
Clustering and Classification of Test
Failures Using Machine Learning

Andy Truong, Daniel Hellström

MASTER’S THESIS | LUND UNIVERSITY 2018

Department of Computer Science
Faculty of Engineering LTH

ISSN 1650-2884
LU-CS-EX 2018-30

Clustering and Classification of Test
Failures Using Machine Learning

Andy Truong
andychiwi.truong@gmail.com

Daniel Hellström
d.hellstrom.94@gmail.com

June 5, 2018

Master’s thesis work carried out at Axis Communications AB.

Supervisor: Erik Larsson, erik.larsson@eit.lth.se

Examiner: Flavius Gruian, flavius.gruian@cs.lth.se

mailto:andychiwi.truong@gmail.com
mailto:d.hellstrom.94@gmail.com
mailto:erik.larsson@eit.lth.se
mailto:flavius.gruian@cs.lth.se

Abstract

Verification is an important part of the hardware design process. Thorough
verification requires a large number of test cases. To facilitate debugging in
verification, test failures are clustered and classified according to their root
causes. Currently, this is performed by manually examining log files. This
thesis investigated how machine learning can be applied to automate this pro-
cess.

We used Python and Scikit-learn to evaluate and compare machine learn-
ing algorithms for clustering and classification of test failures. Our dataset
consisted of 12500 log files with 12 different root causes. We compared eight
classification algorithms and three clustering algorithms. We also investi-
gated how dimensionality reduction affected both computation time and per-
formance. The most suitable clustering algorithm was DBSCAN with AMI
and ARI scores of 0.593 and 0.545 respectively. The most suitable classifica-
tion algorithm was random forest with an accuracy of 0.907 and an F1-score
of 0.913.

Keywords: machine learning, hardware verification, simulation, log file, classifica-
tion

2

Acknowledgements

First, we would like to thank Lars Viklund and Harry Duque at Axis Communications
for their continuous support of this thesis. Their insight and guidance helped us in our
investigation. We would also like to show our gratitude towards Harry and the verification
team at Axis for providing us with an annotated dataset. Our thesis would not have been
possible without it.

We would also like to thank our supervisor at Lunds Tekniska Högskola, Erik Larsson,
for feedback during this thesis. Special thanks for helping us with the academic writing
process.

3

4

Contents

1 Introduction 9
1.1 Goal . 10
1.2 Related Work . 10
1.3 Method . 11
1.4 Disposition . 11
1.5 Contributions . 12

2 Pre-Silicon Hardware Verification 13
2.1 Background . 13
2.2 Test Bench . 14
2.3 Root Cause Analysis . 15

2.3.1 Root Cause Examples . 15
2.3.2 Process and Problems . 17

3 Machine Learning 19
3.1 Fundamentals . 19
3.2 Features . 20

3.2.1 Dimensionality . 20
3.2.2 Dimensionality Reduction . 20

3.3 Algorithms . 21
3.3.1 Classification . 21
3.3.2 Clustering . 25

3.4 Evaluation . 27
3.4.1 Classification . 27
3.4.2 Clustering . 29

4 Data Preprocessing 33
4.1 Data . 33
4.2 Transformation . 36

5

CONTENTS

5 Evaluation 39
5.1 Classification . 39

5.1.1 Algorithm Selection . 39
5.1.2 Optimisation . 41
5.1.3 Final Evaluation . 43

5.2 Clustering . 46
5.2.1 Results . 47

5.3 Tool Implementation . 48

6 Discussion 51
6.1 Data . 51
6.2 Classification . 52
6.3 Clustering . 53
6.4 Features . 53
6.5 Dimensionality Reduction . 54

7 Conclusion 55
7.1 Future work . 56

Bibliography 57

6

List of abbreviations

AMI Adjusted mutual information
ARI Adjusted Rand index
CRV Constrained random verification
DBSCAN Density-based spatial clustering of applications with noise
DUT Device under test
HDL Hardware description language
IC Integrated circuit
MDS Multidimensional scaling
PCA Principal component analysis
RBF Radial basis function
SFM RF SelectFromModel using random forest
SFM SVC SelectFromModel using support vector classifier
SVM Support vector machine
t-SNE t-distributed stochastic neighbour embedding
UVC UVM verification component
UVM Universal verification methodology

7

CONTENTS

8

Chapter 1
Introduction

Discovering design flaws during manufacturing of integrated circuits (ICs) is very costly.
Pre-silicon verification is used to discover design flaws before IC manufacturing. In in-
dustry, pre-silicon verification is typically performed using simulation. In simulation, a
test bench applies a number of test cases to the design and the produced responses are
compared against expected responses, the reference. If test cases fail, a root cause analysis
takes place in order to determine the root causes of the failures. The root cause analysis
process consists of two steps, clustering and classification. The first step is clustering the
test failures. The goal of clustering is to determine which test failures share the same root
cause. After the test failures have been clustered, a classification is performed to determine
the type of root cause for each failure.

Successful root cause analysis facilitates efficient distribution of debugging efforts.
The process of designing hardware consists of strict deadlines. Assigning verification
engineers to root cause analysis is dependent on the deadlines and more resources are
necessary for debugging if the deadline is closer. An efficient distribution includes the
determination of which and howmany engineers should be assigned the task of debugging.
By knowing the root causes of test failures, they can be assigned to the engineers best suited
to correct them [1].

Root cause analysis is often performed manually by examining log files, which can
be tedious and time consuming. According to a study performed in 2014, 37% of a ver-
ification engineer’s time is spent on debugging [2], which root cause analysis is part of.
Reducing the time and effort required for root cause analysis, and in turn debugging, would
have a positive impact on the entire verification process [3].

One method of reducing the time spent on root cause analysis is by automating the
process. Automation of root cause analysis can be achieved using different approaches.
Rule-based approaches seek to create a set of rules that correlate events with root causes.
Model-based approaches construct an approximatemodel of the system. These approaches
require extensive knowledge of the system and such knowledge can be difficult to obtain.
Another alternative is to use a machine learning approach. This approach does not require

9

1. Introduction

extensive knowledge about the system. Instead, machine learning relies on large amounts
of data to model relationships between test failure and root cause [4].

Determining how effective machine learning techniques are for a problem is difficult
without empirical results. There are several different algorithms used for clustering and
classification. The algorithms use different strategies which leads to them performing dif-
ferently depending on the problem. In this thesis we will investigate howmachine learning
can be used to automate clustering and classification of test failures. We will compare al-
gorithms for both problems in order to determine the algorithms that are best suited for
automation of clustering and classification of test failures.

1.1 Goal
The goal of the thesis is to investigate how machine learning techniques can be applied to
automate the process of clustering and classification of test failures. The main questions
are:

• How can machine learning techniques be applied effectively to root cause analysis
of IC designs?

• Which type of machine learning algorithm is the most suitable for root cause anal-
ysis?

1.2 Related Work
In this section, the results of related work and the difference compared to this thesis will
be described.

Chen et al. [5] investigated how a machine learning algorithm called decision tree
could be applied to root cause analysis. Their results indicated that the decision tree was
applicable to their specific task of root cause analysis. A decision tree is amachine learning
algorithm utilising a tree structure for classification. However, no comparison to other
algorithms was made, which we will investigate further.

Lal and Pahwa [6] investigated the classification of root causes of software failures
using different machine learning algorithms. Their methodology consisted of processing
free-text bug reports and a comparison of classification methods. They concluded that a
machine learning algorithm called support vector machine, which will be described later,
yielded the best results. However, their choice of classification methods was restricted
to those capable of working with unlabelled data due to their limited amount of labelled
data, i.e. failures with known root causes. Since we have access to a sufficiently large set
of labelled data we have used more accurate methods that require a larger set of labelled
data.

In two studies, Chakrabarty et al. investigated the effectiveness of decision trees [4]
and support vector machines [7] in root cause classification at board-level. The results
indicated that both algorithms can be effective in root cause analysis. However, the number
of data samples used in their evaluation was limited to 1000. Thus, no measure of how the

10

1.3 Method

algorithms will perform on larger sets of data samples was given. We have used a larger
amount of data samples in our evaluation.

The application of clustering methods for root cause analysis of software failures was
investigated by Podgurski et al. [8]. They concluded that clustering is best used in con-
junction with a visualisation algorithm since the results can be unreliable. The method
of combining clustering with visualisation aids the identification of minor errors in the
results. This method has been adopted in our thesis, but we have evaluated and compared
multiple algorithms. Additionally, their study did not provide any metrics for the quality of
the clustering, instead conducting a qualitative analysis. In this thesis, we used clustering
metrics to determine the quality of our results.

1.3 Method
Our method consisted of three steps: preparation, data preprocessing and evaluation. Dur-
ing the preparation step we gathered information about machine learning algorithms and
about how log files could be used as data for these algorithms. We also discussed how this
data would be generated and labelled with the verification engineers at Axis. The prepa-
ration step resulted in a selection of algorithms that would be evaluated for this problem,
a method for generating the data and a list of root causes that would be used to label this
data.

The data preprocessing step consisted of further examining the log files that would be
used as data in order to develop a method for extracting relevant information from them.
With the help of the verification engineers at Axis we were able to extract this information
from the log files and transform it so it could be used as input for the machine learning
algorithms.

When the data preprocessingmethod had been developed and a sufficiently large dataset
of 125000 log files had been generated for us, we performed an evaluation of the machine
learning algorithms.

1.4 Disposition
The disposition of this thesis is as follows: Chapters two and three will provide theoretical
background of the pre-silicon hardware verification andmachine learning areas. In chapter
two we will introduce the verification techniques and environment examined in this thesis
and further describe the problems we aim to solve. In addition to providing the funda-
mentals of machine learning, chapter three will introduce the clustering and classification
algorithms evaluated in this thesis. Chapter four will describe the data we used and how
we transformed it into a format that could be used in machine learning. Our evaluation
process and the results of the evaluation will be presented in chapter five and discussed in
chapter six. Finally, in chapter seven the conclusions of the thesis will be presented.

11

1. Introduction

1.5 Contributions
During the background investigation we both investigated the same subjects and discussed
our findings. The method and code used in the data preprocessing step was mainly devel-
oped by Daniel. He also implemented the tool described at the end of chapter five. Andy
mainly worked on the code for the evaluation as well as performed it.

The main contributions for to the report were the following: In chapter two, Daniel
wrote about the methods and test bench while Andy focused on the root cause analysis
process and its problems.

In chapter three, Daniel wrote about the fundamentals and the features in machine
learning. Daniel also wrote about the metrics for clustering while Andy focused on the
metrics for classification. The machine learning algorithms Andy described were logistic
regression, naive Bayes, decision tree, K-nearest neighbours, K-means andDBSCAN. The
algorithms Daniel described were support vector machine, agglomerative clustering and
the visualisation algorithms.

In chapter four, Andy wrote about the data and Daniel about how the data was trans-
formed.

In chapter five, Andy wrote about the algorithm selection and optimisation steps of the
evaluation of classification algorithms and Daniel wrote about the final evaluation of those
algorithms. The section about the clustering evaluation was written mainly by Andy, and
the section describing the tool implementation mainly by Daniel.

We discussed the results with each other and both contributed equally to the discussion
and conclusion chapters.

12

Chapter 2
Pre-Silicon Hardware Verification

This chapter will provide an introduction to the pre-silicon hardware verification process.
The verification methods and verification environment examined in this thesis will be pre-
sented. The process of clustering and classification of test failures will be described along
with the problems that they present.

2.1 Background
Verification of hardware designs can be performed using different strategies. The strat-
egy investigated in this thesis was simulation-based verification. In simulation, hardware
designs are implemented in a hardware description language (HDL) and simulated in a
test bench. A simulated hardware design, known as the device under test (DUT), is tested
by exposing it to combinations of input signals, or stimuli, and verifying that the output is
correct [1].

In simulation, a series of stimuli combinations and output verification is called a test
case. Previously, test cases were generated manually by verification engineers. As the
complexity of hardware designs increased it grew more difficult to create the required
amount of test cases. To address this problem, engineers started to generate test cases with
randomised stimuli [1]. Designs provide a set of constraints that limit the input signals
to ones the DUT can handle. The method of generating randomised test cases under con-
straints is known as constrained random verification (CRV) [9]. In order to generate many
test cases that seek to verify the same part of the DUT, CRV enables the construction of
templates that can be used to generate tests with randomised stimuli. Thus a low amount
of manual effort is required to create a large set of test cases, many of which will explore
input combinations that could have been missed if the test cases had been created manually
[1]. CRV is the method used to generate the test cases examined in this thesis.

A drawback of simulation is that it is difficult to determine if all aspects of the design
are covered by the test cases. To solve this problem, coverage methods are used. Two com-

13

2. Pre-Silicon Hardware Verification

monly used coverage methods are structural coverage and functional coverage. Structural
coveragemeasures howmuch of the design’s HDL code is executed while functional cover-
age measures how much of the desired functionality has been tested. Measuring structural
coverage is done automatically, but no such methods exist for functional coverage. Instead,
verification engineers have to explicitly specify the functionality that needs to be measured
in functional coverage models [1].

