
Scalable processing of globally
crowd-sourced geolocation data

Oskar Jermakowicz

MASTER’S THESIS | LUND UNIVERSITY 2018

Department of Computer Science
Faculty of Engineering LTH

ISSN 1650-2884
LU-CS-EX 2018-26

Scalable processing of globally
crowd-sourced geolocation data

Oskar Jermakowicz
oskar.jermakowicz@gmail.com

March 11, 2018

Master’s thesis work carried out at Combain Mobile AB.

Supervisors: Rikard Windh, rikard@combain.com
Marcus Klang, marcus.klang@cs.lth.se

Examiner: Krzysztof Kuchcinski, krzysztof.kuchcinski@cs.lth.se

mailto:oskar.jermakowicz@gmail.com
mailto:rikard@combain.com
mailto:marcus.klang@cs.lth.se
mailto:krzysztof.kuchcinski@cs.lth.se

Abstract

Many of today’s use cases require the ability to locate the positions of con-
nected devices within the Internet of Things. This is traditionally solved with
GPS, but when considering indoor environments with poor signal, other solu-
tions have to be applied.

Combain Mobile AB has an indoor positioning solution that is based on
processing crowd-sourced geolocation data. While the incoming data is grow-
ing, Combain wants to investigate if it is worth adapting their solution to a big
data solution, with the help of big data frameworks such as Apache Spark or
Apache Flink.

In the master’s thesis a prototype is developed in Apache Spark and im-
plements the core functionality of Combain’s indoor positioning solution. By
deploying the prototype in the cloud on Amazon Web Services, tests were
conducted andmeasurements were taken and compared to the current solution.
This made it possible to evaluate aspects such as scalability, performance, cost
efficiency and precision.

The current solution is sufficient today, but when the amount of users grows
as predicted, a more scalable solution has to be considered. Results show that
the prototype has several promising aspects making it a viable foundation for
a big data solution.

Keywords: Big data, Geolocation, Indoor positioning, Scalable data processing

2

Acknowledgements

First of all, I would like to express my gratitude to Combain Mobile AB for the oppor-
tunity to work on such an exciting project. I am extremely thankful to my supervisor at
Lund University, Marcus Klang, for a ton of advice, lengthy discussions and vast technical
knowledge and insight. A huge thank you to RikardWindh, my supervisor at Combain, for
being there for me every day providing a lot of helpful guidance and ideas through many
in-depth discussions. I would also like to thank Anders Mannesson and Rasmus Ljung-
berg at Combain for helping me understand their indoor positioning solution and always
being there to answer my questions. Thank you to the rest of the Combain team for all the
good and fun times at the office.

I appreciate all of you, thank you.

3

4

Contents

1 Introduction 7
1.1 Problem description . 8
1.2 Indoor positioning overview . 8
1.3 Related work . 9
1.4 Contributions . 10
1.5 Structure . 11
1.6 Terminology . 12

2 Technical Background 13
2.1 Combain Positioning Solutions . 13

2.1.1 Splitter . 15
2.1.2 Bundler . 15
2.1.3 Future version . 15

2.2 Big data . 16
2.3 Apache Hadoop . 16

2.3.1 MapReduce . 17
2.4 Apache Spark . 18

2.4.1 Architecture . 18
2.4.2 Resilient Distributed Datasets 19
2.4.3 Directed Acyclic Graph . 20
2.4.4 Stream processing . 21

2.5 Apache Flink . 21
2.5.1 Architecture . 22
2.5.2 Dataflows . 23
2.5.3 Programming in Flink . 23

2.6 Amazon Web Services . 24
2.6.1 Amazon S3 . 24
2.6.2 Amazon EC2 . 24
2.6.3 Amazon EMR . 25

5

CONTENTS

3 Approach 27
3.1 Way of working . 27
3.2 Development . 27
3.3 Evaluation . 28

4 Prototype implementation 31
4.1 Architecture . 31
4.2 Input & data structure . 32
4.3 Splitter . 33
4.4 Classifier . 33
4.5 Bundler . 33
4.6 Output . 35
4.7 Deployment . 35

5 Measurements 37
5.1 Precision and approach . 37
5.2 Determining cluster instance types . 38
5.3 Cost efficiency and performance . 39
5.4 Scalability . 40
5.5 Memory usage . 40
5.6 Cluster and driver load . 41
5.7 Bottleneck . 44
5.8 Throughput . 45
5.9 Virtualized and local cluster comparison 45
5.10 Simple version of prototype . 46
5.11 CPS measurements . 47

6 Discussion 49
6.1 Prototype evaluation . 49
6.2 Precision . 51
6.3 Comparison of the prototype and CPS 52
6.4 Deployment . 53
6.5 Thesis evaluation . 53

7 Conclusion 55
7.1 Conclusions . 55
7.2 Future Work . 56

Appendix A Input dataset 65

Appendix B Track output 67

Appendix C spark-submit 69

6

Chapter 1
Introduction

The Internet of Things makes it possible for people to be connected with many different
kind of devices at any time. It provides several solutions and has a huge impact on the way
we interact with technology today. Such solutions could be smart homes, where you can
control anything in your house with just your phone from anywhere. Other solutions are
self driving cars, keeping track of devices or even smart cities where traffic congestion and
pollution is minimized. Not only does the Internet of Things provide comfort and ease, but
may provide economical savings, a positive environmental impact and new life changing
innovations. Within the Internet of Things there are billions of connected devices and
Cisco predicts that over 50 billion devices will be connected by 2020 [Evans, 2011].

Many of todays use cases require the position of connected devices. For example, if
a medical device is lost in a hospital and the device is connected, it would be possible to
get its position and perhaps room number in the hospital. Traditionally, such positioning
has always been solved with GPS, however, as this is in an indoor environment where GPS
signal is poor, other creative solutions have to be adapted.

Combain Mobile AB provides such indoor positioning solutions today. Combain Posi-
tioning Solutions (CPS) is a positioning system providing a look-up service where one can
obtain a devices location in the world. CPS utilizes several advanced algorithms that learn
by processing large amounts of crowd-sourced geolocation data that is collected through
mobile apps from various users around the world. As the data is crowd-sourced, the quality
of it is not guaranteed. The data may also come in different forms from different sources.
It may have missing data, have malfunctions or even have invalid information. Therefore
Combain’s algorithms take a wide variety of factors into consideration.

Combain gets crowd-sourced geolocation data in huge amounts, today over 50 millions
of data samples every day. The database contains over 57 billions of positions, over 1.5
billion Wi-Fi networks and over 95 millions of cell towers. Yet more data is needed in
order to improve the precision of positioning and it is expected that the incoming data may
increase up to 10,000 times. In order to process such huge amounts of data, a big data
solution may be necessary.

7

1. Introduction

1.1 Problem description
To be able to efficiently process this huge amount of data it is proposed that the current
positioning system is adapted to a big data solution such as Apache Spark [Zaharia et al.,
2010] or Apache Flink [Carbone et al., 2015]. Therefore the purpose of the master’s thesis
is to analyze Combain’s needs for processing data, set up a platform, adapt CPS to the
platform and evaluate it. Concretely, the master’s thesis consists of the following four
main parts:

1. Measurements, evaluation and understanding CPS. This includes getting a general
knowledge of how the system works and its infrastructure and also taking measure-
ments in order to evaluate the current scalability, performance and cost efficiency.

2. Understanding, testing and learning the proposed solutions; Spark and Flink. Which
tool may be best suited for the needs and requirements of CPS? How can CPS be
adapted to one of the tools?

3. Implementing a prototype. In order to evaluate howCPS can be adapted to a big data
solution a prototype should be developed. In short, taking some of the very basic
functionalities of CPS and implementing them in a big data solution environment
with the focus on the CPS infrastructure from start to end.

4. Final evaluation. Measuring different aspects of the prototype and making a rough
comparison to the current system.

The purpose is to evaluate whether CPS may be adapted to a big data solution and
determining whether a Spark or Flink implementation is a viable choice. The prototype
should help Combain to determine whether such a solution is suitable for their needs and
also give a general understanding on how CPS may be improved in order to improve scal-
ability and efficiency.

1.2 Indoor positioning overview
The general problem that is to be solved by such an indoor positioning solution can be
seen in Figure 1.1.

Figure 1.1: Overview of an indoor positioning solution.

8

1.3 Related work

Data is collected by phones, by multiple users in different parts of the world walk-
ing around in different environments. This data comes in formatted, as presented in Ap-
pendix A. Thereafter it is processed by the program in two main steps. At first, the data
is split per building. Secondly, the program estimates the geolocation positions that the
user walked in each building. Finally, the output is a form of model that estimates a path
the user has traveled, formatted as presented in Appendix B. The data is later on used for
different purposes such as visualizing the path or learning and improving from the newly
collected and processed data.

1.3 Related work
Big data is a well-established field that is growing exponentially. Many projects have
evaluated the performance of different big data frameworks on different clusters and com-
puter specifications. Positioning, specifically indoor positioning is a very well-established
field with many research projects focusing on the precision of different methods and al-
gorithms. The combination of big data and indoor positioning solutions is established,
but it is fairly weak and has a low amount of public research. It is also worth noting that
virtualized environments are the focus of the thesis, as the solution should be deployed
on virtualized clusters in the cloud, adding a third component to the mix. A majority of
research conducted on big data framework evaluation considers both local and virtualized
environments.

[Lopez-Novoa et al., 2017] developed an overcrowding detection algorithm and eval-
uated its performance and precision when run as a Spark job. The algorithm was based
on trilateration just as the algorithm in the prototype developed in this master’s thesis.
Through known access points locations, trilateration and device density calculations it
was possible to obtain a model of the most crowded areas at a large-scale event. The algo-
rithm’s precision was accurate and can be seen in Figure 8 and 9 in [Lopez-Novoa et al.,
2017, p. 12]. For the performance evaluation, [Lopez-Novoa et al., 2017] generated larger
datasets from real data and tested Spark’s performance on a small non-virtualized cluster.
It was found that the program scaled 7.28x up to 8 cores from one, but only 9.58x on 16
cores with no significant bottleneck.

[Zhao et al., 2018] investigated a tracking scheme for target gangs using Wi-Fi posi-
tioning. This was done by analyzing Wi-Fi connection history on mobile devices together
with large-scale data on access point locations. By having the large-scale data available,
[Zhao et al., 2018] could locate target gangs with only a small number of monitored de-
vices.

There are a wide variety of big data frameworks and architectures available and many
more are emerging. While the thesis focuses on Spark and Flink in particular, there are
more that could be evaluated in the same aspects.

[Ovidiu-Cristian et al., 2016] compared Spark and Flink. Several cluster sizes and
datasets were evaluated for a few different types of programs. The general conclusion was
that the choice between the frameworks strongly depends on what kind of program they
will be used for. There were several tests where Flink clearly outperformed Spark by up to
1.5x and some where Spark was up to 1.7x faster than Flink. The comparison showed that
configurations and optimizations are less tedious in Flink. For example, memory man-

9

1. Introduction

agement played a more crucial role in Spark since Flink handled the Java virtual machine
(JVM) heap and garbage collection more efficiently. Optimizations were found to be au-
tomatically built-in Flink while for regular Spark jobs this had to be done manually. Other
parameter configurations were found to be more tedious in Spark, even managing Spark’s
resilient distributed datasets (RDD) in code.

Other recent research done between 2016 and 2017 emerges similar conclusions. [Chin-
tapalli et al., 2016] found that Spark streaming had a higher latency than Flink and Storm
but could handle a higher throughput of data. Meanwhile in a different stream processing
framework comparison, [Karakaya et al., 2017], it was found that the resource consump-
tion when scaling the amount of nodes in a cluster scaled well in both Spark and Storm as
opposed to Flink.

When considering precision evaluation and implementation of indoor positioning so-
lutions, [Weyn and Schrooyen, 2008] presented a method of assisting indoor positioning
with GPS data. It was concluded that the combination can solve accuracy issues relatively
easy and in an economical way. [Brouwers and Woehrle, 2011] evaluated different posi-
tioning algorithms using either GPS orWi-Fi data and a combination of both to detect user
dwelling, a point of interest where a user has dwelled at from sensor data. It was verified
that GPS is themainmeasurement for detecting dwelling but the algorithm gets a lot of help
from Wi-Fi data. Furthermore, [Yassin et al., 2014] researched the performance of multi-
ple Wi-Fi positioning techniques based on received signal strength indication (RSSI). The
techniques were variations of RSSI-based trilateration, which was used in [Lopez-Novoa
et al., 2017], and RSSI fingerprinting. Their experiments concluded that fingerprinting
was the most accurate approach but no conclusions regarding performance were made
and future work in this aspect is necessary. Moreover, [Ang et al., 2017] measured the
performance and accuracy of different indoor positioning solutions by developing a mea-
surement framework. While the work is still in its preliminary stages, some conclusions
regarding time drift in different solutions were made. Finally, an interesting work of [Liu
et al., 2007] compares 20 different indoor positioning solutions frommultiple aspects such
as accuracy, precision, scalability, robustness, cost and more.

1.4 Contributions
All of the parts of the master’s thesis work has been done by the author. This includes
research, development, set up on Amazon Web Services (AWS) and evaluation of the pro-
totype on AWS. Evaluation of CPS was performed in close contact with Combain. The
logic behind some algorithms implemented in the prototype are by Combain, however
modification, adaptation and implementation of them in the prototype was done by the
author.

As stated in Section 1.3, several research projects have evaluated big data frameworks
and several research projects have evaluated indoor positioning. The combination between
the two is a contribution to the community as a result of the master’s thesis.

10

1.5 Structure

1.5 Structure
The thesis is structured in a way that the thesis subject, objective, relevant technical knowl-
edge is introduced along with the approach to achieve the objective at first. Thereafter the
results are presented in the form of a prototype description and measurement presentation.
Finally, discussions and analysis are conducted to conclude the master’s thesis. Below is
a short outline of each chapters content.

Introduction Introduces the thesis subject, problem, goal and scope of
work.

Technical Background Describes the technical details of the major technologies and
tools used during the thesis.

Approach Methods, techniques and the way of working used to solve
the problem and achieve the objectives are described.

Prototype implementation Describes the implemented prototype.
Measurements Presents the results of the measurements from the tests con-

ducted on the prototype and Combain’s current system.
Discussion Discusses the final results and evaluates the measurements.
Conclusions Summarizes the major findings of the thesis and presents a

baseline for future work in the subject area.
Appendix Contains larger examples that are referred to throughout the

thesis.

11

1. Introduction

1.6 Terminology
Access point Wi-Fi, Bluetooth or Cell access point.
AWS Amazon Web Services, a cloud-based service provided by Amazon for use of

servers, storage and more.
Bundler Component of CPS that emits a 3Dmodel of a session. The core of the indoor

positioning solution.
Combain Combain Mobile AB.
CPS Combain Positioning Solution.
EC2 Amazon EC2, a virtualized instance service on AWS.
EMR Amazon EMR, AWS service providing cluster computing and management.
Flink Apache Flink, a tool to provide big data solutions using stream based process-

ing.
Hadoop Apache Hadoop, one of the first tools to provide big data solutions.
HDFS Hadoop Distributed Filesystem, a filesystem provided by Hadoop.
Job An execution of a program in a big data solution.
JVM Java Virtual Machine.
Prototype The prototype that was developed during the master’s thesis.
RDD Resilient Distributed Dataset, a Spark specific functionality. It works as a

regular list that is distributed throughout a cluster who’s operations can be
parallelized by Spark.

