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Abstract

In this thesis, the viability of using Convolutional Neural Networks to detect park-
ing spaces using aerial imagery has been evaluated. Three state of the art networks
have been tested - YOLOv3, RetinaNet, and Mask R-CNN. A dataset of urban
parking lots and corresponding annotations was generated from scratch using a
custom built GUI to annotate automatically generated images of parking lots from
Open Street Map, from varying aerial imagery providers. This dataset was used to
test and evaluate the different networks, and Mask R-CNN was used for a lengthy
parameter tuning process, as it seemed to perform optimally of the three networks.
The resulting model did not perform the best, believed to be because of the low
amount of features represented in parking spaces. While results indicated that a
somewhat complete solution is possible, it might not be feasible using a pure single
CNN approach.

An example of the pipeline with its final results can be seen in Figures 0.1– 0.3.

Figure 0.1: Input im-
age from valida-
tion dataset.

Figure 0.2: Man-
ually annotated
ground truth la-
bels.

Figure 0.3: Detec-
tion results from
Mask R-CNN.
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Chapter1
Introduction

1.1 Problem Background and Relevance

Autonomous cars is one of the main points of interest in machine learning. Within
this area however, several problems are being explored in parallel. One field which
could be a stepping stone for fully autonomous cars, is automated parking. Start-
ing with experiments in a controlled and limited environment, with reduced risk of
accidents and damages, could pave way for future development in the area. Thus,
in the problem space of automated parking, a crucial first step is to generate a
model of the layout for the parking lot or parking area. The naive approach would
be for a car to simply drive around, using sensors to scan the surrounding area,
in order to deduce what constitutes a parking space, and what does not. Another
solution would be to acquire an overhead view of the parking lot, and segment the
area into possible individual parking spaces. This would allow the vehicle to make
informed decisions about where to look for open spots. This is the problem space
that this study will occupy. Autonomous cars, as with all of Artificial Intelligence,
is not realized in one step, but rather several. For Artificial Intelligence to succeed
in self driving cars, the problem ought to be split up into sub-problems, where
each sub-problem requires a solution producing a specific output. With this in
mind, this study could improve the development of car autonomy as a whole.

1.2 Problem Description

The problem description for this thesis is as follows. Is it possible to use satellite
or aerial imagery in order to train a machine learning algorithm to reliably detect
parking spaces. Our goal is to use a variety of current state of the art Convolutional
Neural Networks to solve this problem, and compare them to each other.

Class identification in images is a rather well studied field in machine learning.
Since the advent of Artificial Neural Networks in the 1940 – 1950s, see for example
the perceptron, first proposed by F. Rosenblatt [8], it has been one of the signature
tasks that machine learning is prophesized to solve. Nonetheless, neural networks
did not come into its own at that time, but has made a resurgence as of late. This
is mostly due to advancement in computing power, enabling one to train more and
more complex networks in shorter time. Currently, machine learning, and neural
networks in particular, is a very active research field.

1



2 Introduction

1.3 Glossary

For the sake of clarity and simplicity, a short list of words and specific terms will
be defined below.

• Machine Learning. Machine Learning is the concept of a system or an
algorithm, or a collection of them, that intuitively and systematically learn
specified concepts or tasks. A more extensive definition and explanation can
be found in Section 2.1.

• Model. In machine learning, the model is the term for the trained system,
or more specifically the weights associated with it. Thus, a model is a
supposedly complete version of a particular algorithm, ready to be used for
the task it was designed for.

• Autonomous Car. An autonomous car is a car, or in some cases the soft-
ware controlling the car, that makes decisions and performs actions without
any human interference. Sometimes autonomous cars will be described in a
specific context, in which case autonomy will be assumed only for the given
context.

• ANN - Artificial Neural Network. A digital network made of nodes
and connections, intended to simulate a biological neural network. Similar
to that of biological brains. See Section 2.2.

• CNN - Convolutional Neural Network. An Artificial Neural Network
modeled after the visual cortex of animals, named for its inclusion of con-
volutional layers, which perform convolutional operations on its input. See
Section 2.2.1.

• Bounding Box. A bounding box is defined as a 2D rectangular area which
completely encapsulates an area of interest. The lines of the bounding box
are parallel to the x- and y-axis, which means the orientation of the bounding
box is not necessarily optimal, but it does encapsulate the object completely.

• ROI - Region Of Interest. A Region Of Interest is simply an area of
data that has been identified to explore some kind of relevance. In the case
of this report, ROIs are 2D and will usually be evaluated to determine if
they contain an instance of a class, in this case a parking space.

• Parking space. A boxed in area meant to hold one car, represented by a
marking on the ground.

• Parking lot. An area specifically intended for parking cars. A parking lot
is made up of 1 or more parking spaces.

• Spatial Resolution. The actual length in meters per pixel in an image.

• mAP - mean Average Precision. An evaluation measure using the aver-
age of the average precision, or accuracy, for classifications over all classes.
While the problem described in this paper only uses one class, thus resulting
in a regular average precision, the term is ubiquitous for Machine Learning,
so it will be referred to as mAP regardless.
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• Dataset. A collection of relevant data. The content of the dataset and the
data type in question is different depending on content but the term will be
used as a catch-all for a complete gathering of data of some sort.

1.4 Previous Works

To the best of our knowledge, no work has been done within this specific task.
However, quite some previous relevant research has been done. Machine learning
is a rather well established field of research, and image classification has had a
resurgence in popularity due to the increase of computing power, as mentioned.

G. Amato et al. have done some work in the field of parking space occupancy
detection [9] [10], in which they focus on real time determining if parking spaces
are occupied or not. They use smart cameras, that is, cameras with some amount
of computing power to extract features of the captured images, mounted on the
side of buildings to monitor parking lots. This is certainly attractive to business
owners who might wish to monitor the status of their parking areas, in order to
increase revenue and energy efficiency, as S. Valipour et al. [11] brought up in their
paper on the same subject. While their results are for the most case impressive,
they do not occupy the same problem space as us. Namely, they focus on real-time
monitoring from an angle, whereas our solution focuses top-down aerial imagery.

Something that all of these solutions have in common, however, is the use of
a deep Convolutional Neural Network, henceforth referred to as CNN. A CNN is
a specific type of Artificial Neural Network, a network of nodes constructed to
emulate the neurons of the biological brain [12]. Convolutional Neural Networks,
sometimes also called deep networks or deep Convolutional Networks due to the
complex operations they perform, are specifically commonly used in image anal-
ysis, mainly because they require little to no pre-processing. See for example C.
Dan et al. [13], where a CNN was used to classify handwritten digits in the MNIST
dataset, very accurately. This is at the cost of more complex image processing in
the net, which is feasible given the increased processing power of modern com-
puters. The deep keyword is in reference to the multitude of hidden layers in the
network, meant to simulate the receptive field of the visual cortex in mammal
brains. The development of deep networks is essentially based on the article by D
H Hubel & T N Wiesel [14] which showed that certain specific neurons respond
differently to certain specific patterns and stimuli. According to this, neurons and
layers in a CNN will perform in a similar way when presented with similar visual
input. Image classification can thus be derived from this technology - by exposing
the network to a large amount of images of the same class, it can recognize its
common attributes and decide whether or not new images presented to it belong to
said class or not. This is done implicitly by extracting or defining certain features
belonging to a class, which all members of said class do have. For any new input,
the network can then derive whether or not those features are present. This forms
the basis of object detection, and CNNs are among state of the art in the field
of end-to-end object detection, as they avoid the need for manual feature defini-
tions. This also yields better results for most complex classes, as defining features
beforehand quickly becomes too difficult, and is essentially only even feasible for



4 Introduction

very simple classes, such as basic geometric shapes.
A similar area of research that has been done is solely vehicle detection from

satellite imagery. One of which by H. Zheng [15] who made use of a morphological
shared-weight neural network (MSNN) for classification. It combines the feature
extraction capability of mathematical morphology with the function-mapping ca-
pability of neural networks in a single trainable architecture. The morphologi-
cal operations performed by Zheng was top-hat and bottom-hat transformations,
which segments out elements from the image, and serves as potential candidates
for vehicles. To increase the segmentation, a thresholding algorithm, more specif-
ically Otsu Thresholding, was applied. Afterwards, the segmented images were
fed into a feed-forward neural network which, based on the extracted features,
determined whether an element was a vehicle or not. This achieved relatively high
accuracy.

Another approach by L. Abraham [16] also used, similarly to Zheng, top-hat
and bottom-hat transformations together with Otsu Thresholding. The difference
was in the choice of classifier where Abraham, instead of a neural network, used
Connected Component Labeling of 4-connected neighborhoods, which is an algo-
rithmic application of graph theory. This also achieved a high accuracy score,
which in turn makes the problem of parking lots seem a whole lot more feasible.