2.2 Test Bench
In this section, the test bench, which is the environment where designs are simulated and
tested, will be presented. In addition to the DUT, a test bench typically contains compo-
nents such as stimulus generators, monitors, checkers and scoreboards. A component in a
test bench is called a UVMverification component (UVC)where UVM stands for universal
verification methodology [10]. The components in a test bench are implemented indepen-
dently meaning that the components can be reused in other projects and across different
test benches. An overview of a simple test bench, as described by Wile et. al. [1], is pre-
sented in Figure 2.1 and the remainder of this section will describe the components and
how they are connected.

Reference
 Model

DUTStimulus Generator Checker

Monitor

Scoreboard

Log File

Figure 2.1: A simple test bench environment.

The first component is the stimulus generator. A stimulus generator initiates events by
generating the stimuli used to test the DUT. In Figure 2.1, the stimuli generator provides
input for the DUT, the monitor and the scoreboard components.

A monitor is a component that observes the inputs and outputs to and from the DUT, as
seen in Figure 2.1, to verify that the protocol is followed. The protocol is derived from the

14

2.3 Root Cause Analysis

design specification and specifies valid responses and legal values. An error is returned by
the monitor if the protocol is not followed. The monitor also observes the stimuli sent to
the DUT and uses them to determine the functional coverage. The functionality to observe
consists of internal states of theDUT and interesting cases specified in the functional cover-
age model. The monitor is also the component responsible for generating post-simulation
information that can be used during debugging, which is recorded in a log file.

The scoreboard is responsible for containing the reference model and calculating the
reference output that the output from the DUT can be compared to. The reference model is
a high-level representation of the desired behaviour of the DUT. In Figure 2.1, the score-
board is connected to both the stimulus generator and the DUT and observes the input
stimuli and the function performed by the DUT. The scoreboard then uses the reference
model to perform the same calculations as the DUT, which yields the reference output.
When requested, the reference output will be sent to the checker where it is compared to
the output from the DUT.

The checker is a special type of monitor. Its main job is to examine the output sig-
nals from the DUT, as shown in Figure 2.1, and determine if they are correct. When the
checker observes output from the DUT it queries the scoreboard for the reference output
and performs a comparison. If the checker observes output that does not correspond with
the reference it records this in a log file so it can be used for debugging.

2.3 Root Cause Analysis
In this section, the importance and the process of root cause analysis will be described.
The root cause analysis process consists of two steps. When simulated test cases fail, the
first step is to cluster test failures that have the same root cause. The second step is to
classify the root causes of the failures to decide how to proceed with debugging.

All projects are working with deadlines when developing new products. In the pro-
cess of designing ICs, these deadlines are strict since it is difficult and expensive to make
adjustments to IC designs after they are manufactured. Root cause analysis is important
since it provides an overview of how many flaws exist and the severity of these flaws. A
flaw in the design is considered as critical since discovering design flaws closer to manu-
facturing can be very costly and efforts need to be focused on correcting these flaws before
the deadline. Flaws in the verification environment can be seen as not critical, if there is no
risk of masking design flaws, and can be corrected after the deadlines. The time plan to-
gether with the severity of flaws are used to facilitate an efficient distribution of debugging
efforts, in engineering cost and time. Too few resources will increase the time-to-market
thus increasing the cost. Using too many resources results in over-investment. Therefore,
it is important to determine the optimal amount of resources, which is facilitated by root
cause analysis [1].

2.3.1 Root Cause Examples
The following paragraphs will provide examples of the root causes that were examined
in this thesis. We investigated a set of the root causes provided to us by the verification
engineers at Axis. The provided set consisted of common root causes in a set of different

15

2. Pre-Silicon Hardware Verification

test benches and designs. The investigated root causes can be summarised by the following
groups:

• Failing checks or scoreboard mismatches between reference model and DUT due to
fault in either check, design or reference model.

• Internal failures in the test bench infrastructure, e.g. components are not correctly
connected.

• Illegal stimuli to the design under test caused by missing or incorrect constraints.

• Constraint solver errors caused by contradicting constraints.

• Constraint solver time-outs caused by constraints that are hard to solve.

• Incorrectly defined or configured functional coverage models.

• Intermittent failures caused by the IT infrastructure (full disk, network problems,
etc.).

Scoreboard Mismatch
Scoreboard mismatches appear when the checker detects dissimilarities between the out-
puts from the DUT and the reference model. The root cause of a scoreboard mismatch
can be located in the DUT, reference model or checker. When the root cause is located
in the DUT or reference model it indicates the existence of a flaw that compromises the
functionality. The reference model consist of components implemented in different pro-
gramming languages such as OpenCL [11], SystemC [12] and Python [13]. A flaw in the
implementation of the reference model results in test failures. Flaws located in the DUT
are design flaws and should be sent to the design engineers so they can be corrected. Thus,
determining the location of root causes of scoreboard mismatches is an important part of
root cause analysis.

Connectivity
A flaw in the checker indicates that the values could be compared incorrectly or that there
could exist a flaw in the checker since the components in the test bench are implemented
independently. This results in the root cause of test failure to be classified as a UVC flaw.
One consequence of implementing components independently is that the verification en-
gineer is required to connect the components correctly in order to verify the design. For
example, the functional coverage can not be determined if the monitor is not connected
to the DUT. A faulty connectivity can also result in data not being transferred correctly
between components.

Constraints
The usage of CRV requires the space of input stimuli to be limited by constraints. Exam-
ples of areas to constrain are the format of data and configurations of registers. Constraints
defining a distribution function are also necessary since some values are more common.

16

2.3 Root Cause Analysis

The space of input stimuli in combination with distribution functions result in complex
constraints. This complexity can lead to missing or incorrect constraints in the test bench
which results in illegal stimuli to the design. There is also the risk of defining constraints
that contradict each other, e.g. specifying that the value of a stimuli should be zero and
one at the same time. Such contradictions will make the constraints impossible to satisfy.

In general, the problem of finding values that satisfy a set of constraints is NP-complete.
By restricting the general problem it is however possible to efficiently solve it [14]. Thus,
the constraints used in CRV need to be carefully implemented for the problem to remain
tractable. Poorly implemented constraints can cause the time required to solve them to be
longer than allowed, causing test cases to time-out.

Functional Coverage Models
As explained in Section 2.1, verification engineers have to specify the functionality that
should be measured in functional coverage models. Thus, there is a risk of incorrectly
defining the models, causing them to be inconsistent with the DUT or the test cases. For
example, an incorrectly defined functional coverage model may designate certain stimuli,
which are considered legal by the constraints, as illegal. These stimuli will then cause the
monitor to raise a functional coverage error and fail the test.

Intermittent Failures
Intermittent failures caused by the IT infrastructure are not caused by how the verification
engineers have implemented the reference model, the components in the test bench or the
constraints for input stimuli. Examples of intermittent failures are running simulation on
an environment with low memory resulting in full disk, a power shortage, the power has
been unplugged or the network has temporarily gone down. Most intermittent failures can
be resolved by simply rerunning the test cases.

2.3.2 Process and Problems
This section will provide an example of the clustering and classification process and also
present the problems. The result of a clustering and classification process is presented in
Figure 2.2. The figure visualises a hypothetical set of test failures using an arbitrary pro-
jection on a two dimensional space. Each shape in the figure represents a log file generated
by a test failure and the distance between them indicates how similar they are. In the figure,
clusters identified by root cause analysis are represented by the circles surrounding the test
failures. The triangles and the squares represent two different types of root causes. In the
example, three clusters were identified, indicating three different root causes. Root cause
classification then reveals that the root causes are of two types: inconsistent constraint and
reference model bug. By combining the results of clustering and classification it can be
determined that there are two inconsistent constraints that manifest themselves differently,
as well as one bug in the reference model. The results of root cause analysis are then used
to determine the severity of the failures. Both the reference model bug and the inconsistent
constraints are located in the test bench. Thus, these flaws are not as critical as a design
flaw. With knowledge about the number of flaws and their severity, the debugging can be

17

2. Pre-Silicon Hardware Verification

divided into tasks and distributed efficiently among the engineers. The information from
root cause analysis is used to determine the number of engineers and the time required to
correct the flaws which lead to a lower verification resource cost.

Inconsistent
constraints

Bug in reference model

Figure 2.2: A clustering and classification of test failures visu-
alised in two dimensions. Three clusters were identified with two
types of root causes.

The main problemwith clustering and classification is that they are performed by man-
ually examining the log files generated during test executions. Log files can be large and
verbose, making them difficult to process for humans [1]. The usage of CRV leads to test
runs containing thousands of test cases. A test run could contain up to 8000 test cases and
produce 100 test failures. A verification engineer is required to examine all 100 test fail-
ures when performing clustering and classification which is tedious and time-consuming.
Reducing the time spent on clustering and classification of test failures is by automation.
One way of automating of clustering and classification is to using machine learning, which
will be introduced in the next chapter.

18

Chapter 3
Machine Learning

This chapter will provide a theoretical background for machine learning and important
terms within the area will be introduced. The algorithms used in our evaluation will be
presented and described. Finally, the methods and metrics that were used to evaluate the
algorithms will be presented.

3.1 Fundamentals
The basic concept behind machine learning is the use of large datasets to teach computers
about subjects and to be able tomake decisions or uncover information. There are twomain
groups of machine learning: supervised and unsupervised learning. They both attempt to
extract patterns from large amounts of data but operate in different ways.

Supervised learning uses labelled datasets to train models that can be used to predict
outputs for new data. In a labelled dataset each object, or sample, has a label containing
the output that should be associated with the sample. During training, different algorithms
can be used to create a model of the relationships between samples and their labels. This
model can then be used to determine the labels for new samples using the relationships it
has learned [15].

Supervised learning can in turn be divided into two groups: classification and regres-
sion. Classification is used when the label can be one of multiple non-overlapping discrete
classes. An example is a spam filter that has to determine if mails are spam or not. Re-
gression is used when the label should be a continuous numerical value, such as when
predicting the value of a stock [16]. In the case of classification, the model is often re-
ferred to as a classifier, which is the type of supervised learner used in this thesis.

Unsupervised learning does not require any labels for the input samples and does not
train models. Instead, it relies on finding patterns in datasets without any external help.
The most common type of unsupervised learning is clustering. Clustering algorithms seek
to create clusters where the samples within a cluster are similar [15].

19

3. Machine Learning

3.2 Features
To utilise machine learning algorithms, samples need to be represented by numerical val-
ues. The different numerical values representing a sample are called features. Some ex-
amples of features are the top-speed of a car or the frequency of the word "feature" in a
text. Anything that can be converted into a numerical value can be a feature. Since the
features are the only pieces of information machine learning algorithms will receive about
the problem it is important that they carry relevant information. For example, to predict
the temperature in a city on a specific date, the size of the city is irrelevant as a feature
since it will remain constant regardless of the temperature. Including irrelevant features
makes it more difficult for the algorithm to see the patterns present in the other features.

3.2.1 Dimensionality
For every new feature added to the feature set the dimension of the feature space increases.
Many machine learning projects are using hundreds up to tens of thousands of features
[17]. Therefore, the dimensionality of the spaces machine learning algorithms are sup-
posed to find solutions in can become very large. One problem with high dimensionality
is that the computation time of an algorithm increases. Another problem is that the more
dimensions the feature space has the less likely two samples are to be close to each other,
a phenomenon known as the curse of dimensionality. Géron [16] illustrates this with the
following example: If two points are randomly placed in a square where each side has
length 1, the average distance between them will be 0.52. When the same is attempted
in a cube the average distance will be 0.66 [18]. If the dimensionality is large, a sample
will often be far away from the other samples belonging to the same class or cluster. This
increases the difficulty of forming clusters and classifying samples [16].

3.2.2 Dimensionality Reduction
Reducing the dimensionality of the feature set will help combat the curse of dimensionality
while also reducing computation times. The reduction can be performed by using either
feature selection or feature extraction. Feature selection methods reduce the dimension-
ality by removing irrelevant features, whereas feature extraction methods merge existing
features [19].

There are two categories of feature selection methods used to determine the most rel-
evant features: filter and wrapper approaches. Filter methods evaluate each feature sepa-
rately by using a univariate scoring metric, such as variance, to determine the importance
of the feature. Wrapper methods use different strategies to search for subsets of the features
in order to find the subset which yields the highest accuracy when used with a classifier.
An effect of this difference is that wrapper methods take the dependency between fea-
tures into consideration while filter methods do not [20]. This typically leads to wrapper
methods outperforming filter methods [21] at the cost of longer computation times [20].