RDS Amazon Relational Database Service, a database service on AWS.
RSSI Received Signal Strength Indication, a value indicating the signal strength to

an access point.
S3 Amazon S3, a service for cloud storagewhich integrates seamlessly with other

AWS products.
S3 bucket A reserved space on Amazon’s S3 filesystem.
Sample A session consists of multiple samples, where each sample contains data of

one access point.
Scan A scan is obtained and collected data at a certain time and each scan consists

of multiple samples.
SDK Software development kit.
Session Collection of data derived from one user session.
Simple prototype The simple version of the prototype that implements only basic trilateration

without optimization.
Splitter Component of CPS that splits a session into tracks.
Spark Apache Spark, a tool used to provide big data solutions using batch oriented

processing.
Track An ordered sequence of scans.
vCore Virtualized core.

12

Chapter 2
Technical Background

This chapter describes the relevant systems, tools and techniques used in the master’s the-
sis. At first a more in-depth explanation of Combain’s current system is given. Thereafter
an introduction to big data and Apache Hadoop, one of the first major big data tools, is
given. Furthermore a more extensive description of both Apache Spark and Apache Flink
is provided. Finally, a brief explanation of the relevant parts of Amazon Web Services is
given.

2.1 Combain Positioning Solutions
Combain Positioning Solutions (CPS) is based on crowd-sourced geolocation data that is
collected and processed in order to provide a look-up service that can locate where in the
world for instance a device is. CPS consists of both outdoor and indoor positioning, the
focus of the thesis is the indoor part of CPS. Indoor look-ups consist of both latitude/lon-
gitude position and the level of a building. Current estimates include a 5 meter precision
on indoor look-ups. [Combain Mobile AB, 2018]

The geolocation data is collected through the CPS software development kit (SDK)
which is integrated in apps on mobile phones, usually an app that is a different Combain
product. This can be seen in the high-level infrastructure for CPS in Figure 2.1. There is
also a specific CPS app developed specifically for gathering data only and is often used
as a troubleshooting and debugging app. This app can take user input and interaction to
help with the collection of data. When such an app is running, the SDK will collect data
in the form of packets, or so called scans. Every 5 seconds a scan is collected which is
a collection of samples. Each scan contains for example GPS positioning data, detected
Wi-Fis/Bluetooths and the signal strength to them, pressure, step counter, direction and a
timestamp. A sample in a scan would for instance be one detected Wi-Fi. On average one
scan contains around 10 samples. The aim is that data is only collected while the phone is
in motion. Therefore, the SDK will detect when a user is idle and will quit automatically

13

2. Technical Background

if idle. The SDK will also terminate data collection when the velocity is too high, only
data that is collected with walking speed is relevant since it is not common to have high
speeds indoors.

Figure 2.1: Overview of the CPS infrastructure.

See Figure 2.1 for an overview of the CPS infrastructure. While the app is running,
the data is sent to a server continuously over the cellular network to a database located
on Amazon Relational Database Service (RDS). When the session is done, the data is
further sent to the splitter, which is explained in Section 2.1.1 in more detail. The splitter
divides the session into multiple tracks, one per building, and replies its results back to
RDS. Thereafter the first part of the bundler executes algorithms on the tracks to obtain
positioning data and a 3D visualization model of each track. The bundler is explained in
more detail in Section 2.1.2. It replies its intermediate results back to RDS and finally the
building bundler uses learning to improve the positioning in a building, which is also saved
to RDS. Finally, positioning look-ups are available on devices in the specific building.

Figure 2.2: Example real path track (left) compared to the esti-
mated track by CPS (right).

Figure 2.2 contains an example of a session. The real path a user has traveled can be
seen on the left and the estimated path by CPS on the right.

14

2.1 Combain Positioning Solutions

2.1.1 Splitter
The splitters purpose is to divide the session into multiple tracks, one for each building.
During a session, users will walk between buildings but for this part of CPS the outdoor
positioning is not relevant so the splitter essentially determines which sections of the ses-
sion are relevant to process. On average, split tracks are 60 scans long but this may vary
depending on building and user. If the user only entered an office and walked up the stairs
to some place, the track may be short, but if the user was walking around in a shopping
mall the track could have been longer. The longest possible track is from the point that the
SDK detects movement until it quits (either manually or automatically).

The splitter is an algorithm consisting of multiple steps to determine the relevant parts
of a session. Through a combination of these steps the initial session can be split into
tracks per each visited building. In short, the algorithm looks at many factors such as
timestamps between scans, calculating mean velocity and GPS accuracy over different
sections or checking whether there are near buildings using OpenStreetMap API [Haklay
and Weber, 2008].

2.1.2 Bundler
The bundler, as the name might suggest, does not actually do any bundling. The name
comes from Bundle Adjustments [Triggs et al., 1999, p. 1-3] but has stuck with the system
as it has strayed away from this concept over time. What the bundler actually does is a
form of batch optimization similar to bundle adjustment.

The core concept is that the bundler takes a track as input and calculates a latitude,
longitude and level position for each scan in the track. This model is later used for visual-
ization in 3D by a different program.

The first step of the bundler is to estimate the location of access points seen during the
track. Often the access points already have an estimated position in Combain’s extensive
database and in such cases that position may be used and also perhaps improved by this
new data. Thereafter the bundler performs various algorithms such as Simultaneous Lo-
calization and Mapping (SLAM) in order to estimate a real-world path in 3D of the track.
For the curious reader, an excellent tutorial by [Durrant-Whyte and Bailey, 2006] covers
SLAM in detail. Additionally, the bundler uses several internal learning algorithms devel-
oped by Combain to improve the positioning of each building, this is done at the end for
each building that the new tracks were located in.

2.1.3 Future version
In the future, it is envisioned that CPS will also have a third step. A classifier between the
splitter and bundler. The purpose of the classifier would be to calculate some statistics of
each track, some examples are unique detected Wi-Fis, amount of scans, time length or
mean velocity. The idea is that the final output will be both a model of the track and some
statistics of each track. A second purpose of the classifier would be to calculate some kind
of importance index for each track which is used to determine on how important bundling
of this track is in terms of learning, and also learn from this to see which kind of tracks
are the most useful for learning.

15

2. Technical Background

The priority in the future is to make a more efficient system that is scalable for larger
amounts of data while still maintaining the same and even better precision.

The future version is also planned to use more sophisticated machine learning algo-
rithms and neural networks in order to improve the models of buildings.

2.2 Big data
When does one consider data being in the big data category? It can be considered in the big
data category when some difficulties appear with managing the data efficiently. Generally,
there are two types of datasets in big data.

Firstly, unbounded datasets that can be seen as streams of data. Unbounded datasets
have no specified size and are constantly growing as data comes in real-time from some
source. Examples of this could be for instance log files, online purchases or stocks. As
it is unknown when the dataset will stop growing, or if it ever will, the data that comes
in to the dataset must be processed in real-time. This concept is often called stream-
based processing and comes with some specific problems that are important to handle, for
instance managing failures, data that arrives out of order if the data is order-dependent or
data that arrives late. [Apache Flink, 2016c]

Secondly, bounded datasets that can be seen as regular datasets, unchanging in size.
Often these datasets are divided into batches for efficient parallelism. This concept is often
called batch processing and it is common to automate certain tasks within it. For example,
queuing a series of programs that will execute in a sequence without any user interaction.
According to [ITRelease, 2012], such processing comes with a few advantages such as less
stress on the processor and little user interaction. However, the disadvantages are that it
may be difficult to debug or that in a series of batch computations, if one batch computation
stalls for some reason, the others will have to still wait.

Both of the datasets may also be processed by their opposite. For example, bounded
datasets may be seen as micro-batches and processed in real-time everytime a micro-batch
comes in to the input. Similarly, unbounded datasets may be divided into chunks based on
for example time or size and also processed as micro-batches.

2.3 Apache Hadoop
One of the first big data tools to emerge on the market was Apache Hadoop [Nandimath
et al., 2013]. It was developed to make parallelization of programs less cumbersome. The
main idea is that it will handle the complex aspects of parallel programming and let the
user focus on the rest of the program, making it suitable for big data processing [Ovidiu-
Cristian et al., 2016, p. 1]. Both Spark and Flink have later on emerged from Hadoop and
use newer and more sophisticated infrastructures to achieve big data processing.

In parallel programming, it is common to use multiple hard drives to read data simul-
taneously instead of one as it is faster. However, using multiple hard drives comes with
two issues that are solved by Hadoop according to [White, 2012]:

1. It is possible that one of the hard drives in the set can fail. Hadoop provides a
reliable shared file system, the Hadoop Distributed Filesystem (HDFS) to mitigate

16

2.3 Apache Hadoop

this, without keeping copies of the same data across multiple hard drives.

2. Some programs will require that data in one hard drive must be combined to some
data structure with data from a different hard drive. This is solved by Hadoop’s
programmingmodel,MapReduce. MapReduce is further explained in Section 2.3.1.

Besides HDFS and MapReduce, Hadoop has a third important component, YARN.
YARN is a cluster manager, or an architecture that helps with deploying clusters and man-
aging their components such as masters and nodes. [Dean and Ghemawat, 2008]

2.3.1 MapReduce
Hadoop is based on the MapReduce programming model. The concept is to improve the
efficiency of programs by providing an effective way of parallelization. [Dean and Ghe-
mawat, 2008]

Lets say we have a set of text files and we would like to count the total occurrences
of some words across all of the text files. A regular algorithm would perhaps consist of
a nestled loop that goes through each file and each word in a file incrementing a counter
corresponding to a word, for example with a Map. Instead, a MapReduce implementation
would instead consist of a map phase which is parallelized by a master program and each
text file is counted on in parallel by separate workers. The emitted result from the map
phase would be a set of key value pairs where the key is the word and the value is its
occurrences in a file. Finally, the reduce phase is performed at master level to go through
all lists of key value pairs and only sum the final counters to get the count of words across
all files. [Dean and Ghemawat, 2010]

Besides the two main phases, there are several intermediate phases. Splitting splits the
input so that each worker gets a chunk, shuffling sends the data from mappers to reducers,
sorting that sorts the lists by key before the reducers receive them and combiner that com-
bines the values of keys. Figure 2.3 shows a flowchart of a MapReduce word count job as
previously explained.

Figure 2.3: Flowchart of a MapReduce word count job.

17

2. Technical Background

2.4 Apache Spark
Apache Spark is an open-source tool for fast and efficient data processing based on batch
processing, and is currently used by many different companies such as Amazon, eBay,
Yahoo! and Intel [Zaharia et al., 2010]. Spark started of as a research project by researches
who found MapReduce from Hadoop inefficient for interactive and iterative algorithms,
which is what Spark specializes in [Karau et al., 2015, p. 6]. Spark supports the Scala, Java
and Python programming languages and it is itself written in Scala and runs on the JVM.
Spark has several additional extensions for specific operations such as SQL, streaming,
machine learning or graph processing.

Spark is based on a functional concept and as opposed to Hadoop, where MapReduce
consists of the two main stages map and reduce, Spark can consist of many. The stage
concept is based on Directed Acyclic Graphs (DAG) which are further explained in Sec-
tion 2.4.3.

Programs can be run in a shell by programming directly in Scala or Python. The usual
case is however that compiled programs in the form of for example a .jar file are submitted
to Spark and run as so called Spark jobs. During execution, there is a local web interface
that can be accessed which provides the user with various information regarding the cluster
environment and the jobs.

The following subsections will give a more detailed view of the major components
of Spark in order to understand its overall architecture and some of the basic concepts to
consider when programming with Spark.

2.4.1 Architecture
On a cluster, a Spark program consists of a driver program and a set of executors which are
located on separate worker nodes, see Figure 2.4. The main idea is that the driver program
schedules tasks and distributes them among the executors through a SparkContext object.
The executors thereafter execute these tasks and finally reply their results back to the driver
program which summarizes the final result. The driver does not perform any tasks itself.
The cluster’s resources are managed by a cluster manager. There are several supported
cluster managers such as Hadoop’s YARN, Mesos, Kubernetes or Spark’s own cluster
manager. [Apache Spark, 2017]

Figure 2.4: Spark architecture. [Apache Spark, 2017]

18

2.4 Apache Spark

When a job is submitted to the driver program, the driver will split the job into multiple
tasks and distribute the tasks among the executors. This is utilized by Spark’s datastructure
resilient distributed dataset, which is explained in more detail in Section 2.4.2. It is also
possible to run multiple clusters at the same time, however, according to [Apache Spark,
2017], the different clusters are isolated from each other and the tasks run in different
JVMs. In some cases, it is also possible to have multiple driver programs in a cluster to
make even more efficient parallelism possible.

2.4.2 Resilient Distributed Datasets
A Resilient Distributed Dataset (RDD) is a collection of elements that are scheduled to
and processed by different worker nodes in the cluster. Data that is loaded into Spark is
stored in an RDD, which is the main data structure of Spark. Each worker node has its
own distribution of the RDD located in their cache and the driver has a reference to it.
When the driver runs an operation on an RDD, it distributes the application code among
the worker nodes and they run it on their distribution of the RDD [Apache Spark, 2017].
RDDs can be created in two ways: [Karau et al., 2015, p. 23]

1. Converting an existing data structure located in the driver program.

2. Creating a fresh RDD by reading an external dataset. Spark supports a variety of
input sources such as text files, JSON, CSV or Sequence Files and it is also possible
to define custom input sources with the help of Hadoop. [Apache Spark, 2018a]

An example Spark program can be see in the Scala code snippet in Listing 2.1. On the
first line, sc or SparkContext creates a fresh RDD from a dataset located in a filesystem.
By default the RDD will be a collection of lines located in the text file. At this point, the
dataset is only a pointer and is not yet loaded into memory [Apache Spark, 2018a]. If the
path was a folder consisting of multiple text files, Spark would have created one single
RDD consisting of all the lines in the different files.

1 va l l i n e s = sc . t e x t F i l e (" d a t a . t x t ")
2 va l l i n e L e n g t h s = l i n e s . map (s => s . l e n g t h)
3 va l t o t a l L e n g t h = l i n e L e n g t h s . r educe ((a , b) => a + b)

Listing 2.1: Counting the length of a text file in in Spark.
[Apache Spark, 2018a]

Computations on RDDs may be done with two different operations: [Karau et al.,
2015]

1. Transformations, that perform some computation and return a new dataset, or RDD.
Transformations are lazy, meaning that the actual computation of it is not done until
an action that requires the result is executed. [Apache Spark, 2018a]

2. Actions, that perform some computation and return a value. These can be compared
to the reduce operation explained in Section 2.3.1 in that they create a new stage in
the DAG. [Apache Spark, 2018a]

19

2. Technical Background

Considering Listing 2.1 again. The second line is an example of a transformation, an
operation is specified that will transform each line of the RDD into the lines length. The
new RDD that is obtained is now in the form RDD[Int] instead of RDD[String] but
is not actually computed before an action is called on it. An action is called in the third
line of the example, which calculates the sum of all elements in the new RDD returning a
total length of the input file data.txt. If this example was run on a cluster, the driver would
break down the example into tasks and send the application code of the transformation and
reduction to each worker node to compute on their distribution of the data.

