sufficient to create self-bound condensates, i.e to confine the gas without the
presence of a trap. All release tests of collapsing systems without a LHY correction term led
to “leakage”, see Figure 5.6 for an example, outside the mesh and thus unphysical results.

D [a.u] g [a.u] EKin [a.u] ETrap [a.u] EDip [a.u] EInt[a.u]

0.25 0.27 0.2373 0.2340 -0.04812 0.01159
0.5 1.05 0.3560 0.1785 -0.2583 0.06150
0.75 2.36 1.234 0.05951 -1.838 0.4703
1.0 6.55 242.9 0.001399 -350.8 90.98

Table 5.1: Changing the dipole-dipole interaction strength D, Φ = 0◦, the contact interaction
g is at minimum level for each D. The oscillator confinement frequency was ω = 0.5 for all
calculations.

Before testing the GPe with LHY term added a set of parameters were more thoroughly
tested to find angles where the GPe breaks down. The variables were chosen as to make
room for changing the contact interaction g and dipole tilt angle Φ during further tests and
as a start D = 1.0 was chosen and g set to 20.

At D = 1.0, ω = 4 and coupling strength g = 20 the system did not collapse for any
values of the angle Φ. This system had the dipole angle Φ tilted in the xz-plane to change
the dipole interaction energy in search of a collapse. Φ, ranging between 90◦ and 0◦, was
lowered with 5◦ increments obtaining a converged state for each angle. The dipole-dipole

Figure 5.1: The 2D density in a mesh. The anisotropic
nature of the dipole interaction makes the condensate
oblong, making it longer in the y direction. As we later
look at density profiles those are slices of the total den-
sity, either seen from the x or the y-axis.

interaction deformed the system as
was expected but never reached the
anisotropy displayed in Figuren 5.2
or 5.3. Instead the system was sta-
ble for all possible angles Φ. This
indicates that interval of collapse is
bounded at both a lower limit for g
set by Eq. (3.29) and an upper limit
where the dipole-dipole energy can-
not overcome the contact interac-
tion energy.

To still obtain a large interval
of g values to work with, D was in-
creased to 2 and the same proce-
dure was conducted to find a col-
lapse, which was observed at 33.6◦.
The deformation of the density for
D = 2, g = 20, ω = 4 at Φ = 33.7◦

can be seen in Figure 5.2.
For D = 2, g = 20, ω = 4, two different step lengths, dl = 0.05 and dl = 0.1, were

used. The results discussed above and displayed in Figure 5.2 are for step length 0.05. With
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Figure 5.2: The density profiles for the yz-plane (left) and xz-plane (right) for D = 2, g =
20, ω = 4. The anisotropic nature of the dipole-dipole interaction can be seen in the squeezing
of the density in x-direction, as compared to the yz density profile that has a Gaussian shape.

dl = 0.1 the system collapses at 33.4◦, with a possible reason for the increased stability
being artifacts originating from the condensate being spread over to few mesh points. This
might seem as a strong case for always using a higher resolved picture. This however also
has its problems as potential droplets will be released from the trap and are usually bigger
than the trapped condensate. The difference between a droplet that is too big for the mesh
and a condensate that has dissipated is very small making the results indistinguishable and
therefore both step lengths are used simultaneously. Note also that the densities are similar
for both step lengths. The same method was then employed for D = 2, g = 40, ω = 4, with
similar results. Before the condensate collapsed at Φ = 24.0◦ the system showed density
profiles resembling those in Figure 5.2.

Testing to see if these collapsing systems could do without both trap and LHY term and
still be self-bound showed that they could not. Either the densities of these systems “leaked”
out to the borders of the mesh or collapsed into a small number of mesh points, both being
unphysical results. We therefore added the LHY term to our simulations and determined if
a collapse could be stopped by it.

5.2 Implementation of the LHY correction

For the LHY implementation the wave function of GPe stable systems were used as an initial
guess for the iterations of the GPe. Runs were made for the angle 0.1◦ before collapse. In
the case of the condensate displayed in Figure 5.3 this meant an initial run at 37.7◦ and then
decreasing the angle by increments of 0.1◦ until collapse or Φ = 0. For the system D = 2.0
and g = 20, with step length 0.05 and 0.1, collapse was indeed stopped as can be seen in
Figure 5.3 where the xz-plane density profile from the non-LHY calculations, at Φ = 33.7◦,
is compared with the xz density profile of the LHY implemented GPe at Φ = 33.7◦ (step
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length set to 0.05 for both runs). Here we see the LHY term broadening the thin peak in
the the xz-plane, lowering the maximum value of the density from 1.4 to approximately 0.9.
The sharp peaks occured for both step lengths used.

(a) (b)

(c)

Figure 5.3: The comparison between the xz-plane density profile for LHY implemented, (a),
and the basic GPe, (c). The graphs are for D = 2, g = 20, ω = 4 with the LHY density having
the angle Φ = 33.7◦ and basic GPe density being at Φ = 33.7◦. The difference between (a)
and (c) is due to the LHY potential. b) shows the yz density profile for the LHY condensate,
with a familiar Gaussian shape.