1.5 Existing Networks

The design architecture of convolutional neural networks (CNNs) vary and can take
many forms. Each have their own unique approach to solve a particular problem.
One of the most famous of which started back in 2012 with AlexNet [17] as
the the first "modern" deep CNN that outperformed all other competitors in the
ImageNet Large Scale Visual Recognition Challenge (ILSVRC). In the following
year 2013, yet another CNN called ZFNet [18] won the challenge. It had the same
structure as AlexNet but with a tweaking on some of its hyper-parameters. Next
up in 2014, GoogLeNet [19] (also called Inception V1 by Google) was declared
the winner. It optimized the AlexNet architecture with its so called inception
module. This module was based on much smaller convolutions which drastically
reduced the number of trainable parameters from 60 million in AlexNet down to
only 4 million. The runner up in 2014 is called VGGNet [20] and is also worth
mentioning. Similarly, it is also using small convolutions, but with a usage of lots
of filters as well. It has a very simple and uniform architecture, which makes it
appealing. It is also widely used for its capability of extracting features from images
very well. However, VGGNet has 138 million parameters, which does not make it
as time efficient. In 2015, ResNet [21] (Residual Neural Network) took the stage
and was the first neural network to actually beat human-level performance on the
ImageNet dataset. It builds on the concept of pyramid cells found in the cerebral
cortex of our brain, and so utilizes so called skip connections, residual connections,
or short-cuts, to skip some layers. These skip connections work similarly to the
gated recurrent units found in most RNNs (Recurrent Neural Networks). ResNet
only features 1 layer skip at most, and likewise to VGGNet, ResNet also has this
low complexity structure, which is a sought after trait. Many other well performing
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networks uses ResNet as a backbone and adds extra functionality and techniques
on top of it to make it unique. Usually it comes configured with pre-trained
weights from the ImageNet or COCO dataset as a starting point. Such examples
are RetinaNet [22] and Mask R-CNN [23].

For this report, we will use and compare three state-of-the-art region based
object detection convolutional neural network architectures. You Only Look Once
(YOLO), RetinaNet and Mask R-CNN. Read further about them in Section 2.6.

1.6 Images as Data

For most, if not all of image classification tasks in machine learning, images are
used as the data for the problem. Convolutional Neural Networks are no exception,
which will be the approach of this thesis. Images will be fed into the network, and
will then be manipulated and evaluated in some way. This process is further
described in Section 2.2.1. Nonetheless, the success of this thesis and really any
image classification task will no doubt be based on the quality of the data, so
generating a good dataset will be the first and perhaps most important step in the
process. A detailed description of the data required and how it will be produced
are described in Section 3.1, but for now let us be content in defining what data
the problem requires. As specified in the problem description, satellite and/or
aerial imagery is required. In particular, urban parking lots are most relevant, so
the desired dataset will consist of images of parking lots in rather large cities. This
task will be accomplished by gathering large amounts of aerial imagery, and using
Open Street Map [24], an open source application with labeled parking lots, to
crop these large images into more manageable and relevant images. This process
is described in detail in Section 3.1.3. The images will then receive labels of where
the parking spaces are in the images, which together with their accompanying
images will form the basis of our solution, and be used to train a network that can
detect parking spaces.



6 Introduction



Chapter2
Theory

2.1 Machine Learning

While Machine Learning can certainly be used as a broad, including definition, for
this report it will be used in a quite more narrow way. Machine Learning, for what
this report is concerned, is the way certain software gains inherent understanding
of a problem, without being provided any explanation or explicit features. The
system rather gains this understanding from positive and negative examples of the
problem it is designed to solve. Machine learning is typically based on operation
heavy problems, where the operation part can easily be extracted and automated.
Machine Learning is usually split into two different categories - supervised learning
and unsupervised learning. The main difference is that supervised learning has
some kind of label coupled with its data, i.e. a correct answer to associate with
it, while unsupervised does not. The process is somewhat different depending
on the type, and the problem. Typically however, classification is done using
supervised learning as its labels allows for the model to be evaluated on how well
it did in hindsight. The classification equivalent for unsupervised learning is called
clustering, which is the process of implicitly grouping data objects based on its
features. After all the system cannot verify what the objects actually are, so it
rather extracts features based on the input. A visualization of the two different
cases can be seen in Figure 2.1. This report will only consider supervised learning,
as it is best suited for classification, which is the problem described in this report.

In general, and certainly for the machine learning algorithms described in this
report, machine learning is built on the basis of defining a dataset containing
examples of data relevant to the problem. This data is then labeled according
to what the algorithm needs, which vary considerably depending on problem and
system. Most commonly, the dataset is divided into a training set and a testing
set. The algorithm is then designed and specified. Then the training phase starts,
where the dataset is fed into the system. The purpose of the training phase is
to learn not explicitly but rather implicitly the necessary features defined by the
problem. The system receives the training set as input data, along with its labels.
The training is certainly algorithm specific, but the purpose of it is to give the
system the concept of the data being presented to it. Commonly, the test set is
presented as a way to validate the performance of the algorithm, and as such is
frequently tested during training to ascertain the capability of the system. The

7
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Figure 2.1: Examples of supervised and unsupervised learning, re-
spectively. The supervised learning example is for classification,
and the unsupervised example is for clustering.

procedure is usually the same as for the training phase, but the key difference is
that the system has not trained on this data, and as such can reliably be used
as a metric for evaluation. Training is usually conducted until the validation
performance no longer improves.

Machine learning, and specifically neural networks, have many practical use
cases, object detection and image recognition being most popular. An example
of such is the famous MNIST classification challenge, where the task is to train a
function or model to accurately classify images of handwritten digits, as illustrated
in Figure 2.2. The type of machine learning algorithm that by far outperforms
all other techniques, are namely neural networks. Lots of images of handwritten
digits along with corresponding ground truth labels are fed into a neural network,
which processes the input and outputs a prediction of what number or class it
thinks it is. At first the model is guessing completely random, but with the more
samples it is shown, the more accurate predictions it will make. After the training
phase, the model is evaluated on unseen test data, which also has corresponding
ground truth labels. This is to properly measure the accuracy of the model. With
the problem of classifying handwritten digits, neural networks does in fact perform
generally as good as, or if not better, than most humans.

2.2 Neural Networks

An Artificial Neural Network, commonly referred to as a Neural Network, is a
collection of nodes, or neurons, and the connections between them. It is essentially
a mapping y = f(x;w) from an input x = (x1, x2, ..., xm) ∈ Rm to an output
y = (y1, y2, ..., yn) given the weights w = (w1, w2, ..., wp). The network is built
up by several layers — an input layer, an output layer, and several hidden layers.
Traditionally, each node in one layer is connected to every other node in the next
layer. The connections are represented by weights w, one for each connection. See
Figure 2.3. During training, these weights are updated, and it is in this respect
that the network learns, whatever its task might be. All inputs are multiplied
by their corresponding weights into the result node, and summed as input for
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Figure 2.2: MNIST image data of handwritten digits along with
corresponding ground truth labels are fed into a neural network,
which outputs predictions of what numbers or classes it thinks
they are, based on earlier examples from training. The model’s
accuracy can be measured by comparing the predictions with
the ground truth labels. Image by Basia Fusińska [1].

that particular node. There is also commonly an activation function to keep
the resulting values within some interval. This procedure continues throughout
the entire network, and then the weights are updated according to some function.
Thus, the inherent knowledge of the problem is represented simply by the complete
collection of weights for the trained network.

2.2.1 Convolutional Neural Networks

Convolutional Neural Networks, or CNN, is a subclass of Neural Networks. Simi-
larly to Neural Networks, it consists of input and output layers. What distinguishes
CNNs however, is the multitude of hidden layers in between. The layers commonly
used, in some combination, are:

• Convolutional layers - In these layers, which give CNNs its name a filter is
applied to the input, using a sliding window. This window is in fact a matrix
consisting of the weights for this particular layer. The window slides over
the image and performs element-wise multiplication on the input and the
weights, which are sent to the next layer as input. The reason why image
classification is usually connected to CNNs is because the weights, or filters,
for each layer is rather small. Using a traditional network structure, the
respective amount of weights would be massive. One for each connection
between all the layers. Thus, defining a filter which gets applied to all pixels
of the image means memory usage and training time is reduced. Each
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Figure 2.3: A sample neural network, by Conor McDonald [2]. Cir-
cles are nodes of the network, and the edges are represented by
individual weights.

convolutional layer can be seen as a feature extractor, producing a feature
map which is the summary of all pixels of the input, after going through the
convolution process.

• Pooling layers - A pooling layer simply combines its multi-neuron input into
one neuron output for use in the next layer. The pooling effects vary, and
a common example is max pooling, which simply outputs the max value of
the input neurons.

• Fully Connected layers - These layers connect each neuron from the previous
layer to each neuron in the next. This is quite similar to how layers in
traditional neural networks act. The purpose of these layers is to act as
high level deciders, consolidating the information provided by previous more
specific layers.

• ReLU layers - ReLU stands for Rectified Linear Unit, which applies the
activation function

φ(t) = max(0, t)

i.e. sets negative values in the input to 0, while preserving positive val-
ues. This increases the non-linearity of images in the network, in order to
be able to treat them more reliably. ReLU is usually done directly after
convolutional layers.

• Loss layer - Loss layers apply the specified loss function, in order to penalize
when the network performs poorly during training. See Section 2.3.
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Figure 2.4: Numerous value combinations of weights with corre-
sponding loss value plotted as a landscape, by Rosie Camp-
bell [3].

2.3 Loss functions

A loss function is a measure of how well a model performs for a given prob-
lem. Rather than solely looking on accuracy, a loss function generally takes more
variables into consideration, such as penalizing false-positive detections, outliers,
overlapping detections, etc. It acts as a lens that the model looks through, steering
it on where to focus in order to learn. Thus the loss function should generally be
tailored to its specific problem, since there is no loss function that works perfectly
for all types of data.

A commonly used loss function is Cross Entropy, where a separate loss for each
class label per observation is calculated, and then summed. The cross entropy loss
is described as:

− 1

N

N∑

c=1

yo,c · log(po,c)

Where N is the number of classes (dog, cat, fish), y is a binary indicator (0
or 1) if a class label c is a correct classification for observation o, and p is the
predicted probability that observation o is of class c.