Feature extraction can either be done manually or by using a feature extraction algo-
rithm. Most of these algorithms are mathematical algorithms that represent data in a lower
dimension. The most popular of these is principal component analysis (PCA). It finds the

20

3.3 Algorithms

hyperplane of the desired dimension that preserves the most information when the dataset
is projected on it. PCA tends to preserve differences between samples well and is therefore
well suited for preparing data before it is used in a machine learning algorithm [16].

3.3 Algorithms
In this section, the classification and clustering algorithms that were evaluated will be in-
troduced. The evaluated classification algorithms are: logistic regression, support vector
machine, naive Bayes, decision tree, random forest and K-nearest neighbours. For clus-
tering, the evaluated algorithms are: K-means, DBSCAN and agglomerative clustering.
The benefits of visualisation algorithms will also be described.

3.3.1 Classification
Classification algorithms are supervised algorithms that seek to train a classifier to ac-
curately predict classes for new samples. Classifiers can be either binary or multiclass.
Binary classifiers, for example logistic regression and support vector machines, only han-
dle cases where there are two classes. In many cases, such as a spam filter, this is suffi-
cient. However, many other problems require the output to be of more than two classes.
Some classifiers, for example the random forest classifier, are capable of handling multiple
classes. In order to not be limited to classifiers that are inherently multiclass, it is possible
for a binary classifier to handle problems with multiple classes by using the one versus all
approach. The one versus all approach consists of training multiple classifiers of the same
type, one for each class, that can determine if a sample belongs to the class or not. The
result is then the class that yields the best score [22].

Logistic Regression

Logistic regression is a classifier that was introduced 60 years ago by David Cox [23]. It
is widely used in machine learning and medical fields. In the medical field, this model
can be used for predicting mortality in hospitals [24] or predicting the risk of liver damage
from medicines [25] based on observations of the patient. In engineering, this model can
be used to predict the probability of system failures [26].

The logistic regression classifier outputs a number between 0 and 1 using a sigmoid
function, as illustrated in Figure 3.1. These values are fitting for a classifier which de-
scribes a likelihood. The logistic regression classifier describes the probability of belong-
ing to class 1 as minimal for lower x but when reaching a threshold, typically 0.5, the
probability rises dramatically and stays close to 1 for larger x. These two properties are
the reasons why the logistic regression classifier is popular [27]. However, this model is
not accurate when there is noise in the data and these situations are common in systems
[28].

21

3. Machine Learning

−1.0 −0.8 −0.6 −0.4 −0.2 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

x

y
f (x) = 1

1+e−x

Figure 3.1: The sigmoid function used by the logistic regression
algorithm.

Support Vector Machine
Support vector machine (SVM) is a classifier that was introduced around 25 years ago [29,
30]. It is widely used in many different fields such as speech recognition and information
security. SVM’s popularity is due to its ability to combat some problems in machine
learning such as overfitting and the curse of dimensionality [31]. It is also well suited for
complex datasets that are not too large [16].

The concept of an SVM is easiest explained in the linear case with a two-dimensional
dataset. Such a dataset is visualised in Figure 3.2. This dataset contains two classes,
one represented by the squares and one by the triangles. These two datasets are linearly
separable since it is possible to draw a line, or decision boundary, completely separating
the two classes [31]. Linear separability is the main requirement for the most basic form
of SVM. In this case, the classifier seeks to find the decision boundary that maximises the
margin between the two classes [30]. The margin is the distance between the two lines
that are parallel to the decision boundary and pass through the sample(s) of each class that
is closest to the decision boundary. In Figure 3.2 the margin is the distance between the
dashed lines. The samples located on these dashed lines determine the properties of the
decision boundary and are called support vectors [31], giving the algorithm its name.

The same method can be applied in higher dimensions, except that a hyperplane is
used instead of a line. It is also possible to use a nonlinear function, either a polynomial
or a similarity function such as the radial basis function (RBF), to separate the classes if
the dataset requires a more complex model [31].

Naive Bayes
The naive Bayes model is a probabilistic classifier which has been studied for almost 70
years. It is widely used in retrieving information from text. This classifier is well suited for
large datasets and can handle noise or missing data with no difficulties [15]. Furthermore,

22

3.3 Algorithms

−6 −4 −2 0 2 4 6

−5

0

5

Figure 3.2: Separation of two classes using a support vector ma-
chine. The middle line is the decision boundary and the space
between the two dashed lines, which pass through the support vec-
tors, is the margin.

the naive Bayes classifier is fast and can compete with support vector machines when
sufficient preprocessing of the data is performed [32].

This model chooses the class with the highest probability given the feature values as
its prediction. The probability is calculated using Bayes’ theorem

P(Ci |E) =
P(Ci)P(E|Ci)

P(E)
(3.1)

where Ci is the class and E is the sample. In practice, it is useful to use this theorem
because estimations of the probability for the three terms on the right-hand side are in
many cases available [15]. Moreover, the naive Bayes classifier assumes that all features
are independent thus meaning the theorem can be simplified to the following

P(Ci |E) = P(Ci)
a∏

j=1

P(A j = v jk |Ci) (3.2)

where A j is the feature and v jk is the value.
In reality, the features are rarely independent of each other. But since the function

in Equation 3.2 can minimise the misclassification error and due to the properties of the
model in terms of simplicity and low resource usage, this is the classifier chosen in many
situations [33]. The naive Bayes classifier can also outperform other models on smaller
datasets but when the dataset grows the dominance of other algorithms, such as logistic
regression, will start to show [34].

Decision Tree
A decision tree is a classifier which uses a tree structure and the first algorithm was intro-
duced 55 years ago [35]. It is used in decision analysis and in machine learning as a way
to find the best strategy for reaching a goal. In other words, it finds a decision based on
the values of the feature vector [15].

23

3. Machine Learning

Figure 3.3: A decision tree for deciding whether to eat lunch now.

A simple Boolean decision tree is presented in Figure 3.3 for deciding whether to eat
lunch now. There are two types of nodes in this tree: answer nodes and decision nodes.
An answer node is a leaf node and represents a class whereas the decision node represents
a feature test with branches to another decision tree for each value of this feature [36].

The goal of the algorithm is to find a decision tree that is both small and consistent.
This is possible by using a greedy divide-and-conquer strategy which divides the problem
into smaller subsets and tests the most important feature first. The most important feature
is a feature which can make the most classifications in the sample. Decision trees are prone
to overfitting when the dimensionality increases and the resulting trees are often complex
[37]. To combat this problem, there exists a technique called decision tree pruning which
eliminates irrelevant nodes [15].

Random Forest
The random forest classifier is an ensemble classifier that combinesmultiple classifiers into
one [38]. As the name suggests, a random forest consists of a large number of decision
tree classifiers. Each of the trees is trained on a randomly selected subset of the origi-
nal dataset. During prediction, the most frequent result among the trees is chosen. The
concept is similar to bootstrap aggregating, or bagging [39]. Bagging is a more general
concept that can be used with any type of classifier, including decision trees. The random
forest classifier differs from a bagging classifier using decision trees by introducing more
randomisation during the training. Instead of selecting the most important feature out of
all the features when deciding which feature to use in a decision node, the random forest
algorithm only considers a random subset of features when making this selection. This
makes the trees differ more from each other which generally leads to a better model. Ran-
dom forests also make it possible to measure how important each of the features is to the
result [16].

24

3.3 Algorithms

K-nearest Neighbours
The k-nearest neighbours classifier previously went by the name "minimum distance clas-
sifier" [40] or "proximity algorithm" [41]. For classification, the k nearest neighbours for a
sample is calculated using a distance function [42]. The sample is then assigned the most
frequent class among the neighbours. This is visualised in Figure 3.4 where the sample
represented by the circle will be classified as a triangle since two of its three closest neigh-
bours are triangles. Typically, k is chosen to be odd in order to avoid any risks of getting
a tie [15]. The advantage of this classifier is that the training process is cheap, basically
nonexistent, at the expense of being highly affected by the curse of dimensionality [43], as
explained in Section 3.2.1.

−1 0 1 2 3 4 5
−6

−4

−2

0

2

4

6

Figure 3.4: K-nearest neighbours for classification using two
classes: rectangle and triangle. In this case of k = 3, the circle
will be classified as a triangle.

3.3.2 Clustering
This section will present the purpose of clustering and the different types of algorithms
utilised in this thesis. The purpose of cluster analysis is to divide the samples of a dataset
into groups, or clusters. These clusters will contain samples that are similar to each other.
Cluster analysis can aid the process of understanding, analysing and describing important
information that may initially be hidden [44].

There exist multiple algorithms that utilise different strategies to compute clusters.
These algorithms can be either prototype-based, density-based or graph-based. Prototype-
based algorithms form clusters around prototypes which can be centroids (centres of clus-
ters) or a probability distribution function. Density-based algorithms represent a cluster as
a dense region of samples that are surrounded by regions with lower density. This is useful
when the clusters are uneven in size or when there is noise in the data. Lastly, graph-based
algorithms represent the data as a graph and the clusters as connected subgraphs [44]. The
rest of the section will describe the evaluated clustering and visualisation algorithms.

25

3. Machine Learning

K-Means
The K-means algorithm was developed by Lloyd [45] and originally intended for vector
quantisation in signal processing [46] but is currently one of the most popular algorithms
used for cluster analysis. The goal of the algorithm is to find k non-overlapping clusters.

The algorithm is prototype-based and uses centroids to define the clusters. A cluster
centroid is computed as themean of the data points, and data samples closest to the centroid
are regarded as part of that cluster. The K-means algorithm works by first initialising k
random centroids. Using a distance function, the data objects are then assigned to the
closest centroid. The centroid is then updated by calculating the mean of the data samples
in the new cluster. These steps are then repeated for a set number of iterations or until no
data samples change clusters [44].

DBSCAN
Density-based spatial clustering of applications with noise (DBSCAN) is a density-based
algorithm that was introduced more than 20 years ago [47]. An advantage compared to
k-means is that there is no need to determine the number of clusters beforehand. DBSCAN
can also detect clusters of different shapes [48]. These two qualities are helpful when there
is not enough knowledge about the data.

When searching for clusters, DBSCAN defines the data samples as either core sam-
ples, border samples or noise samples. If an object has more than µ samples inside its
ε -neighbourhood, for example a radius, it is considered as a core sample. If an object
has less than µ sample inside its ε -neighbourhood and no core samples as neighbours it is
considered as a noise sample. Otherwise, it is considered as a border sample [48].

The DBSCAN algorithm uses a seed list S which is a set of samples for expanding
a cluster. In order to construct a cluster, DBSCAN first chooses a random unprocessed
sample and inserts it into the empty S. A sample p is then removed from S and other
samples that are inside the ε -neighbourhood of p and unprocessed are inserted into S, thus
expanding the cluster. However, it is only the core samples that are used for expansion.
A cluster is considered as complete when the seed list S is empty and a new search for
another cluster begins until all samples are labelled [48].

Agglomerative Clustering
Agglomerative clustering is a method that creates a hierarchical structure between clusters
and subclusters. It begins by placing each sample in its own cluster. The two most similar
clusters are then selected and combined into a new cluster. The merging continues until
one cluster remains. Along the way a hierarchical tree is constructed, with the root being
the final cluster, the leaves being the single sample clusters and the forks along the way
representing the merging of clusters [49]. The desired number of clusters can then be
selected from this tree.

Visualisation
Another way of performing cluster analysis is to use algorithms that can visualise the
similarity between samples in two or three dimensions. This can be useful if the results

26

3.4 Evaluation

of ordinary clustering algorithms are not satisfying. Finding the right parameters, such
as the number of clusters, to use in a clustering algorithm is difficult. This often leads
to less convincing clusters, and since the obtained results only specify which cluster a
sample belongs to it can be difficult to draw conclusions about the quality of the clustering.
Therefore, a visualisation algorithm can be used in conjunction with a clustering algorithm
to provide a better understanding of how samples relate to each other [8].

Two algorithms that are commonly used for visualisation are t-distributed stochastic
neighbour embedding (t-SNE) [50] and multidimensional scaling (MDS) [51]. They both
seek to create a mapping from one space to another space with a lower dimension that
preserves the similarity and dissimilarity between samples.

3.4 Evaluation
After a classifier has been trained or a clustering has been performed it is necessary to find
a way of measuring its performance. This section will present the different methods and
metrics used in our evaluation.

3.4.1 Classification
The most intuitive way of measuring the performance of a classifier is to make the clas-
sifier predict the results for each sample in the training set and measure the number of
correct classifications. However, due to the model being optimised for the training data
this approach will yield biased results that are not representative of how the model will
perform on new data. Optimising a model for the training data is known as overfitting and
generally leads to poor performance. To prevent overfitting, the model should be trained
on a subset of the entire dataset while the rest is used for evaluation. A part of the dataset,
usually 20%, is removed and saved as a test set that will not be seen by the model until the
final evaluation [16]. This will reveal how well the model performs on data it has not seen
before.