The LHY condensate at g = 20, D = 2 collapses at 33.1◦, increasing the range of stability
with 0.5◦. The LHY energies are consistently at values approximately one order of magnitude
smaller than other leading energy terms. It is however pronounced enough to cause a change
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in shape of the condensate, as seen in Figure 5.3.

Figure 5.4: The dipole and LHY energy for the GPe with LHY correction. All angles are
lower than the angle of collapse for GPe without LHY. The quickening pace of energy decrease
for the dipolar energy is followed by the breakdown of the GPe and unphysical solutions.

Figure 5.5: The density becomes unstable for
D = 2, g = 40, ω = 4,Φ = 21.7◦. This den-
sity profile has lost its Gaussian shape displayed
in Figure 5.2 and 5.3 b) and the function behaves
somewhat discontinuous. The energy for this sys-
tem has already stopped converging and started
fluctuating at Φ = 29.9◦

.

To continue these tests, the parame-
ters were set to D = 4, g = 40 and ω = 4.
This system proved even more stable with
the interval of stability being increased by
2.1◦, going from collapse at Φ = 24.0◦ to
collapse at Φ = 21.9◦.

The collapse at Φ = 21.9◦ differs from
the previously studied cases. The steep
slope of the dipolar energy and LHY en-
ergy, see Figure 5.4, is followed by the
break down of the GPe with LHY term
implemented. This breakdown however
is a non-convergence in energy, with the
density still being seemingly stable for
the parameters discussed above. The en-
ergy started to fluctuate and lowering the
dipole tilt even further led to the yz den-
sity profile starting to collapse at Φ =
21.7◦ as shown in Figure 5.5.

At this stage, the wave functions for
some of the lower lying angles Φ were then
used as initial guess for runs where the
trap was turned of. This lead to leakage
as shown in Figure 5.6 that represents one
of those simulations. This may indicate that the external trap is partly involved in collapsing
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the system and that even lower angles are needed to actually self-bind a droplet. This is also
suggested by the density profiles of the droplet runs as their peak density value increased
for lower angles. But as they are non-physical solutions they must be disregarded. The runs
made with ω = 0 were made for D = 2, g = 40 at Φ set to 22.5◦, 22.3◦ and 22.1◦.

Figure 5.6: Density escaping the mesh. When removing the harmonic trap ω the mesh size
is shown to be too small, rendering the results unphysical. This Figure shows the density
resulting from D = 2, g = 40 and Φ = 22.1◦

.
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5.3 Summary

To summarize, we have confirmed that for high enough values of D the GPe breaks down.
This can be stopped entirely by increasing the strength of the inter-particle contact interac-
tion or by implementing a LHY term. The LHY term enables the mean field GPe to describe
systems that previously led to a breakdown of the model. The increase in range of possible
angles Φ seem to vary with g.

It seems that the external confinement has a part in collapsing the system when close to
the region of collapse, both with and without the LHY. A square potential would solve this,
but by using larger grids and/or lower the oscillator strength ω the same effect is achieved.

The region of LHY stabilization shows some promise when it comes to creating stable
droplets, the aim of our studies. Thus far the droplets have not been confirmed by calculations
but further investigation seems likely to yield results, especially with the increase in the
stability range of the GPe equation shown in the calculations where the parameters were set
to D = 2, g = 40. However, more tests are needed before any proper predictions can be
made.
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Chapter 6 | Outlook

There are several possibilities to expand on this topic. Firstly, a broader and deeper study
of the parameter regions for collapse and what factors play a role in this. This in connection
with expanded research concerning the LHY terms effect on already stable GPe systems could
lead to findings concerning densities and energetics. In this, the implementation of a true
quasi-2D LHY term would be of great interest as it was recently suggested by Ref. [26]. This
specific LHY term might expand the area of droplet formation. Both a thorough derivation
and a computational implementation could be possible extensions of this work.

Secondly, rotation of droplets would be interesting as the rotational properties of quasi
2D systems have been studied at great depth. The stability of droplets, vortex formation in
future droplets, rotation of anisotropic systems (such as a strongly dipolar systems), are all
possible research areas. The hysteresis behaviour in vortex [27] formation in a one dimensional
ring confinement is one known property that might exist in a rotational, self-bound droplet.
However, the stability of the droplets is the number one priority among these suggestions
but even in case of persisting instability one might imagine a system such as described in Ref
[4] where the condensate is confined and one has droplets forming in a crystalline formation.
Such a system could be stable even if self-bound rotating droplets are not.

Adding a rotation to the has been done in Ref. [9] where the rotational part is added to the
time translation operators kinetic energy and to it’s effective potential. This implementation
already exist in the code used in this project, as showed in Section 4.1.

Thirdly, these simulations have been conducted in imaginary time. It could be interesting
to take the calculations into real time. In real time one can study how a droplet develops
as you release it from the trap. A droplet in a strong external confinement might become
unstable if one release it to abruptly. The decay of droplets due to three body interactions
could also be an interesting topic and only possible to study in real time. To do this, one
would start by finding a stationary state for the condensate wave function using the imaginary
time method. Using this as the initial condition, one could use the time translation operator
shown in Eq. (4.2) to propagate the state in real time. For small time steps and short time
periods this would simulate the systems dynamics.
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