The goal is to minimize the loss function. This can be visually represented
by plotting the weights between the neurons together with their loss value. This
forms a sort of high dimensional landscape that the model is sliding or traversing
down from using gradient descent to reach the bottom most point. Unfortunately,
the landscape is usually full with local minima. Getting trapped in one and not
reaching a global minima, which of course is desired, is what makes this task hard.
Many optimizers tries to tackle this using various techniques.
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2.4 Regularization

In the sense of over-fitting, the model tries too hard to learn every specific detail in
the data it is exposed to, as seen in Figure 2.5. This is not good since such details
are usually not generic. The model may perform exceptionally well on training
data, but terribly bad on yet unseen data, as seen in Figure 2.6. To prevent this,
a regularization term such as ‖w‖2`2 =

∑n
i=1 w

2
i is often added to the loss function.

See Section 2.4.1.
The regularization term typically penalizes large weights and forces the model

to strive for small weights, as large values are typically responsible for over-fitting,
being dominant in the decision making. Although having too small weights is
not desirable either due to the increasing risk of under-fitting, meaning the model
gets too basic and cannot generalize properly. The task, thus, is to balance the
regularization amount so that the weights get just right.

2.4.1 Weight decay / `2

The most popular regularizer is called weight decay, and as described makes sure
that no weight gets too large. It does this by measuring the weights with either
`1 or `2 norm, where `2 is most commonly used. The loss function with the added
weight decay regularization term is as following:

Costfunction = Loss+ λ ·
n∑

i=1

w2
i

Where λ is the regularization hyper-parameter, or weight decay parameter,
multiplied by the squared sum of all weights. This extra term forces the weights
to decay step by step closer to zero, but not exactly zero.

2.4.2 Batch normalization

Batch normalization is another commonly used regularizer. It takes the outputs
for each layer and normalizes the values between 0 and 1. Note that this is not the
same as weight decay regularization, as weight decay only penalizes large weights
before this step. Effectively, this makes the layers in the model more independent
of each other, and also speeds up the training process.

2.5 K-fold cross validation

K-fold cross validation is a method used to utilize as much of the available dataset
as possible. It works by splitting up the dataset into K number of different train-
ing/test sets. The test sets needs to be unique for each split, meaning no samples
should be re-used between them. These are then trained on separately, resulting
in K number of different models, each with their own test error/loss. Lastly, the
mean error of all models is calculated by summing them and dividing by K. This
mean error is more general over the dataset than the original error from simply
one sole model, and all data is used as validation at some point. Finally, a model
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Figure 2.5: A comparison between underfitting and overfitting mod-
els. The blue lines are the outputs from the model, and the red
dots are ground truth samples, by Shubham Jain [4]

.

Figure 2.6: Overfitting train loss vs test loss. If a model is trained
for too long, it starts to overfit on the training data, resulting
in poor performance on other test data. The best model to use
is where the test loss reaches its minima, by Shubham Jain [4]

.
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is trained using the entire dataset as training data. The loss for this model is then
assumed to be the generated estimate.

Figure 2.7: Visualization of K-fold cross validation, by Karl
Rosaen [5]. The validation loss for each subset of the model is
summed together to achieve an average total validation loss.

2.6 Networks to Evaluate

2.6.1 YOLO v3

You Only Look Once, or YOLO [25] is a bounding box object detector that outputs
a bounding box for each detection with corresponding pixel coordinates, together
with a confidence percentage score. Unfortunately, the bounding boxes do not
provide any rotation information of the detection, only the boundaries as of where
the object is within. YOLO is famous for its speed optimization as it is entirely
built in C with the Darknet implementation. The network gets it name from only
passing the image through the network only once, unlike most R-CNNs which
will perform multiple detections on different regions. It achieves a high frame
rate without sacrificing too much accuracy compared to other networks. By us-
ing YOLO, which is generally worse than RetinaNet and Mask R-CNN, it would
provide an idea whether our problem is easy or hard. If it is easy, then YOLO
would most likely be the most preferable solution as it is the fastest to perform
computations.

2.6.2 RetinaNet

RetinaNet [22] essentially builds upon the same principles of YOLO. The main
difference being the usage of a different loss function. RetinaNet uses a newer
Focal Loss compared to the cross-entropy loss of YOLO. The idea behind Focal
Loss is to change the weights in the loss function relative to the accuracy of the
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Figure 2.8: YOLO example detection, by Joseph Redmon [6]. The
image is divided into a grid, where each cell tries to predict one
object. Bounding boxes are then estimated, and the bounding
boxes with the highest scores are kept as final predictions.

detection. Easily classified cases gets an assigned reduced loss while hard cases
gets an increased loss. This effectively forces the network to put more emphasis
on hard, misclassified examples. Unlike YOLO, RetinaNet uses a ResNet as a
backbone structure to generate feature maps. Since ResNet is much larger and
more complex, RetinaNet does take longer to train, but does generally achieve
higher accuracy scores compared to YOLO. This is why RetinaNet’s performance
could be an interesting candidate for a solution to the problem.

Figure 2.9: YOLO vs RetinaNet in speed and average precision for
the COCO dataset, by Joseph Redmon [6].

2.6.3 Mask R-CNN

Similarly to RetinaNet, Mask R-CNN [23] also uses ResNet as a backbone struc-
ture. The main difference being that Mask R-CNN is a two-stage classifier whereas
RetinaNet and YOLO is a one-stage classifier. The first stage is Regional Proposal
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Network (RPN), and the other is the actual mask network. Two-stage classifiers
are slower to compute, but generally provides better accuracy. Unlike YOLO and
RetinaNet, Mask R-CNN not only provide bounding boxes for the detections, it
also provides the corresponding segmentations. This means it outputs is a pixel- to
pixel-wise mask of exactly where the objects are in the image, instead of highlight-
ing them with a rectangular bounding box. This is great because it automatically
solves a substantial problem compared to YOLO and RetinaNet - the orientation
of the parking space. As Mask R-CNN is a two-stage classifier, it would most
likely be the slowest of the networks. However, if accuracy seems to be an issue
rather than speed, then Mask R-CNN could be the model of choice.

Figure 2.10: Mask R-CNN example detection, by Github user Mat-
terport [7]. Each bounding box is accompanied by a mask and
a confidence score.



Chapter3
Method

This chapter covers the methodology to achieve the goal of the thesis. Firstly the
dataset will be specified, followed by the process of manually collecting it and then
how it was annotated from scratch. Finally, the three different neural networks
will be presented, as well as some finalizing adjustments.

As no other datasets were readily available, a development of an annotation
GUI was necessary in order to speed up the laborious process. This was done
through clever techniques where a user could annotate multiple parking spaces at
once. As seen in Table 4.1, the amount of annotated parking spaces got up to
roughly 135.000, which would never have been feasible if the GUI had not been
developed. Nonetheless, the data collection process was incredibly extensive and
consumed a major amount of time of the project. The different phases of the
method will now be presented in chronological order, following the flow of our
development.

3.1 Dataset

3.1.1 Data Specification

For the problem to be clearly defined and feasible, the data needs to be clearly
defined and feasible. This is particularly true for machine learning applications,
where the result will never be better than the data the model is trained on. With
this in mind, some simple heuristics had to be defined regarding the data for the
problem. According to the problem description, the dataset should consist of satel-
lite or aerial images. Originally only satellite images were considered. However,
these rarely have the spatial resolution needed for proper evaluation, so aerial
imagery was also included. This, then, provides another necessary requirement.
The images need to be of a high enough spatial resolution in order to distin-
guish independent features, in this instance particularly parking spaces and cars.
Furthermore, while not a specific requirement, the images were chosen in predom-
inantly urban areas, where intuitively a higher density of parking lots and indeed
parking spaces in general are present.

The individual annotations necessitate some specifications as well. In partic-
ular, what should be considered a parking space and what should not? Thus, it
was defined that parking spaces are considered as such only if they have some
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kind of clear marking on the ground encapsulating the space. This means that
parking lots without visible parking spaces ought to be ignored, see Figure 3.1.
The solution to the problem, that is, identifying individual parking spaces, for
that instance would be ambiguous, even for a human agent. Furthermore, un-
seen parking spaces completely occluded by e.g. overhanging trees should not be
considered positive examples, even if it is reasonable to assume there should be a
parking space, given it is in the middle or at the end of a row of parking spaces
for example, see Figure 3.2 and Figure 3.3.

Figure 3.1: An example of a parking lot without any visible parking
spaces.

Figure 3.2: An example of a park-
ing lot with some spaces oc-
cluded by trees.

Figure 3.3: The same image,
with a classification over-
lay. Green spaces are correct
(positive) and red are incor-
rect (negative).

As the problem is to identify parking spaces, both empty and occupied spaces
are to be considered, and furthermore no discrimination is to made to those in-
stances in regards to each other, i.e. both empty and occupied parking spaces
are considered positive examples. Parked cars, which are illegally or incorrectly
parked, are not considered positive examples however. If an incorrectly parked car
is situated partially but not entirely in a parking space, the parking space itself
should be considered as a positive example, and not the car. Lastly, all spaces
should be perfectly rectangular, symbolizing the space wherein the car can be
situated and be considered a legal parking.
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3.1.2 Data Acquisition

The next step was to find appropriate data providers given the data specifications.
As it turns out, public license data which is readily available for free and also
complies with the need for high detail spatial resolution, is quite rare. A large
amount of research was conducted to find appropriate providers and determine
whether the data in question was free and legal to use. A natural choice would be
Google Maps, which obviously have a large amount of data including high resolu-
tion aerial imagery. However, Google are quite particular in their data not being
stored or altered in any form. Especially not training any neural networks on it
besides Google themselves. Thus, Google could not act as a data provider. A
service of interest was certainly the European Space Agency (ESA), in particular
the Sentinel Missions, which in fact specifically produce data for scientific research
and development [26]. The problem is that while the data is extensive, the satel-
lite imagery provided is of rather poor spatial resolution. This data is thus better
suited for environmental applications, which it has been used for previously, such
as by P. Abhisek et al. where several machine learning techniques were explored
to predict different types of land cover [27]. A similar service, the United States
Geological Survey (USGS) for the U.S. however, does provide adequate data which
is free to use, and using their Earth Explorer web service data can be easily de-
fined and downloaded [28]. The data gathered from the USGS was high resolution
orthoimagery. This means that the image has been geometrically altered in order
to preserve scale and relative distances, which is helpful given the large size of the
images. Another provider came in the form of Lantmäteriet, a Swedish govern-
ment agency which among other things keeps orthoimagery of Sweden geography.
Lantmäteriet provide this information for use in education purposes.