As the driver sends the application code to each worker node, this means that if the
application code was for example a print statement, the worker nodes would only print to
their own console. This is because the application code is sent along with copies of the
different variables that are used. Similarly, if these variables were to be modified by the
worker nodes, the worker nodes would only modify their own copy [Zaharia et al., 2010,
p. 2-3]. These are common closure issues in both Spark and general parallel program-
ming and are handled by two specific types of variables in Spark, broadcast variables and
accumulators [Apache Spark, 2018a].

2.4.3 Directed Acyclic Graph
As explained in Section 2.3.1 Hadoop’s MapReduce consists of two stages. The main
difference of Spark using Directed Acyclic Graphs (DAGs) is that the DAGS can contain
any number of stages. This means that in Hadoop multiple stages have to be split into
multiple jobs, which is avoided in Spark. [Zaharia et al., 2010] claims that this is much
faster than a regular MapReduce.

A DAG is essentially a chain of RDD dependencies. The code snippet in Listing 2.1
would have two stages in the DAG, the first stage would have the sc.textFile and map
operation and the second stage would have reduce which in fact is identical to how it
would be in Hadoop. However, if there was for example a flatMap after the map the
first stage would contain both first the map and then the flatMap. As a DAG is a chain,
visually it can be seen as a linked list of operations. For this example, the DAGwould look
like in Figure 2.5.

Figure 2.5: Example of a Directed Acyclic Graph.

20

2.5 Apache Flink

2.4.4 Stream processing
One of the extensions that Spark provides is streaming. This allows the processing of
data in real-time using a micro-batch architecture. Spark provides a so called discretized
stream (DStream) which is essentially an unbounded dataset that is continuously growing
over time. With the micro-batch architecture, a DStream is a collection of RDDs. For
example, if a folder is monitored, the DStream will listen for new files or updated files at
even intervals. If there is new data, then the new data will be collected into an RDD and
operations will be executed on it in real-time. [Apache Spark, 2018b]

1 va l s s c = new S t r e am ingCon t ex t (conf , Seconds (5))
2 va l l i n e s = s s c . s o ck e tT ex tS t r e am (" l o c a l h o s t " , 8080)
3 va l l o gL i n e s = l i n e s . f i l t e r (_ . c o n t a i n s (" l og "))
4 l o gL i n e s . p r i n t ()
5 s s c . s t a r t ()

Listing 2.2: Scala code counting the amount of lines that con-
tain "log" occur in a socket stream.

An example of a Spark streaming program can be seen in Listing 2.2. A Streaming-
Context is created instead of a SparkContext and the DStream is initiated on the second
line. The input comes as text from a socket line by line and is collected every five seconds.
As with RDDs, one can also execute regular operations on a DStream. This is done on the
third line, where all lines containing the phrase "log" are collected and thereafter printed to
the console on the next line. The actual stream does not start until the start() method
on StreamingContext is executed.

2.5 Apache Flink
Apache Flink is an open-source tool for fast data processing of large amounts of data
based on stream processing [Carbone et al., 2015]. Today it is adopted by companies such
as Uber, Netflix, Kings, Ericsson and Zalando. As opposed to Spark, it is based on a true
streaming model but does have a separate API for batch processing. Flink programs can be
written in the Scala, Java and Python programming languages. A Flink program consists
of three main components: [Deshpande, 2017]

1. Data source, the incoming data to the Flink program. These can for example be text
files, sockets or custom input formats.

2. Transformations, the operations that are executed on data coming from data sources.

3. Data sink, the output where the result of transformations is sent. These can for ex-
ample be text files, sockets, AmazonKinesis streams or other custom output formats.

Similarly to Spark, Flink programs also run on the JVM. During execution, Flink pro-
vides a local web interface that contains information regarding the cluster environment
and the jobs. Additionally, Flink allows users to submit new jobs in the web interface.

21

2. Technical Background

Flink consists of three main layers of components and supports several external li-
braries such as SQL or machine learning. See Figure 2.6 for an overview of its layered
component stack. Flink’s core, or the Flink program can be deployed locally, on a cluster
or in the cloud.

Figure 2.6: Layered component stack of Apache Flink. [Apache
Flink, 2016a]

The following subsections will explain the components and the Flink architecture in
more detail.

2.5.1 Architecture
An overview of the Flink architecture can be seen in Figure 2.7. A cluster consists of three
different types of nodes, the job client which executes the Flink program and the job man-
ager which schedules and distributes tasks among the task managers whom are the third
type of node. Task managers may have multiple multi-threaded task slots just as worker
nodes may have executors in Spark to maximize parallelization efficiency. However, as
opposed to Spark, the task managers communicate intermediate states regularly to the job
manager. [Deshpande, 2017, p. 9]

Figure 2.7: Apache Flink architecture. [Deshpande, 2017]

A Flink program to be executed is at first sent in the form of a JobGraph to the job
client [Apache Flink, 2016a]. JobGraph is an abstraction model Flink uses similarly to
MapReduce used by Hadoop or DAG used by Spark, it is explained in more detail in
Section 2.5.2. The job client distributes the JobGraph among the job managers and they

22

2.5 Apache Flink

distribute it further among the task managers who execute on their distribution of data and
send the results back to the job manager. Finally, once a job manager’s all tasks are done,
the results are sent back to the job client. [Deshpande, 2017, p. 8-10]

2.5.2 Dataflows
Upon executing a Flink program, the program ismapped to a JobGraph, ormore commonly
regarded as a dataflow. A dataflow resembles a DAG in Spark and consist of several
stages called operators [Apache Flink, 2016b]. An example of a dataflow can be seen
in Figure 2.8.

Figure 2.8: Example of a Flink dataflow. [Apache Flink, 2016b]

In the example dataflow in Figure 2.8, there is a source for the stream and a sink, where
the output is sent to. In between the source and the sink are the transformations. In this case
there is first a map operation executed on the input stream and thereafter a combination of
three operations, keyBy, window and apply, is executed. Each operator is executed in
parallel and is split into multiple sub-tasks which are executed in the task managers.

As there are streams which are unbounded, or infinite between the operators, Flink
uses a window concept which executes an operator on a window of data defined by a time
or size interval. This means that Flink uses the same concept for both stream and batch
processing. However, the difference between the two in Flink is determined by the various
functionality for the two. A simple example is that batch processing does not use Flink’s
checkpointing feature that saves intermediate streams in case of failure. [Apache Flink,
2016b]

2.5.3 Programming in Flink
See Listing 2.3 for an example code snippet in Scala that counts the length of a text file in
Flink. As seen, this is very similar to Spark (see Listing 2.1), except an ExecutionEnviron-
ment is used for reading the input stream. While programming is similar, the architecture
and overall concepts are what differs.

23

2. Technical Background

1 va l l i n e s = env . r e a d T e x t F i l e (" d a t a . t x t ")
2 va l l i n e L e n g t h s = l i n e s . map (s => s . l e n g t h)
3 va l t o t a l L e n g t h = l i n e L e n g t h s . r educe (_ + _)

Listing 2.3: Counting the length of a text file in Flink.

2.6 Amazon Web Services
Amazon Web Services (AWS) is a cloud service providing various solutions for remote
computing. These services are on-demand and there are currently over 19 product cate-
gories available in 190 countries. The idea is that individuals or companies can on-demand
request a cloud service, deploy their program or data on the cloud service with ease with-
out the need of having own servers or hardware. AWS comes with both comprehensive
documentation and several support plans to aid its users. [Amazon, 2018d]

There are a wide variety of product categories for storage and different types of com-
puting. The following subsections give a brief introduction to the main services used
during the thesis.

2.6.1 Amazon S3
Amazon Simple Storage Service (S3) is a data storage service built to be reliable, scalable
and easily integrated with other Amazon services. [Amazon, 2018c]

S3 is very similar to other cloud storage services but what differs is the back-end of
it. Front-end wise, as presented to the user, one simply creates a so called bucket which
is a storage filesystem. One can easily upload, download and perform various folder and
filesystem operations on a bucket. Buckets also come with a variety of settings and con-
figurations.

S3 is built to be easily scalable and have good performance, especially for reading and
writing from other AWS products. An example of this is that if the requests to a bucket are
raising, Amazon will automatically partition the bucket to maintain a good throughput of
requests.

The payment model for S3 is that one pays a certain price per GB stored in a bucket
per month. Larger sized buckets have less cost per GB which is determined by three tiers.
Besides storage, there are also fees for requests to the bucket.

2.6.2 Amazon EC2
Amazon Elastic Compute Cloud (EC2) is a service that provides virtualized compute en-
vironments in the cloud [Amazon, 2018a]. In short, these are virtual machines available
on demand in the cloud. There are a lot of different hardware configurations to choose
from to suit users needs and some configurations are optimized to be specifically used for
certain computing categories. Instances can have almost any OS.

Upon setting up an EC2 instance, one connects to it through SSH and has full access
to the whole instance through the command line.

24

2.6 Amazon Web Services

2.6.3 Amazon EMR
Amazon Elastic MapReduce (EMR) is a service provided specifically for managing and
computing on cluster environments for big data solutions [Deyhim, 2013]. EMR clusters
are deployed onHadoop and as a standard useYARN for the clustermanagement. Example
programs which EMR can install for clusters are Spark, Flink, Ganglia, Hive or HBase
among others [Amazon, 2018b].

When one creates a cluster of machines on EMR, Amazon will launch the machines
as EC2 instances and configure the cluster automatically. During set up, users choose
which nodes should be what kind of EC2 instance. With this possibility, users can easily
choose which programs, tools and services their cluster needs and what configurations it
needs. All EMR does is to install everything correctly and set-up a cluster which will be
immediately production ready for jobs. The clusters are made to be easily scalable, one can
choose to add or remove nodes to the cluster on the fly. Since AWS creates EC2 instances
for the cluster, it is possible to connect to these EC2 instances as regular if necessary.
Users can also define own bootstrap actions that will be run on selected nodes at start up
to install or configure any other needs.

The payment model for EMR is that you pay the regular EC2 instance price plus an
additional EMR fee for each instance in the cluster. Billing is calculated per second with
a one minute minimum.

25

2. Technical Background

26

Chapter 3
Approach

This chapter describes the scientific methods, technologies and other tools that were used
as aid in achieving the objectives of the master’s thesis. This includes the main measure-
ments that were taken to make the final evaluation.

3.1 Way of working
Themaster’s thesis followed the Scrumproject-methodology consisting of twoweek sprints.
Each sprint consisted of several stand-up meetings where progress and ideas were dis-
cussed with one larger meeting at the end of each sprint to conclude and plan the next
iteration.

The master’s thesis consisted of three main phases; initial research, development and
set-up and evaluation. The three phases were distinguishable but did intervene with each
other.

The early sprints consisted of a pre-study where initial research was done to gather
familiarity and knowledge with big data solutions and research similar scientific material
within both big data and indoor positioning. This included set-up of both Apache Spark
and Apache Flink on a local machine without a cluster environment in order to test their
functionalities with several code examples.

3.2 Development
In order to evaluate a big data solution and compare it to CPS, a prototype was developed.
The purpose of the prototype was to see how CPS can be adapted to a big data solution.
An uncertainty was that it may not be possible to adapt CPS to a big data solution while
efficiently utilizing the advantages of big data solutions. CPS consists of many internal

27

3. Approach

components intervened with several external components, making it a very complex pro-
gram.

Research was also continuously done during the development of the prototype. The
majority of the prototype was developed locally and tested on smaller datasets provided by
Combain. In order to help with testing on larger datasets, Lund University provided a local
cluster consisting of 12 machines. The prototype was tested on this cluster every time a
major functionality was added or modified. Locally, it was tested using VisualVM [Sed-
lacek and Hurka, 2017] for profiling and sampling in order to detect potential bottlenecks
and find optimizations.

LundUniversity’s cluster was built on top ofHadoop alongwith the underlyingHadoop
filesystem. Later on, when deploying the prototype on AWS, the cluster was still built on
top of Hadoop but Amazon’s S3 filesystem was used instead of HDFS.

A detailed description of the prototype is presented in Chapter 4. There were multi-
ple approaches possible to develop the prototype. The approach that was chosen was to
develop a prototype that implements the core functionality of the most important steps of
CPS. The purpose of this was to get an end-to-end program that shows the full workflow
of a big data solution. It was chosen to be developed in Spark, as the elements in the data
are dependent on each other and must be processed in batches.

The prototype consists of twomain parts, namely the splitter and the bundler. The split-
ter implementation follows the CPS splitter and implements the first and basic functionality
that yields the most splitting. The bundler implements an estimation of access points and
a trilateration algorithm. Since CPS implements a combination of several indoor posi-
tioning algorithms, it was deemed that a starting algorithm should be implemented in the
prototype. Therefore trilateration was chosen, as it is one of the most common algorithms
for indoor positioning and was a foundation that CPS has built on.

Even before the measurements were taken on CPS, which are presented in Chapter 5,
it was suspected that the database was a bottleneck of CPS. This factor along with the
fact that the prototype should later be deployed on EMR, which has a very promising
integration with S3, played a role in the choice that a filesystem being used for the input
and output.

3.3 Evaluation
Together with Combain, it was deemed to be of most interest to investigate how scalable
the prototype is in comparison to CPS while also considering the performance of both.
This would yield some numbers that could be used to determine what would happen when
the amount of users and data increases. Another factor that was deemed interesting was the
cost. By determining the cost to process certain amounts of data and if the results showed
that the cost is lower for the prototype, one could make an evaluation to see whether it is
worth investing in developing a big data solution in long-term. A third aspect of interest
was to determine bottlenecks, to see what could be a limiting factor in the programs in or-
der to consider those factors extra carefully during development and architectural choices.
Besides the three main measurements, several other measurements were taken as they
were deemed as interesting, especially for the prototype. This includes cluster and driver
load to see how the cluster performs at different cluster sizes and to see how the driver is

28

3.3 Evaluation

affected when scaling a cluster. As a local cluster was available, a comparison between
the local cluster and a virtualized cluster on AWS was also deemed as interesting. Some
measurements were also taken on a simple version of the prototype, which only imple-
mented a standard trilateration without optimizations, more on the prototype is described
in Chapter 4. The main measurements that were taken for both the prototype and CPS are:

• Scalability, determining how scalable the system is by looking at how much data
can be processed at different amount of cores.

• Performance, for example how much data can be processed every second.

• Cost efficiency, for example how much data can be processed per dollar.

• Throughput, determining how much data the system can handle to process. Which
configurations are possible to have to process today’s incoming data while still main-
taining a buffer if more data should come in?

• Bottleneck, determining which part of the system that will stall the entire system
first.

• Memory, determining how much memory is used by the JVM at nodes at different
amounts of input data.

Measurements were taken on real data copied over several files to create a larger work-
load and on generated similar data of various size and content to test a more realistic
distribution. For this, a data generator was written in Scala that takes a real dataset as
input and outputs multiple similar datasets with varying sizes and content.

