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Abstract

What effect does a collision between two clusters have on their dissolving time?

In order to answer this question, a new type of N-body simulation using a double integration
of a cluster was built. Instead of introducing a perturbation representing the gravitational
force of the Milky Way into a local simulation of the cluster, the cluster orbit was integrated
in the potential of the Milky Way, and in each of these integration steps the local motion
of the stars inside the cluster were integrated, using an N-body calculation. The goal of
this new type of integrator was to create a more versatile and intuitive simulation, where
no perturbation calculation was needed before initiating a cluster. The simulation as a
whole was tested using different resolutions and relative tolerances, and both the N-body
calculation and potential integration were tested separately as well as in conjunction.

As a test subject, the Hyades open cluster was investigated in this project. The number
of stars within the tidal radius of the cluster as a function of time was calculated, and the
effect of cluster collisions on the decay rate was investigated. The results are also highly
indicative of that the star HD31236 is not an actual member of the Hyades, though this
needs further testing, taking the formal errors of the initial conditions into account.





Populärvetenskaplig beskrivning

För att först̊a v̊art ursprung och v̊ar plats i universum, måste vi först lära oss om v̊ar
historia. Detta är en utmaning i m̊anga fält inom vetenskapen, och det finns ett antal olika
tillvägag̊angssätt; geologer analyserar sedimentlager för att f̊a först̊a v̊ar planets utveckling,
biologer tittar p̊a små skillnader i flora och fauna för att först̊a utvecklingen av arter, och
paleontologer undersöker fossil fr̊an länge utdöda arter för att kunna göra detsamma. Den
gemensamma nämnaren i dessa tre fallen är att tidsskalorna för dessa processer l̊angt
överskrider tidsskalan för mänsklig historia, s̊a istället för att observera t.ex en art under
hela v̊ar jords historia, s̊a tittar vi p̊a liknande arter fr̊an olika tids̊aldrar, och gör antagandet
att den ena utvecklades fr̊an den andra. Det p̊aminner mycket om att lösa ett vetenskapligt
pussel, där varje pusselbit respresenterar en art fr̊an en viss tids̊alder.

P̊a samma sätt jobbar astronomer och astrofysiker för att först̊a v̊ar galax Vintergatans
utveckling, men eftersom tidsskalorna är ännu större än de för v̊ar jord s̊a måste ännu mer
information till innan vi kan skapa teorier om hur den utvecklats. Detta är problematiskt,
eftersom observationsutrustning som t.ex teleskop är dyra, för att inte tala om en teknisk
utmaning. Men med den senaste utvecklingen inom beräkningskraft har astronomer och
astrofysiker f̊att ett nytt verktyg som hjälper till att h̊alla kostnader nere och öka v̊ar
först̊aelse för v̊ar omgivning; simulationer!

Eftersom de fysiska lagar som styr v̊ar galax och hur saker rör sig i rymden har varit kända
sen Newtons dagar (med n̊agra senare modifikationer and tillägg, främst fr̊an Einstein), s̊a
har vi kunnat räkna ut planeters och stjärnors banor i århundraden. Den stora skillnaden
har kommit de senaste årtiondena, i form av den exponentiellt ökande beräkningskraften
hos datorer. Detta gör att vi kan utföra mer och mer avancerade uträkningar, och en
av dessa är s̊a kallade N-body-simuleringar (av engelskans N bodies, N kroppar). Dessa
simuleringar beräknar hur inte bara tv̊a objekt, utan många hundratals objekt interagerar
med varandra gravitationsmässigt, och ger oss möjligheten att utforska olika scenarion bara
genom att bestämma var dessa objekt är just nu, och hur de rör sig.

Stjärnor i v̊ar galax samlar ofta ihop sig eller skapas i grupper av upp till tusentals, som
kallas stjärnhopar. Dessa stjärnhopar är bundna till varandra genom gravitation, och kret-
sar kring varandra, s̊aväl som runt Vintergatans mitt. För att först̊a hur dessa stjärnhopar
blivit till, hur de rör sig och hur de en dag kommer lösas upp, behöver vi först̊a b̊ade hur
stjärnorna inuti hopen rör sig, men ocks̊a hur de rör sig i den stora Vintergatan. Det är
här N-body-simuleringar kommer in; genom att beräkna hur stjärnorna dras till varandra
genom gravitationen, kan vi undersöka hur stjärnhopar rör sig och faller isär, och genom
att simulera bak̊at i tiden kan vi först̊a hur de en g̊ang skapades.

Allt eftersom beräkningskraften ökar kan vi simulera fler och fler interaktioner mellan
individuella stjärnor i dessa hopar. Dessa N-body-simuleringar ger en mer och mer san-
ningsenlig respresentation av vad som egentligen händer i en stjärnhop; en ”bättre upplöst
bild”, eftersom dessa stjärnor kommer att interagera med varandra. Detta ger oss en stor
och viktig pusselbit i pusslet som vi kallar Vintergatans utveckling.
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Chapter 1

Introduction

During the last 20 years a lot has happened within the field of astrometry. When the results
of the HIPPARCOS satellite became available in 1997, the absolute parallax of over 117
000 objects had been measured with milli-arcsecond accuracy (Perryman et al. 1997a),
compared to the 8000 objects for which ground-based parallaxes were available before this.
This enabled researchers to expand our knowledge of stellar structure and evolution, as
well as increase our understanding of dynamical astronomy and stellar kinematics.

The next major step in this rapid advance in astrometry will be the full data release of
the GAIA mission, estimated to be released in 2022 or 2023. This release will contain
highly accurate astrometric parameters (positions, parallaxes and proper motions) for over
a billion objects in the Milky Way down to a GAIA-magnitude of G = 20.7 mag (Prusti
et al. 2016), as well as the radial velocities of stars with a GAIA-magnitude of G ≈ 17 mag
or lower (Brown et al. 2016). The GAIA mission has already contributed with astrometric
data through intermediate data releases called GAIA Data Release 1 & 2 (DR1 & 2).
In 2016, data gathered by the mission so far was released (GDR 1), with the downside
of not being able to guarantee the accuracy of the full data release (more information
can be found in Brown et al. (2016)). DR1 contains positions, parallaxes and mean proper
motions for about 2 million objects, as well as positions for an additional 1.1 billion sources.
A second intermediate data release was released in April 2018, with improved accuracy,
and contains positions, proper motions and parallaxes of 1.3 billion objects with a Gaia
magnitude between G ≈ 3 and G = 21 (ESA 2018).

The GAIA mission has and will contribute a lot in the field of observational astronomy.
According to Prusti et al. (2016) the primary focus of the mission is to increase our knowl-
edge of our own galaxy, the Milky Way, but the GAIA data is being used in a wide array of
subjects in the field, even before its final release. By taking astrometric measurements of
objects in our galaxy and analysing the kinematics and distribution of both visible matter
and dark matter, we will be able to draw conclusions about the structure and evolution
of the Milky Way. This is possible even though only about 1% of the stars in our galaxy
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CHAPTER 1. INTRODUCTION

have been measured, since a great number of stars of different types and classifications
are included. Let us also remind ourselves, that even as little as 1% of 100 billion stars
is still a billion stars(!). Because of this great sample size of objects, statistical analysis
can be used effectively to draw conclusions, even though far from all the stars have been
astrometrically measured.

The structure and evolution of the Milky Way is still somewhat of a mystery to science.
The theories we have today of its structure are largely based on observations of other
galaxies, and these are accompanied by a lot of uncertainty. Because of the grand time
scales in astronomy, there is no possibility to observe one galaxy’s evolution, so a number
of galaxies of the same class are observed at what is presumed to be different steps in their
evolution. This method has a downside in that it relies heavily on that our classification
system works, i.e. that the galaxies we assume to be similar in origin but at different
stages in their evolution really are. This, combined with the difficulties of observing our
own Milky Way from an outside perspective, constitutes the major problems when it comes
to analysing the structure and evolution of our galaxy.

A powerful and important tool to solve this problem is to perform simulations of galactic
evolution, based on astrometric data and the physical laws that govern galaxies. The
theories of gravity and the interaction between astronomic bodies have been established
since many hundreds of years, but in the last decades computing power has increased
exponentially. This has enabled large-scale simulations of galaxies, with thousands or
millions of independent bodies. By experimenting with the initial conditions and changing
the parameters of galaxies, a lot has been learned about the physical processes behind
galaxy formation and evolution. The theories that are put forward can be compared to
observations, to hopefully explain the features we observe. This numerical approach to
learning more about the history of galaxies has become essential in astronomy over the
last decades, and is one of the reasons that the GAIA mission is so important.