3.1.3 Parking Lot Extraction

The dataset necessitated images of parking lots, rather than images of urban envi-
ronments in general. With this in mind, a solution was developed to automatically
extract parking lots from the images in the dataset. Open Street Map (OSM) is a
free and collaborative map of the world under an open license, which anyone can
contribute to [24]. In OSM, users can manually annotate regions and locations on
the map which might be of interest to other users, among other things parking
lots. Conveniently, these parking lots are constructed with polygons, with each
point in the polygon representing a GPS coordinate. Furthermore, OSM offer an
extensively documented API called Overpass [29]. Using this API, all parking lots
within a certain area was extracted, namely the area for each individual image
in the dataset, as this information was also available. Overlaying the extracted
parking lots over the actual image yielded impressively accurate results in most
cases, as can be seen in Figure 3.4. The original images were then cropped ac-
cording to these polygons, which resulted in the images for the final dataset. A
minor padding was added to all resulting images to allow for errors in OSM and
to introduce some local context for the parking lots. Note that completeness was
not necessary in this case, as only some and not all of the parking lots are needed.
Some examples of the resulting images can be seen in Figures 3.5 and 3.6. Im-
ages from Lantmäteriet did not have properly scaled GPS coordinates, so rather
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Figure 3.4: OSM data overlayed on a test image. The drawn poly-
gons on the image represent individual parking lots.

Figure 3.5: Example image of an
extracted Washington D.C.
parking lot.

Figure 3.6: Example image of an
extracted Santa Fe parking
lot.
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than using OSM to extract parking lots, they were randomly cropped and then
validated manually. Only images with parking spaces were kept in the dataset.
Such an example cropped image can be seen in Figure 3.7

Figure 3.7: Example image of a randomly cropped section of Malmö.

3.1.4 Annotating Data

A very large amount of time was spent on annotating all of the available data.
Given that no existing datasets were openly available, the annotating had to be
done manually. The desired form of annotation was a rectangle overlying the space
a car can occupy, as described in Section 3.1.1. This uniformity of annotations
was utilized to assist the annotation process, as will be described in the following
sections.

Annotator GUI

A Graphical User Interface (GUI) was implemented in order to easily annotate
multiple parking spaces at once. The front end of the application is a bare bones
HTML and jQuery solution, where the image to be annotated takes up the majority
of the screen. The image can then be drawn on using an HTML canvas, using
simply the cursor.

Optimizing the number of clicks to annotate the dataset is essential in order
speed up the laborious annotation process. More clicks will vastly increase the
amount of time needed. So instead of naively clicking down every corner of every
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Figure 3.8: Screen shot of the annotator GUI. The images can be
drawn on and then saved.

parking space, it is better to make use of the fact that parking spaces tend to be
clustered together in rows. With the usage of vector calculations and trigonometry,
and a rough estimate of the width of parking spaces the number of clicks for
any arbitrary parking cluster was first cut down to only three clicks, as seen in
Figure 3.9. The first click determined the starting point, the second to determined
the length and orientation, and the third determined the width. This was later
optimized down to only two clicks, as seen in Figure 3.10. Instead of marking
the length, width and orientation of the row as two separate clicks, it is possible
to combine these into just one click by simply diagonally marking the parking
cluster. Drag and release. Although this produces infinitely many orientation
solutions since there are no constants to lock down into. So by making use of
the fact that the images have roughly the same spatial resolution of 0.1m/pixel,
any arbitrary parking space will therefore always be around 50x20 pixels (5x2m) in
size. By using these constants, it is then possible to calculate the rest of the points
and orientation of the parking cluster. Simply with a diagonal two-click drag and
release. The GUI then fills in the blanks and distributes parking spaces evenly as
where they are most logical to be, and draws them on the HTML canvas. The
user is then able to later fine-tune it to add more/less spaces in the row, adjust
the width, length, orientation and so on down to pixel level.

The drawn annotations are then saved as a collection of four-point 2D polygons
each representing a parking space, in a .txt file corresponding to the image. All
the images, and the generated files, are stored in the cloud using Amazon S3 Web
Storage [30]. The application was hosted with a simple node.js back end, hosted
on Heroku, a cloud application platform [31]. This way, the application could be
accessed and used from anywhere with a browser and an internet connection. The
application has two buttons - one to signal that the image is completely annotated,
which marks the file as annotated in S3, and saves the accompanying .txt file, and
another which marks the images as incorrect in some way. Perhaps this is from
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Figure 3.9: 3-click parking cluster
generator.

Figure 3.10: 2-click parking clus-
ter generator.

an error in the original OSM extraction, or the parking lot does not adhere to the
data specifications, as described in Section 3.1.1. After either button is pressed, a
new image is loaded from S3, which can then be annotated, speeding up the work
flow. Using the GUI was essential to effective annotation, and without it nowhere
near the same amount of images could have been annotated. Thus, the time it
took to develop it was absolutely worth it.

Network Specific Annotations

After annotating all the images, the annotations needed some alterations in order
to bring them them to the input standard for each specific network.

• YOLO - The YOLO network requires a .txt for each image, with the same
name as the image, with each annotation on one line of the file. The lines
in the file have the following structure: class x y width height where x
and y is the middle pixel coordinate of the bounding box.

• RetinaNet - For RetinaNet, a CSV file is defined for the entire dataset, where
each line represents an annotation. Thus, images with several annotations
should have one line per annotation in the CSV file. The lines in this file are
in the following format: path/to/image.jpg,x1,y1,x2,y2,class_name,
where (x1, y1) represents the top left pixel of the bounding box, and (x2, y2)
represents the bottom right pixel. The classes should also be defined in
another CSV file with an ID mapping. In our case, this was simply a one
line file with the following line: parking, 0.

• Mask R-CNN - This is certainly, and unsurprisingly, the most complex an-
notation format. The annotations are defined in a list of regions for each
file, written in a .json file, with one line per image. An example can be
seen below.

{"1418_17_00 . png423006 " :
{" f i l e r e f " : "" ,
" s i z e " : 423006 ,
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" f i l ename " : "1418_17_00 . png " ,
"base64_img_data " : "" ,
" f i l e_ a t t r i b u t e s " : {} ,
" r e g i on s " : [ {" shape_attr ibutes " :

{"name" : "polygon " ,
" al l_points_x " : [ 5 5 , 60 , 72 , 65 , 5 5 ] ,
" al l_points_y " : [ 8 5 , 90 , 72 , 83 , 85 ] } ,
" r eg i on_at t r i bu t e s " : {}} ]

}
}

Each ("all_points_x", "all_points_y") pair represents a polygon which
is an annotation. The example above thus only has one annotation. Addi-
tional annotations are appended by adding additional entries to the regions
list. In this way, each image is represented by one dictionary in the json file.

All the annotation conversions were done using scripts to automatically generate
files and annotations using the original GUI annotations.

3.1.5 Image Manipulation

After being annotated, the images went through a manipulation stage. There were
a couple of reasons for this:

• The images needed to be roughly the same size, as R-CNNs will commonly
resize input data to be the same size. In this case information would be lost
for very large images.

• Copying and manipulating the data meant the size of the dataset could be
expanded, using the copied and modified image as different data points.

• Using random manipulations meant the variance of the dataset would in-
crease, in theory increasing the generality of the trained model.

With these points in mind, the following manipulations were made. First, large im-
ages were segmented into smaller images. These images then replaced the original
image in the dataset, along with their new annotations, according to the nota-
tions described in Section 3.1.4. Each image was then copied, and the following
manipulations were made to each copy:

• With a 50% probability, the image was blurred using a Gaussian blur with
a kernel size between 2 and 10, with a discrete uniform distribution.

• Again with a 50% probability, a random Gaussian noise was added.

• The image was rotated, either 90, 180, or 270 degrees.

• With a 50% probability, the image was flipped.

The annotations for each copy were then adjusted to align with the changes made.
Thus, the size of the dataset was effectively doubled. All the steps described above
were done automatically using scripts. An example manipulation and its original
image can be seen in Figures 3.11 and 3.12, respectively.
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Figure 3.11: Example image of a
modified parking lot.

Figure 3.12: Image of the original
parking lot.

3.2 Networks

The network evaluation phase started as soon as a preliminary rudimentary dataset
was completed, and then continued parallel alongside development of the dataset,
given the extended time it takes to train a CNN.

3.2.1 Comparing Different Networks

The various networks that were compared use different evaluations to ascertain
their performance. This meant that for comparing the different models, these
numbers (commonly the loss generated by the loss function) cannot be directly
compared. Rather, the evaluation for the networks was done by running them
as classifiers on some un-annotated validation images. The performance of these
models on the images could not be numerically determined in regards to each
other, and as such were compared intuitively, by analyzing the different networks’
classifications, using metrics such as false negatives and false positives. While
more rigorous methods could have been applied here, this was not desirable using
the constantly changing not yet complete dataset, and when certain flaws in the
model were apparent, moving forward with more successful models and networks
were much preferred.