The prototype was deployed in the cloud on Amazon EMR where the final measure-
ments were taken with the help of Hadoop, Spark and Ganglia’s web interfaces. The CPS
measurements were taken on Amazon EC2. The measurements which involve financial
cost have their cost presented as on-demand prices for AWS in the EU Ireland region.

29

3. Approach

30

Chapter 4
Prototype implementation

This chapter will focus on a description of the prototype’s architecture and components in
detail.

4.1 Architecture
The prototype implements the core functionality in each step of CPS in order to have an
end-to-end program (from a certain input to a certain output with only some degree of
precision) so that measurements and evaluations can be taken on a big data solution as a
whole. The prototype was developed for Apache Spark using Scala. Some Java was also
written when external libraries were necessary or when extending the Hadoop API.

Figure 4.1: High-level overview of the prototype.

A high-level overview of the prototype can be seen in Figure 4.1. The input is handled
in two ways, either by batch processing or by streaming. The input is stored in an Amazon
S3 bucket folder, the prototype checks whether there are any files to process in the folder

31

4. Prototype implementation

and processes them. If there was no files or after the initial files have been processed it
goes into Spark streaming mode by starting up a StreamingContext. This means that the
prototype will listen for new data according to a specified time interval.

Due to the nature of Spark, if multiple files arrive within the same time interval these
are merged and treated as one session. The same applies if there are multiple input files at
the start of execution.

The processing is performed in three steps. First the splitter splits the input data into
multiple tracks. Thereafter a new functionality that does not exist in CPS is performed,
the classifier. The classifier calculates statistics of each track. Furthermore the bundler
processes each track and finally stores each tracks metadata and model back to a different
folder on the same S3 bucket.

4.2 Input & data structure

Since the input that Spark receives are text files in the form of comma separated values,
the initial data structure is merely a matrix of strings. In this case each line of the input
is a sample and each sample is divided into a list of data that each sample contains. An
example of input data can be seen in Appendix A, this input is only an example and a real
dataset consists of over 40 columns. Optimally, big data solutions are used in such a way
that the input can be immediately processed by invoking iterative functions which process
the input with no respect to order. If such an input was used, the initial RDDwould consist
of a list of samples, but it is not possible to perform the desired algorithms on individual
samples. Thus, the initial data (the session) requires preserved order and optimally the
initial RDD should have one element only which is the session (which can be seen as an
initial track to be further split). Another requirement is that the prototype derives metadata
during execution, which should be mapped to each track, this also requires changes to the
RDD data structure.

The first and easiest solution was to collect the initial RDD to the driver and transform
it to a new desired RDD structure. This is not efficient since all data has to be collected
by the driver and it is time consuming and does not scale well. Therefore a custom input
format had to be developed by extending the existing Hadoop FileInputFormat and
RecordReader while making a new type that the input format will use. This imple-
mentation allows the prototype to read in the data to any desired RDD structure, in this
case as one element containing the session to be further split. In the end, the final RDD
data structure is in the form; RDD[(TrackContents, Metadata)].

The RDD is essentially a list of pairs, where each pair is one track containing Track-
Contents which is a matrix of strings containing the samples in each track and Meta-
data which is a map containing the metadata derived during execution. The key of the
map is a parsable string, for instance "unique_wifis", and then the value of the map
contains the accompanying value of the key. The data structure makes it easy to manage
both metadata and the samples of each track. Initially, this RDD contains one element, the
whole session (or input deemed as the initial track) as seen in Appendix A.

32

4.3 Splitter

4.3 Splitter
The prototype implements two split algorithms, namely splitting on time and velocity.

Since the input comes in as one session, it is costly to do the first split as it can not
be parallelized. However, after the first split algorithm the next would have several tracks
as input and be more parallelizable. This means that the workflow of the splitter becomes
more parallelizable the further it goes, with no parallelization in the beginning.

Therefore a coarse splitter was implemented. The purpose of the coarse splitter is to do
a rough split in the beginning in order to obtain some parallelization. The coarse splitter
splits the RDD into reasonable chunks of the same size and afterwards checks the chunks
boundaries in case some should be joined due to them being in the same track. The amount
of parallelization in the next stage is dependent on the selected chunk sizing which can be
customized in the coarse splitter, one could very likely derive a formula for optimal chunk
size given an input length, however this formula might be dependent on several variables
such as available cores.

In order to split into sections of velocities, the algorithm needs to calculate a distance
between two positions given in latitude longitude. Before a distance can be calculated
the geographical coordinates must be converted to cartesian coordinates that give a 2D
representation that only suffers in accuracy for larger areas which are omitted in this thesis.

While the splitter maintains most of Combain’s logic, it works on different data struc-
tures to suit the Spark environment, or a big data environment in general.

4.4 Classifier
The classifier calculates a set of statistics for each track, it is a simple algorithm that is
invoked on each track through a map operation and traverses each sample in every track
while updating the metadata map. These statistics are for example mean values for GPS
coordinates or the amount of unique Wi-Fis or Bluetooths that were seen, a more exten-
sive example can be seen in the output of the program in Appendix B. The classifier also
generates a unique track ID that is later used in the bundler.

4.5 Bundler
The implemented bundler only performs a fraction of what the CPS bundler does. The first
step is that each tracks access points location is estimated. In some cases, there is a known
location of access points. However when there is none, a mean value of the positions
where a certain access point was detected is calculated. This mean value is converted to
cartesian coordinates which will be required when a model is estimated.

Thereafter the RDD containing the tracks is split into an RDD containing scans where
each scan has a certain track ID that was derived from the classifier to keep track of which
scan belongs to which track. By splitting the RDD into scans more parallelization is ob-
tained. For each scan, a position is estimated. Such positioning can be implemented with
various algorithms as presented in [Liu et al., 2007, p. 1077]. The prototype is imple-
mented with a trilateration algorithm with some additional optimization functionality.

33

4. Prototype implementation

Figure 4.2: Trilateration example for three access points with var-
ious signal strengths.

The concept of trilateration can be seen in Figure 4.2. Based on the RSSI to each
access point in a scan, a probability radius is calculated around that access point. This is
done for every access point and then an intersection between the circles is estimated to
get a position. This is what the bundler does. However, for each scan it also randomizes
different starting positions for the trilateration. The different residuals are finally compared
and the most optimized position is chosen. During trilateration the locations are calculated
in cartesian coordinates and converted back to geographical coordinates at the end.

Mathematically, this algorithm requires complex operations. For these operations a
Java library, Colt [Binko et al., 2004], is used. There are two mathematical parts of this
trilateration which can be seen as the most complex time-wise and they are performed for
each scan. The first one being a series of various operations such as matrix multiplication,
division, inverse, transpose and calculating the second norm. Secondly, a singular value
decomposition (SVD) is calculated of a matrix, a costly operation for large matrices with
a complexity of O(min{mn2,m2n}) [Holmes et al., 2007].

The SVD is taken of a 2x2n matrix, where n is the number of access points seen in
a scan. This can vary between sessions and tracks as some areas may have much more
access points than others. As the matrix always has two columns, the complexity of the
SVD is O(min{2n2, 4n}). The purpose of singular value decomposition is to find a three
matrix decomposition of a matrix A such that Equation 4.1 holds, where U and V have the
properties in Equation 4.2.

A = USVT (4.1)

UTU = I VTV = I (4.2)

The decomposition consists of finding AAT and AT A. U is given by the eigenvectors
of AAT and V is given by the eigenvectors of AT A. Finally, S is a diagonal matrix where
the values are given by the square roots of the eigenvalues of both AAT and AT A. AAT and
AT A is given by a matrix multiplication. Thereafter the eigenvectors have to be computed
for both. This consists of first finding the eigenvalues by solving an equation system and

34

4.6 Output

secondly solving another equation system for each eigenvalue to find the eigenvectors.
After the eigenvectors are obtained, the Gram-Schmidt process is applied to the vectors in
order to get orthonormal matrices U andV . For a more in-depth mathematical explanation
of SVD, see the tutorial by [Baker, 2005].

The other operations such as matrix multiplication, inverse and others mentioned pre-
viously, are thereafter taken on the three components of the SVD. Making the complexity
of these operations also depend on the amount of access points seen during a scan.

After each scan has been processed the RDD of scans is grouped back to an RDD of
tracks by grouping by track ID. Thereafter the RDD of tracks contains all data necessary
for the output.

4.6 Output
Finally, each tracks metadata and model is saved back to a different folder on the same S3
bucket. Each time the prototype is run it creates a trackmodel_<timestamp> folder where
the results are stored in text based files. The results are spread throughout multiple text
based files in the folder, usually one per processed input file but this may vary depending
on input size, volume and configuration. The text files contain statistics and metadata
about each track and the model of each track as a list of positions at certain timestamps.
An example output of a track can be seen in Appendix B. As an example, Figure 4.3 shows
a tracks estimated positions by the prototype.

Figure 4.3: Example of a tracks estimated positions.

4.7 Deployment
The prototype was been deployed on Amazon EMR with Spark version 2.2 and as previ-
ously mentioned its input and output is located on an AWS S3 bucket. For cluster manage-
ment, EMR uses YARN. The cluster configurations vary and the different configurations
are evaluated in Chapter 5. The prototype is easily run on EMR with a spark-submit com-
mand consisting of a few components.

35

4. Prototype implementation

Firstly, the spark.default.parallelism should be set to 4 times the amount
of vCores available on all nodes. For example, if the nodes in the cluster have 16 vCores
total, the parameter should be set to 64 as it was deemed the most efficient. This, in turn,
would create 64 tasks which write the final output to the output folder on S3. Output sizes
of the prototype are usually 3-5% of the input size.

Several garbage collection optimizations should be submitted as well. Finally the class
should be specified and the one external library that is used.

The prototype takes two arguments, one for the input folder and one for the output
folder. In Appendix C an example spark-submit command layout can be seen for a cluster
where the nodes have a total of 16 vCores.

36

Chapter 5
Measurements

This chapter presents the measurements and evaluations derived from testing the proto-
type implementation described in Chapter 4 and CPS. The next section will present the
precision of the prototype. The following sections present the results of each measurement
category for the prototype and finally, the last section presents the measurement results of
CPS.

5.1 Precision and approach
The precision of CPS is assumed to be around 15 meters. Since the long-term goal would
be to implement CPS in a big data solution, it is seen as the gold standard and results are
compared to CPS. In Figure 5.1, a distribution of the distance difference between the pro-
totype and CPS is presented.

0 50 100 150 200 250 300 350 400
0

500

1,000

1,500

Difference (meter)

Sc
an
s

Figure 5.1: Difference between estimated positions by the proto-
type and CPS on a dataset consisting of 3,431 scans.

37

5. Measurements

The results show that the prototype has a median difference from CPS by 94 meters
and this lies in the peak of the histogram in Figure 5.1. As the CPS precision is around 15
meters this means that the prototype median precision compared to the real world path is
in the range of 79 to 109 meters with higher chance to be in the lower half of the range.

In addition to the prototype, a simple version was also tested which only implemented
a standard trilateration without the optimization. The simple version of the prototype has
practically the same median difference, in fact only being 7 millimeters less precise which
is not significant.

5.2 Determining cluster instance types
At first, appropriate worker node instance types on AWS had to be chosen to do the proto-
type measurements on. Three types of clusters were evaluated, as seen in Table 5.1, each
had a general purpose driver node and two worker nodes. The worker nodes differed while
the driver was the same, a general purposem1.medium consisting of 1 virtual core (vCore)
and 3.8 GB memory.

General purpose Compute optimized Memory optimized

Driver m1.medium m1.medium m1.medium
Nodes 2x m3.xlarge 2x c3.xlarge 2x r3.xlarge
Total vCores 16 8 16
Total memory 30 GB 15 GB 61 GB

Cost / hour $0.843 $0.701 $1.039

Table 5.1: Cluster configurations in the instance type test.

Each configurationwas tested on 11 different distributions of data, ranging from 22.6MB
to 2.2 GB size. Several measurements were taken, but the focus lied on scalability, perfor-
mance and cost. The result of the instance type test is shown in Figure 5.2.

2 4 6 8
·106

200

400

600

Samples

Time (seconds)

2 4 6 8
·106

5 · 10−2

0.1

0.15

Samples

Cost (USD)

General purpose Memory optimized Compute optimized

Figure 5.2: Time and cost to process various amount of samples.

38

5.3 Cost efficiency and performance

Figure 5.2 shows that both the general purpose cluster and the memory optimized clus-
ter had similar performance but the general purpose was significantly cheaper. Meanwhile
the compute optimized cluster could not handle larger amount of samples before timing
out. Therefore further evaluation was conducted on clusters consisting of only general
purpose nodes, specifically m3.xlarge nodes.

From the instance type test, it was also seen that processing equal files was 2.44%
faster than processing files of various sizes.

5.3 Cost efficiency and performance
As general purpose instance types were determined to be the most fitting for the prototype,
further testing on clusters containing such types was performed. The prototype was tested
on a cluster with various amount of nodes. The driver was always a m1.medium node
and the worker nodes were of m3.xlarge or m3.2xlarge instance type. Table 5.2 shows the
different cluster configurations.

Class m3.xlarge m3.2xlarge

Nodes 1 2 3 4 5 12 9 12
vCores 8 16 24 32 40 96 144 192
Memory (GB) 15 30 45 60 75 180 270 360

Cost / hour $0.48 $0.84 $1.21 $1.57 $1.93 $4.47 $6.64 $8.82

Table 5.2: Different cluster configurations in the node scaling test.

Three datasets of size 1.5 GB, 2.2 GB and 23 GB each were tested, consisting of equal
data and a spread distribution. Several aspects were measured such as elapsed processing
time, amount of processed samples, output size and shuffle read & write. Table 5.3 shows
a summary of the performance at various node amounts and the cost efficiency derived
from the node scaling test on the prototype. The numbers are averages of the three tested
datasets.

vCores 8 16 24 32 40 96 144 192

kSamples / s 8.3 16.1 24.0 31.2 38.8 86.7 127.4 163.0
kScans / s 0.8 1.6 2.4 3.1 3.9 8.7 12.7 16.3
Tracks / s 14 27 40 52 65 145 212 272

MSamples / USD 62.2 68.7 71.6 71.7 72.2 69.8 69.0 66.5
MScans / USD 6.2 6.9 7.2 7.2 7.2 7.0 6.9 6.7
kTracks / USD 103.6 114.5 119.3 119.5 120.3 116.4 115.0 110.9

Table 5.3: Performance and cost efficiency of the prototype for
different amount of vCores.

One can see from the table that the performance depends on the amount of available
resources while cost efficiency maintains a similar level and becomes more expensive for
higher amount of vCores.

39

5. Measurements

5.4 Scalability
From Table 5.3 one can see the scalability of processed samples, scans and tracks. Fig-
ure 5.3 further visualizes the prototypes scalability when the amount of vCores is in-
creased. One can see that the prototype scaling is close to linear with the amount of
vCores. The actual scaling factors can be seen in Table 5.4, as an example, 96 vCores
was 12x more resources than 8 vCores but had 10.46x the performance of 8 vCores.