Another time at which evaluation is used is when comparing algorithms in order to
determine which is best suited for a specific problem. Since the test set should not be used
before the final evaluation it can not be used for this purpose. One alternative is to save a
further part of the training set as a validation set and use it to compare different algorithms.
However, there is a possibility that the remaining training set is too small to use for training
unless there was an abundant amount of data to start with. A way to avoid reducing the
training set is to use cross-validation instead of a validation set [16]. The most common
form of cross-validation is k-fold cross-validation. In this process, the training set is first
divided into k subsets. The classifier is then trained k times, each time excluding one of
the subsets. The excluded subset is used as the validation set while the classifier is trained
on the rest of the training set. The performance score is then the average of the scores for
each of the k runs [52].

27

3. Machine Learning

Metrics
The most basic metric that can be used to evaluate a classifier is the accuracy, which is the
percentage of correct predictions. However, this number can be misleading for datasets
containing classes of different frequency [16]. Therefore, other metrics, such as the con-
fusion matrix, precision, recall and F1-score, have to be considered as well. These metrics
were originally designed to handle binary classifications where the predicted result for a
sample can be interpreted as either positive or negative in regard to the problem. However,
they can also be generalised to problems with more than two classes.

Actual
class

Predicted class
p n total

p′ True
Positive

False
Negative P′

n′ False
Positive

True
Negative N′

total P N

Figure 3.5: Binary confusion matrix.

A confusion matrix provides an overview of how good a classifier is at predicting
results for the different classes and makes it easy to see if it often mixes up two or more
classes. The rows in a confusion matrix represent the actual class of a sample and the
columns represent the class that the sample was predicted as. In the binary case, this matrix
contains the number of true positives, true negatives, false positives and false negatives
with the structure presented in Figure 3.5. The number of true positives and true negatives
are the numbers of correctly classified positive and negative samples. The number of false
positives and false negatives are the numbers of positives wrongly classified as negatives
and vice versa. These numbers are used in the calculations of a number of other metrics
[53].

The confusion matrix can be used in the multiclass case by putting all classes on both
axes. The matrix’s diagonal will contain the number of correctly classified samples while
the rest of the numbers show the cases where samples of one class are classified as belong-
ing to another. This representation makes it possible to see if any classes are frequently
mixed up.

Precision is a measurement of how good the classifier is at not wrongly classifying a
negative sample as positive. In the binary case, it is calculated as:

Precision =
TP

TP + FP
(3.3)

where TP is the number of true positives and FP is the number of false positives. The
precision approaches one when the number of false positives approaches zero.

28

3.4 Evaluation

Recall is the complementary metric of precision. It measures how good the classifier
is at finding all the sought after results. The recall is calculated as:

Recall =
TP

TP + FN
(3.4)

The recall increases as the number of false negatives decreases, and a perfect score is
obtained if all positives have been labelled as positive. It thus yields better scores for clas-
sifiers that find a large fraction of the positive samples, but does not penalise for incorrectly
labelling samples as positive.

When precision and recall are used for multiclass classifiers the true and false positives
and negatives are calculated for each class. There are two methods of combining these
numbers into an average score: macro and micro. In macro-averaging, the precision and
recall are computed for each class and the average score is the average of these scores.
In micro-averaging, the sums of true and false positives and negatives over all classes are
calculated and used in the formulae for precision and recall. Scores obtained by micro-
averaging are biased towards the larger classes if there is a significant difference between
the number of samples in each class. Macro-averaging treats all classes equally. The
formulae are as follows:

PrecisionMacro =

∑n
i=1

TPi
TPi+FPi

n
(3.5)

PrecisionMicro =

∑n
i=1 TPi∑n

i=1(TPi + FPi)
(3.6)

RecallMacro =

∑n
i=1

TPi
TPi+FNi

n
(3.7)

RecallMicro =

∑n
i=1 TPi∑n

i=1(TPi + FNi)
(3.8)

where n is the number of classes.
The F1 score is often used as a convenient way to compare classifiers. This metric is a

combination of the precision and recall, by using the harmonic mean [54]. It is calculated
as:

F1 = 2 ·
precision · recall
precision + recall

(3.9)

3.4.2 Clustering
In this section, the evaluation methods and metrics for clustering will be presented. Eval-
uating the result of a clustering algorithm is not as straightforward as for classification. If
the predicted and actual cluster would be compared for each sample the metrics of accu-
racy, precision and recall would yield poor results. Consider the vectors of cluster labels
[0, 0, 1, 1], [1, 1, 0, 0] and [2, 2, 3, 3]. They all describe the same clustering, two clusters
with the same two samples in each, but a pairwise evaluation would yield an F1-score
of 0. None of the labels match the one in their position in any of the other clusterings.
Thus the evaluation metric described for classification are not applicable for clustering.

29

3. Machine Learning

Instead, metrics that compare the quality of the clusters, and not the labelling of samples,
are required.

Since there is no training and predicting involved in clustering there is no risk of over-
fitting on the data. This removes the need for a separate test set and cross-validation.

Metrics
One method of measuring the performance of clustering is to use the adjusted Rand index
(ARI) which measures the similarity between two clusterings and ignores permutation.
Let C denote the ground truth, K the cluster labelling, a the number of pairs of elements
that are in the same cluster in C as in K , b the number of pairs of elements that are in
different clusters in C and in different clusters in K and Cn

2 the total number of pairs in the
dataset. The Rand index (RI) is then computed according to the following formula [55]:

RI =
a + b
Cn

2
(3.10)

A disadvantage of using the Rand index is that there is no guarantee a random labelling
will yield a score close to 0. To have this property an adjustment is made by discounting
the expected Rand index, denoted as E[RI], as in the following formula [55]:

ARI =
RI − E[RI]

max(RI) − E[RI]
(3.11)

Another way of measuring the similarity between two clusterings is to use the infor-
mation theoretic concept of mutual information (MI). It is calculated as [56]:

MI(U,V) =
|U |∑
i=1

|V |∑
j=1

P(i, j) log
(

P(i, j)
P(i)P′(j)

)
(3.12)

where P(i) = |Ui | / N and P′(i) = |Vi | / N is the probability of a randomly chosen sample
to fall into class i in the clusterings U and V respectively. P(i, j) = |Ui ∩ V j | / N is the
probability of a randomly chosen sample to fall into class i in U and class j in V .

The base version of mutual information suffers from the same disadvantages as the
unadjusted RI. This is remedied in an identical way, resulting in the following formula for
the adjusted mutual information (AMI) [56]:

AMI =
MI − E[MI]

max(H(U),H(V)) − E[MI]
(3.13)

where H is the entropy.
ARI and AMI yields scores between 0 and 1, and -1 and 1 respectively. In both cases

a low score is poor and a score of one indicates a perfect match between the clusterings.
Both ARI and AMI come with the disadvantage of requiring a correct clustering to com-
pare with. In some cases, such as when determining the optimal number of clusters to
use in the K-means algorithm on a completely new dataset, there is no correct solution
to compare with. Those cases require a metric that can be computed without needing a

30

3.4 Evaluation

correct clustering. One such metric is the silhouette score. The silhouette score is a mea-
surement of how dense and well separated clusters are [57]. It yields a value between −1
and 1 where a perfect clustering is represented by 1 and is calculated as [58]:

x − y
max(x, y)

(3.14)

where x is the mean distance between a sample and other samples in the same cluster and
y is the mean distance between a sample and other samples in the nearest cluster.

31

3. Machine Learning

32

Chapter 4
Data Preprocessing

The first step in our investigation was to examine the data produced by the verification
process and transform it into a format that could be interpreted by machine learning al-
gorithms. This chapter will present the data, explain its format and describe the process
we used to transform it into numerical feature vectors. Dimensionality reduction of the
feature vector will also be described.

4.1 Data
When a test case is executed it produces artefacts that contain details about the test. Exam-
ples of these artefacts are log files and waveforms. In order to obtain as much information
as possible all artefacts would need to be examined, but to limit the scope of this thesis
only log files were used. Log files provide a good overview of test executions and only
very specific information is lost by only using them.

Figure 4.1: Example message from a log file

The log files produced by the test benches we investigated consist of log messages
that typically specify a severity level, a file path, a line number, a timestamp, a tag and a
descriptive text. Examples of the severity levels are fatal, error, warning and info. The
file path, line number and timestamp indicate where and when the message was produced.
The tag describes the type of the message. At the end of the log message is a descriptive

33

4. Data Preprocessing

text that provides further information. An example message from a log file can be seen in
Figure 4.1.

Fu
nc

tio
na

l C
ov

er
ag

e
C

on
st

ra
in

ts

C
on

tra
di

ct
io

n
M

is
si

ng
In

ef
fic

ie
nt

C
on

ne
ct

iv
ity

Bu
g

R
ef

er
en

ce
 M

od
el

En
vi

ro
nm

en
t

Te
st

 B
en

ch
D

es
ig

n

Sy
st

em
C

Py
th

on
O

pe
nC

L
U

VC
C

on
st

ra
in

ts
C

on
ne

ct
iv

ity

Bu
g

C
on

fig
ur

at
io

n
Is

su
e

In
ef

fic
ie

nt
M

is
si

ng
C

on
tra

di
ct

io
n

O
k

Fa
il

Al
gs

im
D

at
a

C
on

ve
rs

io
n

Pa
ra

m
et

er
s

C
on

fig
ur

at
io

n
O

bj
ec

t
Fa

ct
or

y

IT
C

on
st

ra
in

t S
ol

ve
r

Sy
st

em
ve

ril
og

In
fra

st
ru

ct
ur

e
D

is
k

Q
uo

ta
Jo

b
Ki

lle
d

Figure 4.2: Taxonomy of the root cause for test case failures

34

4.1 Data

The root causes of test failures are not completely separate from each other, but can be
grouped together into larger categories that represent the part of the system they appear in.
This enabled a construction of a treewhose levels can be used for classifications of different
granularity. The tree, along with the root cause labels used can be found in Figure 4.2. The
tree is a representation of the most common root causes the verification engineers at Axis
could identify. At the lowest granularity level, test cases are only classified as passing or
failing. When the granularity level is increased, the failures are divided into four classes.
Each of the four classes indicate the location of the root cause. Three of the four classes can
then be further divided into classes that provide a more detailed description of where the
root cause is located. It would be desirable to classify root causes as one of the leaf node
labels, the highest granularity level, but this may not always be possible. In cases where
the algorithm is unable to distinguish between two or more leaves it could be possible to
use the parent node label, which represents the part of the system the leaves are located in.
Thus some information about where the flaw is located would still be provided.

When the root cause taxonomy tree had been created it was possible to begin generating
the test cases for our dataset. The test cases were generated by injecting one type of flaw at
a time into working test benches or designs. The injected flaws were similar to flaws that
had been encountered by the verification engineers in the past. This resulted in a set of test
cases where each failure had a single known root cause and could be labelled accordingly.
The labels were constructed by finding the path between the root node and the leaf repre-
senting the root cause in the tree from Figure 4.2 and concatenating the labels on the nodes.
For example, failures caused by a flaw in the OpenCL part of the reference model received
the label Fail:Reference_Model:OpenCL and the ones caused by an incorrectly
implemented test bench component were labelled with Fail:Test_Bench:UVC:Bug.
Design flaws were labelled as Fail:Test_Bench:RTL:Bug. The construction of the
taxonomy tree and the generation of our dataset were performed by the verification engi-
neers at Axis. Due to time constraints, generating test cases for all leaves in the taxonomy
tree was not possible. The labels for the subset of root causes used in our evaluation and
the number of samples per label in the dataset are presented in Table 4.1.

Table 4.1: The labels for the test cases used in the evaluation and
the number of samples per label in the dataset.

Label Number of samples

Fail:Reference_Model:Python:Data_Conversion 1063
Fail:Reference_Model:OpenCL 620
Fail:Reference_Model:SystemC 695
Fail:Test_Bench:Functional_Coverage 1129
Fail:Test_Bench:Constraints:Contradiction 1367
Fail:Test_Bench:Constraints:Missing 1472
Fail:Test_Bench:UVC:Bug 1203
Fail:Test_Bench:UVC:Configuration_Issue:Configuration_Object 897
Fail:Test_Bench:UVC:Configuration_Issue:Parameters 456
Fail:Test_Bench:UVC:Configuration_Issue:Factory 963
Fail:Test_Bench:RTL:Bug 1405
OK 1256

35

4. Data Preprocessing

The test cases were generated by a set of different test benches that tested different
image processing designs. These test benches were selected by the verification engineers
at Axis because they were structurally similar and thus the log files generated by them
would also be similar.