3.2.2 YOLO v3

The YOLO network was trained using this [32] Github repository by user Alex-
eyAB. This repository was forked from the Darknet repository [33], by user pjred-
die, who also wrote the seminal paper on YOLO v3 [25]. The Network was trained
using its own network structure, called Darknet53. While installation was some-
what problematic, the repository holds plenty of information and trouble-shooting.
YOLO was in all instances run on Windows, on a computer with either a GTX
1080Ti or GTX 1070 graphics card. The implementation required a project built
using Microsoft Visual Studio, with quite specific libraries and requirements. Some
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hyper-parameters were changed and tested compared to the original settings, and
new training runs was also done when the dataset was updated. Evaluation was
based on the cross-entropy loss function generated during training, and calculating
mean Average Precision (mAP) after training, simply:

mAP =
ΣQ

q=1
TPq

TPq+FPq

Q

Where Q is the amount of classes, TPq the amount of true positives in class q, and
FPq the amount of false positives in class q. Note that for this problem only one
class is present, so Q = 1.

3.2.3 RetinaNet

RetinaNet was built using the following Github repository [34] by user fizyr, which
is a Python3 and Keras implementation of the network. Using Keras was quite
convenient and efficient, in contrast to YOLO which demanded a project built in
Microsoft Visual Studio. The Network was trained using the ResNet152 backbone.
RetinaNet was trained solely on a desktop computer running Windows, using a
GTX 1080Ti graphics card. A virtual environment for Keras with GPU support
was used to run training. The model was evaluated by choosing the best perform-
ing training weights based on the best mAP for for all epochs, and converting them
to an inference model. This inference model was then used as the final model.

3.2.4 Mask R-CNN

Mask R-CNN was built using the following Github repository [7] by user matter-
port, which is a Python3, Keras and Tensorflow implementation of the network.
The network was trained using the ResNet101 backbone and with pre-trained
weights from the COCO dataset. Mask R-CNN was initially trained on a desktop
computer running Windows, using a GTX 1080Ti graphics card. This was later
moved to Zenuity’s GPU farm architecture, running on Tesla V100-SXM2 GPUs,
with a video memory of 32GB. These were accessible via SSH and run specifically
using pre-built Docker images.

3.3 Evaluating and Improving the Model

This section will essentially be entirely focused on the Mask R-CNN network.
The reason as to why is that it was found quite early on that this network out-
performed YOLO and RetinaNet. As such, the decision was made to continue
development on Mask R-CNN, and to abandon the other two, as it would be much
too time consuming to continue work on all of them. This is elaborated further in
Section 4.2.1.

3.3.1 Dataset Iterations

The dataset went through some different iterations, which were used as milestones
in testing different versions of the networks. While the dataset was expanded and
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configured, the configurations for the different networks were largely unchanged,
as the majority of effort was put into creating an appropriate final dataset. Given
how long it takes to train a neural network, work was done on the dataset while the
past iteration of the dataset was tested. The networks trained on each iteration of
the dataset was also partly used to evaluate the completeness of the dataset and
determine what further work needed to be done.

3.3.2 Parameter Tuning

Uncovering the optimal hyper-parameters to find the global minima of a loss func-
tion of a model is not an easy task. To some extent it is even impossible due its
high dimensional space and multivariate nature. Unfortunately, randomly guess-
ing in hope to find the optimal parameters were not sufficient as it would be too
unreliable and time-consuming. A different approach was needed. An example of
such was to train multiple values of the same parameter, and go with the one that
provided the best loss trend before moving on to the next parameter. Following a
sort of decision tree-like pattern. However, this strategy assumed all parameters
were independent of each other, which of course they were not. But as there does
not seem to be any other technique readily available, this informed brute force
was determined to be the best way to proceed. The results from the different runs
were automatically saved in event files and logged in Tensorboard, a visualization
tool used for machine learning purposes to follow the process of training runs.

With the usage of Zenuity’s DGX-1 GPU servers, this technique got a whole
lot more obtainable as it made it possible to extensively parallelize the parameter
checking. Running 4 − 8 training instances simultaneously was of tremendous
value, and sped up the parameter tuning process considerably.
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Chapter4
Results

In this chapter, the results from the project will be presented. The nature of our
methodology necessitated that this be presented in a chronological fashion. Thus,
a considerable part of this chapter will be dedicated to explaining intermediate
results, that informed and explained the steps and actions taken after them. The
alternative would be to explain decisions based on results not yet presented, which
would damage the readability and cohesiveness of the report. Therefore, putting
the information in this chapter seemed preferable, rather than to include them
in the previous chapter, in order to streamline the relevant sections and to put
focus a chronological development of the eventual final results. First, the different
iterations of the dataset that were used and evaluated will be presented. Then,
the process of comparing and deciding on a network will be explained, followed
by the improvement phase of Mask R-CNN. Finally, the end results of the final
network will be presented.

4.1 Dataset

In this section, the different dataset iterations that were actually used for the
project will be presented. While the actual resulting datasets might not be com-
pletely relevant to the end product, we found it necessary to include them in order
to illustrate our reasoning and changes to be made moving forward.

The complete dataset was compiled using images from USGS and Lantmä-
teriet. The images were from Washington D.C. and Santa Fe from USGS, and
from Malmö from Lantmäteriet. The dataset went through several iterations dur-
ing the process. At all the different completed stages of the dataset, one or more
networks were trained in order to ascertain the completeness of the dataset. The
dataset versions to be presented in this section were only the ones that were tested
with network training runs, and versions to be considered complete. Numeric val-
ues for the dataset versions can be seen in Table 4.1. Specific explanations and
motivations for each dataset version can be found in the following sections. To
briefly summarize the findings, high image variance in the dataset seemed to im-
ply the greatest results for robustness and reducing the amount of false positives,
which should be desirable for this problem. Furthermore, as expected the bigger
the dataset, the better the results. Thus focus was put on generating as many
images as possible, in addition to introducing as many different looking images as
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Version # of images # of spaces # of empty images P/N ratio

1 1541 43805 206 6,4806
2 3470 88148 544 5,3787
3 6322 88152 3394 0,8627
4 10781 134673 5605 0,9235

Table 4.1: Numeric values for the different dataset versions.

possible.

4.1.1 Version 1

The first version of the dataset only included images from Washington D.C. which
were cropped. Images in this version had a max size of both height and width of
500 pixels, and thus were segmented to fit these values. The resulting segmented
images from one original were thus of the same size. This also meant a few resulting
images were empty, that is, images without any parking spaces in them, which
resulted in the number of empty images seen in Table 4.1. The dataset version
was considered complete when a total of 40,000 parking spaces had been annotated.
No exceptional results were expected from this dataset, as only images from one
source were included, and indeed the dataset was quite small. Nonetheless an
initial dataset was necessary to start the network evaluation process. Only the
YOLO network were trained on this dataset initially, and the dataset was intended
to be used as a starting point to get the different networks initialized. RetinaNet
was also eventually trained on this dataset. Early results were quite promising,
and performed rather well on the test set, but virtually only on the test set. A
low variance on the images was quite evident here.

4.1.2 Version 2

This version was quite similar to the previous one, with the exception that the
data was augmented. In effect, each image was copied and had modifications done
on it, thus doubling the size of the dataset. The augmentations done are described
in Section 3.1.5. The same cropping technique from the previous version was still
used here. In fact, aside from the augmentations, the dataset is virtually the
same. The augmentation methods introduced in this version was kept through
all following iterations of the dataset. All the different networks were run on
this version, and thus this was the first version of the dataset where all networks
were compared to each other. It was also the first version to be used for the
Mask R-CNN network. Adding the augmentation seemed to improve the model
performance, making the dataset and thus the resulting model more robust, in
addition to of course increasing the size of the dataset.
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4.1.3 Version 3

Two major changes were introduced in this version. First, some more negative
images were introduced to the dataset, in order to bring the ratio of positive/neg-
ative images to around 1. This is a commonly used maxim in machine learning
to increase context to the algorithm, along with learning from negative examples
rather than only positive, thus not only understanding what is a positive exam-
ple of a class, but also what is not. The negative images were taken from the
past versions of the dataset, along with images which were mislabeled or unusable
from the annotation process. This included e.g. parking lots without specified
spaces, and buildings with parkings inside such as garages. Finally, some images
were randomly generated from the original USGS data, verified to be empty, and
then saved to the dataset. Second, a random re-size was introduced to attempt to
increase scale variance in the dataset. This was only done on the modified data,
and were defined as a re-size with a multiplier in the interval [0.5, 3.0]. Adding the
negative images seemed to quite improve the results in regards to false positives,
as fewer objects were incorrectly predicted.

4.1.4 Version 4

The changes in version 4 were numerous and quite considerable. The dataset
needed to be consolidated into a complete version which could be used as a stan-
dard for the network parameter adjustment phase. First, more original data was
introduced to the dataset. This came from two sources, the first in the form of
USGS images from Santa Fe, gathered in the same manner as the Washington D.C.
data. Santa Fe was chosen because of its distance to Washington D.C. in the hopes
that the different environment and colour palette, and certainly different types of
parking spaces, would introduce more variance to the dataset. The second type
of data came from Lantmäteriet’s data gathered from the Swedish city Malmö.
Using also Swedish data was originally the intent, but it turned out to be quite
a cumbersome process. This data did not have the same spatial resolution as the
USGS data, and therefore hopefully could also make the model performance more
general. In addition to this, Swedish parking spaces look quite different compared
to US ones.