The purpose of this project is to simulate astronomical bodies in gravitational potentials,
and the project can be divided into subparts. The first part consists of integrating the
orbit of a circular nearby cluster in the potential of the Milky Way. Secondly, a number of
stellar orbits are initiated in the cluster potential as massless tracer particles. In order to
perform both of these steps, astrometric data from GAIA Data Release 1 is used for the
initial conditions of the orbits. The third step is to introduce an N-body simulation for
the stars in the cluster, so that they now have a mass and affect each other gravitationally.
The fourth and final step is to integrate the movement of the stellar orbits in the cluster,
while simultaneously integrating the orbit of the cluster in the galactic potential.

The result of this will be an orbital simulation of a cluster in a galactic potential, with many
interesting applications. The galactic potential in the simulation will be almost axisym-
metric, with the exception of the cluster potential addition in the outskirts of the galactic
potential. Since gravitational potentials have a very simple form, it is also relatively simple
to introduce other density variations in the galactic potential, such as spiral arms or other
star clusters. These can then be used to simulate how clusters are affected when passing
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CHAPTER 1. INTRODUCTION

through each other or one of these arms; do they tear apart, becoming gravitationally
unbound, or are they largely unaffected by this shift in gravitational potential? To what
degree is the rate of star loss affected by the large density variations throughout its orbit
around the galactic centre?

The inclusion of an N-body simulation inside the cluster allows for interaction between
individual stars, which may cause stars to become gravitationally unbound due to the
gravitational potential of other nearby stars. This of course increases the accuracy of the
simulation, and allows for some interesting aspects in and of itself. As an example, the
previously mentioned application of to what degree the rate of star loss is affected by large
density variations will become more accurate if the stars affect each other gravitationally.
Since the gravitational potential of the galaxy is approximated as constant at the radius
of the cluster, all orbits that are stable will continue to be so if the stars are initiated as
tracer particles. It is only when the stars affect each other gravitationally that star leakage
may be observed in between major density fluctuations. In other words, the inclusion of
an N-body simulation increases the accuracy of the simulation, and is a must for some
applications.
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Chapter 2

Theory

2.1 The Hyades

The cluster in focus in this project is the Hyades, an open cluster with a mass of about
400M� at a distance of roughly 40-50 parsec from the solar system, (Perryman et al. 1997b).
This makes it one of the nearest open clusters to us, and due to this proximity, the Hyades
has been identified and studied since at least ancient Greece (where the name stems from),
and has been included in star charts since the 17th century. It was catalogued by Melotte
in 1915, who gave it the identification Mel25, an identification that persists to this day. It
is also believed to share its origin with Praesepe, the Beehive cluster (M44), as indicated
by its age and stellar content, as well as being connected to the Hyades stream (Frommert
& Kronberg 2001). In recent times it has been one of many subjects of astrometric data
collection using the Gaia Satellite.

The cluster contains up to 300 members, where the central group of the cluster has a radii
of roughly 1.5 pc, with members up to 12 pc from the cluster centre. It is believed to be
between 600 to 800 Myr old (Perryman et al. 1997b), though more recent studies points
towards it being in the very end of this span (790 Myr according to the Hertzsprung-Russell
diagram of the cluster (Frommert & Kronberg 2001)). According to “Gravitational N-body
Problem, Proceedings of Iau Colloquium No.10”, edited by Lecar (1972), only 10% of open
cluster exceed an age of 400 Myr, and only 1% exceed an age of 1 Gyr. This means that
the Hyades is likely at the end of its lifetime, and if so, should show signs of dissolving.
This is the main focus of this project; to investigate the dissolving of the Hyades and the
effect of collisions on the dissolving process.

In order to do this, the members of the cluster must first be established. The membership
status of stars in the neighbourhood of the Hyades have been studied in great detail, and a
very nice summary of these can be found in Table 2 in Perryman et al. (1997b), which was
the last major study of the subject. However, this paper was written in 1997, well before
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the first Gaia Data Release, and so more accurate astrometric data has become available
since. This is the other part of the project; to investigate whether or not any of the stars
included in this project are likely not to be real members of the Hyades, given the new
astrometric data. (This was not a part of the project from the start, but was investigated
further when results indicated stars with very high local velocities.)

2.2 Solving the Equation of Motion ODE

The equation to solve in order to produce a dynamical simulation is the equation of motion.
When dealing with an object moving in a gravitational potential in three dimensions,
the equation of motion is a system of three second-order Ordinary Differential Equations
(ODE’s for short) in the form of

ā =



d2x
dt2

= −∂ψ
∂x

d2y
dt2

= −∂ψ
∂y

d2z
dt2

= −∂ψ
∂z

(2.1)

where ψ(x, y, z) is the gravitational potential. We can simplify this into a system of six
first-order ODE’s;

v̄ =



dx
dt

= vx

dy
dt

= vy

dz
dt

= vz

(2.2)

ā =



dvx
dt

= −∂ψ
∂x

= ax

dvy
dt

= −∂ψ
∂y

= ay

dvz
dt

= −∂ψ
∂z

= az

(2.3)

where (vx, vy, vz) and (ax, ay, az) are the velocities and accelerations in respective direction.
This system of equations can be solved numerically by discretizing and numerically inte-
grating the six equations with respect to time, using e.g. the Runge-Kutta method (note
that this can be done using the three original equations as well, however, for clarity the
system of six first-order ODE’s were used in this project).
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2.3. THE N-BODY EQUATION CHAPTER 2. THEORY

This method of numerically solving the ODE’s (the Euler method) uses the previous step’s
position and speed of the object to calculate the next step, and so each step’s solution is
based on the previously calculated step. This requires the initial conditions of the object
(i.e. the initial three-dimensional position and speed, in total six vector composites), to be
known in order to be able to start the integration.

A closer look at the three equations in (2.3) also states that the acceleration of an object
in a gravitational potential is independent of the mass of the object. This enables the use
of tracer particles in the simulation, which was used in the integration of the cluster orbit
(see section 3.3.1).

2.3 The N-body Equation

The central equation of this project is the N-body equation;

F̄i = −
∑
j 6=i

G
mimj(r̄i − r̄j)
|r̄i − r̄j|3

− ∇̄ · φext(r̄i), (2.4)

where F̄i is the force exerted on the star i, G is the gravitational constant, mi and mj

are the masses of the different stars, r̄i and r̄j are the positions of the different stars, and
∇̄ · φext(r̄i) is the gradient of the potential at position r̄i.

The N-body equation is divided into two parts, and gives the total force exerted on a star
from these two.

2.3.1 Newton’s Law of Universal Gravity

The first part of the equation;

F̄i = −
∑
j 6=i

G
mimj(r̄i − r̄j)
|r̄i − r̄j|3

, (2.5)

calculates the force exerted on star i from all other stars present in the N-body calculation.
This is done by summing up the force exchanged through Newton’s law of universal gravity
between the star i and all the other stars.

Newton’s law of universal gravity states that the gravitational force exchanged between
two objects is proportional to the masses of the objects divided by the distance between
their centre of gravity squared.
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2.3.2 Gradient of the Potential

The second part of the equation is the gradient of the external potential. In order to be
able to calculate the gravitational forces exerted on a cluster star by for example gas in
the cluster, or the rest of the Milky Way, the gravitational potential of the cluster (or the
galaxy) must first be established. The gravitational potential is determined by the mass
distribution, and can be calculated using Poisson’s equation for gravity,

∇2φ = 4πGρ, (2.6)

where φ is the gravitational potential, G is the Newton’s constant of gravity, and ρ is the
density. This states that the gravitational potential is uniquely determined by the density
of the cluster (or galaxy), which correlates to the mass distribution. The force exerted on
a body can then be calculated using the gravitational potential through

F̄ = ∇φ, (2.7)

where ∇φ is the gradient of the potential, and F̄ is the resulting force.

The mass distribution of the galaxy can be determined by e.g. rotational velocity measure-
ments of the Milky Way, producing a rotation curve. However, this method has a great
uncertainty when measuring the density of the Milky Way at a radius of ∼ 8 kpc or greater
from the galactic centre (outside the galactic orbit of the Sun), since the rotational velocity
cannot be uniquely determined.