4.2 Transformation
In this section, the transformation of text in log files to numerical values is described. In
order to be interpreted by machine learning algorithms, the input data needs to be repre-
sented by numerical feature vectors. Therefore, each log file had to be transformed into
such a vector. The process of transforming the contents of a log file into a vector of nu-
merical features is called abstraction. The first step of the abstraction process is to create
a set of regular expressions to match frequently appearing patterns. Log messages consist
of two parts: a static message type and a variable parameter part [59]. The regular expres-
sions are created to match the static parts of the messages while allowing different values
for the parameters. Creation of the regular expressions can be performed either by using
an automated approach, where a tool tries to extract the expressions or by using system
knowledge in order to manually create the expressions [60].

In our investigation, trials with the LogCluster [61] tool were performed but did not
produce any satisfying results. The log files we used contained several textual representa-
tions of large arrays and data structures in which the tool recognised patterns that were not
helpful. Therefore, we created our own regular expressions with the help of the verification
engineers at Axis.

The second step in the abstraction process is to use the created regular expressions
to extract specific parts which can be viewed as the representative for a message. Thus,
messages that differ by one or two variable values can have the same representative and
be treated as belonging to the same message category, reducing the number of categories.
For example, the expression we created to match messages of the type shown in Figure 4.1
was the following:

([^-]+)-\[([^\]]+)\] (4.1)

As seen in Figure 4.3, the expression extracted the message severity, tag, file path and
line number. The extracted information was concatenated and the resulting string was
seen as the representative of the message category. In some cases, the timestamp was also
extracted to determine if the message was written during the set-up phase or during the
actual execution.

After the abstraction process was completed the frequency of every category was deter-
mined and added as a feature which can be observed in Figure 4.3. Counting the frequency
of words or phrases is often used in document classification in the natural language pro-
cessing field [19]. The configuration parameters used when running the test case were
also extracted and added as features, along with Boolean values indicating if the test case
failed, crashed or produced a stacktrace.

The final step of the transformation process was scaling the data, now in the form of nu-
merical feature vectors, to be centred around the mean and have unit variance. The scaling
was performed using the StandardScaler module from the machine learning library

36

4.2 Transformation

Feature
vector

Log

Message Freq

msg 4

msg 3

msg 1

msg 2

42

365

24

1

Figure 4.3: Message extraction and transformation from log file
to a numerical vector.

in Python called Scikit-learn [62]. Some algorithms, such as support vector machines,
perform worse if the axes of the dimensions have very different scales [16].

The transformation process resulted in a large feature set containing 616 different fea-
tures. To reduce the number of features we performed an initial dimensionality reduction.
With the help of engineers with domain knowledge, log messages with a low severity level
had the line number removed and resulted in a feature vector of 287 dimensions. An in-
vestigation using a small subset of the data indicated promising results compared to using
the full feature set. The feature vector of 287 dimensions was chosen as our baseline for
the feature set.

37

4. Data Preprocessing

38

Chapter 5
Evaluation

This chapter will describe our evaluation process and present the results. First, the eval-
uation process and results for the classification algorithms will be presented. Then the
evaluation process and results for the clustering algorithms will be presented. Finally, a
description of how the best clustering and classification algorithms were used in the im-
plementation of our tool for automatic clustering and classification of test failures will be
provided. The evaluation was performed using a dataset consisting of 12500 test cases la-
belled with their root causes. The evaluation and our tool implementation were performed
using Python and Scikit-learn. Implementations of all machine learning algorithms were
available in Scikit learn and these implementations were used in our evaluation and tool
implementation.

5.1 Classification
This section will describe the three steps in our evaluation of the classification algorithms.
First we evaluated eight algorithms in order to determine the three most suitable for our
problem. These three algorithms were then optimised to improve their performance. The
optimised algorithms were then used in a final evaluation. Before the evaluation process,
the dataset was divided into a training set containing 10000 samples and a test set con-
taining 2500 samples. The training set was used with cross-validation in the first two
evaluation steps and the test set was used in the final evaluation.

5.1.1 Algorithm Selection
As the first step in the process of evaluating the classification algorithms we evaluated
and compared the algorithms in Table 5.1. The purpose of this evaluation was to get an
overview of how well the different algorithms performed for our problem. Based on the

39

5. Evaluation

results, we wanted to select the three algorithms that appeared to be best suited for the
problem and proceed with them to the next step.

The evaluated classification algorithms, along with the names of their implementing
functions in the Scikit-learn library, are presented in Table 5.1. These algorithms were se-
lected because they all utilise different strategies that may perform differently on different
types of data. To modify their behaviour, the algorithms use adjustable hyperparameters.
For this part of the evaluation, we used the algorithms with the default hyperparameter
values provided by Scikit-learn.

Table 5.1: The evaluated classification algorithms and the names
of their corresponding Scikit-learn functions.

Algorithm Scikit-learn function

Random forest RandomForestClassifier
Polynomial suport vector machine SVC(kernel=’poly’)
RBF support vector machine SVC(kernel=’rbf’)
Linear support vector machine LinearSVC
Decision tree DecisionTreeClassifier
Logistic regression LogisticRegression
K-nearest neighbours KNeighborsClassifier
Naive Bayes GaussianNB

Along with the classification algorithms, we evaluated three dimensionality reduction
algorithms in order to determine their impact on classification performance and computa-
tion time. The evaluated dimensionality reduction algorithms are presented in Table 5.2.
We decided to use algorithms utilising certain thresholds to select the most important fea-
tures. The feature selection algorithmswe evaluatedwerePCA and SelectFromModel.
PCA, as described in Section 3.2.1, uses a mathematical method to reduce the dimension-
ality of the feature set. SelectFromModel is a wrapper method implemented in the
Scikit-learn library. It selects features by training a model using all the features and then
selecting the features that were the most important for the model. We used this method
with two models, one random forest and one support vector machine model.

Table 5.2: The evaluated feature selection algorithms along with
their corresponding Scikit-learn functions and the abbreviations
used in the result table.

Algorithm Scikit-learn function Abbreviation

Principle component analysis PCA PCA
Most relevant features, random forest SelectFromModel() SFM RF
Most relevant features, linear SVM SelectFromModel() SFM SVC

40

5.1 Classification

Results

The results for the classification algorithms are presented in Table 5.3. Each algorithmwas
first evaluated using the baseline feature set, and then once using each of the dimensionality
reduction methods from Table 5.2. In Table 5.3, the algorithms are grouped by the feature
set used in the evaluation. For each algorithm, the accuracy, precision, recall, F1-score,
training time and prediction time were calculated using 5-fold cross-validation and are
presented in Table 5.3.

In Table 5.3 it can be observed that the three algorithms that yielded the highest F1-
score for the classification metrics were random forest, decision tree and K-nearest neigh-
bours. Almost every algorithm had the score for the classification metrics negatively im-
pacted by dimensionality reduction. However, dimensionality reduction reduced training
and prediction times for all algorithms except the random forest and decision tree algo-
rithms, which suffered longer training times when used with PCA. For example, the train-
ing time for the linear SVM was reduced from 72 to 20 seconds and the prediction time
of the k-nearest neighbour algorithm was reduced from 56 to 1.7 seconds. The algorithms
with the lowest training and prediction times were the naive Bayes and the decision tree.

5.1.2 Optimisation

In this section, the optimisation of the classification algorithms will be presented. Since
the initial evaluation was performed with the default hyperparameters for all algorithms
we improved the performance of the three best algorithms from the initial evaluation by
finding the optimal hyperparameters. The classification algorithms with the highest F1-
score in the initial evaluation were random forest, decision tree and k-nearest neighbours.
The k-nearest neighbours classifier yielded slightly lower scores when PCA was applied,
but the computation time was significantly lower. Therefore, we chose to use k-nearest
neighbours with PCA for the optimisation. We chose the three algorithms with the highest
F1-score since there was a difference between the top three and the other algorithms. As
seen in Figure 5.3, the naive Bayes algorithm had F1-score of 0.6, the SVM and the logistic
regression had longer computation time compared to the top three algorithms. The results
for the non-optimised versions of the three algorithms are in bold in Table 5.3.

The decision tree and k-nearest neighbours algorithms had small parameter spaces
thus an exhaustive search of all parameter combinations was feasible. For the random for-
est algorithm, which had a larger parameter space, we decided to use a random search.
Random search is an effective method for optimising hyperparameters in large parameter
spaces [63]. Both search methods work by selecting combinations, either randomly or ex-
haustively, of parameters from a specified parameter space and evaluating the performance
of the classifier for those combinations.

41

5. Evaluation

Table 5.3: Results for the classification algorithms, grouped by
the feature set used in the evaluation. The three that had the highest
F1-score and were chosen for optimisation are marked in bold.

Classifier Accuracy Precision Recall F1-score Train (s) Predict (s)

Baseline feature set
Random forest 0.899 0.907 0.904 0.905 0.277 0.132
SVC poly 0.556 0.864 0.560 0.609 52.655 56.315
SVC rbf 0.806 0.845 0.800 0.813 17.311 36.422
LinearSVC 0.851 0.856 0.852 0.852 72.463 0.184
Decision tree 0.892 0.901 0.899 0.899 0.342 0.067
Logistic regression 0.841 0.851 0.840 0.842 62.498 0.191
K-neighbours 0.883 0.890 0.887 0.888 0.522 56.618
Naive Bayes 0.643 0.763 0.652 0.607 0.180 0.933

Dimensionality reduction using PCA
Random forest 0.891 0.899 0.896 0.897 0.513 0.100
SVC poly 0.760 0.851 0.756 0.779 9.809 15.468
SVC rbf 0.808 0.844 0.803 0.814 5.971 12.239
LinearSVC 0.779 0.801 0.768 0.778 37.075 0.189
Decision tree 0.885 0.893 0.891 0.892 0.806 0.058
Logistic regression 0.794 0.817 0.785 0.793 31.105 0.127
K-neighbours 0.882 0.890 0.885 0.887 0.111 1.683
Naive Bayes 0.518 0.725 0.510 0.514 0.082 0.338

Dimensionality reduction using SFM SVC
Random forest 0.893 0.901 0.899 0.900 0.133 0.096
SVC poly 0.650 0.810 0.643 0.675 7.732 12.853
SVC rbf 0.747 0.791 0.752 0.757 4.520 10.773
LinearSVC 0.786 0.790 0.791 0.786 26.048 0.156
Decision tree 0.887 0.897 0.895 0.896 0.121 0.057
Logistic regression 0.752 0.775 0.757 0.757 21.339 0.195
K-neighbours 0.877 0.882 0.883 0.882 0.270 16.335
Naive Bayes 0.536 0.608 0.579 0.509 0.059 0.234

Dimensionality reduction using SFM RF
Random forest 0.896 0.904 0.902 0.902 0.126 0.101
SVC poly 0.704 0.820 0.688 0.719 3.813 6.410
SVC rbf 0.781 0.820 0.776 0.788 2.912 6.284
LinearSVC 0.786 0.798 0.784 0.786 19.937 0.136
Decision tree 0.891 0.899 0.897 0.898 0.099 0.058
Logistic regression 0.772 0.786 0.766 0.769 15.400 0.181
K-neighbours 0.878 0.884 0.883 0.883 0.112 4.668
Naive Bayes 0.575 0.677 0.610 0.534 0.044 0.192

42

5.1 Classification

Results
The results after the optimisation of the three best classification algorithms are presented
in Table 5.4. The method and metrics used for evaluation were the same as in the previous
section, i.e. 5-fold cross-validation and the metrics accuracy, precision, recall, F1-score,
training time and prediction time. In Table 5.4, the relative changes for each metric com-
pared to the non-optimised version of the algorithm are presented.

Table 5.4: Results and relative change after optimisation of the
random forest, decision tree and K-neighbours classifiers.

Classifier Accuracy Precision Recall F1-score Train (s) Predict (s)

Random forest 0.907 0.915 0.913 0.913 8.410 2.074
(+0.9%) (+0.9%) (+1.0%) (+0.9%) (+2936.1%) (+1471.2%)

Decision Tree 0.896 0.904 0.902 0.902 0.385 0.113
(+0.4%) (+0.3%) (+0.3%) (+0.3%) (+12.6%) (+68.7%)

K-neighbours 0.885 0.891 0.891 0.891 0.101 0.994
(+0.3%) (+0.1%) (+0.7%) (+0.5%) (-9.0%) (-41.0%)

As can be observed in Table 5.4, optimising the algorithms slightly increased their
scores for the classification metrics. Optimisation increased the computation time for the
random forest and the decision tree classifier whereas it decreased for the k-neighbours
classifier. The random forest classifier responded best to optimisation with regard to the
classification metrics.

5.1.3 Final Evaluation
The final evaluation was performed by training the algorithms on the entire training set
and predicting labels for the test set. The results are presented in Table 5.5.

Table 5.5: Results for the final evaluation of the random forest,
decision tree and K-neighbours classifiers.