50 100 150

0.5

1

1.5

·105

vCores

Samples / s

Figure 5.3: Amount of processed samples per second by the pro-
totype per amount of available vCores.

vCores 8 24 40 96 144 192

kSamples / s 8.3 24.0 38.8 86.7 127.4 163.0

Performance scaling 1x 2.89x 4.67x 10.46x 15.36x 19.66x
Resource scaling 1x 3x 5x 12x 18x 24x

Table 5.4: Scalability for different amount of vCores.

5.5 Memory usage
From the node scaling test as shown previously in Table 5.2, memory was also measured.
Allocated memory, allocated heap size and real JVM heap usage was measured for each
node in the clusters. The results of this can be seen in Table 5.5.

Table 5.5 shows that the average used internal memory and max allocated heap size is
consistent for different sized clusters, increasing slightly for larger clusters. The average
heap used at each node is higher for larger sized clusters.

A second memory test was performed. This time a cluster of one m1.medium driver
and two m3.xlarge nodes was measured at different sized inputs. The same measurements

40

5.6 Cluster and driver load

Nodes 1 2 3 4 5 12 9 12
vCores 8 16 24 32 40 96 144 192

Available memory (GB) 14.4 14.4 14.4 14.4 14.4 14.4 28.9 28.9
Average used 47% 57% 58% 59% 56% 78% 72% 70%
Allocated heap size (GB) 1.82 1.82 1.80 1.81 1.80 1.82 1.82 1.82
Heap used (MB) 133 121 219 296 403 403 407 434

Table 5.5: Memory usage for different sized clusters. The values
are averages of all nodes in each cluster.

were taken as previously. The available memory on each node was 14.4GB and the max
allocated heap size was always 1.82GB for the different inputs tested. Figure 5.4 shows
the result. This shows that the smaller datasets, both the internal memory and heap size
increases with a high factor, but seems to stabilize for larger datasets.

2 4 6 8
·106

2

4

6

8

10

Samples

Memory (GB)

2 4 6 8
·106

200

300

400

500

Samples

Heap (MB)

Node 1 Node 2

Figure 5.4: Average internal memory and used heap size on two
nodes when processing different amounts of samples.

5.6 Cluster and driver load
From the node scaling test described in Table 5.2, various cluster and driver measurements
were taken during Spark jobs. This is to see the overall resource usage of the cluster during
jobs and to see how the drivers resource usage changes when scaling the amount of nodes
and vCores. For the cluster, memory usage averages were measured and presented in
Section 5.5. Additionally CPU usage across the nodes (excluding the driver) and network
in and out was measured. CPU measurements were taken for CPU usage in user space and
in system space. These results are presented in Table 5.6. It is seen that while the CPU
usage remains stable, network increases for larger clusters.

As an example, Figure 5.5 shows the cluster wide CPU, memory and network usage
when processing a 23 GB dataset using a cluster consisting of 192 vCores. The CPU
usage includes the driver, which does not perform at 99.9% as the nodes did as presented

41

5. Measurements

Nodes 1 2 3 4 5 12 9 12
vCores 8 16 24 32 40 96 144 192

CPU user 97.2% 98.0% 97.8% 98.3% 98.2% 98.3% 97.8% 98.1%
CPU system 1.5% 1.5% 1.3% 1.5% 1.5% 1.6% 2.1% 1.8%
Network in (MB/s) 2.2 3.9 5.9 7.8 11.5 24.2 36.0 38.5
Network out (MB/s) 0.2 0.6 1.0 2.4 3.3 5.8 6.4 6.2

Table 5.6: Average cluster wide load when running the same job
at different amount of nodes and vCores.

in Table 5.6. Still, this shows that the CPU usage is more or less maxed throughout a job.
One can also clearly see when the job starts and ends in the cluster CPU and memory
graph. In the network graph one can see that the network in is the highest at the start of
the job with smaller peaks in constant intervals throughout the job and network out has a
peak at the start and end.

Driver load was also measured. Specifically CPU usage, internal memory, memory
cache and buffer, heap usage and network in and out. The results can be seen in Table 5.7.

Nodes 1 2 3 4 5 12 9 12
vCores 8 16 24 32 40 96 144 192

CPU user 14.9% 15.0% 15.9% 16.6% 16.8% 19.6% 21.7% 25.3%
CPU system 7.8% 7.6% 7.0% 12.4% 7.2% 9.2% 12.5% 11.5%
Memory used (GB) 2.7 2.7 2.8 2.7 2.7 2.8 2.7 2.8
Memory cache (MB) 529 496 481 527 516 492 549 479
Memory buffer (MB) 81.4 78.2 64.0 67.2 63.2 79.0 61.6 16.9
Heap used (MB) 26 27 29 31 32 31 33 34
Network in (kB/s) 3.2 6.1 8.1 10.8 12.8 16.3 21.2 21.7
Network out (kB/s) 116.7 210.1 264.9 355.5 400.2 403.5 411.4 435.5

Table 5.7: Driver load at different node and vCore amounts.

Both load tests for the cluster and driver showed increases in most resources when
increasing the cluster size. The same goes for when increasing the vCores from 96 to 144
but going from 12 to 9 nodes. This shows that the resource load correlates with the amount
of vCores.

42

5.6 Cluster and driver load

Figure 5.5: Cluster wide load when processing a 23 GB
dataset containing around 100 million samples on a cluster with
192 vCores. Graphs taken from Ganglia resource management
tool.

43

5. Measurements

5.7 Bottleneck
For the prototype, two major possible components that could be bottlenecks are either the
algorithms or the I/O at the start and end of the prototype as there is no external database
calls or any other needs for network performance and latency except for driver to nodes
communication. Driver and node communication is extremely low as seen in Section 5.6.
Cluster to S3 communication and requests (I/O) is unlikely to be limitting either, as AWS
provides very high speeds and in the case of very high requests rates S3 will automatically
partition the bucket to deal with the increased request rates.

Therefore a profiler, VisualVM, was used to investigate which parts of the prototype
were the most CPU time consuming. The profiling was run locally, meaning that there was
no cluster set up and only one driver performed all execution. The results are summarized
in Table 5.8. The input reading is included in the coarse splitter time as it is done in
parallel.

Part Total CPU time Percentage

Full prototype 14 mins 12 secs 100%

Bundler: trilateration 12 mins 58 secs 91.1%
Splitter 34.7 secs 4.1%
Bundler: access points 23.8 secs 2.8%
Classifier 8.8 secs 1.0%
Coarse splitter 5.5 secs 0.6%
Save output 0.8 secs 0.1%
Other 2 secs 0.3%

Table 5.8: Profiling on a 14 minute long run of the prototype on
one machine. Only the major components of the prototype are
present.

Quoting [Lopez-Novoa et al., 2017], the information exchange between stages is done
through shuffling operations by Spark. The larger amount of bytes in a shuffle operation,
the more overheads in the application. Shuffling has a major impact on a jobs performance
and can be a potential bottleneck. Therefore shuffle read and write was measured for a
23 GB data set. The results can be seen in Table 5.9. This shows a 2.85% total shuffling
for 8 vCores and 5.25% for 192 vCores. This is calculated with R+W

I where R is the shuffle
read, W is the shuffle write and I is the input size.

vCores 8 16 24 32 40 96 144 192

Shuffle read (MB) 328 353.2 376.8 399.1 419.9 523.6 604.1 604.3
Shuffle write (MB) 328 353.2 376.8 399.1 419.9 523.6 604.1 604.3

Table 5.9: Shuffle read and write for different amount of vCores
processing a 23 GB dataset.

44

5.8 Throughput

5.8 Throughput
The throughput the prototype can handle depends on the cluster size, the node scaling test
presented in Table 5.2 showed various throughput numbers at different available vCores.
Today, Combain receives samples from around 100 users every day, this is an average of
1.2 million samples a day. With a 15% buffer, this amount would be 1.4 million samples
every day (rounded up). Combain predicts that this amount will raise to 10,000 users in
the near future and potentially even 1 million users in the future. A summary of current
and predicted users and samples received per day can be seen in Table 5.10.

Current Near future Future

Users 100 10,000 1,000,000
Samples 1.4 million 140 million 14 billion

Table 5.10: Current and predicted users and samples received on
average a day.

With 1 million users, the amount of samples received on average per day would be the
equivalent of 3.2 terabytes data. See Table 5.11 for an estimated amount of time and cost
it would take to process the different amounts of samples presented in Table 5.10. Some
values are marked as N/A and were not estimated, due to not being relevant. For example
if the time is shorter than one minute or unreasonably high.

vCores 8 24 40 96 144 192

Current 2 mins 49 secs 58 secs N/A N/A N/A N/A$0.0225 $0.0202

Near future 4 hrs 41 mins 1 hr 37 mins 60 mins 27 mins 18 mins 14 mins
$2.252 $1.961 $1.937 $2.004 $2.027 $2.105

Future N/A N/A N/A 44 hrs 50 mins 30 hrs 32 mins 23 hrs 52 mins
$200.4 $202.7 $210.5

Table 5.11: Estimated time and cost to process different amounts
of samples at different amounts of vCores.

5.9 Virtualized and local cluster compari-
son

The prototype was mainly tested on AWS. This is a virtualized environment, so a larger test
was also run on the non virtualized cluster provided by Lund’s University. This test was run
on a 23 GB dataset which was also run in the node scaling test presented in Section 5.3.
The university cluster consists of 144 cores so it was compared to the 144 vCore test
on AWS. To see the specifications of each cluster, see Table 5.12. Three nodes on the
university cluster had different processors and they had 24 GB memory each compared to

45

5. Measurements

the nine other nodes which had 32 GB memory each. While all 12 nodes had the same
heap size, it meant that nine nodes had more room in the memory cache. The driver of
the university cluster runs on an Intel Xeon E5603 at 1.6 GHz and the m1.medium driver
for the AWS cluster runs on an Intel Xeon E5-2651 v2 at 1.8 GHz. Another difference
between the two are the cluster managers and Spark versions, the university cluster uses
the Spark standalone cluster manager with Spark 1.6 while EMR uses YARN and Spark
2.2.

Cluster Nodes Cores Processors Clockspeed Total memory

University 12 144 9x Intel Xeon E5-1650 3.2 GHz 360 GB3x Intel Xeon W3680 3.3 GHz

Amazon 9 144 9x Intel Xeon E5-2670 v2 2.5 GHz 270 GB

Table 5.12: Specifications of Lund University’s cluster and an
AWS EMR cluster consisting of m3.2xlarge nodes.

The university cluster processed the dataset in 6 minutes and 36 seconds, a pace of
250,465 samples per second. The prototype processed the dataset in 12 minutes and 40
seconds, a pace of 127,373 samples per second. This is a performance increase of 96.6%
when running the local cluster as opposed to the virtualized one.

5.10 Simple version of prototype
Since the bundler was found to be the major bottleneck in Section 5.7, a very simple ver-
sion of the prototype was tested. This version only performed simple trilateration without
any optimization. The results are summarized in Table 5.13. It can be seen that the perfor-
mance increased a lot but the scalability decreased and the cost efficiency decreases fast
for larger clusters. This is due to less computations being done.

vCores 8 40 96 144 192

kSamples / s 40.7 181.7 368.7 455.0 576.7
Performance increase 4.90x 4.68x 4.25x 3.57x 3.54xover full prototype

MSamples / USD 305.2 338.8 297.0 246.7 235.4

Performance scaling 1x 4.46x 9.06x 11.18x 14.17x
Resource scaling 1x 5x 12x 18x 24x

Table 5.13: Performance, cost efficiency and scalability of the
simple version of the prototype for different amount of vCores.
Also shows the performance increase when compared to the full
version of the prototype.

46

5.11 CPS measurements

5.11 CPS measurements
Several measurements were taken for CPS. CPS was tested on a m4.2xlarge EC2 instance
consisting of a 2.3 GHz Intel Xeon E5-2686 v4 processor with 16 cores and 32 GB mem-
ory. This instance costs $0.444 per hour. Measurements were performed on differently
sized datasets and some measurements were done on CPS components seperately.

Performance Datasets of sizes between 0.1 million and 79.3 million sam-
ples were tested. Performance of the splitter, bundler and
full systemweremeasured with 1 thread and 10 threads. The
performance can be seen in Table 5.14.

Cost efficiency From the performance test in Table 5.14 it was calculated
that the cost efficiency at 1 and 10 threads is 85.9 and
123.6 kSamples per USD respectively.

Scalability The scalability can also be seen in Table 5.14. When scaling
the amount of threads by 10, the performance of the split-
ter scaled 5.725x while the bundler scaled 1.433x. As the
bundler is the most time consuming component of CPS, the
full system scaled 1.439x.

Memory usage The EC2 instance had 32.2 GBmemory available, CPS took
less than 100 MB of memory, on average 32 MB during
splitting and 97MB during bundling. This is 0.1% and 0.3%
respectively.

Bottleneck As expected, the database calls were expensive and a bottle-
neck. The same goes for external requests toOpenStreetMap
which took up over 50% of the time in the splitter. Overall,
it is the bundler that is the most time consuming component
of CPS taking 99.65% of the time with the bottleneck being
external database calls.

Splitter Bundler Full system

1 thread samples / s 1,867 10.65 10.59
10 threads samples / s 10,689 15.27 15.24

Performance scaling 5.725x 1.433x 1.439x
Thread scaling 10x 10x 10x

Table 5.14: Performance and scaling of CPS with 1 and 10
threads.

47

5. Measurements

48

Chapter 6
Discussion

This chapter ties the results together with an evaluation for each major subject of the mas-
ter’s thesis. At last, a discussion on the master’s thesis scope and results compared to the
initial goals is done.

6.1 Prototype evaluation
A lot of overhead was mitigated by using a filesystem for input and output. The profiling
results are promising, as they showed that the computation heavy parts take the most of
the time. This means that the solution is scalable and will maintain scalable when adding
additional functionality that is computation heavy.

While the scalability was promising, it was seen that the cost efficiency declines for
larger clusters. This is something that was expected, and the decline is not huge for the
prototype but for the simple prototype it was huge, probably because of less computations.
These are promising results, as the cost efficiency at 192 vCores was still better than for
8 vCores, and 192 vCores is already a large cluster. However, as later we saw in the
throughput evaluation, 192 vCores might not be sufficient in the final product. This means
that it could decline even more and maybe larger clusters will be extremely expensive per
sample. All tests had enough tasks so that all vCores were busy throughout the jobs, so
this should probably be evaluated further for larger clusters with the same dataset.

The simple version of the prototype also showed a significant decrease in scalability
when compared to the full version. This was due to the bundler taking less of a time portion
in the program. This is expect as this means jobs has a larger time portion of overhead.
This is also likely the reason to the high decrease in cost efficiency. Perhaps a full solution
with more computations would maintain a good scalability in performance and stability in
cost efficiency.