2.4 Tidal radius

The distance from a cluster at which an object is no longer gravitationally dominated
by the cluster is called the tidal radius rt of the cluster. It is defined as (King 1962);
(Perryman et al. 1997b)

rt =

[
GMC

4A(A−B)

]1/3
, (2.8)

where MC is the mass of the cluster, and A and B are the experimentally determined Oort’s
constants which describe the rotation curve of the Milky Way in the solar neighbourhood.
This gives us some sense of which stars in the neighbourhood of the cluster are members,
and will in this project be used to quantify the number of bound stars throughout the
integration time span. The tidal radius of the Hyades is calculated in Perryman et al.
(1997b), where it is estimated to be rt ∼ 10 pc. This value will be used in this project as
well.
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Chapter 3

Method

This project consists of two major parts - combining an N-body simulation and a simulation
in a galactic potential, and running numerical experiments using the code to investigate
the stability of open clusters.

Usually when working with an N-body simulation, the force from the Milky Way is taken
into account by introducing a small perturbation into the N-body calculation. This is
where this project separates itself a little; instead of using a perturbation, it uses a second,
”outer” integration that calculates the orbit of the mean of the cluster in a potential that
represents the Milky Way, thus taking the force into account this way instead. This means
two parallel integration loops instead of the usual one with only a small addition to running
times, with the hope that it will have some interesting applications and be more true to
the nature of cluster behaviour.

3.1 Initial Conditions

First of all, in order to have a practical example to work with when constructing the
simulation, the cluster to be investigated was chosen to be the Hyades open cluster. The
decision to use this cluster was based on the amount of astrometric data and the accuracy
of the data of the cluster, due to its vicinity to the Sun. Next, the decision had to be made
of which stars in the cluster were to be included in the N-body part of the simulation. As
a reference, the table of stars in the Hyades open cluster in van Leeuwen et al. (2017) was
used (which uses data from GDR1), and the criteria used was all stars with a Henry-Draper
ID (HD) and a Gaia magnitude of G ≤ 8. An extract of the table in van Leeuwen et al.
(2017) of the included stars can be found in table A.1. This data from GDR1 was used
throughout the project, even after GDR2 became available in April of 2018, since the focus
of the project at this point was to finish.

In order to be able to use the Hyades and the selected stars within it in a simulation,
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the individual initial conditions of all the selected stars, as well as the initial conditions of
the mean of the cluster need to be known. This means that the initial three-dimensional
position and velocity of each star, as well as of the mean of the cluster, have to be taken
from a source. For this purpose, the astrometric data provided in A.1 is not enough; the
table provides enough information in order for the positions of the stars to be determined
(α, δ, and π), but provides no information about the velocity of each star. Thankfully,
GDR1 provides us with the two proper motion vectors µα and µδ. The third and fi-
nal velocity-component, the radial velocity vr, was taken from the SIMBAD database by
cross-referencing using the ID’s of the stars, thus completing the initial conditions for all
individual stars in the Hyades open cluster. The initial conditions can be found in ta-
ble A.2, and were transformed into a galactocentric carthesian coordinate system in the
Python script for ease of handling and understanding.

In van Leeuwen et al. (2017) the mean position and mean velocity of the Hyades is estimated
by starting with the cluster centre and parallax derived in van Leeuwen (2009) and applying
selection steps to the 285 stars in GDR1 TGAS that are likely to be within 16 pc of the
assumed cluster centre, limiting the amount of stars believed to be actual members of the
cluster. The initial conditions of the mean of the Hyades cluster were taken from the final
103 stars of the selection process, as stated in van Leeuwen et al. (2017).

3.2 Potentials

3.2.1 The Milky Way Potential

In this project, a simple Milky Way potential taken from ”Dynamical Astronomy, Lecture
Notes for ASTM13” by Lindegren (2014), originally used by Paczynski (1990), is being
used.

It consists of three superpositioned sub-potentials; one for the bulge, one for the disc and
one for the halo. For the bulge and the disc potentials (ψb and ψd), a Miyamoto-Nagai
potential is used, which in cylindrical coordinates has the form

ψMN(R, z) = − GM√
R2 + (a+

√
z2 + b2)2

, (3.1)

where G is the gravitational constant, M is the total mass of the system, and a and b
determine the shape of the potential and have dimensions length.

The spherically symmetric potential used for the halo potential ψh has the form

ψh(r) =
GMc

rc

[
1

2
ln

(
1 +

r2

r2c

)
+
rc
r

arctan

(
r

rc

)]
, (3.2)
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where Mc and rc are two additional parameters related to the core of the potential.

The total Milky Way potential can then be calculated by adding the three potentials
together;

ψMW (r) = ψs(R, z) + ψd(R, z) + ψh(r) (3.3)

The parameter values used for the total Milky Way potential can be found in table 3.1. The
potential was tested by initiating an orbit that closely resembles the Sun’s (radial velocity
of 220 km/s and a distance of 8 kpc from the centre of the Milky Way, slightly off the
centre of the disc in height to check the derivative perpendicular to the disc), and making
sure that it was stable (roughly circular) and bobbed up and down over the disc.

as = 0 bs = 277 pc Ms = 1.12 · 1010 M�
ad = 3700 pc bd = 200 pc Md = 8.07 · 1010 M�

rc = 6000 pc Mc = 5.0 · 1010 M�

Table 3.1: Table of the parameter values used in the Milky Way-potential (eq. 3.3).

This potential is used for the Milky Way throughout the project.

3.2.2 The Plummer Model - The Hyades Cluster Potential

Since the total mass of the cluster cannot be accounted for by astrometric measurements
of individual stars, the remainder of the cluster mass is represented by a gravitational
potential. In this paper, the Plummer model was used for this purpose, as it is a simple
potential model suitable for N-body calculations. The Plummer potential model can be
written as

ψP (r) = − GM√
r2 + a2

, (3.4)

where G is the gravitational constant, M is the mass of the cluster, and a is the so called
Plummer radius, which is a measure of the cluster core size.

In order for the simulated cluster to have the correct mass, the mass of the Plummer
potential is initially set to the astrometrically estimated mass of the cluster (∼ 400M�,
Perryman et al. (1997b)), with the combined mass of the individually simulated stars in
the N-body simulation is subtracted from the potential mass. The mass of the cluster
potential is then reduced as more N-body stars are migrating out of the cluster, simulating
the cluster dissolving. This is done by fitting an exponentially decreasing function on the
form of
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M(t) ∝ e−t ·M0 (3.5)

to the initial and final estimated mass of the cluster1, where M(t) is the mass of the cluster
as a function of time and M0 is the initial mass of the cluster.

It is worth mentioning here, that as the field of astrometry advances (most current advances
being the Gaia mission data releases), more accurate astrometric data becomes available.
This means that more stars in nearby clusters can be included in the N-body part of
the simulation, and thus the potential part of the simulation will be reduced. However,
since clusters also contain large amounts of gas and dark bodies that can’t be measured
astrometrically, the potential will still have a high significance for the accuracy of the
simulation, and so can never be completely removed from the simulation.

3.2.3 Differentiating the Potentials

In order to calculate the acceleration, and thereby the force exerted on an object by
the potentials (according to section 2.2), the derivatives of the potentials with respect
to position need to calculated. They are as follows for the mentioned potentials;

dψMN

dr̄
=


dψMN

dR
=
GMR

u3

dψMN

dz
=
GMz (1 + a/s)

u3

where


s =
√
z2 + b2

u =
√
R2 + (a+ s)2

(3.6)

dψh
dr̄

=
dψh
r

=
A

rc
· 1− arctan(u)/u

u
where


A =

GMc

rc

u =
|r|
rc

, (3.7)

where the arctan-term was substituted with its Taylor expansion in the script for u < 10−4,
in order to not divide by zero for small r.

1The estimation of the final mass of the cluster was based on the simulated stars’ to potential mass-
fraction remaining constant, and observing approximately five N-body stars left in the cluster when running
the N-body simulation for 100 Myr without decreasing mass potential. Since the amount of stars left in
the cluster when running the N-body simulation for 100 Myr with a decreasing potential mass was roughly
the same as before (around five), the method of final mass estimation of the cluster was assumed to be
okay.
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These are the equations used to calculate the acceleration due to the gravitational poten-
tials throughout the project.

3.3 Integrating the Hyades open cluster

The code was written in Python 3.5 and consists of two parallel integration-loops; the
”outer” loop, which integrates the orbit of the cluster in the Milky Way using the initial
conditions of the mean of the Hyades open cluster, and the ”inner” loop, integrating the
individual orbits of the 32 stars in the N-body simulation.