Classifier Accuracy Precision Recall F1-score Train (s) Predict (s)

Random forest 0.907 0.916 0.912 0.913 5.344 0.182
Decision Tree 0.895 0.902 0.900 0.900 0.111 0.002
K-neighbours 0.880 0.888 0.886 0.886 0.059 0.113

The results of the final evaluation indicated that the random forest algorithm is the best
classifier for root cause classification. As observed in Tables 5.4 and 5.5, the results of
the final evaluation were only marginally lower than the results obtained by using cross-
validation on the training set, indicating that all three classifiers generalise well to new
data.

43

5. Evaluation

When the random forest classifier had been established as the best classifier for this
problem, further investigations of its performance were made. The next paragraphs will
present a confusion matrix, the importance of the number of samples in a dataset, the
dependency between the number of trees and the computation time. The performance of
the random forest classifier at different granularity levels will also be presented.

A confusion matrix for the random forest classifier is presented in Figure 5.1. The
confusion matrix illustrates how well the classifier performed for the different root causes.
The predicted labels are on the x-axis and the true labels are on the y-axis. Data conver-
sion, OpenCL and register transfer level (RTL) bugs were the most difficult root causes to
classify. Data conversion was often mistaken for either an RTL bug, which is a bug in the
design, or a universal verification component (UVC) bug, which is a bug in the test bench.
Contradicting constraints in the test bench could be misclassified as missing constraints.

Py
th

on
 D

at
a

Co
nv

er
sio

n

Re
fe

re
nc

e
M

od
el

 O
pe

nC
L

Re
fe

re
nc

e
M

od
el

 S
ys

te
m

C

Te
st

 B
en

ch
 F

un
ct

io
na

l C
ov

er
ag

e

Co
ns

tra
in

ts
 C

on
tra

di
ct

io
n

Co
nf

ig
ur

at
io

n
Iss

ue
 C

on
fig

ur
at

io
n

Ob
je

ct

RT
L

Bu
g

Co
ns

tra
in

ts
 M

iss
in

g

Co
nf

ig
ur

at
io

n
Iss

ue
 P

ar
am

et
er

s

UV
C

Bu
g OK

Co
nf

ig
ur

at
io

n
Iss

ue
 F

ac
to

ry

Python Data Conversion

Reference Model OpenCL

Reference Model SystemC

Test Bench Functional Coverage

Constraints Contradiction

Configuration Issue Configuration Object

RTL Bug

Constraints Missing

Configuration Issue Parameters

UVC Bug

OK

Configuration Issue Factory

0.73 0.00 0.00 0.00 0.00 0.01 0.09 0.01 0.00 0.15 0.00 0.00

0.03 0.81 0.00 0.00 0.00 0.01 0.14 0.02 0.00 0.00 0.00 0.00

0.00 0.01 0.98 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.86 0.00 0.00 0.13 0.00 0.00 0.00 0.01

0.02 0.01 0.01 0.00 0.00 0.89 0.04 0.02 0.00 0.02 0.00 0.00

0.07 0.06 0.00 0.00 0.00 0.00 0.80 0.04 0.01 0.02 0.00 0.00

0.00 0.00 0.00 0.00 0.02 0.00 0.03 0.94 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

0.06 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.92 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.1: Confusion matrix for the random forest classifier.

44

5.1 Classification

0 2,000 4,000 6,000 8,000 10,000
0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

Number of samples

F 1
-s
co
re

Figure 5.2: Illustration of how F1-score scales with the number
of data samples when using a random forest classifier.

The significance of data is illustrated in Figure 5.2. When the dataset reached 3000
samples the performance gained by adding more samples diminished. The F1-score fluc-
tuates when the number of samples is between 3000 and 6000 but stabilises after that.

As observed in Table 5.4, the time required for both training and predicting increased
for the random forest algorithm after it was optimised. The reason for this increase was that
the value of the hyperparameter determining the number of trees in the forest changed from
10 to 300 during optimisation. The significance of the number of trees in a random forest
was further investigated by measuring the computation time, which is the time required for
both training and prediction, and F1 score for different numbers of trees. The results are
illustrated in Figure 5.3. There it can be seen that the computation time increased linearly
with the number of trees while he F1-score remained roughly the same.

The results of the random forest classifier using the different granularity levels from the
taxonomy tree in Figure 4.2 are presented in Table 5.6. Classification at lower granularity
levels yields better accuracy scores but lower F1-scores. A granularity level of one, clas-
sification of passing and failing test cases, results in a perfect score. However, it should be
noted that whether a test failed or not is written in the log file. Thus the lowest granularity
level, while perfect, does not aid debugging.

45

5. Evaluation

0 100 200 300 400 500
0

5

10

Number of trees

Co
m
pu

ta
tio

n
tim

e
(s
)

0 100 200 300 400 500

0.86

0.88

0.90

0.92

0.94

Number of trees

F 1
-s
co
re

Figure 5.3: Illustration of how computation time and F1-score
scales with the number of decision trees in a random forest classi-
fier.

Table 5.6: Results of evaluation using different granularity levels
in the class taxonomy tree with the random forest classifier.

Granularity level Accuracy Precision Recall F1-score

5 0.907 0.916 0.912 0.913
4 0.904 0.902 0.898 0.900
3 0.923 0.913 0.903 0.908
2 0.928 0.909 0.903 0.908
1 1.00 1.00 1.00 1.00

5.2 Clustering
In this section, the evaluation process and results for the clustering algorithms will be
presented. Evaluating the clustering algorithms only required one step since there is no
training process involved in clustering, and thus no risk of overfitting. Therefore, one eval-
uation using the whole dataset could be performed. The evaluated clustering algorithms
are presented in Table 5.7.

Table 5.7: The evaluated clustering algorithms and the names of
the corresponding Scikit-learn functions.

Algorithm Scikit-learn function

K-means KMeans
DBSCAN DBSCAN
Agglomerative clustering AgglomerativeClustering

The K-means and agglomerative clustering algorithms require the hyperparameter de-
termining the number of clusters to be specified. To determine the optimal number of

46

5.2 Clustering

clusters the silhouette score was utilised. Clusterings were computed with different values
for the hyperparameter, and the value yielding the highest silhouette score was chosen as
the optimum. To avoid bias towards the K-means and the agglomerative clustering algo-
rithms, the same method was applied for the µ and ε hyperparameters of DBSCAN.

When optimal hyperparameter values for the algorithms had been obtained, the cluster-
ings computed by all algorithms were compared to the correct clustering, the ground truth,
using the AMI and ARI metrics. Since the goal of clustering was to cluster tests that failed
due to the same actual root cause, as opposed to the classification goal of determining the
type of root cause, it was not possible to only use the same labels used for classification
as the ground truth. Instead, we utilised that our data was generated by injecting one root
cause at a time into working designs or test benches. Thus we could consider all failing
tests created together as a correct cluster.

The only dimensionality reduction method evaluated for clustering was PCA. The
SelectFromModel()-functions work by training and using a classifier to determine
the most important features and were therefore not considered for clustering.

5.2.1 Results
Each of the clustering algorithms was first evaluated using the baseline feature set and
then evaluated when PCA was used for dimensionality reduction. Each algorithm was
evaluated using the AMI score, the ARI score and the computation time. The results of
both evaluations are presented in Table 5.8.

Table 5.8: Results for the clustering algorithms. The best per-
forming algorithm along with the best results for each metric are
written in bold.

Algorithm AMI ARI Computation time (s)

Baseline feature set
K-means 0.505 0.480 0.079
DBSCAN 0.568 0.530 0.086
Agglomerative Clustering 0.540 0.515 0.036

Dimensionality reduction using PCA
K-means 0.543 0.513 0.041
DBSCAN 0.593 0.545 0.007
Agglomerative Clustering 0.543 0.519 0.006

As can be observed in Table 5.8, all algorithms performed better when PCA was used
for dimensionality reduction. Both DBSCAN and the agglomerative clustering had shorter
computation times compared to theK-means algorithmwhen PCAwas applied. DBSCAN
in conjunction with PCA yielded the highest AMI and ARI scores and was only one mil-
lisecond slower than the agglomerative clustering, which indicated that it was the best
clustering algorithm for this problem.

47

5. Evaluation

5.3 Tool Implementation
The most suitable clustering algorithm, DBSCAN, and the most suitable classification
algorithm, random forest, were used to implement a tool for automatic clustering and clas-
sification of root causes. The tool is able to transform textual data into a numerical feature
vector. The numerical feature vector is applied in clustering and classification of the test
failures. The rest of the section will describe how clustering was used in conjunction with
visualisation and how classification was implemented with a confidence level.

10 0 10 20
20

0

20
t-SNE Ground Truth

Fail:Test_Bench:UVC:Bug
OK
Fail:Test_Bench:UVC:Bug

10 0 10 20
20

0

20
t-SNE DBSCAN

40 20 0
5

0

5

10

MDS Ground Truth

40 30 20 10 0 10
5

0

5

10

MDS DBSCAN

Figure 5.4: Clustering of test failures in combination with MDS
and t-SNE. The clustering received an AMI score of 0.940 and an
ARI score of 0.980.

Clustering of test failures is combined with the visualisation algorithms MDS and t-
SNE. An example can be seen in Figure 5.4, where the clustering computed by DBSCAN
is compared to the ground truth. The legend describes the root causes for the ground truth.
There is no legend attached to the bottom figures which visualise the clusters DBSCAN
found. There is one set of passing test cases as well as two sets of test cases that fail due to
two UVC bugs. A UVC bug refers to a flaw in the test bench components, as mentioned in
Section 2.3. The clustering produced by DBSCAN is almost perfect and yielded an AMI
score of 0.940 and an ARI score of 0.980. As can be observed in the images generated by
the visualisation algorithms, the samples that DBSCAN identifies as a fourth cluster, the

48

5.3 Tool Implementation

single dots, appear to differ from the clusters they belong to. This observation would not
have been possible without the visualisation algorithms, indicating their usefulness.

20 10 0 10
20

10

0

10

t-SNE Ground Truth

OK
Fail:Reference_Model:OpenCL
Fail:Reference_Model:OpenCL
Fail:Test_Bench:UVC:Bug
Fail:Test_Bench:UVC:Bug

20 10 0 10
20

10

0

10

t-SNE DBSCAN

10 0 10 20 30

0

10

20
MDS Ground Truth

10 0 10 20 30

0

10

20
MDS DBSCAN

Figure 5.5: Clustering of test failures in combination with MDS
and t-SNE. The clustering received an AMI score of 0.422 and an
ARI score of 0.366.

Figure 5.4 does however show an unusually good clustering. The average AMI and
ARI scores obtained by the evaluation were 0.593 and 0.545. Thus, many clusterings
will be similar to the one in Figure 5.5, which received an AMI score of 0.422 and an ARI
score of 0.366. Figure 5.5 has the same layout as Figure 5.4. For the samples in Figure 5.5,
neither the clustering algorithm nor the visualisation algorithm produce satisfying results.
In the two upper plots, which contain visualisations of the ground truth, it can be seen that
many clusters overlap in the visualisation. The two bottom plots, which show the clusters
computed by the DBSCAN algorithm, reveal that the clusters computed by DBSCAN
differ from the ground truth. The two cases presented in Figures 5.4 and 5.5 show that the
performance of both DBSCAN and the visualisation algorithms varies depending on the
samples used.

When predicting results, the random forest classifier is able to estimate its confidence
about each prediction. In Figure 5.6 the relationship between confidence and misclassi-
fication rate is illustrated. The misclassification rates were obtained by using the random
forest algorithm trained on the training set to predict outputs for the test set. The rates for

49

5. Evaluation

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Prediction confidence

M
isc

la
ss
ifi
ca
tio

n
ra
te

Figure 5.6: Illustration of the dependence between prediction
confidence and misclassification rate.

each confidence level were then calculated by dividing the number of misclassifications
made at that confidence level by the total number of classifications at that level. These
results suggest that the confidence can be used to indicate how well a prediction can be
trusted. The confidence level was therefore used to order the predictions and create a pri-
ority list for debugging.

50

Chapter 6

Discussion

To the best of our knowledge, the application of machine learning techniques to clustering
and classification of test failures in hardware verification has not been investigated before.
Therefore an exact comparison with prior work is not possible.

6.1 Data

The dataset was generated by injecting flaws into different image processing designs and
test benches. The used test benches were structurally similar and generated log files with
the same message types. We did not examine every detail of these log files, so it might be
possible that log files created by some test benches contained details not present in log files
from other test benches. This could have led to the classification algorithms associating
specific test benches with a root cause, which should not be the case and could have biased
the results. The usage of different image processing designs when generating the dataset
could also have affected our results since the classifier could have associated a design with
a root cause.

Both the aforementioned effects could have been avoided by using the same design and
test bench to generate all test cases. However, the machine learning algorithms could learn
root causes only specific to this design and test bench thus having difficulties classifying
or clustering test failures from other designs. By using many different designs and test
benches we wanted to obtain a more general result. Instead of indicating howwell machine
learning can be applied to root cause analysis of failures from a specific test bench, our
results indicate the performance for test benches with a certain structure.