The most important memory measurement is the heap usage, however it is the most
cumbersome and least trustworthy measurement due to JVM’s nature. It was interesting

49

6. Discussion

that only a small chunk of the heap was actually used. This was likely due to good garbage
collection optimizations. That the heap increased when using more nodes was also inter-
esting, as it was expected that each node would have less data in the heap to worry about.
Perhaps this was due to more data being stored on each node to reduce communication.
Expected results did arise when the input sizes scaled instead of nodes, as more data being
processed naturally increases the heap size. However, that the memory became stable for
larger clusters was unexpected. These tests, however, showed very varying results even
when repeating the same tests multiple times and may not be fully trustworthy, but some
stability seems to be accurate. The memory tests should be taken with a grain of salt but
provide an introductory insight to the memory usage, but further tests, especially on the
JVM’s would be needed to validate these findings.

The increase in network usage for larger clusters was expected. However, one has to
question the validity of this measurement. The network usage was measured throughout a
full job, and as it was seen, the network usage peaks at the start and end of a job. Thismeans
naturally that larger clusters which process the same dataset faster, will have an increased
average network usage. Minor investigation was done and it was seen that the peaks did
increase, and theoretically it seems plausible as there will be more communication among
the cluster, butmore tests would have to be conducted to conclude anything. The same goes
for the driver load tests, which showed increase in network usage. However, the increase
in CPU usage while maintaining stable internal memory, cache and buffer was expected.
This showed that a m1.medium driver with one vCore is sufficient by a large margin for
the clusters that were tested and it seems unlikely that it would become a bottleneck for
even larger clusters. There are several instance types with more vCores and even multiple
drivers could be used should it become an issue. However, the cost of increasing driver
resources is insignificant when compared to the cost of scaling nodes.

Another interesting aspect is that the components of the prototype are not linearly de-
pendent on each other. It was found that when the splitter executed more splitting function-
ality the bundler would process tracks faster and the overall execution timewould decrease.
After analyzing this phenomenon, it is fairly self explanatory as the bundler takes the major
portion of execution time which meant that the overall throughput increased. This means
that even though the amount of scans that are processed is the same and the bundler pro-
cesses the same size of data, it is still quicker due to smaller track sizes. This could in
turn mean that the accuracy of positions may increase for larger tracks due to more access
points being present. This puts some weight on the splitter, and perhaps even better results
in performance and other aspects could have been shown if all of the splitter functionality
was implemented in the prototype.

While throughput showed that the prototype can handle the current amount of incom-
ing data without problem, it was slightly disappointing that it would take up to 24 hours to
process data from one million users. However, after further analysis this can be expected
as this is an extremely large amount of data and the performance increase compared to
CPS is also huge as will be discussed in Section 6.2. Another factor is that the numbers
had an additional buffer on them. The simple version of the prototype would, however, be
able to process the data 3 to 5 times faster which is impressive and is actually in line with
how long such a job should take. Ideally a job should take around 4 to 6 hours in order to
manage worst-case scenarios where it has to be re-run on the same day.

50

6.2 Precision

6.2 Precision

Unfortunately, there was no reference track available which meant that the exact precision
of the prototype could not be evaluated. This means that it is practically impossible to
say what the precision is exactly and instead a range has to be used in the evaluations, in
fact one can not be completely sure if the precision even lies within the range, tests with
reference tracks would have to be conducted to validate it. However, it is likely that it
does lie in the range and likely closer to 79 meters than the upper part of the range as CPS
already has a base precision. The huge difference between the prototype and CPS was
shocking at first, but it is explainable as CPS uses much more sophisticated algorithms
and uses GPS assisting.

It was interesting to find that there is so little research conducted on indoor position-
ing solutions combined with scalable big data solutions. Most research focuses on either
precise indoor positioning solutions or on scalable other types of programs. As previously
mentioned, [Lopez-Novoa et al., 2017] developed an overcrowding detection algorithm.
The algorithm had more components than the prototype, had known locations of access
points and the program was used for a different purpose but with similar techniques and
could achieve a fairly high precision. It is likely that the known locations of access points
played a large role in the high precision as the algorithms had better foundations to start
at, the algorithms themselves were more developed than in the prototype too.

A factor that plays a large role in the precision of an algorithm are the access point
positions. These are not known and are estimated through a simple mean value in the
prototype, there are more extensive algorithms which would provide more accurate access
point positions. Since the trilateration uses the access point positions as a foundation, they
have a significant impact on the precision. More focus should had been laid on this part
and maybe the precision would be better.

Still, trilateration can achieve high precision in some known environments with dif-
ferent access point estimation techniques. [Zhuang et al., 2016] could achieve an average
position error of 5.21 meters using a trilateration based algorithm. Meanwhile, a GPS
assisted trilateration algorithm [Spies et al., 2010] was found to have 95 meters precision
when assisted by one satellite. Other more developed iterative variations of trilateration
that were evaluated by Lassabe, Frédéric, et al showed double digit precision ranging up
to 50 meters [Lassabe et al., 2006, p. 3]. [Alam et al., 2015] mention that trilateration is
not suitable for heterogeneous environments. These findings seem to go in line with the
precision of the prototype.

It was unexpected that the simple version of the prototype achieved more or less the
same precision. It is likely that the precision in the full prototype is more trustworthy
and provides more trustworthy locations. It is also likely that the precision would differ
for other types of datasets from different types of buildings, for example considering the
amount of access points. Another factor is that a difference could perhaps be seen when
more functionality is implemented, for example GPS assisting. No real conclusion can be
drawn here and more implementation and testing would have to be done to do so.

51

6. Discussion

6.3 Comparison of the prototype and CPS

It is important to note that even when doing a rough comparison between the prototype
and CPS, they are two vastly different systems. See Table 6.1 for a comparison that puts
some numbers side by side. The numbers are for equivalent resources of 16 vCores.

Solution Prototype CPS Simple prototype

Precision 79-109 meters 15 meters 79-109 meters
kSamples / s 16 0.015 77
MSamples / USD 68.7 0.12 330
Scaling at 10x resources 8.72x 1.44x 7.55x

Table 6.1: Comparison between the prototype, CPS and the sim-
ple version when utilizing the same resources.

CPS is a sophisticated indoor positioning solution with high precision and the proto-
type does not come close to this precision. As mentioned in Section 6.2, these are expected
results for a trilateration based algorithm. However, what can be seen in Table 6.1 is that
the difference in precision is not close to the difference in performance. Performance for
the prototype is 1,000 to 5,000 times higher and cost efficiency around 500 to 2,700 times
higher while the precision for the prototype is around 4 times lower. It is valid to think
that improving the precision by implementing more of CPS features will have a drastic im-
pact on both performance and cost efficiency, however, the scalability would likely remain
good, if not better, due to more computations being executed. Still, the main objective
of an indoor positioning solution is accuracy and the real reason behind processing large
amounts of data is to improve the positioning meaning that precision is the most important
aspect. This does not mean that the prototype is a bad solution, it serves as a foundation
and showed similar results to other trilateration based algorithms while having a very good
scalability and throughput.

While CPS is sufficient for the current incoming data, we can see that it may not be
when the amount of users increases by 100 to 10,000 times. If the amount of users in-
creases, running multiple CPS instances and letting them process a chunk of the data each
would unlikely lead to better scalability as they would still have to perform requests to the
same database. Even if such a solution would be possible, it would not be cost efficient
because the cost would scale linearly with the amount of resources. It can be concluded
that some kind of big data solution should be adapted and the prototype shows that it is
one possible path of doing so. While the prototype shows promising results, it may still be
possible that if the full functionality of CPS is implemented and the precision is the same,
the performance might also end up being the same. This seems unlikely as the differences
in performance are much greater than in precision. Another factor is that the adaptation to
a big data solution requires to re-think some major architectural choices and focusing on
maintaining the solution computation heavy.

52

6.4 Deployment

6.4 Deployment
It was deemed that the jobs that are done are more batch oriented since the data comes
in small batches. Moreover, the incoming data has to come in batches as the samples are
dependent on each other, it is not possible to do anythingmeaningful with just a single stan-
dalone sample. Therefore more focus lied on batch processing as opposed to streaming.
While the prototype supports both it is still a question on which would be more suitable.
If batch processing is used, one would have to aim to get each days job done within a
certain time frame in order to be able to re-run jobs in case of issues in the same day. As
you can start EMR clusters from the command line, it allows the possibility to automate
batch jobs without worrying about the amount of data that came in and what kind of clus-
ter is necessary. This advantage goes in line with the promising scalability the prototype
evaluation showed. A simple program could be written to get an estimated batch size and
calculate a cluster size to do the job within the time frame. This has an advantage of little
management as the job and cluster will be started and terminated automatically. Mean-
while, if the streaming approach is chosen instead, the jobs would still be in the form of
micro-batches. One could monitor the incoming data and if it is seen that it increases or
decreases it is possible to scale the cluster on the fly on EMR, this is also possible to do
from the command line which means it can also be automated by a script.

A local cluster could also be considered as opposed to a virtualized cluster in the cloud.
The performance difference between the two was unexpected since they had similar re-
sources and processors. After some research, it was concluded that these are actually valid
results. According to [Fielding, 2014], it was found that a vCPU on EC2 actually only rep-
resents half a physical core. Meanwhile a research project focused on VM latency found
similar results that the mapping between virtual and physical cores is not always one-to-
one [Xu et al., 2012]. It is possible that it might be cost efficient to invest in hardware as
the only recurring costs after the initial investment are maintenance and electricity. This
would likely not only give better performance, but it would provide more control over the
cluster. The maintenance and set-up would be cumbersome, however. It is an economical
question that would require further evaluation.

A different solution could be to deploy the prototype on a cluster that uses regular
EC2 instances. This would similarly to a local cluster give more control and possible
optimizations. However, it would be a much more complex solution and require a lot
of initial installation, set-up and further management. Still, there are some open source
projects that aim to help with such deployment such as [Wendell et al., 2017].

6.5 Thesis evaluation
The general conclusion is that the prototype shows that it is certainly possible to adapt
functionality of CPS to a big data solution. It is a complex task and a lot of architectural
choices have to be made. The prototype implements a simple indoor positioning solu-
tion and while the throughput varied between implementations, it showed promise. The
scalability itself scales with the amount of computations which is good. The prototype
served its purpose and extensive measurements could be taken in an environment in the
cloud which would also be used for a full solution. All main measurements mentioned in

53

6. Discussion

Section 3.3 could be taken.
The prototype itself implements some very basic functionality of CPS. This makes it

lack in precision as previously discussed. Of course, the comparison cannot be completely
correct until the precision is the same and all of CPS has been implemented. Comparing
two solutions of the same precision would have been very interesting. Therefore more
functionality could have been implemented or a down-scaled version of CPS could have
been tested. Still, measurements and comparisons could bemade and should give Combain
a foundation and a lot of material to take a decision on whether this solution is suitable
and an idea on how to kickstart such a project.

With more time, further analysis on Flink could have been done. There are some major
changes that need to bemade in the prototype to work with Flink, but it is certainly possible
to do within a reasonable time. This would allow a very extensive comparison between the
two frameworks with the same measurements, as Flink could also be deployed in a similar
environment on EMR.

Combain has to consider the question on what is to be done when the user amount
grows exponentially. If the users increase by the predicted amount, some kind of big data
solution will be necessary. This does not necessarily mean that a big data framework has
to be used, perhaps a solution could be to get rid of the major bottlenecks and parallelize
CPS with an actor solution over a cluster. Furthermore, other variables also have a major
impact such as deployment, what kind of algorithms are used or if intermediate input data
has to be read. All of these aspects need to be considered when making a decision on a
big data solution. Perhaps several similar prototypes could be developed and compared
before committing to a specific solution.

54

Chapter 7
Conclusion

This chapter summarizes the general findings, contributions and conclusions of the mas-
ter’s thesis. Moreover it presents several ideas for future work on adapting Combain’s
indoor positioning to a big data solution and ideas that emerged during the thesis but were
deemed to be out of scope.

7.1 Conclusions
In the master’s thesis, a big data solution for indoor positioning has been developed and
presented. This prototype implements the foundation and core functionality in Combain’s
current positioning solution (CPS) while focusing on performance and scalability in a big
data environment.

First, extensive initial research was done on two big data frameworks, namely Apache
Spark and Apache Flink. From this research and with the jobs being deemed as more
batch oriented as opposed to streaming it was concluded that Apache Spark is likely more
fitting for Combain’s needs and CPS. Therefore it was decided that a prototype should
be developed and evaluated in Apache Spark. This does not exclude Apache Flink or
other big data frameworks, but focuses on one while still keeping others in mind as viable
options. It was deemed that the prototype to be developed should be pure, meaning that
it should not call any existing code of CPS written in other languages. This was proposed
because if such a solution is further adapted, calling legacy code is usually not optimal and
further development would instead be more of a syntax issue as the principles and logic
of algorithms are already in place.

The prototype was developed in Scala and reads scan data formatted as presented in
Appendix A and outputs track models as presented in Appendix B. Scan data comes from
users walking around with their phones, which comes in as a session and is split by the
prototype into tracks for each building. The session consists of several scans which are
collected every 5 seconds and each scan consists several samples which have information

55

7. Conclusion

on access points deteced in a scan. After splitting, the prototype performs an optimization
to estimate each track’s real world path by emitting a latitude and longitude position for
each scan. The optimization is performed in two stages, the first one estimating the position
of access points, and the second one estimating the position of each scanwith a trilateration
algorithm. Furthermore, metadata and statistics of each track is calculated and part of the
output. The prototype has a precision between 79 and 109 meters.

During development, the prototype was tested on a local cluster consisting of 12 ma-
chines and used Hadoop’s distributed filesystem for input and output. Once developed, it
was deployed in the cloud on Amazon Web Services. It was deployed on Amazon EMR
and used Amazon S3 instead of HDFS for input and output. This is where Combain would
deploy a full big data solution, but the thesis showed that a real-world cluster is also an
option.

Moreover, both CPS and the prototype were tested and evaluated thoroughly on sev-
eral aspects such as performance, cost efficiency, scalability, throughput and more. The
tests were summarized in thorough tables and figures in Chapter 5. It was found that the
scalability of CPS is not optimal while the scalability of the prototype is promising and
scales close to linearly. The reason behind the scalability of CPSwas the bottleneck, which
was found to be the database queries and external requests. Meanwhile, the prototype’s
bottleneck was computation which allowed it to scale well. It was also found that the local
cluster performed almost twice as good as a virtualized cluster on AWS which turned out
to be in line with other research found during the thesis.

Finally, it was deemed that CPS is sufficient for the current amount of users. However,
if the amount of users increases by 100 to 10,000 times as Combain predicts, different solu-
tions should be considered and preferably in time for the user increase. A big data solution
is certainly viable and likely necessary. The prototype implemented with Spark showed
promising results and seemed to be the most fitting framework. The findings should pro-
vide a foundation for Combain to base a decision on whether a big data solution is a fitting
approach. The prototype is a solution Combain may continue working on, still, more stud-
ies and research may be needed to validate the findings in the master’s thesis.

7.2 Future Work
While the thesis showed a viable big data solution, further research may be necessary to
conclude which big data framework is the most fitting. Besides Spark and Flink there are
several other frameworks such as Apache Storm, Ceph or Presto.