The two integrations are done in parallel with the same time-step. In each time-step, the
new mean position of the cluster is first calculated. The inner integration is then done
using the updated position of the cluster, and a new time-step is initiated. See figure 3.1
for more details.

The initial thought was to have multiple intermediate time-steps in the inner N-body
integration in the span of one outer Cluster Orbit integration time-step, in order to increase
the precision of the inner N-body simulation while still keeping the code time-efficient2.
However, the inner N-body integration is what takes up the vast majority of the time
it takes to calculate one time-step, since it handles a lot more objects and (as will be
explained in section 3.3.2) their individual force-exchange with all other bodies in the N-
body simulation. Since the Hyades cluster orbit integration is just one more calculation,
using the same time-step for both integrations would mean higher precision for the cluster
orbit at a very low extra computational cost. See figure 3.1 for clarification.

3.3.1 The Cluster Orbit

The cluster orbit integration calculates (as the name states) the orbit of the cluster in the
Milky Way, with the cluster being initiated as a test particle in the Milky Way Potential
(see section 3.2.1) with the initial conditions from van Leeuwen et al. (2017) (see section
3.1). The integration is done using the Dormand-Prince method of solving ODE’s (a
variant of the Runge-Kutta method), which facilitates adaptive stepsize integration.

It is possible to initiate the cluster as a massless test particle due to the fact that the only
force taken into account as acting on the cluster as a whole is from the Milky Way, which
is accounted for using a potential. Since the acceleration in a gravitational potential is
independent of the mass of the object, we do not need to introduce a total mass estimate
for the cluster. The use of a massless test particle also means that all the stars in the

2Side note: This is also why the cluster orbit integration is called the ”outer” loop and the N-body
integration the ”inner” loop; since multiple steps of the N-body had to be integrated in the span of one
time-step of the cluster orbit integration in the first method, the N-body integrator had to be inside the
cluster orbit integrator in the code.
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Cluster 
Orbit 

integration

N-body 
integration

Used 
Method

First 
Method

ΔtCO

ΔtNB

ΔtCO

ΔtNBt t

Figure 3.1: Image comparing the used method (left hand side) with the first
method (right hand side), where ∆tCO and ∆tNB are time-steps in the Cluster
Orbit and N-body integration respectively. In the first method, several intermedi-
ate integration steps were calculated in the span of one orbit integration-step with
the intention to save running time in the orbit integration, since the precision of
the cluster orbit integration did not need to be as high. However, since the orbit
integration only contains one calculation and each step in the N-body contains
hundreds, the cluster orbit integration was eventually set to the same time-step
size as the N-body integration. This gives a higher accuracy in the cluster orbit
integration at a very low cost in extra running time.

Hyades open cluster are treated as one body in the cluster orbit integration, and thus the
force exerted on each individual star by the rest of the Milky Way is already accounted for
before the N-body integration is done. Although this is an approximation it is a reasonable
one to make, since the force exerted on a Hyades cluster star is approximately constant
with respect to position in the cluster, due to the gravitational potential of the Milky Way
being almost constant, and thus ∇ψGalactic(x, y, z) ∼ 0 over the cluster.

3.3.2 The N-body Orbits

The N-body integration calculates the orbits of the 32 individual stars, relative to the
cluster centre. In other words, the N-body integration is done in the local frame of the
cluster, and not in the galactocentric frame. The transformation is a simple one, and simply
involves subtracting the mean vector of the cluster from the individual stars’ vectors. The
result is the stars’ vectors in the local carthesian coordinate frame of the cluster.

The included stars have for simplicities sake all been given the same mass, 1.25 M�, based
on an average taken from Perryman et al. (1997b). Their initial conditions have been taken
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from GDR1, with complementary radial velocities taken from the SIMBAD database (for
more information about the initial conditions, see the section on Initial Conditions).

Three forces are taken into account that affect the integrated orbits of the stars in this
N-body simulation;

The N-body force

The first force is what gives this part of the simulation its name; The N-body force. It
calculates the force exerted on a given star by all other stars in the N-body simulation.
This means that there are n(n− 1)/2 = 496 calculations in each step3.

The force exerted on a star with index i by any other star j follows Newtons law of
gravitation as described in equation 2.5;

Fij = G
mimj

r2ij
, (3.8)

where G is Newtons constant of gravitation, mi and mj are the respective masses of the
stars, and rij is the distance between the two stars. This explains why we need to give
the stars masses, in order for the N-body force exerted between the objects to be non-
zero.

Gravitation is linear, and so the forces exerted on a given star by all other stars in the
simulation can therefore simply be summed up to give the resulting acceleration on the
star. By calculating the forces exerted on a given star and repeating this for all stars in
the simulation, the forces mediated between the simulated stars has been accounted for.
The force exerted on the star with index i from all other stars in the N-body calculation
thus becomes (according to 2.5)

Fi =
∑
j 6=i

G
mimj

r2ij
. (3.9)

The inclusion of star - star interactions results in more accurate dynamics, specifically
when it comes to ejection of stars from the cluster. More sporadic movements and shifts
in orbits due to N-body calculations closer resembles the true nature of cluster dynamics,
since without them cluster migrations can only occur through the stars’ interaction with
the potentials in the simulation.

3This is the basis for why the time-step in the cluster orbit- and N-body integrations were set to the
same value, see section 3.3 for reference.
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The Cluster potential

The second force taken into account is the force from the Cluster potential, and for this
the Plummer model is used (see section 3.2.2). It represents all the mass of the cluster
that was not included in the N-body force calculation. This includes stars, gas and other
matter, which exerts a force on the stars in the N-body simulation due to its mass, but
can or was not included in the N-body calculation. Gas, for instance, is best approximated
as a potential and not point-like particle, and since this is a simulation of an open cluster,
which contain a lot of gas, the potential represents most of the cluster’s mass.

As discussed in section 3.2.2, because of the high amount of gas and (to us) unobservable
stars, the presence of a potential will always be true in an N-body simulation of this size,
even as better observing methods become available and technology improves. However,
more stars will be able to be included into the N-body calculation, and so the Cluster
potential-part of the simulation will gradually decrease.

In order for the Cluster potential to be as accurate as possible, the mass of the potential
needs to be reduced gradually as the cluster dissolves. The method of how this is done can
be found in detail in section 3.2.2.

The Milky Way potential

The third and final force is the force exerted on each star by the rest of the Milky Way.
Using the approximation that the gravitational potential is roughly constant throughout
the volume of the cluster (due to the small volume of the cluster in comparison to the size
of the Milky Way), and thus the force exerted on each star from the Milky Way being
approximately equal, we can treat all the individual stars as one body. Thus, the force
exerted on each individual star is accounted for in the Cluster Orbit integration.

3.3.3 The total force on a star

The total force on a star i when adding the two forces thus becomes, according to 2.4;

F̄i = −
∑
j 6=i

G
mimj(r̄i − r̄j)
|r̄i − r̄j|3

− ∇̄ · φCluster(r̄i), (3.10)

where φCluster is the cluster potential.
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Chapter 4

Results

The Results consist of three sections, and are used to demonstrate that both parts of the
simulation works as intended. Results include analysis of the Hyades membership of some
high velocity stars in the simulation, and results attempting to quantify the dissolution of
the Hyades.

Throughout this chapter, the term “Base Run” will be used. This refers to integrating the
Hyades open cluster orbit, as well as the internal N-body orbits, for a duration of 100 Myr,
without any cluster collisions enabled. The Hyades orbit is thus integrated in the potential
of the Milky Way, and the stars inside the cluster are integrated in the cluster potential in
combination with the N-body interaction.

4.1 The Simulation

First, in order to find an optimal time resolution for the integration and to test if the
integration of a massless test particle in a gravitational potential worked as intended, a
sequence of Base runs (100 Myr integration without cluster collision) were initiated with
varying resolutions (varying the time-step used). At a resolution of 100 000 years per
time-step, the difference in results compared to higher resolution runs were negligible, and
compared to lower resolutions there was a very small difference, and so this resolution was
used. Coupled with the relative tolerance-parameter in the integrator used, making sure
that each time-step is sub-divided into smaller time-steps if required for smoothness (for
instance at high accelerations), this resolution was deemed satisfactory1.