51

6. Discussion

6.2 Classification
The random forest classifier yielded accuracy and F1 scores over 0.9 which indicate that
machine learning techniques can effectively be applied to classification of test failures.
The results are however not perfect; the random forest classifier is still wrong 10% of the
time. Therefore, the classification results should not be considered as an absolute truth,
but rather as an indication of what the results might be to guide the debugging.

The second best classifier, decision tree, yielded similar but slightly lower results com-
pared to the random forest. Decision tree and random forest both utilise a tree structure
but the difference is the amount of trees used in the algorithms. Algorithms utilising a
tree structure have been proven to be effective in classification of root causes and similar
results were replicated in this thesis.

Optimising the classifiers by tuning their hyperparameters did not lead to significant
performance increases, as can be observed in Table 5.4. This could be because the hyper-
parameters do not have a great impact on the performance or because we missed the best
hyperparameter combinations.

The results presented in Figure 5.2 indicate that the performance of the random forest
classifier would not increase notably if more samples were to be added to the dataset. A
slight upward trend can be observed as the number of samples approach 10000, but it
would require a large increase in the number of samples to yield a significant performance
increase.

However, increasing the number of samples greatly improved classification perfor-
mance when the dataset was small. Our results when using smaller amounts of data are
consistent with the results obtained by Chakrabarty et al [4]. They investigated classi-
fication of root causes using decision tree and presented an accuracy of 0.84 with 1000
samples, which is very similar to the results yielded by our random forest classifier when
using around 1000 samples. This indicates that the amount of data is very important in
the beginning, but the importance tapers off after a point. Judging from our results, this
point appears to be 6000 samples with 500 from each class.

The worst performing algorithm was the naive Bayes classifier. The model assumes
all features are independent, as described in section 3.3.1. Since the result of the naive
Bayes was the worst, the features we used have a dependency of each other. The result
of our log line abstraction consisted of counting the frequency of messages in log files.
The inferior performance of the naive Bayes classifier indicates there exist dependencies
betweenmessages in log files. Independent features are rarely observed in reality and there
was no exception in our investigation.

The confusion matrix in Figure 5.1 indicated that some root causes were more dif-
ficult to classify than others. The confusion matrix indicates that the characteristics of
data conversion and RTL bug can be similar. Furthermore, contradicting constraints were
misclassified as missing constraints. In this case, the type of root cause was misclassi-
fied but the label of lower granularity could still be determined. The classifier also had
difficulties classifying OpenCL flaws. OpenCL flaws were represented by 620 samples in
the dataset thus the small amount of samples could increase the difficulty of learning the
characteristics for this flaw.

When using the random forest classifier to perform classifications with different gran-
ularity levels, we observed increases in the accuracy score at every level except the fourth

52

6.3 Clustering

as can be seen in Table 5.6. The reason for the decrease in accuracy at the fourth level
was likely that the sizes of the classes were unbalanced. The difference between level five
and level four was that three root causes were grouped together, creating one class that
was three times larger than the other classes. At levels three, two and one the accuracy
increased, indicating that classification works better with fewer classes.

6.3 Clustering
The results yielded by all clustering algorithms were poor. In Figure 5.5 it is evident that
a clustering with AMI and ARI scores around 0.5 is very different from the ground truth.
Relying heavily on the output of any of the evaluated clustering algorithms is therefore not
advised. Pairing clustering algorithms with visualisation algorithms may however be used
to draw additional conclusions about the data based on where test cases are located in the
visualisation. For example, in Figure 5.4 the clustering algorithm erroneously identifies
a fourth cluster. Without the visualisation the test cases in the fourth cluster would have
been treated as having the same root cause, but after inspecting the visualisation it can be
determined that they likely do not share a root cause since they are located far from each
other.

6.4 Features
Since neither optimising hyperparameters nor increasing the size of the dataset appeared
to increase the classification performance, the remaining area of improvement is the trans-
formation from log file to features. We constructed our features using log line abstraction
which has been used before and also agreed with our intuition about how to construct the
features. When creating the regular expressions used in the abstraction process we tried to
limit the amount of system knowledge required. We decided on this more general approach
because one reason for using machine learning is that it only requires data to produce good
results. Using extensive system knowledge when preparing the data would thus defeat the
purpose of using machine learning.

For a completely general approach, the abstraction process should have been performed
without any system knowledge. That way, the method and results of this thesis could
have been applied to other systems that use log files to track their execution. We tried
to automatically create the regular expressions using the LogCluster tool but were not
satisfied with the results. In order for that approach to work the contents of the log files
would have to be filtered to prevent the tool from identifying unusable patterns. This would
however introduce system knowledge into the process, which led us to not investigate a
completely general approach further.

Using more system knowledge to construct the features would also be a possibility.
Most numerical values in the log files were ignored since it was not apparent what they
represented. With more system knowledge it could be possible to extract the numerical
values and learn patterns in them. Other parts of the log file that we did not use were the
textual representations of different data structures. These were ignored since it was not
straightforward how to transform them into features. Successfully transforming these data

53

6. Discussion

structures into features could provide more detailed information about test case executions.
Our approach to feature construction limited the amount of system knowledge required.

Thus, our method can easily be applied to other systems that store information about their
execution in log files. However, the regular expressions used to construct features have to
be modified to match the log messages in the system. It is however difficult to draw any
conclusions about what results will be obtained for other systems. The results will depend
on how informative the log messages and their frequencies are, which most likely varies
between systems. Therefore, our results can only be said with certainty to be applicable to
the verification tests performed at Axis. Further investigation would have to be performed
to determine the applicability to other types of tests.

6.5 Dimensionality Reduction
For classification, reducing the dimensionality of the feature set using dimensionality re-
duction algorithms did not improve scores for the classification metrics. For all three
clustering algorithms the performance did however improved when the dimensionality
was reduced by the PCA algorithm. This indicates that clustering algorithms are more
sensitive to the effects of high-dimensional feature spaces compared to classification al-
gorithms. This agrees with the fact that distance, which is the similarity metric used in
clustering, is affected by the curse of dimensionality. Longer distances between samples
make it harder to determine which are similar enough to belong to the same cluster.

For both clustering and classification, dimensionality reduction methods reduced com-
putation time. The computation time is dependent on the dimensionality of the feature set.
Larger feature sets lead to longer computation times. The usage of PCA and the wrapper
method SelectFromModel is effective when reducing the dimensions of the feature
set.

54

Chapter 7

Conclusion

We have presented a method of automating clustering and classification of test failures.
We have shown how textual information in log files can be transformed into a numerical
feature vector for input to machine learning algorithms. A comparison of dimensionality
reduction methods in conjunction with machine learning algorithms for clustering and
classification was performed. The most suitable clustering algorithm was DBSCAN with
the dimensionality reduction method PCA, which yielded an AMI score of 0.593 and an
ARI score of 0.545. The most suitable classification algorithm was random forest with an
accuracy of 0.907 and an F1-score of 0.913. We also showed how the number of samples
in the dataset affects the performance of the classifier.

The DBSCAN and the random forest algorithms were used in the implementation of a
tool for automatic clustering and classification of test failures. The tool utilised clustering
in conjunction with the visualisation algorithmsMDS and t-SNE. Classification in the tool
was implemented in conjunction with a confidence level.

From the results of the evaluation process we draw the conclusion that machine learn-
ing can be effectively applied to root cause classification. While not perfect, the random
forest classifier can be used to quickly get an overview of the root causes present in a failed
test run. This overview will hopefully facilitate an efficient distribution of debugging ef-
forts, increasing the speed of the debugging process.

We also conclude that applying machine learning to the clustering problem is not as
effective. Our evaluation results suggest that clustering algorithms, while better than a
random process, are too inaccurate to be relied upon.

It should be noted that the results of this thesis can only be directly applied to classifi-
cation of test failures using log files produced by the test benches used by the verification
team at Axis. Applying ourmethod to other test benches or other types of tests that produce
log files would probably yield similar results, but it is not certain. To determine whether
or not this method can be applied a study similar to this one would have to be performed.

55

7. Conclusion

7.1 Future work
The evaluated classification algorithms were representatives for all groups of classic clas-
sification algorithms. The next step in improving classification performance would be to
investigate the application of deep learning. Deep learning methods were not investigated
because of the requirement of a large dataset which we did not have access to.

Hyperparameter optimisation for the classification algorithms did not yield significant
performance improvements. The hyperparameter ranges used in the searches were limited
and not every parameter for the algorithms were included. Further investigation can be
performed with all parameters and increased hyperparameter ranges. This may lead to
performance improvements but would have a high computational cost.

Our feature construction process relied on system knowledge to extract the important
parts of log messages that were combined and used as message representatives whose
frequencies could be used as features. The feature construction heavily influenced the per-
formance of the algorithms and potential improvements can be investigated. Investigating
a more general approach would be interesting since it would show if machine learning can
be applied to the root cause analysis problem in general or if our results were specific to our
dataset. Another approach would be to utilise further system knowledge to extract more
information from the log files. Textual representations of data structures and numerical
values were mostly ignored by us. Extracting them could uncover more patterns in the
data and thus improve the performance of both classification and clustering.

The data used in our thesis was limited to log files, but other artefacts, such as wave-
forms, are also created during test executions. These artefacts could provide additional
information about the test failure thus increasing the quality of the feature set. The benefit
of using other artefacts could thus be investigated.

Finally, it should be noted that our evaluation was performed using data generated by
injecting flaws into designs or test benches to create test failures. Further investigation
could be conducted with data produced during real test runs. This would produce more
accurate results, but would require the test cases to be properly labelled and stored after
each test run.

56

Bibliography

[1] B. Wile, J. Goss, and W. Roesner. Comprehensive Functional Verification: The
Complete Industry Cycle. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, May 2005.

[2] H. D. Foster. Trends in functional verification: a 2014 industry study. In Proceedings
of the 52nd Annual Design Automation Conference, pages 1–6. ACM, June 2015.

[3] S. Karlapalem and S. Venugopal. Scalable, Constrained Random Software Driven
Verification. In 2016 17th International Workshop on Microprocessor and SOC Test
and Verification (MTV), pages 71–76, Dec 2016.

[4] F. Ye, Z. Zhang, K. Chakrabarty, and X. Gu. Adaptive Board-Level Functional Fault
Diagnosis Using Decision Trees. In 2012 IEEE 21st Asian Test Symposium, pages
202–207, Nov 2012.

[5] M. Chen, A. X. Zheng, J. Lloyd, M. I. Jordan, and E. Brewer. Failure diagnosis
using decision trees. In International Conference on Autonomic Computing, 2004.
Proceedings., pages 36–43, May 2004.

[6] H. Lal and G. Pahwa. Root cause analysis of software bugs using machine learning
techniques. In 2017 7th International Conference onCloudComputing, Data Science
Engineering - Confluence, pages 105–111, Jan 2017.

[7] Z. Zhang, X. Gu, Y. Xie, Z. Wang, Z. Wang, and K. Chakrabarty. Diagnostic system
based on support-vector machines for board-level functional diagnosis. In 2012 17th
IEEE European Test Symposium (ETS), pages 1–6, May 2012.

[8] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch, J. Sun, and B. Wang. Auto-
mated support for classifying software failure reports. In 25th International Confer-
ence on Software Engineering, 2003. Proceedings., pages 465–475, May 2003.

[9] IEEE Standard for SystemVerilog–Unified Hardware Design, Specification, and Ver-
ification Language. IEEE Std 1800-2017 (Revision of IEEE Std 1800-2012), pages
1–1315, Feb 2018.

57

BIBLIOGRAPHY

[10] IEEE Standard for Universal VerificationMethodology Language ReferenceManual.
IEEE Std 1800.2-2017, pages 1–472, May 2017.

[11] J. E. Stone, D. Gohara, and G. Shi. OpenCL: A Parallel Programming Standard for
Heterogeneous Computing Systems. IEEE Des. Test, 12(3):66–73, May 2010.

[12] P. R. Panda. SystemC: A Modeling Platform Supporting Multiple Design Abstrac-
tions. In Proceedings of the 14th International Symposium on Systems Synthesis,
ISSS ’01, pages 75–80, New York, NY, USA, 2001. ACM.

[13] G. Rossum. Python Reference Manual. Technical report, Amsterdam, The Nether-
lands, 1995.

[14] M. C. Cooper, D. A. Cohen, and P. G. Jeavons. Characterising tractable constraints.
Artificial Intelligence, 65(2):347–361, 1994.

[15] P. Norvig and S. Russel. Artificial Intelligence: A Modern Approach (3rd Edition).
Prentice Hall, Upper Saddle River, New Jersey, July 2016.

[16] A. Géron. Hands-On Machine Learning with Scikit-Learn and TensorFlow.
O’Rielly, Gravenstein Highway North, Sebastopol, California, Mar 2017.