The prototype was developed in such away that it is very easy to addmore functionality
on top of the current architecture. It establishes the core functionality of each CPS step
and the wrapper is essentially done but may have to be modified depending on what other
algorithms will be used. A suggested approach would be to first implement the full splitter,
this would make debugging and verifying during bundler implementation easier. The full
splitter would emit output in the correct format, the right tracks and track lengths and only
precision would have to be considered during bundler implementation.

A prototype improvement could be to write the coarse splitter in the custom FileIn-
putFormat as that would do the split at partitioning and input level. Additionally, choos-
ing the right chunk size in the coarse splitter might be possible to do with an algorithm.

56

7.2 Future Work

Given a certain input size and some parameters which affect processing performance of
driver and workers, it should be possible to derive a formula for calculating the optimal
chunk size.

The prototype’s bottleneck was identified to be the bundler, specifically the mathemat-
ical operations. If the bottleneck remains to be the computation heavy components, there
are several micro optimizations that could be done. Further investigation into what math-
ematical operations are needed in the algorithms to be implemented could be done. Dif-
ferent libraries approach these operations in different ways yielding various performance
which depends on the use-case. It might be found that several should be used, for different
operations. It may also be possible that writing these operations in C or C++ instead yields
better performance, calling legacy code can for example be done with JNI [Liang, 1999]
or JavaCPP [Audet, 2018].

Finally, since it was seen that the bottleneck of CPS was the database and external
queries, and even though both Spark and other big data frameworks have integration with
SQL, it may be an idea to store the data in S3 instead as Combain suggests themselves. The
EMR and S3 integration is extremely efficient and if further development was conducted
by still using a database and external requests it would potentially become a bottleneck
instead of the computations. Some exploration could be done in this area and perhaps a
comparison of when the prototype reads input and output fromS3 as opposed to a database.

57

7. Conclusion

58

Bibliography

Alam, S. et al. (2015). 3-Dimensional Indoor Positioning System based onWI-FI Received
Signal Strength using Greedy Algorithm and Parallel Resilient Propagation. Interna-
tional Journal of Computer Applications, 116(18).

Amazon (2018a). Amazon EC2: Secure and resizable compute capacity in the cloud.
https://aws.amazon.com/ec2/. Accessed: February 4, 2018.

Amazon (2018b). Amazon EMR Product Details. https://aws.amazon.com/
emr/details/. Accessed: January 31, 2018.

Amazon (2018c). Amazon S3: Object storage built to store and retrieve any amount of
data from anywhere. https://aws.amazon.com/s3/. Accessed: February 4,
2018.

Amazon (2018d). Amazon Web Services. https://aws.amazon.com/. Accessed:
February 4, 2018.

Ang, J. et al. (2017). An IPS Evaluation Framework for Measuring the Effectiveness and
Efficiency of Indoor Positioning Solutions. International Conference on Information
Science and Applications, pages 688–697. Springer. Singapore.

Apache Flink (2016a). Component Stack. https://ci.apache.org/projects/
flink/flink-docs-release-1.2/internals/components.html. Ac-
cessed: February 16, 2018.

Apache Flink (2016b). Dataflow Programming Model. https://ci.apache.org/
projects/flink/flink-docs-stable/concepts/programming-
model.html. Accessed: February 16, 2018.

Apache Flink (2016c). Introduction to Apache Flink. https://flink.apache.
org/introduction.html. Accessed: February 13, 2018.

Apache Spark (2017). Apache Spark: Cluster Mode Overview. https://spark.
apache.org/docs/latest/cluster-overview.html. Accessed: January
31, 2018.

59

https://aws.amazon.com/ec2/
https://aws.amazon.com/emr/details/
https://aws.amazon.com/emr/details/
https://aws.amazon.com/s3/
https://aws.amazon.com/
https://ci.apache.org/projects/flink/flink-docs-release-1.2/internals/components.html
https://ci.apache.org/projects/flink/flink-docs-release-1.2/internals/components.html
https://ci.apache.org/projects/flink/flink-docs-stable/concepts/programming-model.html
https://ci.apache.org/projects/flink/flink-docs-stable/concepts/programming-model.html
https://ci.apache.org/projects/flink/flink-docs-stable/concepts/programming-model.html
https://flink.apache.org/introduction.html
https://flink.apache.org/introduction.html
https://spark.apache.org/docs/latest/cluster-overview.html
https://spark.apache.org/docs/latest/cluster-overview.html

BIBLIOGRAPHY

Apache Spark (2018a). RDD Programming Guide. https://spark.apache.org/
docs/latest/rdd-programming-guide.html. Accessed: January 7, 2018.

Apache Spark (2018b). Spark Streaming. https://spark.apache.org/
streaming/. Accessed: February 5, 2018.

Audet, S. (2018). JavaCPP. https://github.com/bytedeco/javacpp. Ac-
cessed: February 14, 2018.

Baker, K. (2005). Singular value decomposition tutorial. The Ohio State University, 24.

Binko, P. et al. (2004). Colt. https://dst.lbl.gov/ACSSoftware/colt/.
Accessed: January 31, 2018.

Brouwers, N. and Woehrle, M. (2011). Detecting dwelling in urban environments using
gps, wifi, and geolocation measurements. Workshop on Sensing Applications on Mobile
Phones (PhoneSense), pages 1–5.

Carbone, P. et al. (2015). Apache flink: Stream and batch processing in a single en-
gine. Bulletin of the IEEEComputer Society Technical Committee on Data Engineering,
36(4).

Chintapalli, S. et al. (2016). Benchmarking Streaming Computation Engines: Storm, Flink
and Spark Streaming. Parallel andDistributed Processing SymposiumWorkshops, 2016
IEEE International, pages 1789–1792. IEEE.

Combain Mobile AB (2018). Indoor CPS geolocation service globally, in real time and in
3D. https://combain.com/indoor/. Accessed: January 31, 2018.

Dean, J. and Ghemawat, S. (2008). MapReduce: simplified data processing on large clus-
ters. Communications of the ACM, 51(1):107–113.

Dean, J. and Ghemawat, S. (2010). MapReduce: A Flexible Data Processing Tool. Com-
munications of the ACM, 53(1).

Deshpande, T. (2017). Learning Apache Flink. Packt Publishing Ltd.

Deyhim, P. (2013). Best Practices for Amazon EMR. Technical report.

Durrant-Whyte, H. and Bailey, T. (2006). Simultaneous localization and mapping: part I.
IEEE robotics & automation magazine, 13(2):99–110.

Evans, D. (2011). The internet of things: How the next evolution of the internet is changing
everything. CISCO white paper, 1:1–11.

Fielding, M. (2014). Virtual CPUs With Amazon Web Services. https://blog.
pythian.com/virtual-cpus-with-amazon-web-services/. Ac-
cessed: February 7, 2018.

Haklay, M. and Weber, P. (2008). Openstreetmap: User-generated street maps. IEEE
Pervasive Computing, 7(4):12–18.

60

https://spark.apache.org/docs/latest/rdd-programming-guide.html
https://spark.apache.org/docs/latest/rdd-programming-guide.html
https://spark.apache.org/streaming/
https://spark.apache.org/streaming/
https://github.com/bytedeco/javacpp
https://dst.lbl.gov/ACSSoftware/colt/
https://combain.com/indoor/
https://blog.pythian.com/virtual-cpus-with-amazon-web-services/
https://blog.pythian.com/virtual-cpus-with-amazon-web-services/

BIBLIOGRAPHY

Holmes, M. et al. (2007). Fast SVD for large-scale matrices. Workshop on Efficient Ma-
chine Learning at NIPS, 58:249–252.

ITRelease (2012). What are advantages and disadvantages of batch processing sys-
tems. http://www.itrelease.com/2012/12/what-are-advantages-
and-disadvantages-of-batch-processing-systems/. Accessed: Jan-
uary 7, 2018.

Karakaya, Z. et al. (2017). A Comparison of Stream Processing Frameworks. Computer
and Applications (ICCA), 2017 International Conference on Computer and Applica-
tions ICCA, pages 1–12. IEEE.

Karau, H. et al. (2015). Learning Spark. O’Reilly Media, Inc.

Lassabe, F. et al. (2006). Friis and iterative trilateration based WiFi devices tracking.
Parallel, Distributed, and Network-Based Processing, 2006. PDP 2006. 14th Euromicro
International Conference on.

Liang, S. (1999). The Java Native Interface: Programmer’s Guide and Specification.

Liu, H. et al. (2007). Survey ofWireless Indoor Positioning Techniques and Systems. IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews),
37(6):1067–1080.

Lopez-Novoa, U. et al. (2017). Overcrowding detection in indoor events using scalable
technologies. Personal and Ubiquitous Computing, 21(3):507–519.

Nandimath, J. et al. (2013). Big data analysis using Apache Hadoop. Information Reuse
and Integration (IRI), 2013 IEEE 14th International Conference on Information Reuse
and Integration, pages 700–703.

Ovidiu-Cristian, M. et al. (2016). Spark versus Flink: Understanding Performance in Big
Data Analytics Frameworks. Cluster Computing (CLUSTER), 2016 IEEE International
Conference on Cluster Computing, pages 433–442. IEEE.

Sedlacek, J. and Hurka, T. (2017). VisualVM: All-in-One Java Troubleshooting Tool.
https://visualvm.github.io/. Accessed: January 31, 2018.

Spies, F. et al. (2010). WiFi GPS based combined positioning algorithm. Wireless com-
munications, networking and information security (WCNIS), 2010 IEEE international
conference on wireless communications, networking and information security, pages
684–688.

Triggs, B. et al. (1999). Bundle Adjustment - AModern Synthesis. International workshop
on vision algorithms, pages 298–372. Springer. Berlin.

Wendell, P. et al. (2017). EC2 Cluster Setup for Apache Spark. https://github.
com/amplab/spark-ec2. Accessed: January 4, 2018.

Weyn, M. and Schrooyen, F. (2008). A Wi-Fi assisted GPS positioning concept.
ECUMICT. Gent, Belgium.

61

http://www.itrelease.com/2012/12/what-are-advantages-and-disadvantages-of-batch-processing-systems/
http://www.itrelease.com/2012/12/what-are-advantages-and-disadvantages-of-batch-processing-systems/
https://visualvm.github.io/
https://github.com/amplab/spark-ec2
https://github.com/amplab/spark-ec2

BIBLIOGRAPHY

White, T. (2012). Hadoop: The definitive guide.

Xu, C. et al. (2012). vSlicer: latency-aware virtual machine scheduling via differentiated-
frequency CPU slicing. Proceedings of the 21st international symposium on High-
Performance Parallel and Distributed Computing, pages 3–14. ACM.

Yassin, M. et al. (2014). Performance comparison of positioning techniques in Wi-Fi
networks. Innovations in Information Technology (INNOVATIONS), 2014 10th Inter-
national Conference on Innovations in Information Technology, pages 75–79. IEEE.

Zaharia, M. et al. (2010). Spark: Cluster Computing with Working Sets. HotCloud,
10(10-10):95.

Zhao, F. et al. (2018). A localization and tracking scheme for target gangs based on big
data of Wi-Fi locations. Cluster Computing, pages 1–12.

Zhuang, Y. et al. (2016). Evaluation of twoWiFi positioning systems based on autonomous
crowdsourcing of handheld devices for indoor navigation. IEEE Transactions onMobile
Computing, 15(8):1982–1995.