After the time resolution of the integration was established, a 500 Myr integration of the
Hyades open cluster’s orbit in the Milky Way was done. Figure 4.1 shows two of the

1The effect of the relative tolerance was also tested in a similar way to the step-resolution, but had less
impact on the outcome of the integration. It was eventually set to 10−6.
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Figure 4.1: (a) Position against time- and (b) height against radius-plots
of the Hyades open cluster in the Milky Way, over a timespan of 500 Myr.
The plots are made in a galactocentric coordinate system.

resulting plots from the run; Figure 4.1a shows each coordinate (x, y, z), as well as the
radius =

√
x2 + y2 of the Hyades as a function of time, while figure 4.1b shows the radius

R as a function of height z. All distances are expressed in the unit parsec, and time in
Myr (Million years). The Hyades seems to be in a stable orbit around the galactic centre,
with harmonically oscillating x- and y-values with slightly different wave amplitudes. This
difference in amplitude leads to the radius R oscillating slightly as a function of time,
which means a slightly elliptical orbit. The height above or below the galactic plane also
oscillates with an amplitude of about ±60 pc, with a periodical of ∼80-85 Myr. The height
oscillation can better be seen in 4.1b, where the eccentricity can also be seen in the distance
span of the plot. For a more detailed plot of the height oscillation as a function of time,
and the x-y plane orbit, see Appendix C.

Similarly, in order to test that the N-body interaction was working correctly, the N-body
was tested on its own as well as with the potentials. The most interesting and telling test
was to plot the local velocities of the stars in the N-body simulation relative to the cluster
centre as a function of time in a Vanilla run, an example of which can be seen in figure
4.2. Figure 4.2 shows the velocity-time plot of one of the more interesting stars in this
test, HD27808. In the plots, the difference when the N-body equation was used (b) and
when it was not (a) can be clearly discerned; both velocity curves have an exponentially
decreasing velocity, but when the N-body equation is used, a ”bump” in the velocity-curve
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can be noted at t = 11.6 Myr, which is caused by an N-body interaction with HD26784,
another star in the simulation. The closest approach between the stars was 0.36 pc, which
corresponds to an acceleration of ∼ 0.04 km/s2. This is a good indication of a working
N-body interaction.
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(a) Velocity-time plot of the star HD27808 in a sim-
ulation without N-body incorporated, with velocity
v in km/s on the vertical axis, and time t in Myr on
the horizontal axis.
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(b) Velocity-time plot of the star HD27808 in a sim-
ulation with the N-body equation incorporated, with
velocity v in km/s on the vertical axis, and time t in
Myr on the horizontal axis.

Figure 4.2: Comparison of velocity versus time plots of the star HD27808, without
(left hand side) and with (right hand side) the N-body equation implemented. The
velocity is measured in km/s relative to the cluster centre. The bump at t = 11.6
Myr in (b) is due to a close encounter with the star HD26784, where the two stars
got as close as 0.36 pc, which corresponds to a maximum acceleration during the
encounter of 0.04 km/s2.

4.2 High Velocity Stars

Some of the stars included in the N-body simulation (in particular one, HD31236) appears
to (with the initial conditions used) not be in stable orbits in the Hyades, but instead to be
merely passing within the tidal radius of the cluster with a high local velocity. This could
either be due to the stars not really being a member of the Hyades, or due to gravitational
interactions with other objects in (relative) recent history, accelerating them out of the
cluster. This was tested further by integrating the orbits backwards in time, to ensure that
the stars were not in highly elliptical orbits, and that they had not interacted with other
stars included in the N-body. However, due to not being able to include all of the cluster
mass in an N-body calculation (such as gas, dark bodies, etc.), as well as not having taken
the formal errors of the initial condition into account, this result is merely indicative.
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Two examples of individual star orbit plots can be seen in figures 4.3 and 4.4 respectively.
The two figures shows the same parameters as figure 4.1 did for the Hyades orbit in the
Milky Way, but for the most bound (HD28992, figure 4.3) and most unbound (HD31236,
figure 4.4) star in the simulation, in the local frame of the Hyades. The time frame of the
integration is 200 Myr. The two plots for HD28992 indicate that the star starts of in a
stable orbit with harmonically oscillating x-, y-, z- and R-values, and does not seem to
become unbound until t ∼ 150 Myr, while all of the plotted values for HD31236 seem to
be linear. The difference in velocity relative to the Hyades centre can be seen in figure 4.5,
where the local velocity of both stars has been plotted as a function of time (cropped at
100 Myr for HD31236). In this figure, the velocity of HD28992 appears to be oscillating
at a velocity of ∼ 0.3 km/s, while HD31236 does not oscillate, but exponentially increases
until it peaks at a velocity of ∼ 6.5 km/s within the first 5 Myr and then exponentially
decreases.
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(a) x-, y-, and z-values (in blue, red and green
respectively), as well as radius R =

√
x2 + y2

(dashed magenta line), expressed in parsec
from centre of the Hyades open cluster, as a
function of time t. The star appears to have a
stable orbit, but becomes less bound towards
the end of the simulation, which is due to the
decreasing mass of the potential.
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(b) Radius R =
√
x2 + y2 (horizontal axis) against

height z (vertical axis) of one of the most bound stars
in the simulation, HD28992. Both axis are in parsec.

Figure 4.3: Position (x, y, z, R) against time t, as well as height z against two-
dimensional radius R, of one of the most bound stars in the simulation, HD28992.

Figure 4.6 shows the two stars’ respective distance r in parsec relative to the cluster centre
as a function of time. In both plots in figure 4.6, the tidal radius of the Hyades is plotted as
a threshold value. HD28992 (a) oscillates within the tidal radius for most of the simulation,
while HD31236 appears to have a linear trajectory throughout the simulation, and barely
makes it inside the volume gravitationally dominated by the Hyades. The distance R and
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(a) x-, y-, and z-values (in blue, red and green re-
spectively), as well as radius R =

√
x2 + y2 (dashed

magenta line), as a function of time t. All four lines
appear linear, which indicates that the star has not
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cluster potential. Furthermore, the y coordinate ap-
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(b) Radius-to-height plot of HD31236, where R =
x2 + y2 is the radius and z is the height. Both axis
are in parsec. The data is indicative of the star not
being a cluster member at all but that it is merely
passing through the cluster, although this cannot be
said with absolute certainty since the error of the as-
trometric data has not been taken into consideration
in this project.

Figure 4.4: Position (x, y, z, R) against time t, as well as height z against two-
dimensional radius R, of the star HD31236.

height z of HD31236 (figure 4.4) also appears linear as a function of time, which also
indicates that no major gravitational interaction perpendicular to the direction of travel
has occurred. The combination of the high relative speed of HD31236 and the absence of
gravitational interactions between the star and the cluster indicates that the star is not
an actual member of the Hyades open cluster, but is merely passing through. However,
this can not be stated with certainty, as the formal errors of the initial conditions have
not been taken into account, and a gravitational interaction within the cluster in history
cannot be ruled out.

To rule out an highly elliptical orbit of HD28992, which would look similar to it leaving
the cluster, a longer integration of 500 Myr was done, which confirmed that the star indeed
becomes unbound. The reason for this is the mass decrease of the cluster potential, and
not an N-body interaction, as this would show more clearly in the plot. Also, only a few
stars remain within the tidal radius of the cluster at this point in time, and so the chance
of a significant N-body interaction is quite low.

The plot of x-, y-, z- and R-values as a function of time, as well as radius R against height
z, of the star HD31236 when integrated backwards in time can be found in Appendix
C.
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(a) The velocity v of the star HD28992 relative to
the Hyades centre, as a function of time t. The ve-
locity appears to oscillate like a dampened harmonic
around v ∼ 0.2 km/s, indicating that it is gravita-
tionally bound. A slight perturbation can be seen
at t = 8.8 Myr, which is due to a minor N-body
interaction with HD28205.
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(b) The velocity v of the star HD31236 relative to
the Hyades centre, as a function of time t (cropped
at t = 100 Myr). In difference to figure 4.5a, the
velocity does not seem to oscillate, but instead expo-
nentially increase until it reaches its closest approach
to the cluster centre (6.6 pc at time t = 2.5 Myr) at
a velocity of v ∼ 6.5 km/s, and then exponentially
decrease. This is what would be expected of a star
that is passing through the cluster at high speed.
A perturbation in the velocity at t = 13.1 Myr can
be seen, which is due to an encounter with the star
HD28911 (2.3 pc distance at closest approach).