[17] I. Guyon and A. Elisseeff. An introduction to variable and feature selection. Journal
of machine learning research, 3(Mar):1157–1182, 2003.

[18] J. Philip. The probability distribution of the distance between two random points in
a box, volume 7 of TRITA / MAT / MA: TRITA. KTH mathematics, Royal Institute
of Technology, 2007.

[19] F. Sebastiani. Machine Learning in Automated Text Categorization. ACM Comput.
Surv., 34(1):1–47, Mar 2002.

[20] I. Inza, P. Larrañaga, R. Blanco, and A. J. Cerrolaza. Filter versus wrapper gene se-
lection approaches in DNA microarray domains. Artificial Intelligence in Medicine,
31(2):91 – 103, June 2004. Data Mining in Genomics and Proteomics.

[21] P. Somol, B. Baesens, P. Pudil, and J. Vanthienen. Filter- versus wrapper-based
feature selection for credit scoring. International Journal of Intelligent Systems,
20(10):985–999, Oct 2005.

[22] A. Rocha and S. K. Goldenstein. Multiclass From Binary: Expanding One-Versus-
All, One-Versus-One and ECOC-Based Approaches. IEEE Transactions on Neural
Networks and Learning Systems, 25(2):289–302, Feb 2014.

[23] D. R. Cox. The regression analysis of binary sequences (with discussion). J Roy Stat
Soc B, 20:215–242, 1958.

[24] S. L. Hamilton and J. R. Hamilton. Predicting in-hospital-death and mortality per-
centage using logistic regression. In 2012 Computing in Cardiology, pages 489–492,
Sept 2012.

58

BIBLIOGRAPHY

[25] H. Liu, T. Li, L. Chen, S. Zhan, M. Pan, Z. Ma, C. Li, and Z. Zhang. To Set Up a Lo-
gistic Regression Prediction Model for Hepatotoxicity of Chinese Herbal Medicines
Based on Traditional Chinese Medicine Theory. Evidence-based Complementary &
Alternative Medicine (eCAM), pages 1 – 9, 2016.

[26] T. Liu, S. Wang, S. Wu, J. Ma, and Y. Lu. Predication of wireless communication
failure in grid metering automation system based on logistic regression model. In
2014 China International Conference on Electricity Distribution (CICED), pages
894–897, Sept 2014.

[27] D. G. Kleinbaum and Mitchel Klein. Introduction to Logistic Regression, pages 1–
39. Springer New York, New York, NY, 2010.

[28] F. S. deMenezes, G. R. Liska, M. A. Cirillo, andM. J. F. Vivanco. Data classification
with binary response through the Boosting algorithm and logistic regression. Expert
Systems with Applications, 69:62 – 73, Mar 2017.

[29] B. E. Boser, I. M Guyon, and V. Vapnik. A training algorithm for optimal margin
classifiers. In Proceedings of the fifth annual workshop on Computational learning
theory, pages 144–152. ACM, July 1992.

[30] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273–
297, Sep 1995.

[31] N. Deng, Y. Tian, and C. Zhang. Support vector machines: optimization based the-
ory, algorithms, and extensions. Chapman & Hall/CRC data mining and knowledge
discovery series. Boca Raton : CRC Press, Taylor & Francis Group, [2013], 2013.

[32] J. D.M. Rennie, L. Shih, J. Teevan, and D. R. Karger. Tackling the Poor Assumptions
of Naive Bayes Text Classifiers. In In Proceedings of the Twentieth International
Conference on Machine Learning, pages 616–623, Aug 2003.

[33] P. Domingos and M. Pazzani. On the Optimality of the Simple Bayesian Classifier
under Zero-One Loss. Machine Learning, 29(2):103–130, Nov 1997.

[34] A. Y. Ng and M. I. Jordan. On Discriminative vs. Generative Classifiers: A com-
parison of logistic regression and naive Bayes. In T. G. Dietterich, S. Becker, and
Z. Ghahramani, editors, Advances in Neural Information Processing Systems 14,
pages 841–848. MIT Press, Dec 2002.

[35] W. Loh. Fifty Years of Classification and Regression Trees. International Statistical
Review, 82(3):329–348, June 2014.

[36] P. E. Utgoff. Incremental Induction of Decision Trees. Machine Learning, 4(2):161–
186, Nov 1989.

[37] A. L. Garcia-Almanza and E. P. K. Tsang. Simplifying Decision Trees Learned
by Genetic Programming. In 2006 IEEE International Conference on Evolutionary
Computation, pages 2142–2148, July 2006.

[38] L. Breiman. Random Forests. Machine Learning, 45(1):5–32, Oct 2001.

59

BIBLIOGRAPHY

[39] L. Breiman. Bagging Predictors. Machine Learning, 24(2):123–140, Aug 1996.

[40] N. J. Nilson. Learning Machines: Foundations of Trainable Pattern-classifying Sys-
tems. McGraw-Hill series in system science. McGraw-Hill, 1925.

[41] G. S. Sebestyen. Decision-making Processes in Pattern Recognition. ACM mono-
graph series. Macmillan, 1962.

[42] R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. A Wiley
Interscience Publication. Wiley, 1973.

[43] V. Pestov. Is the k-NN classifier in high dimensions affected by the curse of dimen-
sionality? Computers & Mathematics with Applications, 65(10):1427 – 1437, 2013.
Grasping Complexity.

[44] J. Wu. Advances in K-means Clustering: A Data Mining Thinking. Springer Pub-
lishing Company, Incorporated, 2012.

[45] S. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information
Theory, 28(2):129–137, March 1982.

[46] C. Levrard. Quantization/clustering: when and why does k-means work? Jan 2018.

[47] M. Ester, H. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discover-
ing clusters in large spatial databases with noise. In Proceedings of the Second In-
ternational Conference on Knowledge Discovery and Data Mining, KDD’96, pages
226–231. AAAI Press, Aug 1996.

[48] S. Mai. Density-based algorithms for active and anytime clustering. Sep 2014.

[49] J. H. Ward Jr. Hierarchical grouping to optimize an objective function. Journal of
the American statistical association, 58(301):236–244, 1963.

[50] L.Maaten andG. Hinton. Visualizing data using t-SNE. Journal of machine learning
research, 9(Nov):2579–2605, 2008.

[51] J. B. Kruskal. Multidimensional scaling by optimizing goodness of fit to a nonmetric
hypothesis. Psychometrika, 29(1):1–27, Mar 1964.

[52] R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation and
model selection. In Ijcai, volume 14, pages 1137–1145. Montreal, Canada, Aug
1995.

[53] O. Caelen. ABayesian interpretation of the confusionmatrix. Annals of Mathematics
and Artificial Intelligence, 81(3):429–450, Dec 2017.

[54] M. Sokolova and G. Lapalme. A systematic analysis of performance measures for
classification tasks. Information Processing & Management, 45(4):427–437, July
2009.

[55] L. Hubert and P. Arabie. Comparing partitions. Journal of Classification, 2(1):193–
218, Dec 1985.

60

BIBLIOGRAPHY

[56] N. X. Vinh, J. Epps, and J. Bailey. Information theoretic measures for clusterings
comparison: Variants, properties, normalization and correction for chance. Journal
of Machine Learning Research, 11(Oct):2837–2854, 2010.

[57] R. Lletí, M. C. Ortiz, L. A. Sarabia, and M. S. Sánchez. Selecting variables for k-
means cluster analysis by using a genetic algorithm that optimises the silhouettes.
Analytica Chimica Acta, 515(1):87 – 100, July 2004. Papers presented at the 5th
COLLOQUIUM CHEMIOMETRICUM MEDITERRANEUM.

[58] P. J. Rousseeuw. Silhouettes: A graphical aid to the interpretation and validation of
cluster analysis. Journal of Computational and Applied Mathematics, 20:53 – 65,
Nov 1987.

[59] M. Nagappan and M. A. Vouk. Abstracting log lines to log event types for mining
software system logs. In 2010 7th IEEE Working Conference on Mining Software
Repositories (MSR 2010), pages 114–117, May 2010.

[60] L. Mariani and F. Pastore. Automated Identification of Failure Causes in System
Logs. In 2008 19th International Symposium on Software Reliability Engineering
(ISSRE), pages 117–126, Nov 2008.

[61] R. Vaarandi and M. Pihelgas. LogCluster - A data clustering and pattern mining
algorithm for event logs. In 2015 11th International Conference on Network and
Service Management (CNSM), pages 1–7, Nov 2015.

[62] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, et al. Scikit-learn: Machine learning in
Python. Journal of machine learning research, 12(Oct):2825–2830, 2011.

[63] J. Bergstra and Y. Bengio. Random Search for Hyper-parameter Optimization. J.
Mach. Learn. Res., 13(1):281–305, February 2012.

61

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTATIONSDAG 2018-05-31

EXAMENSARBETE Clustering and Classification of Test Failures Using Machine Learning
STUDENT Andy Truong & Daniel Hellström
HANDLEDARE Erik Larsson (LTH), Lars Viklund (Axis Communications AB)
EXAMINATOR Flavius Gruian (LTH)

Kan en dator lära sig att hitta orsaken till
varför tester går fel?

POPULÄRVETENSKAPLIG SAMMANFATTNING Andy Truong & Daniel Hellström

Att bestämma varför tester går fel görs i nuläget genom att gå igenom miljontals rader
av kryptiska loggfiler. Detta arbete undersöker hur maskininlärning kan tillämpas för
att automatisera denna process.

Att noggrant undersöka ritningar för att hitta
fel i dem är en viktig process inom design av hård-
varukomponenter och kallas för verifiering. De
viktiga frågorna i verifiering är att identifiera att
något är fel och vad som är orsaken till felet. Målet
med verifiering är att identifiera fel i ritningarna
så tidigt som möjligt för att slippa onödiga kost-
nader senare.
I dagsläget görs verifiering genom att kompo-

nenters ritningar simuleras och testas för att se hur
komponenterna kommer bete sig i verkligheten.
Om någonting går fel i ett test så är det vik-
tigt att snabbt komma fram till vad som gick
fel och hur det kan åtgärdas. Detta görs genom
att manuellt läsa igenom loggfiler som skapas un-
der testexekveringen och leta efter små detaljer
som kan ge ledtrådar om vad som gick fel. Att
manuellt läsa igenom miljontals rader av informa-
tion är tidskrävande och kan lätt bli långtråkigt.
Det finns därför ett behov av att kunna automa-
tisera denna process.
Lyckligtvis är datorer väldigt bra på att snabbt

hantera stora mängder data. Faktum är att en
teknik som kallas maskininlärning faktiskt blir
bättre ju mer data som finns tillgänglig. Grund-
konceptet inom maskininlärning är att låta da-
torer titta på ett mycket stort antal par av in-
data och utdata för att lära sig vilka samband som

finns. Sambanden kan sedan användas för att kop-
pla ihop ny indata med rätt utdata. I vårt arbete
har vi undersökt hur maskininlärning kan använ-
das för att identifiera orsaken till varför tester går
fel och för att gruppera liknande tester. Automa-
tisering av denna process leder till att mindre in-
genjörstid behöver läggas på arbetet, vilket i sin
tur leder till lägre kostnader. Dessutom gör det
verifieringsprocessen snabbare vilket leder till att
komponenter kan börja produceras tidigare.
Vårt resultat visar att en dator kan lära sig att

hitta orsaken till varför tester går fel. Med hjälp
av maskininlärning lär sig datorn mönster i log-
gfiler och kan därefter i nio fall av tio identifiera
orsaken till varför ett test går fel. Däremot har en
dator problem med att kunna gruppera och hitta
likheter mellan testerna.
Vårt arbete visar hur en dator hanterar infor-

mation i loggfiler för att kunna hitta orsaken till
varför tester går fel och kunna gruppera liknande
tester. En metod för att kunna omvandla van-
lig text till ett språk en dator förstår presenteras.
Denna omvandling används sedan i en jämförelse
av maskininlärningsalgoritmer. Vårt arbete visar
även att resultatet beror på algoritmen som an-
vänds för identifiering av orsaken till varför tester
går fel. Resultatet beror också på hur mycket och
vilken information som omvandlas.

	Introduction
	Goal
	Related Work
	Method
	Disposition
	Contributions

	Pre-Silicon Hardware Verification
	Background
	Test Bench
	Root Cause Analysis
	Root Cause Examples
	Process and Problems

	Machine Learning
	Fundamentals
	Features
	Dimensionality
	Dimensionality Reduction

	Algorithms
	Classification
	Clustering

	Evaluation
	Classification
	Clustering

	Data Preprocessing
	Data
	Transformation

	Evaluation
	Classification
	Algorithm Selection
	Optimisation
	Final Evaluation

	Clustering
	Results

	Tool Implementation

	Discussion
	Data
	Classification
	Clustering
	Features
	Dimensionality Reduction

	Conclusion
	Future work

	Bibliography
	Tom sida
	Tom sida