The negative images in this version were also re-examined. The previous com-
pletely random images were removed, and new purposeful negative data was intro-
duced. From previous runs of the model it had become apparent that the algorithm
had issues with false positives, in particular large intersections with lots of lines
and moving cars, as well as buildings with box-like patterns on the roof. Thus,
a lot of negative images were manually found, cropped and added to the dataset
with high concentration of these particular locations. This included images from
all datasets. Another class of negative images were also added, which was images
of sport courts such as tennis courts, basketball courts and football courts, which
it seemed the model had problems with, in particular tennis courts. The blurring
augmentation was also lowered, as it was deemed that blur was too intense and
didn’t contribute with enough information. The final thing that changed in this
version was the introduction of padding. The decision was made to, rather than
re-sizing the cropped images, keep the original size and spatial resolution and add
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padding up to 850 pixels in width and height. This way the feature that park-
ing spaces tend to be roughly the same size is kept, and the images would keep
their size in the network, and thus their spatial resolution, which would hopefully
increase performance.

4.2 Networks

4.2.1 Initial Results

The networks were tested alongside developing the dataset, in order to assess early
the strengths and weaknesses of each network early on, as well as to highlight
inherent flaws of the emerging dataset. Below are some summarizing reflections
for each network.

YOLO v3

YOLO was the first tested network, and the first network predicted to be an ac-
ceptable solution for the problem. Initial results seemed promising, although were
somewhat deceptive. The detections drawn with YOLO’s visualization tool were
quite thick, alluding to good detections where in reality a lot of positive exam-
ples were skipped. An early problem noticed about YOLO was also that detected
bounding boxes often overlapped, even when they were parallel, as it tends to
generate large bounding boxes which encapsulates the entire object, but not very
precisely. It often padded the actual parking space by a bit, surrounding the object
but not very firmly. Of course, another problem was that YOLO only generates
bounding boxes in the first place, thus necessitating another solution in the de-
tection pipeline, to determine the orientation of the parking spaces themselves.
Nonetheless, the results of early YOLO models were used as a baseline for the
next-coming solutions.

RetinaNet

The first trained RetinaNet models were introduced for version 2 of the dataset,
and its results were at the very least comparable to YOLO. After some iterations
it became clear however that RetinaNet was less forgiving with overlaps as com-
pared to YOLO. In particular, adjacent detections tended to not overlap as much.
Furthermore, RetinaNet seemed to be more inclusive in its detections, perhaps
not perfectly encapsulating all results, but it at least made more detections. How-
ever, a consequence of this was that RetinaNet was not particularly confident in
its predictions, which was likely also because of its punishing focal loss function.
As an added note however, RetinaNet’s visualizing function actually does show
the confidence of its predictions, compared to YOLO’s which does not. As with
YOLO, the detections are only bounding boxes.
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Mask R-CNN

Mask R-CNN was the third and last network to be tested. It instantly proved
to be more useful as compared to YOLO and RetinaNet, given the added benefit
of its generated masks in addition to the bounding boxes. Early iterations of the
network were quite positive, and the confidence of detections were quite higher
than those of RetinaNet. Mask R-CNN also proved to be by far the best at
reducing overlap, with virtually no overlapping adjacent detections. It was not
without flaws however. It seemed to be the worst at ignoring false positives, so
quite a few detections on intersections, roofs, and roads were present here, some
with fairly high confidence. Solving those however, would make Mask R-CNN seem
to be the prime contender for a good solution. Mask R-CNN seemed to be the
slowest of the three networks, but for the presented problem this was considered
to not really be an issue, so long as the performance is competent.

Deciding on a Network Structure

Quite soon after testing all of the networks for a few iterations, Mask R-CNN was
chosen to be the best network going forward. To continue the analysis and de-
velopment of a solution, one network had to be determined to investigate further,
as doing so for all three would require a considerable amount of time that was
simply not available. The inherent masking property of Mask R-CNN was simply
too attractive not to explore further. Normally for Mask R-CNN data, objects
have to be painstakingly annotated with drawn polygons, but this is generated by
default given the nature of the problem - parking spaces are rectangular, so the
mask drawing step is already completed from the beginning, as this also was an in-
ferred property from the annotation stage. Thus a massive amount of information
is gained instantly, proving a massive theoretical boon for Mask R-CNN. This,
alongside pretty much non-existing overlap for detections, made Mask R-CNN the
best solution considered. This decision was made during version 3 of the dataset,
and as such following results were all from the Mask R-CNN network.

4.2.2 Mask R-CNN Improvements

After deciding on the Mask R-CNN network as the network of choice, work begun
on improving the results. The Github repository that was used contains several
training hyper-parameters to potentially adjust and improve the performance of
the resulting model. For this project, around 15 different parameters were tested
and sometimes changed, not counting different data configurations that also were
part of the process. While a lot of these hyper-parameters certainly are related to
one another, there was not enough time to test all possible configurations. This
process is further explained in Section 3.3.2. The different tested parameters are
listed below:

• STEPS_PER_EPOCH - How many steps are taken in one epoch, before valida-
tion and Tensorboard updates.

• VALIDATION_STEPS - How many validation steps are taken at the end of
each epoch.
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• IMAGES_PER_GPU - How many images per GPU is loaded for each step. Thus,
IMAGES_PER_GPU * STEPS_PER_EPOCH is how many images are included in
each epoch.

• LEARNING_RATE - This determines how much to change the weights depend-
ing on results from the optimizer. Therefore, this decides how fast the
network learns.

• LEARNING_MOMENTUM - How much of the previous optimizer result’s gradient
to be taken into consideration for the next step.

• WEIGHT_DECAY - The factor used for weight decay regularization, see Sec-
tion 2.4.

• RPN_ANCHOR_SCALES - Length of square anchor side in pixels for the RPN
part of the network.

• RPN_TRAIN_ANCHORS_PER_IMAGE - The number of anchors to use in training
the RPN.

• DETECTION_MIN_CONFIDENCE - The threshold to what is considered a pos-
itive classification for each ROI. Classifications below this probability are
skipped.

• RPN_NMS_THRESHOLD - The threshold used for RPN proposals.

• TRAIN_ROIS_PER_IMAGE - Amount of ROIs to consider for classification for
each image.

• ROIS_POSITIVE_RATIO - Percent of positive to negative ROIs used in train-
ing.

As for choosing the order of parameters, the parameters that intuitively low-
ers training time and impacts the results most were chosen to be tested first.
With this in mind, the first parameters to be tested were the epoch parameters -
STEPS_PER_EPOCH, VALIDATION_STEPS, and IMAGES_PER_GPU. These ought not to
impact the resulting model, but rather together decide how each step and epoch is
configured - how many steps and images per epoch, how much time should be spent
on validation after each step, thus determining how often the loss results should
be updated. After that, the learning parameters were tuned - LEARNING_RATE,
LEARNING_MOMENTUM, and WEIGHT_DECAY. Together, these parameters decide how
fast and efficiently the network learns during training, and it is a common maxim
to start with such parameters in order to not waste unnecessary time on training
going forward. After that, the next parameters were chosen in no particular or-
der, except for when parameters reasonably seemed to be very dependant on each
other. In those cases, one was tested directly after the other one. The method
going forward for this stage was to generally look at the best trend of all values
tested for each parameter, and use that value for all subsequent rounds of training.
As none of these training runs were ever supposed to represent a finished model,
the actual best values for loss were largely ignored, and focus was rather put on
what parameter value represented the best improvements as compared to the other
ones. The process has been summarized in Figure 4.1, where the parameter tested
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is printed in the node, along with the chosen best value. The figure is structured
chronologically from start to bottom, where horizontal nodes are tested at the
same time. The first row of nodes were the initial parameters from the experimen-
tal phase. For each node, some amount of different values were tested, from 3 to
9. Tensorboard graphs for each parameter can be found in Appendix A.

4.3 Finalizing the System

4.3.1 K-fold cross validation

After the perceived optimal hyper-parameters were found, which resulted in a
model that produced reasonably good results, k-fold cross validation was per-
formed in order to get a glimpse of the model’s actual true performance, rather
than being biased on the point where the test set was split. In the case of this
report, 5-fold cross validation was performed on the model and dataset.

4.3.2 Detection Script

Since Mask R-CNN could only process images up to a certain size before scaling
them down, a detection script was implemented in order to bypass this. Scaling
down images means information loss, and the intrinsic property of parking spaces
always being roughly the same size in the same spatial resolution domain, would
be lost. To still be able to process large images, the script cropped the image into
smaller, yet overlapping portions, max 850x850 pixels, and ran separate indepen-
dent detections for each sub-image. These were later combined into a full mosaic,
which visually resulted in far better performance compared to detecting solely on
the large image as its own.

4.3.3 Post-processing

Since the sub-images overlapped each other with a few pixels, it also resulted in
some duplicate detections. These needed to be removed somehow, and so some
post-processing was introduced. For each detection, the centroid was calculated
and compared to every other centroid. If the distance was shorter than a few
pixels, that meant that detection had a duplicate, and so was removed. Although
this was not all that was implemented. The model also gave some false-positive
detections such as on pavements, in bushes, in crossings, cars driving on the road,
etc. These could also be removed with some post-processing, as they rarely had any
neighbouring detections close to them. So during the same distance comparison
step, a check for if a detection had any neighbouring detections within a given
radius was added. If not, the detection was discarded. Arguably, this meant that
some true positive detections would also be thrown away. However, parking spaces
that are completely by themselves are much more rare than clustered ones, which
could justify the usage of this post-processing trick. Of course, this is a trade-off
that is completely up to the user to be used or not, depending on the use case.
One last post-processing feature was also added. Namely, if a detection had any
neighbouring detection with a low confidence score below a given threshold, then
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both were discarded. This eliminated more false-positives in complex areas such
as in crossings, as the model was quite unsure whether that really was a parking
lot or not. Detections in real parking lots rarely had any neighbouring detections
with low confidence, so this technique made use of that information. A before and
after comparison of where these post-processing proposals has been applied can
be seen in Figures 4.2 and 4.3.