Figure 4.5: Comparison of velocity versus time plots of the stars HD28992 and
HD31236. The velocity (vertical axis) is measured in km/s relative to the cluster
centre, as a function of time t in Myr (horizontal axis). Comparing the two, it is
apparent that HD31236 has a much higher velocity than HD31236.
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(a) Distance of HD28992 to the Hyades centre as
a function of time. The distance appears to oscil-
late, indicating a gravitationally bound star, until
the very end of the simulation. An integration with
a time span of 500 Myr was done in order to rule out
a highly elliptical orbit of HD28992, which confirms
that the star becomes unbound, due to the mass de-
crease of the cluster potential.
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(b) Distance of HD31236 to the Hyades centre as a
function of time (cropped at t = 100 Myr). Contrary
to HD28992, the distance does not seem to oscillate
with time, but instead be linear, indicating that no
major interaction with another star or the cluster
potential has occured. This in turn indicates a high
relative velocity, which can be seen more clearly in
figure 4.5. This all points towards that HD31236 is
not a member of the Hyades open cluster, since it
barely makes it inside the tidal radius of the clus-
ter, and because of its high velocity relative to the
Hyades.

Figure 4.6: Distance r from the cluster centre in parsec (vertical axis) for the two
stars HD28992 (a) and HD31236 (b) as a function of time t in Myr (horizontal
axis). The tidal radius rt of the Hyades, taken from Perryman et al. (1997b),
is marked as a dashed red line at rt ∼ 10 pc. HD28992 appears to stay bound
for most of the 200 Myr-timespan of the simulation, only becoming unbound at
t ∼ 90 Myr, while HD31236 barely passes within the tidal radius of the cluster.

26



4.3. DISSOLVING TIME OF THE HYADES CHAPTER 4. RESULTS

4.3 Dissolving Time of the Hyades

In order to compare the dissolution times of different runs, and thus be able to draw any
conclusions about the impact of cluster collisions, some comparison value first has to be
defined. For this, the number of gravitationally bound stars (stars located within the
tidal radius of the Hyades, 10.3 pc) was plotted as a function of time, along with the two
threshold values, 20% and 10% of the initial number of gravitationally bound stars. The
Hyades was collided with other open clusters of the same radius as the Hyades at the time
of t ∼ 0.9 Myr, at a relative velocity of v ∼ 15 km/s, varying the centre-to-centre distance
at closest approach (0.3 pc, 0.7 pc and 1.7 pc), as well as densities ranging from 1ρH−8ρH
(where ρH is the density of the Hyades). Figure 4.7 shows the result from six of these runs;
(a) - collisions with two different density clusters (ρc = ρH and ρC = 8ρH) with a 0.3 pc
separation at impact, (b) - same as (a) but with a 0.7 pc separation at impact, and (c)
same as the previous two, but with a separation of 1.7 pc at impact.

It is clear when looking at figure 4.7 that the density of the oncoming cluster has a big effect
on the outcome of these simulations. With both clusters having the same density we see no
significant difference in dissolving time, and varying the centre-to-centre distance at impact
matters little as well. However, as we start to increase the density of the oncoming cluster,
we start to see differences in behaviour; overall the time it takes for the Hyades to drop
below 10% of its original star population is decreased. Also, the effect of varying centre-
to-centre distance becomes more apparent; the greatest dynamical change to the Hyades
seems to occur when the off-set is at its greatest (1.7 pc), with smaller off-sets generating
smaller differences in dissolving time. This of course does not extend to infinity; at a certain
centre-to-centre distance the interaction will become weaker again, since the gravitational
force scales as r−2.

Plots similar to 4.7, but for densities ρC = 2ρH and ρC = 4ρH , can be found in figure C.3
in the Appendix.

It should be remembered that the resolution of these results is quite low because of the
low number of stars in the N-body, and so statistical fluctuations play a big role.
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(a) Number of bound stars in The Hyades, when col-
liding with a cluster with a centre-to-centre distance
of r ∼ 0.3 pc at the time of impact, as a function of
time.
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(b) Number of bound stars in The Hyades as a func-
tion of time, when colliding with a cluster. Here, the
centre-to-centre distance is r ∼ 0.7 pc at the time of
impact.
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(c) Number of bound stars in The Hyades as a func-
tion of time, with a impact centre-to-centre distance
of ∼ 1.7 pc.

Figure 4.7: Number of bound stars N (stars within the tidal radius rt) in the Hyades open cluster
(vertical axis) as a function of time t in Myr (horizontal axis). No cluster collision in black, collision
with a cluster of the same density and volume in green (ρC = ρH , 400M�), and collision with
a cluster with a density of ρC = 8ρH (3200M�). The time of the collision is 0.9 Myr into the
simulation, and the relative velocity of the clusters is v ∼ 15 km/s. Threshold values for 20% and
10% of the initial number of bound stars marked as dashed orange and dashed red line respectively.
If the colliding clusters are of the same density there seems to be little effect on dissolving time,
no matter the distance at impact. However, increasing the density of the oncoming cluster to eight
times that of the Hyades, we start to see the effects of the off-set at impact. The plots are cropped
at t = 50 Myr, since all N remain constant to the end of the simulation (100 Myr) after this point.
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Discussion

Two integrations - is it worth it?

The core idea of this project was the implementation of a double integrator; one for the
cluster in the Milky Way potential, and one for the local motions of the stars inside the
cluster, something that is not commonly done when looking into local motions in a cluster.
This of course raises the question, is it worth doing?

The most common way of doing a simulation of local motions of stars inside a cluster
is, as discussed earlier, to do a local simulation (cluster potential and N-body) with a
force perturbation representing the gravitational force exerted by the Milky Way. This is
in comparison with the model used in this project a little bit more simplistic, but eases
handling of a lot of things. For instance, colliding two clusters in such a model (if what
one is interested in is merely the effect on one of the clusters, as in this project) simply
involves tracing the wanted trajectory of the colliding cluster and initiating a potential in
said trajectory. Since there is no ”outer” (Milky Way) potential to take into account, the
trajectory (for all intents and purposes) will be linear, and thus much easier to handle.

However, such a simulation is after all an approximation. A perturbation representing
the gravitational forces from outside the cluster might not give the same result as a more
rigorous integration of the cluster, where the Milky Way orbit of the cluster is traced out as
well. This was the thought behind the project; to create such a simulation and investigate
whether or not it is a viable method of integration.

As touched on in section 3, this method of integration has a very small impact on the
running time compared to just one integration, since the cluster orbit integration only
consists of one body in a potential. This, coupled with the fact that it is in fact a more
complete picture of the cluster, makes it a very useful and versatile tool. Instead of
having to calculate the position-specific perturbation in a cluster (caused by the outside
mass distribution), the cluster can instead be integrated in the Milky Way potential in a
separate integration. This in turn enables a great deal of flexibility, for instance initiating
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new clusters of interest into the same simulation, or investigating the effect of the cluster
orbit on the local motions of the stars inside the cluster.

On the membership of stars

One of the more unique and interesting stars in this simulation is HD31236. The reason for
this is, with the initial conditions used in this project, the star starts by passing the centre
of the Hyades at a high local speed, and seems to be almost unaffected by the potential
of the cluster or by other stars. This strongly suggests that, according to this simulation,
HD31236 is not a member of the Hyades open cluster. Compare this result to those stated
in table 2 in Perryman et al. (1997b), where the independent investigations by van Bueren,
Pels et al., Schwan, and Perryman et al. respectively, all concluded that the star HD31236
(HIP22850, used in the table) is a member of the Hyades.

Among the 32 stars included in this N-body simulation, HD31236 is the only star which
has such a high local speed and can be seen passing the cluster centre during the time
span of the integration. Integrating the cluster backwards in time does not indicate that
it is a member on a highly elliptical orbit, but instead supports the notion that the star
is merely a drifting star passing through the Hyades. Indeed, almost all 32 stars in the
simulation seem to be leaving the cluster within 20-30 Myr, but show signs of interaction
with other stars in the simulation, or at least with the potential of the cluster. In order
to establish the membership status of more stars in the cluster, more accurate data and
further investigation is needed, something that GDR2 might enable.

Whether or not our results differ from the rest of these investigations because of different
simulation techniques or because of the more accurate astrometric data of GDR1 being
used in this project cannot be said for certain. Comparing the radial velocity used in
Perryman et al. (1997b) (also in table 2) with the radial velocity used in this project1, we
can see a difference in radial velocity of ∼10%. This could potentially explain the different
outcome of the simulations, or at least be a part of it.