62

Appendices

63

Appendix A
Input dataset

s c an id , type , s can t ime , g p s l a t i t u d e , g p s l o n g i t u d e , gpsaccu r acy , gpsage , b s s i d , r s s i , d e t e c t e d a c t i v i t y
0 , " w i f i " ,2018−01−20 09 : 1 3 : 0 5 , 5 5 . 6 04517 , 1 3 . 2 06833 , 1 4 , 2 55 , 9 0 : 8 4 : 0 d : de : 0 6 : 0 b , −64 ,ON_FOOT
0 , " w i f i " ,2018−01−20 09 : 13 : 0 5 , 5 5 . 6 04575 , 13 . 2 10638 , 14 , 2 55 , 3 2 : cd : a7 : b7 : 1 d : 3 c , −34 ,ON_FOOT
0 , " b t " ,2018−01−20 09 : 1 3 : 0 5 , 5 5 . 6 02308 , 1 3 . 2 11046 , 1 4 , 2 55 , 9 0 : 8 4 : 0 d : de : 0 6 : 0 c , −108 ,ON_FOOT
0 , " w i f i " ,2018−01−20 09 : 13 : 05 , 5 5 . 6 03050 , 13 . 210209 , 14 , 255 , 00 : 8 e : f2 : b0 : 2 b : af , −2 ,ON_FOOT
1 , " w i f i " ,2018−01−20 09 : 1 3 : 1 0 , 5 5 . 6 02650 , 1 3 . 2 10424 , 7 , 1 21 , 9 0 : 8 4 : 0 d : de : 0 6 : 0 b , −34 ,ON_FOOT
1 , " w i f i " ,2018−01−20 09 : 13 : 1 0 , 5 5 . 6 03040 , 13 . 2 10877 , 7 , 1 21 , 0 0 : 8 e : f2 : b0 : 2 b : af , −12 ,ON_FOOT
2 , " b t " ,2018−01−20 09 : 13 : 15 , 5 5 . 6 02261 , 13 . 2 10611 , 11 , 0 , c4 : 1 2 : f5 : 6 e :24 :25 , −50 ,ON_FOOT
2 , " w i f i " ,2018−01−20 09 : 1 3 : 1 5 , 5 5 . 6 03856 , 1 3 . 2 10069 , 1 1 , 0 , 0 0 : 2 4 : 8 c : 8 a : d1 :54 , −62 ,ON_FOOT
2 , " w i f i " ,2018−01−20 09 : 13 : 15 , 5 5 . 7 11268 , 13 . 2 10600 , 11 , 0 , ac : 2 2 : 0 b : d5 :46 :30 , −63 ,ON_FOOT
2 , " w i f i " ,2018−01−20 09 : 1 3 : 1 5 , 5 5 . 7 11733 , 1 3 . 2 10448 , 1 1 , 0 , 1 8 : ee : 6 9 : 1 8 : a2 : 9 b , −76 ,ON_FOOT
2 , " w i f i " ,2018−01−20 09 : 13 : 15 , 5 5 . 7 10609 , 13 . 2 11832 , 11 , 0 , c4 : 1 2 : f5 : 6 e :24 :28 , −81 ,ON_FOOT
2 , " w i f i " ,2018−01−20 09 : 13 : 1 5 , 5 5 . 7 11510 , 1 3 . 2 11532 , 1 1 , 0 , 0 0 : 1 f : 9 f : f8 : d2 :55 , −33 ,ON_FOOT
2 , " w i f i " ,2018−01−20 09 : 1 3 : 1 5 , 5 5 . 7 1 1994 , 1 3 . 2 10148 , 1 1 , 0 , 1 4 : 9 9 : e2 : 0 0 : ce : 2 b , −31 ,ON_FOOT
3 , " w i f i " ,2018−01−20 09 : 1 3 : 2 0 , 5 5 . 7 1 0 374 , 1 3 . 2 0 8796 , 1 2 , 1 , 0 2 : 1 5 : 9 9 : 0 9 : eb : 8 f , −52 ,ON_FOOT
3 , " w i f i " ,2018−01−20 09 : 13 : 20 , 5 5 . 7 11244 , 13 . 2 06833 , 12 , 1 , d8 : 5 0 : e6 : 9 5 : bb : c0 , −98 ,ON_FOOT
3 , " w i f i " ,2018−01−20 09 : 1 3 : 2 0 , 5 5 . 7 10809 , 1 3 . 2 10674 , 1 2 , 1 , 9 0 : 8 4 : 0 d : de : 0 6 : 0 b , −102 ,ON_FOOT
3 , " w i f i " ,2018−01−20 09 : 13 : 20 , 5 5 . 7 10610 , 13 . 2 11114 , 12 , 1 , a4 : 2 b : 8 c : 8 e : 6 c : e3 , −16 ,ON_FOOT
4 , " b t " ,2018−01−20 09 : 1 3 : 2 5 , 5 5 . 7 11353 , 1 3 . 2 10653 , 2 0 , 2 55 , 9 0 : 8 4 : 0 d : de : 0 6 : 0 b , −9 ,ON_FOOT
4 , " w i f i " ,2018−01−20 09 : 1 3 : 2 5 , 5 5 . 7 11770 , 1 3 . 2 10310 , 2 0 , 2 55 , 9 6 : 8 4 : 0 d : de : 0 6 : 0 c , −18 ,ON_FOOT
5 , " w i f i " ,2018−01−20 09 : 1 3 : 4 0 , 5 5 . 7 10525 , 1 3 . 2 10471 , 2 0 , 1 53 , 5 8 : 9 8 : 3 5 : 7 e : e9 : c9 , −26 ,ON_FOOT
6 , " w i f i " ,2018−01−20 09 : 13 : 45 , 55 . 711445 , 13 . 210601 , 20 , 55 , a4 : 2 b : 8 c : 8 e : 6 c : e3 , −78 , STILL
6 , " w i f i " ,2018−01−20 09 : 13 : 45 , 55 . 710647 , 13 . 210821 , 20 , 55 , 6 c : b0 : ce : a4 : bd : 7 b , −92 , STILL
6 , " w i f i " ,2018−01−20 09 : 13 : 45 , 55 . 710972 , 13 . 210529 , 20 , 55 , 2 c : b4 : 3 a : 0 2 : 1 9 : e9 , −53 , STILL
7 , " w i f i " ,2018−01−20 10 : 4 3 : 3 0 , 5 5 . 7 09595 , 1 3 . 2 09686 , 3 4 , 2 55 , 9 6 : 8 4 : 0 d : de : 0 6 : 0 b ,ON_FOOT
7 , " w i f i " ,2018−01−20 10 : 4 3 : 3 0 , 5 5 . 7 09385 , 1 3 . 2 09466 , 3 4 , 2 55 , 9 0 : 8 4 : 0 d : de : 0 6 : 0 b , −28 ,ON_FOOT
7 , " w i f i " ,2018−01−20 10 : 43 : 30 , 5 5 . 7 09045 , 13 . 209965 , 34 , 255 , 20 : 4 e : 7 f : 0 0 : cc : e9 , −23 ,ON_FOOT
7 , " b t " ,2018−01−20 10 : 43 : 30 , 55 . 709288 , 13 . 211368 , 34 , 255 , d8 : 5 0 : e6 : 9 5 : bb : c0 , −73 ,ON_FOOT
8 , " w i f i " ,2018−01−20 10 : 4 3 : 3 5 , 5 5 . 7 09761 , 1 3 . 2 10510 , 1 07 , 0 , 9 6 : 8 4 : 0 d : de : 0 6 : 0 c , −35 ,ON_FOOT
8 , " w i f i " ,2018−01−20 10 : 43 : 35 , 55 . 710030 , 13 . 210195 , 107 , 0 , 4 c : 6 0 : de : f a : b9 : 8 a , −84 ,ON_FOOT
9 , " w i f i " ,2018−01−20 10 : 43 : 4 0 , 5 5 . 7 10299 , 1 3 . 2 10007 , 5 , 1 , c4 : 1 2 : f5 : 6 e :24 :24 , −64 ,ON_FOOT
9 , " w i f i " ,2018−01−20 10 : 4 3 : 4 0 , 5 5 . 7 0 9992 , 1 3 . 2 09900 , 5 , 1 , 9 6 : 8 4 : 0 d : de : 0 6 : 0 f , −43 ,ON_FOOT
9 , " w i f i " ,2018−01−20 10 : 43 : 4 0 , 5 5 . 7 09130 , 1 3 . 2 10001 , 5 , 1 , e0 : b9 : e5 : 6 2 : 0 a : ab , −62 ,ON_FOOT
9 , " w i f i " ,2018−01−20 10 : 4 3 : 4 0 , 5 5 . 7 0 9203 , 1 3 . 2 1 0688 , 5 , 1 , 1 4 : 9 9 : e2 : 0 0 : ce : 2 b , −37 ,ON_FOOT
9 , " w i f i " ,2018−01−20 10 : 4 3 : 4 0 , 5 5 . 7 1 0152 , 1 3 . 2 10906 , 5 , 1 , 9 0 : 8 4 : 0 d : de : 0 6 : 0 e , −17 ,ON_FOOT
9 , " b t " ,2018−01−20 10 : 43 : 4 0 , 5 5 . 7 08804 , 1 3 . 2 11121 , 5 , 1 , ba : e0 : a3 : 1 2 : d2 :22 , −47 ,ON_FOOT
9 , " w i f i " ,2018−01−20 10 : 43 : 4 0 , 5 5 . 7 09971 , 1 3 . 2 11851 , 5 , 1 , b8 : ec : a3 : 0 f : c4 : 9 e , −78 ,ON_FOOT
10 , " w i f i " ,2018−01−20 10 : 43 : 4 5 , 5 5 . 7 11089 , 1 3 . 2 11840 , 7 , 1 32 , 9 2 : e f : 6 8 : 6 4 : 50 : 1 4 , −65 ,ON_FOOT
10 , " w i f i " ,2018−01−20 10 : 43 : 4 5 , 5 5 . 7 11929 , 13 . 2 10499 , 7 , 1 32 , 7 0 : 4 d : 7 b : 4 d :96 :34 , −45 ,ON_FOOT
10 , " w i f i " ,2018−01−20 10 : 43 : 45 , 55 . 709173 , 13 . 209018 , 7 , 132 , c6 : ea : 1 d : f3 : d2 : b4 , −63 ,ON_FOOT
10 , " w i f i " ,2018−01−20 10 : 43 : 45 , 55 . 708955 , 13 . 210112 , 7 , 132 , 2 c : e6 : cc : a f : 07 :98 , −84 ,ON_FOOT
11 , " w i f i " ,2018−01−20 14 : 00 : 13 , 5 5 . 7 12008 , 13 . 2 14710 , 10 , 0 , d0 : c2 : 8 2 : 8 5 : 7 2 : 8 7 , −3 , STILL
11 , " w i f i " ,2018−01−20 14 : 00 : 13 , 5 5 . 7 12637 , 13 . 2 15450 , 10 , 0 , f0 : 9 c : e9 : 4 a : 5 f :94 , −7 , STILL
11 , " w i f i " ,2018−01−20 14 : 00 : 1 3 , 5 5 . 7 13302 , 1 3 . 2 14892 , 1 0 , 0 , 2 6 : 4 e : 7 f : 7 8 : 0 f :14 , −46 , STILL
12 , " b t " ,2018−01−20 14 : 00 : 18 , 5 5 . 7 11670 , 13 . 2 14431 , 14 , 0 , d0 : c2 : 8 2 : 7 f : ae : 1 f , −79 , STILL
13 , " w i f i " ,2018−01−20 14 : 0 0 : 2 3 , 5 5 . 7 10751 , 1 3 . 2 15289 , 1 8 , 0 , 0 8 : cc : 6 8 : c2 : 4 3 : e2 , −114 , STILL
13 , " w i f i " ,2018−01−20 14 : 0 0 : 2 3 , 5 5 . 7 12250 , 1 3 . 2 14366 , 1 8 , 0 , 0 0 : 2 6 : 3 e : cd : f0 :05 , −36 , STILL
. . .

Listing A.1: Input format.

65

A. Input dataset

66

Appendix B
Track output

−−−

Track ID : 7 a588f5c −6c0c−4db4−b835−b3a f a e648c f e
−−−

t im e _ l e n g t h : 00 : 03 : 15
amoun t_of_samples : 577
amoun t_o f_scans : 39
m a i n _ a c t i v i t y : ON_FOOT
un i q u e _w i f i s : 110
u n i q u e _ b l u e t o o t h s : 16
me an_gp s _ l a t i t u d e : 55 .71101647643002
mean_gps_ long i t ude : 13 .21061018911612
mean_gp s _ a l t i t u d e : 59 .07452339688041
mean_gps_accuracy : 9 .727902946273833
max_gps_accuracy : 13 . 0
m e a n _w i f i b t _ l a t i t u d e : 55 .71082846273835
me a n_w i f i b t _ l o n g i t u d e : 13 .21048070883882
mean_gyro_heading : 0 .339681553206238
mean_p re s su r e : 1016.982027729631
mean_ve l o c i t y : 1 .032049766078698
i n v a l i d _ f l a g : mean_ve l o c i t y
−−−

2018−01−20 09 :13 :05 ,55 .71155968333843 ,13 .21033031108362
2018−01−20 09 :13 :10 ,55 .71136632545466 ,13 .21026631623404
2018−01−20 09 :13 :15 ,55 .71135848939248 ,13 .21063848939277
. . .
−−−

Listing B.1: Output format as produced by the prototype.

67

B. Track output

68

Appendix C
spark-submit

spa rk −submi t −−deploy −mode c l u s t e r
−−con f s p a r k . d e f a u l t . p a r a l l e l i s m =64
−−con f " s p a r k . e x e c u t o r . e x t r a J a v aOp t i o n s =
−XX:+ Agg r e s s i v eOp t s
−XX:+ P r i n t F l a g s F i n a l
−XX:+UseG1GC
−XX:+ UnlockDiagnos t icVMOpt ions
−XX:+G1SummarizeConcMark
−XX: I n i t i a t i n gHe a pOc c u p a n c yP e r c e n t =35 "
−− c l a s s CPS . CPS
−− j a r s s3 : / / bucke t / l i b / c o l t − 1 . 2 . 0 . j a r
s3 : / / bucke t / p r o t o t y p e / p r o t o t y p e . j a r
s3 : / / bucke t / i n p u t
s3 : / / bucke t / o u t p u t

Listing C.1: Example of a spark-submit command.

69

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTATIONSDAG 2018-03-08

EXAMENSARBETE Scalable processing of globally crowd-sourced geolocation data
STUDENT Oskar Jermakowicz
HANDLEDARE Marcus Klang (LTH), Rikard Windh (Combain Mobile AB)
EXAMINATOR Krzysztof Kuchcinski (LTH)

Skalbar inomhuspositionering

POPULÄRVETENSKAPLIG SAMMANFATTNING Oskar Jermakowicz

Att ta reda på var en försvunnen apparat befinner sig i ett sjukhus kan vara viktigt. Är
denna apparat uppkopplad till the Internet of Things så är det möjligt att ta sensordata
och beräkna vilket rum på sjukhuset den befinner sig i på några sekunder.

Enheter inom the Internet of Things ökar expo-
nentiellt. Att hålla reda på enheters positioner-
ing inomhus blir betydligt mer relevant inom da-
gens samhälle. Detta kräver bearbetning av stora
mängder data för att uppnå höga precisioner.

Ett nuvarande system, Combain Positioning So-
lutions (CPS), jämfördes med en prototyp som jag
utvecklade i en big data miljö.

Prototyp CPS

Precision 95 meter 15 meter
Datapunkter / s 16 tusen 15 st
Datapunkter / USD 69 miljoner 120 tusen
Skalbart Linjärt Nej

Jämförelse mellan prototypen och CPS.

Jämförelsen visar att prototypens precision är
mindre bra, men alla andra aspekter är otroligt
lovande, i synnerhet skalbarheten där prototypens
prestanda ökar i samband med ökning av da-
torkraft.
CPS är ett system utvecklat av Combain Mo-

bile AB. I dagsläget får Combain Mobile AB in
cirka 50 miljoner datapunkter varje dag och deras
databas har över 48 miljarder positioner, över 1,4
miljarder Wi-Fi nätverk och över 88 miljoner mo-
bilmaster. Denna mängd data behandlas av CPS
dagligen. Inomhuspositioneringsdelen av denna

lösning har en genomsnittlig precision på 15 meter
när den ska lokalisera enheter. För att ständigt
förbättra precisionen, så måste programmet sys-
tematiskt lära sig genom att behandla otroligt
stora mängder data.
Att behandla dagens inkommande data är inga

problem för CPS, men när antalet användare ökar
som förväntat med 100 till 10’000 gånger så läggs
en stor tyngd på att CPS ska kunna vara skalbart.
Detta är en datamängd på upp till 14 miljarder
datapunkter, eller upp till 4 terrabytes data att
behandla varje dag. Därför har det föreslagits att
undersöka hur CPS kan anpassas till en så kallad
big data lösning med fokus på skalbarhet.

Under examensarbetet så har jag utvecklat en
prototyp i ett big data ramverk och den består av
de grundläggande funktionerna i CPS. Prototypen
implementerades på molnet, där flertal tester och
mätningar som skalbarhet, prestanda, kostnadsef-
fektivitet och precision genomfördes. Med hjälp
av dessa mätningar så kunde jag göra en översik-
tlig jämförelse mot CPS.
Då antalet användare och inkommande data-

punkter ökar så kommer det enligt resultatet inte
räcka att bara skruva upp mängden datorkraft.
Därmed kommer någon slags mer skalbar lösning
att behövas. Prototypen visar flertal lovande as-
pekter och jag drar slutsatsen att prototypen är
en potentiell grund och startpunkt för en framtida
big data lösning.

	Introduction
	Problem description
	Indoor positioning overview
	Related work
	Contributions
	Structure
	Terminology

	Technical Background
	Combain Positioning Solutions
	Splitter
	Bundler
	Future version

	Big data
	Apache Hadoop
	MapReduce

	Apache Spark
	Architecture
	Resilient Distributed Datasets
	Directed Acyclic Graph
	Stream processing

	Apache Flink
	Architecture
	Dataflows
	Programming in Flink

	Amazon Web Services
	Amazon S3
	Amazon EC2
	Amazon EMR

	Approach
	Way of working
	Development
	Evaluation

	Prototype implementation
	Architecture
	Input & data structure
	Splitter
	Classifier
	Bundler
	Output
	Deployment

	Measurements
	Precision and approach
	Determining cluster instance types
	Cost efficiency and performance
	Scalability
	Memory usage
	Cluster and driver load
	Bottleneck
	Throughput
	Virtualized and local cluster comparison
	Simple version of prototype
	CPS measurements

	Discussion
	Prototype evaluation
	Precision
	Comparison of the prototype and CPS
	Deployment
	Thesis evaluation

	Conclusion
	Conclusions
	Future Work

	Appendix Input dataset
	Appendix Track output
	Appendix spark-submit
	Tom sida
	Tom sida