Figure 4.2: Example image
before applying post-
processing.

Figure 4.3: The same image after
applying post-processing.

The post-processing algorithms were merely experimental and should not be
considered a part of the resulting model, as they were not tested and validated in
any rigorous manner. They acted more as ideas for any potential future use.

4.4 Detection Results

The resulting detection performance of the finished Mask R-CNN model was var-
ied. It seems some images were easier to handle, while some remained particularly
difficult. A couple examples of fairly competent detections are shown in Figures 4.4
through 4.7. The numbers associated with each mask is the confidence of the de-
tection. While not perfect, these are certainly some of the better performances
achieved.

Crucially however, the model performed mostly well in avoiding false positives,
at least in most cases. In Figures 4.8 and 4.9, the model did actually correctly
not label any parking spaces. This was a problem during earlier iterations of the
model, where it would incorrectly find parking spaces in intersections and tennis
courts, among other areas.
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Figure 4.4: Good detection re-
sults of a parking lot.

Figure 4.5: Fairly good
detection results of a
parking lot.

Figure 4.6: Good detection re-
sults of a large parking lot.

Figure 4.7: Good detec-
tion results of a small
parking lot.
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Figure 4.8: Detection results of a
fairly large intersection.

Figure 4.9: Detection results of a
tennis court.

Again, even here the performance was not perfect, see for example Figure 4.10.
Sometimes, it was even quite bad, in particular for large intersections in Malmö,
which also unfortunately had quite bad spatial resolution, resulting in fairly hard
to distinguish lines, see Figure 4.11.

Indeed, images from the Malmö dataset were quite hard to detect properly, as
seen in Figures 4.12 and 4.13. This might be because of the less defined parking
spaces in Sweden, with the crosses indicating corners rather than fully drawn lines.

Overall, the detection results were not incredibly good, but certainly hint at
a basic understanding of the concept of a parking space, so there is some success
to draw from the project.
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Figure 4.10: Detection results of
an intersection in Washing-
ton D.C.

Figure 4.11: Detection results
of a large intersection in
Malmö.

Figure 4.12: Poor detection
results from the Malmö
dataset.

Figure 4.13: Poor detection
results from the Malmö
dataset.
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Discussion

5.1 Difficulties

While exploring the project, several difficulties arose which required solutions.
Some were intrinsic to the stated problem, and some were merely a logical or
technical challenge.

Right from the start we were faced with the trouble of finding the actual satel-
lite/aerial images. Despite being easily accessible through many providers such
as Google Maps, Apple Maps and Bing Maps, they were unfortunately not avail-
able under any public license. A user was not allowed to download, manipulate,
distribute or specifically use Google Map imagery for machine learning applica-
tions in relation to autonomous cars. Though there did exist many other private
providers that did in fact sell their own gathered satellite/aerial images for vari-
ous data research fields. Examples are Geocento, DigitalGlobe, Apollo Mapping
and Lantmäteriet. However, these were all very expensive solutions, and thus
not really realistic for the scope of this project. Fortunately, one provider had
none these problems, namely USGS. Covering large parts of USA, USGS provided
many different kinds of geodata free of charge for anyone to use anywhere in the
world. In particular very high resolution aerial imagery. This was vital for the
project. It was also later found that Lantmäteriet offered their data free of charge
as well, but solely for educational purposes at Swedish schools and universities.
This data however was not allowed to be shared or distributed further. Converting
the Malmö data from Lantmäteriet from the SWEREF coordinate system to longi-
tude/latitude was also quite a difficulty. SWEREF is a plane projected coordinate
system, so when trying to naively convert the coordinates to latitude/longitude,
which Open Street Map uses, some projection falsities were thereby introduced.
This could possibly have been solved if looked into further, but the choice was
made to go ahead and include the Lantmäteriet data anyway. These images were
simply manually verified and cropped to be relevant to the data specifications.

Another problem was to discern parking spaces from sport courts, such as
tennis courts, basketball courts and football courts. Similar features of lines and
edges in hard contrast existed in all of these elements. The initial suspicion was
that the model had not yet been fully exposed to samples of sport courts. Ad-
ditionally, cars and lines on roads and crossings caused similar issues. After the
attempt of providing the dataset with more of these images, little improvement
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was seen unfortunately. It may simply be that this is a hard problem to solve in
its very nature, in that the relevant features are so similar.

Finding the optimal hyper-parameters for the model was also quite an obstacle,
as it generally is for machine learning tasks. It would simply be too time-consuming
and not realistic to, in a brute force fashion, test every possible relevant combina-
tion of parameters, though it would of course yield the best results. Blindly and
randomly guessing different combinations would not be sufficient either. And so
the approach of following a sort of decision tree like structure was performed by
training and testing multiple values of the same parameter before locking it, and
moving on to the next parameter. The decisions that were made can be seen in the
appendix. The issue with this however, was of course that this method assumed
all hyper-parameters are independent of each other, which they of course are not.
This was thereby not the most optimal of strategies, but it seemed to be the only
way to do it somewhat intelligently.

5.2 Limitations

The first and major limitation for the presented problem is that it is not a complete
solution for finding parking spaces. Indoor parking is completely ignored, as is
parking lots without specified spaces. Furthermore, even if a parking space is
correctly detected, it might not be a legal parking spot — e.g. it may be reserved
or time restricted. The task presented in this report however, does not concern
itself with such limitations, and as such only the limitations explicitly defined by
the problem will be described here.

5.2.1 Aerial Imagery

There are certainly quite a few current providers for satellite imagery, which are
readily available. The problem with most of them, however, is that they seldom
offer adequate spatial resolution to discern parking spaces, much less actually
classify them. What seems to be generally preferred for this problem is rather
high resolution aerial orthoimagery, which have better spatial resolution, and are
furthermore orthorectified, similar to maps. These also have several available
providers, but most of them are quite expensive.

Another problem with aerial imagery, or rather machine learning task with
image analysis on aerial imagery, is that intrinsic camera properties are specific
to the data providers. Properties such as grain, lighting, and intensity can differ
greatly from camera to camera, provider to provider, whereas image recognition
tasks tend to usually have a wide variety of angles, cameras, and instances. Thus,
in order to gain high variance and generality on the dataset, having multiple
providers would be preferable.

Finally, some consideration has to be put into how updated the aerial imagery
is. Certainly, the images do not have to be live, or close to live, but they need
to represent the appearance of the current parking spaces for the area you wish
to classify, at least during the training phase. Furthermore, and perhaps more
pressingly, the new input to classify must represent the e.g. parking lot as it exists
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today in the world. After all, these results should be used with autonomous cars
to inform them of current parking possibilities.

5.2.2 Parking Spaces

An inherent property of parking spaces, at least in the context of machine learning,
is that they have rather few features. After all, a parking space is merely a drawn
box on pavement, so there is not very much for the machine learning algorithm
to learn. Furthermore, considering this very simple layman definition of a parking
space, several instances of it can be found, which in fact are not parking spaces at
all. This severely exacerbates the problem of false positives, as the leap from e.g.
parking space to odd pattern on rooftop or intersection is not too large. This is
also a problem for false negatives, as the dataset contains several negative images
of similar instances which feature-wise seem very similar. This confuses the model
considerably, making it quite difficult to make confident predictions. Granted,
spaces can also be occupied, at which point it is still defined as a parking space.

Another issue with the generality of parking spaces is that geographical lo-
cation is quite integral. In other words, depending on where the parking space
is, it will look considerably different. A space in Canada may look different from
a space in Iran, being constructed or defined differently, for example. Thus, to
make a truly variant dataset and vicariously a general model, examples of parking
spaces from all over the world need to be included, particularly considering the
small amount of features connected to parking spaces, as discussed earlier. Not
doing so would restrict the model’s detection to really only perform well on a
specific region, which is certainly viable as well. Indeed, this is the case for the
solution presented in this report.

5.3 Conclusion

5.3.1 Evaluating Model Performance

The results provided by the finished model were not terrible, but certainly not
quite satisfactory either. This was noticed early on, in particular when the fi-
nal dataset version was introduced, see Section 4.1.4. This was when new, more
challenging negative images were introduced, and a sharp rise in the validation
loss was detected as a result. This indicated that the network had severe prob-
lem differentiating a parking space, in particular an empty one from for example
lines in the road. Furthermore, the Malmö data was included in this version as
well. This represented the largest diversity of types of locations and features ever
introduced in the dataset, and as such the validation loss suffered. This did mean
however, that the model was forced to learn more about generality, which might
be considered a good thing. While using an earlier version of the model, or more
specifically the dataset, would yield a better loss and as such a theoretically better
performance, it was decided to keep the latest solution. This is because it is less
restricted by specificity in the data and more in line with the described problem
formulation. This also yields the greatest amount of information, be it positive or
negative.
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The final validation loss was reduced considerably however, with the tuning of
parameters. During the lengthy improvement period the loss steadily dropped as
more parameters were optimized. Thus this process had substantial effect on the
end model and should be considered a successful procedure.