However, that HD31236 is not a member of the Hyades cannot be claimed for certain, since
the errors of the initial conditions have not been taken into account in this simulation. If
the integration was done varying the initial conditions within the formal errors and this
still resulted in the star leaving the cluster at such a high local speed with no signs of
major interaction, the result might be linked to the different simulation technique. This is
something that could be the subject of further investigation.

1The radial velocity used in this project is not taken from Gaia but from the SIMBAD database, but
has nevertheless been updated since the time of publishing of the paper, 1997, and so the same point
applies.
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The effect of cluster interactions
on dissolving time

Varying the mass of the cluster colliding with the Hyades in the simulation, as well as the
centre-to-centre distance at the time of closest approach in the simulation (from here on
called the impact distance), allows us to make some rough conclusions about the effects
of cluster collisions. Analyzing the results in section 4.3, we see that a collision with a
cluster of the same mass and density (400M�, green line in figure 4.7) results in little to no
difference in dissolving time, with the impact distance having little effect as well. However,
as the density of the oncoming cluster is increased and the impact distance varied, we
start to see some changes. For an oncoming cluster of eight times the density2 (a mass
of 3200M�, purple line in figure 4.7), we start to see the effect that the centre-to-centre
distance at the time of impact has on dissolving time. At the smallest distance, 0.3 pc
(figure 4.7a), we see that the cluster collision seem to have prolonged the dissolving time
consistently up to the time at which the cluster stays above 20% of the original star count
of the N-body. At the time at which the cluster has 10% of the starting count the rate
of decay is approximately the same, with a steeper decline after that. Moving on to the
medium impact distance, 0.7 pc in figure 4.7b, we see that this roughly follows the outline
of the ”No Collision” base run, but with a slightly steeper decent after half of the initial
stars have become unbound. Finally, in figure 4.7c, with an impact distance of 1.7 pc, we
can observe the same trend as in the previous plot, where the collision seems to have little
effect on the first 15 or so stars to leave the cluster, but increase the rate of decay quite
substantially after this point.

It is important to bear in mind that the resolution of the relevant plots in this section is
based on only 32 stars, and so there is room for statistical errors in the conclusions made.
I have tried to take this into account and draw safe conclusions based on the data I have
produced, but higher resolution simulations need to be done if one is to rule out statistical
errors. To this it should be added that, as the cluster dissolves and the N-body stars leave
the cluster, the impact of the statistical errors becomes greater, which makes it harder to
draw conclusions as time increases in the plots.

In conclusion, the cluster collisions seem to have at least some effect if the density of the
oncoming cluster is larger than the density of the cluster in focus, and this effect seem to
be more dramatical when the clusters impact slightly off-centre, tending towards shorter
lifetimes for the cluster. As expected, the higher the density ratio between the clusters,
the more dramatical the change. However, the more detailed effects of the impact distance
require a higher resolution simulation to be able to discern, including more stars in the
N-body simulation.

2Same volume, eight times the mass
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Improvements

In order to improve on the simulation, a number of things can be done, ranging in amount
of work. First of all, in order to get more certain results when it comes to membership of
stars, one can include the errors of the initial conditions. This is something that should be
quite easy to implement if done correctly from the start, but was not done in this project,
since it was not the original goal to determine membership status.

Another small improvement which could be done in order to increase the accuracy of the
N-body simulation is to calculate the individual masses of the stars in the simulation, using
available astrophysical parameters. This would lead to more accurate interactions between
stars, and becomes increasingly important as more stars are added into the N-body portion
of the simulation, increasing the number of interactions.

One can also test the impact of other forms of gravitational potentials on the cluster. One
example of this would be to test a more rigorous model of a spiral arm, which could be
implemented into the potential of the Milky Way. By varying for instance the rotational
speed of the spiral arm, one can investigate what speed is required in order to tear the
cluster apart when the cluster enters the spiral arm.

As done in this project, the oncoming cluster density and the centre-to-centre distance at
impact can be varied in order to investigate the effect, but to a greater extent in order to
get a more complete image of the effects. However, one can also vary the relative velocity
at impact, which in theory should lead to more dramatic changes, due to longer interaction
times. In this project the relative velocity was kept roughly constant at ∼15 km/s, since
changing a third variable (already varying closest distance and density) would involve a
lot more analysis to be able to draw good conclusions.
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Conclusions

In this project, a double integration simulator was constructed, with the intention of being
a more flexible and intuitive alternative to the perturbation method of simulating clusters
in a galactic potential. In the outer integration, the cluster was treated as one body
and integrated in a Milky Way potential, and after every outer integration step the inner
local motions of the stars inside the cluster were integrated. The simulation was tested in
various ways to ensure that it worked as intended. The N-body calculation was tested by
comparing results from when it was enabled and disabled, and the potential derivatives
were checked mathematically during the project. The resolution of the integration was
also tested to make sure that the results were accurate.

Using the new simulation, the test subject of the project, the Hyades open cluster, was
collided with clusters of varying densities and centre-to-centre distance at impact, in order
to investigate the effect of collisions on dissolving time of the cluster. It was concluded
that the collision had an insignificant effect if the colliding clusters had approximately the
same density, but as the density of the oncoming cluster was increased, the effect became
more dramatical. Overall, all collisions with clusters with a density of at least two times
that of the Hyades seemed to shorten the lifetime of the open cluster, with the greatest of
the three off-sets having the most dramatical effect on the dissolving time of the cluster,
increasing the rate of decay substantially.

The results also indicated that in particular one of the stars included in the N-body sim-
ulation, considered to be a member of the cluster, had a very high local velocity and left
the cluster very early in the simulation. This was investigated further, and the results
indicated that this star is merely passing through the cluster, although to prove this, fur-
ther investigation is required, taking the formal errors of the star’s initial conditions into
account.
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Table A.1: Extract from the table in van Leeuwen et al. (2017) of the stars in the Hyades
open cluster chosen to be included in the N-body simulation of this project. The criteria
was set to any star with a Henry-Draper ID and a Gaia magnitude of G ≤ 8.

SourceId HD α [degr] δ [degr] G dm

45367052352895360 25825 61.5677 15.6980 7.666 3.36

46975431705914112 26345 62.6770 18.4231 6.477 3.34

3304412597612195328 26767 63.6141 12.4353 7.840 3.39

52813460492850304 26737 63.6272 22.4517 6.925 3.92

149005266040519808 26736 63.6352 23.5747 7.851 3.27

3300934223858467072 26784 63.6436 10.7014 6.945 3.27

49365082792386816 26874 63.9273 20.8197 7.600 3.50

3312136494998639872 26911 63.9434 15.4006 6.199 3.32

47620260916592384 27149 64.5082 18.2567 7.313 3.35

49231663928585344 27524 65.3823 21.0397 6.661 3.42

47541096078933376 27534 65.3849 18.4174 6.670 3.39

3311024785663873920 27561 65.3954 14.4097 6.477 3.45

145373372976256512 27808 66.0613 21.7361 6.969 3.16

3313947699887831808 27848 66.0932 17.0788 6.828 3.51

3313662892016181504 27859 66.1185 16.8861 7.627 3.27

3312783557591565440 27991 66.4060 15.9409 6.297 3.38

145293177350363264 28033 66.5775 21.4703 7.201 3.37

3313689417734366720 28099 66.6676 16.7468 7.916 3.30

3312709374919349248 28205 66.9000 15.5891 7.247 3.37

3306922954457367936 28237 66.9424 11.7364 7.331 3.32

3314109912215994112 28344 67.2017 17.2853 7.671 3.32

3314212063714381056 28406 67.3769 17.8630 6.764 3.33

3305871821341047808 28608 67.7387 10.7517 6.886 3.36

3307815001984777088 28635 67.8727 13.9034 7.600 3.65

3307528029449757056 28911 68.4448 13.2518 6.489 3.32

3312575681175439616 28992 68.6476 15.5045 7.739 3.31

146677874804442240 29419 69.7142 23.1497 7.343 3.19

3405113740864365440 30589 72.3842 15.8886 7.550 3.40

3404812680839290368 30712 72.6413 15.0833 7.517 3.36

3405220084257276416 30738 72.7026 16.2103 7.135 3.48

3404850785786832512 30809 72.8470 15.4334 7.728 3.92

3408463506117452544 31236 73.7435 19.4853 6.278 3.99
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Table A.2: The initial conditions of the 32 stars in table A.1. One star (*) indicates they were taken from
GDR1, two stars (**) indicate they were taken from the SIMBAD database by cross-referencing ID’s.
They were later transformed into a galactocentric carthesian coordinate system in the code to facilitate
integration and plotting.

SourceId HD α [degr]* δ [degr]* π [mas]* µα [mas/yr]* µδ [mas/yr]* vr [km/s]**

45367052352895360 25825 61.5677 15.6980 21.3420 118.9340 -19.6168 37.75

46975431705914112 26345 62.6770 18.4231 21.3141 121.5019 -30.9246 36.10

3304412597612195328 26767 63.6141 12.4353 20.9219 114.8247 -13.0578 38.323

52813460492850304 26737 63.6272 22.4517 15.6472 92.6914 -32.4949 38.4

149005266040519808 26736 63.6352 23.5747 22.1908 119.8210 -48.3050 37.50

3300934223858467072 26784 63.6436 10.7014 22.1838 119.5726 -5.5164 37.10

49365082792386816 26874 63.9273 20.8197 19.8695 109.6238 -35.1506 27.2

3312136494998639872 26911 63.9434 15.4006 21.8505 115.6340 -21.5155 36.4

47620260916592384 27149 64.5082 18.2567 21.2855 113.1573 -31.2975 38.00

49231663928585344 27524 65.3823 21.0397 20.8987 104.8388 -35.9854 37.1

47541096078933376 27534 65.3849 18.4174 20.4678 110.6104 -31.8652 37.0

3311024785663873920 27561 65.3954 14.4097 20.4476 104.2298 -19.1325 39.80

145373372976256512 27808 66.0613 21.7361 23.3598 117.3728 -45.7965 37.30

3313947699887831808 27848 66.0932 17.0788 19.8786 99.9086 -26.6532 39.83

3313662892016181504 27859 66.1185 16.8861 22.1282 113.0887 -25.0414 37.70

3312783557591565440 27991 66.4060 15.9409 20.8702 106.8848 -25.0698 39.60

145293177350363264 28033 66.5775 21.4703 21.4611 103.5366 -37.8687 38.21

3313689417734366720 28099 66.6676 16.7468 21.9436 108.8452 -28.0853 38.69

3312709374919349248 28205 66.9000 15.5891 21.1292 105.2035 -23.8015 39.10

3306922954457367936 28237 66.9424 11.7364 21.6354 110.0126 -12.4712 39.663

3314109912215994112 28344 67.2017 17.2853 21.6371 108.6998 -28.4150 39.171

3314212063714381056 28406 67.3769 17.8630 21.4936 106.0916 -31.9674 37.50

3305871821341047808 28608 67.7387 10.7517 21.2031 102.9851 -10.8185 39.00

3307815001984777088 28635 67.8727 13.9034 18.5638 89.9478 -17.3586 39.245

3307528029449757056 28911 68.4448 13.2518 21.6651 102.8164 -17.4181 35.00

3312575681175439616 28992 68.6476 15.5045 21.7450 101.1236 -26.7425 40.314

146677874804442240 29419 69.7142 23.1497 22.9950 105.4934 -54.1927 39.08

3405113740864365440 30589 72.3842 15.8886 20.8788 86.7435 -25.5009 42.717

3404812680839290368 30712 72.6413 15.0833 21.1649 88.9776 -23.3618 42.59

3405220084257276416 30738 72.7026 16.2103 20.0725 83.0972 -26.2501 44.20

3404850785786832512 30809 72.8470 15.4334 16.4489 65.8227 -18.1965 43.432

3408463506117452544 31236 73.7435 19.4853 15.9153 62.8383 -28.9176 35.00
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Units

In the name of practicality, SI-units are not used in this project, due to the greatness of
most values within astronomy if expressed in these units. Instead, the following units are
being used (all values are taken from Lennart Lindegren’s ”Dynamical Astronomy, Lecture
Notes for ASTM13, ”, 2014);

Mass

The masses of bodies and potentials are expressed in solar masses, M�, with one solar
mass being equal to 1M� = 1.989 · 1030 kg.

Distance

Distances are measured in parsec, pc, with one parsec being equal to 1 pc = 3.0856776·1013

km.

Velocity and Acceleration

Due to the velocity range of the stars in the Milky Way, the unit suitable is km/s. The
acceleration unit then naturally becomes km/s2.

Time

Since the units for distance and velocity are now given, we can calculate the natural unit
to use for time by dividing the distance with the velocity, i.e.
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t =
1 pc

km/s
= 3.0856776 · 1013 s = 9.7779223 · 105 yr. (B.1)

Noticeably, this is very close to 1 Myr (106 years), but in order to maintain accuracy the
time is divided by a factor of 0.9778, and the unit thus becomes Myr.

The Gravitational Constant

Given all the units above, the gravitational constant G can be calculated to

G = 0.00430091722 pc (km/s)2 M−1
· . (B.2)

Coordinate System

For simplicities sake, all simulation were run in the Galactocentric frame, with the Milky
Way centre at origo and the Sun defining the direction of the x-axis. The unit vector used
was 1 parsec for all axes.
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Additional Plots
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(a) Height z (relative to the galactic plane) as a func-
tion of time t. The height is expressed in parsec and
the time in Myr. This is a more detailed version of
the height in figure 4.1a (green line).
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(b) Top-down view of the orbit of the Hyades open
cluster over a 500 Myr timespan, with x-coordinate
on the horizontal axis and y-coordinate on the ver-
tical axis, both expressed in parsec.

Figure C.1: (a) Height against time- and (b) x-y plot of the Hyades open cluster in
the Milky Way, over a timespan of 500 Myr. The plots are made in a galactocentric
coordinate system.
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(a) x-, y-, and z-values (in blue, red and green re-
spectively), as well as radius R =

√
x2 + y2 (dashed

magenta line), as a function of time t. The orbits
are integrated backwards in time in order to give an
indication of the origin of the star. All four lines
appear linear, which indicates that the star has not
interacted very much at all with other bodies or po-
tentials in the simulation. In comparison to integrat-
ing in positive time-direction (figure 4.4), y is still
roughly constant at time y ∼ 0, but since x is now
negative and R ≥ 0, the two values do not coincide
for all negative times.
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(b) Radius-to-height plot of HD31236, where R =
x2 + y2 is the radius and z is the height. Both axis
are in parsec. The linearity of the plot suggests that
the star has not interacted very much at all with
potentials or other stars in the N-body. This in turn
points to the star not being a true member of the
Hyades, but merely passing through.

Figure C.2: x, y, z, R) against time t, as well as height z against two-dimensional
radius R, of the star HD31236, integrated 100 Myr backwards in time.
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(a) Number of bound stars in The Hyades, when col-
liding with a cluster with a centre-to-centre distance
of r ∼ 0.3 pc at the time of impact, as a function of
time.
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(b) Number of bound stars in The Hyades as a func-
tion of time, when colliding with a cluster. Here, the
centre-to-centre distance is r ∼ 0.7 pc at the time of
impact.
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(c) Number of bound stars in The Hyades as a func-
tion of time, with a impact centre-to-centre distance
of ∼ 1.7 pc.

Figure C.3: Number of bound stars N (stars within the tidal radius rt) in the
Hyades open cluster (vertical axis) as a function of time t in Myr (horizontal
axis). No cluster collision in black, collision with a cluster of the same density
and volume in green (ρC = 2ρH , 800M�), and collision with a cluster with a
density of ρC = 4ρH (1600M�). The time of the collision is 0.9 Myr into the
simulation, and the relative velocity of the clusters is v ∼ 15 km/s. Threshold
values for 20% and 10% of the initial number of bound stars marked as dashed
orange and dashed red line respectively. The plots are cropped at t = 50 Myr,
since all N remain constant after this point.

43


	Introduction
	Theory
	The Hyades
	Solving the Equation of Motion ODE
	The N-body Equation
	Newton's Law of Universal Gravity
	Gradient of the Potential

	Tidal radius

	Method
	Initial Conditions
	Potentials
	The Milky Way Potential
	The Plummer Model - The Hyades Cluster Potential
	Differentiating the Potentials

	Integrating the Hyades open cluster
	The Cluster Orbit
	The N-body Orbits
	The total force on a star


	Results
	The Simulation
	High Velocity Stars
	Dissolving Time of the Hyades

	Discussion
	Conclusions
	Tables
	Units
	Additional Plots