The end model certainly, although perhaps not performing as well as hoped,
did show some remarkable traits. Except for in very problematic images, it had
very few false positives. This was quite a concern in earlier iterations, where
the model seemed to be rather forgiving for such errors. This was particularly
noticeable in blank spaces of concrete between or around parking spaces, as well
as on rooftops and parking lot entrances and exits. For the most part, it also
produced quite uniform and complete rectangles of the parking spaces, something
that had not been observed since the dataset was very tiny.

5.3.2 Resolution To Problem Description

The problem description posed the question if locating parking spaces from satellite
or aerial imagery is feasible using machine learning techniques. Our solution does
certainly indicate that it is possible, albeit the solution itself is not quite the full
answer to the problem. The final model of our solution surely does classify parking
spaces, the main issue is simply with its completeness. In that respect, while the
result might not be considered a full solution to the presented problem, it is indeed
a successful solution. Anyone wishing to expand and improve upon our solution
would do well in reading our suggestions in Section 5.5.

5.3.3 Significance Of Solution

While not performing as we had initially hoped, this does not mean that the model
can not be used all together. The model can be used as a heuristic for various
purposes. Whether it can work as a helping guidance for further annotation of
new parking data, or to be used in autonomous cars but not as true fact. It is
only as a way to steer it into the right direction where parking spaces are most
probable to be.

It was clear that CNNs do perform well on the problem at hand, given that
results certainly indicate a basic understanding of the shape and outlook of park-
ing spaces. However, the problem most likely lies in the problem definition and
restriction. The more general the problem is, which is indeed the approach for
this report, the worse results are obtained it seems. Thus, our solution shows that
restricting problem space is key to success in the field of image classification of
parking spaces.

5.4 Impact

A general image analysis solution for finding parking spaces does not yet exist,
and granted the one presented in this report is not a final nor a complete one.
The potential of such a solution however is substantial. The solution would not
in any case be an unambiguous way of finding parking, as e.g. parking garages
and unmarked parking lots are ignored. Fortunately, this is not how autonomous
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cars or AI in general perform complex tasks. They perform them by aggregating
different predictions and gathered data to make informed decisions. Thus, adding
to the existing knowledge base is always beneficial. An autonomous car can with
the predictions produced by the solution in this report somewhat reliably construct
an abstract model of the parking lot it is standing in. Given a reliable data
provider, it can furthermore potentially do so given only its GPS coordinates. In
other words, it can do such autonomously, which is of course one of the main
requirements of competent AI. Using this model of the parking lot, it can then
make an informed decision on which route to take in searching for available spots.
While en route, the car can also take the generated detections, confidences, and
masks to aid in its assessment if the space exists or not, and if it is occupied or
not. Coupled with other algorithms, predictions, and sensor input, e.g. adjacency
of cars, detection of curbs, lines on the ground, signs etc. it should be able to
reach an acceptable conclusion.

Academically, this report can be seen as a case study in state of the art R-
CNNs, in particular Mask R-CNN. It moreover works as a reference point to anyone
wishing to conduct similar studies in parking space detection or using CNNs in
general.

5.5 Suggestions and Further Research

A lot of issues came to the forefront during the project, which were either too
large in scope for this particular problem, or were realized too late in the process.
This section will describe problems and possible solutions to be considered if one
wishes to expand upon or redo the project.

• Two Classes - The problem described in Section 5.2.2 of parking spaces
being generally feature sparse might be solved by introducing two different
classes - one for occupied spaces and one for empty ones. This would mean
the model can learn features specific for the two separate classes rather
than for the two combined. An observed problematic result was that the
model had trouble classifying empty spaces, particularly if they were by
themselves. Occupied spaces are naturally more feature heavy given the
presence of cars, while training for the empty spaces can safely ignore the
cars and focus entirely on differentiating between empty spaces and similar
looking patterns, as also described in Section 5.2.2.

• Pairwise Detections - As also discussed in Section 5.2.2, parking spaces
tend to have few features, which can be problematic for the model to detect
with proper confidence. One way of increasing the amount of features, as
well as making the detections more unique from noise, such as driving cars
on regular roads or parking-looking lines in crossings, is to make further use
of the fact that parking spaces tend to be clustered together. Instead of a
detection being solely one individual parking space, one could group them
together in pairs. This way the detections will surely be more unique and
feature rich, as the probability for two cars being that close to each other,
or two unoccupied spaces for that matter, should be fairly low if it is not a
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parking space. Another problem is of course that parking spaces that are
completely by themselves, not having any neighbouring parkings, would be
left out.

• More Data Providers - An inherent problem, as discussed in Section 5.2.1,
is the specificity of each provider’s images. A way to improve this would
certainly be to increase the amount of different data providers, in order
to increase generality of the dataset, and thus of the trained model. This
way, the model performance would be theoretically less constrained by the
type of input data, making the problem less constrained. This might also
increase the list of features for parking spaces, further improving upon the
suggestions discussed in the previous section. Possibly, one might also con-
sider using several data providers for the same area, reducing the possibility
for over-fitting on the mere look of the dataset and not its actual content.
Exploring how this affects the model as compared to just using different
annotations could also be of interest.

• Exploring Generality-Accuracy Trade-off - The generality-accuracy
trade-off is defined for this discussion as the exchange of how general the
model is as compared to how accurate it is. That is, defining the scope of
how large a context the model should take into consideration. Obviously,
using the same geographical area, the same data provider, the same size of
all images etc, will increase the accuracy of that certain defined area, but will
probably reduce the performance on other images/areas from other providers
that the model has not seen. Thus the result is a more accurate model,
which might give a false impression of performance, as it only performs so
well on that area. Then again, this might be desirable even. If a constrained
problem space can be determined from the start, generality is not a problem
anymore. For example, if the input is a hedged in parking lot, i.e. a polygon,
then global context is not needed and thus negative data can be ignored
altogether.

5.5.1 Post-processing

Post-processing, as in applying various algorithms to improve the end result of the
model, could certainly be implemented. This was indeed experimented with dur-
ing the project, but results were not conclusive. A fully polished solution would
probably utilize a couple of post-processing algorithms, to further increase accu-
racy. The problem with this approach however, is that it forces human behaviours
into the model, on occasion forcing out its machine learning behaviour in favour of
the developer’s own conceptions of the problem, without directly influencing the
model itself. Nonetheless, using such post-processing could increase performance,
albeit making performance slightly more difficult to determine. The exact heuris-
tics and implementations are purposefully left vague, but here are some potential
examples of such post-processing algorithms:

• Measuring closest distances for each detection to other detections. This
might determine if the detection is in or close to a parking space cluster, as
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most parking spaces are. Correct spaces are seldom all by themselves. If a
parking is by itself, remove it as seen in Figure 5.1.

• If a detection has a neighbouring detection with a low confidence score,
remove both detections as seen in Figure 5.2. It is unlikely for a true parking
space to have a neighbouring detection with low confidence.

• Check the size and/or shape of the generated masks. Strange shapes and
sizes could be indications of incorrectly labeled detections.

• Determining orientation/direction of parking spaces. Comparing these to
each other could determine mislabeled outliers in the detection. The direc-
tion vectors can be calculated from the parking spaces using either singular
value decomposition (SVD), or least squares regression.

• Automatically fill in missing spaces in parking space clusters. Having gaps
in a cluster is uncommon and these could simply be filled if they are unde-
tected, as seen in Figure 5.3. An example of such an algorithm is candidate
voting. For each detection, consider four possible candidates surrounding
the parking space and add them to a list. If any given candidate has at
least one or more duplicate overlapping candidates, add it as a real parking
space. Do this recursively until no more parking spaces can be added. This
would in theory fill in the gaps of a parking cluster.

Figure 5.1: Post-
processing idea
of removing
parking spaces
that have no
neighbours.

Figure 5.2: Post-
processing idea
of removing
parking spaces
that have a
neighbouring
detection with
low confidence
score.

Figure 5.3: Post-
processing idea
of automat-
ically filling
in missing
parking spaces
in clusters
shown in blue.
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AppendixA
Tensorboard Graphs

Figure A.1: Tensorboard graph -
IMAGES_PER_GPU

Figure A.2: Tensorboard graph -
LEARNING_MOMENTUM

Figure A.3: Tensorboard graph -
WEIGHT_DECAY

Figure A.4: Tensorboard graph -
LEARNING_RATE

53



54 Tensorboard Graphs

Figure A.5: Tensorboard graph -
RPN_ANCHOR_SCALES

Figure A.6: Tensorboard graph -
RPN_TRAIN_ANCHORS_PER_IMAGE

Figure A.7: Tensorboard graph -
LAYERS

Figure A.8: Tensorboard
graph - DETEC-
TION_MIN_CONFIDENCE

Figure A.9: Tensorboard graph -
RPN_NSM_THRESHOLD

Figure A.10: Tensorboard graph -
TRAIN_ROIS_PER_IMAGE
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Figure A.11: Tensorboard graph -
RPN_ANCHOR_SCALES_2

Figure A.12: Tensorboard graph -
RPN_TRAIN_ANCHORS_PER_IMAGE_2

Figure A.13: Tensorboard graph -
TRAIN_ROIS_PER_IMAGE_2

Figure A.14: Tensorboard graph
- OPTIMIZER

Figure A.15: Tensorboard graph
- BACKBONE

Figure A.16: Tensorboard graph
- ROIS_POSITIVE_RATIO
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Figure A.17: Tensorboard graph
- DATASETS

Figure A.18: Tensorboard graph
- LESS_BLUR_K-FOLD

Figure A.19: Tensorboard graph
- NO_PADDING_K-FOLD
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