
Orthogonal Range Searching and
Graph Distances Parameterized by
Treewidth

Måns Magnusson

MASTER’S THESIS | LUND UNIVERSITY 2018

Department of Computer Science
Faculty of Engineering LTH

ISSN 1650-2884
LU-CS-EX 2018-31

Orthogonal Range Searching and Graph
Distances Parameterized by Treewidth

Måns Magnusson
Mans.Magnusson.888@student.lu.se

June 7, 2018

Master’s thesis work carried out at
the Department of Computer Science, Lund University.

Supervisor: Thore Husfeldt, Thore.Husfeldt@cs.lth.se

Examiner: Krzysztof Kuchcinski, Krzysztof.Kuchcinski@cs.lth.se

mailto:mans.magnusson.888@student.lu.se
mailto:thore.husfeldt@cs.lth.se
mailto:Krzysztof.Kuchcinski@cs.lth.se

Abstract

In this master’s thesis, we present an improved time complexity analysis of
algorithms that calculate graph metrics: diameter, radius, eccentricities and
Wiener index inweighted, undirected graphs. Our results show single-exponential
dependence on the treewidth.

These metrics can be calculated in polynomial-time using Dijkstra’s al-
gorithm, and in linear time for trees. For graphs with bounded treewidth,
i.e., graphs with small cycles, the linear algorithm can be generalized by find-
ing points inside a d–dimensional box, so-called orthogonal range searching,
which can be implemented using the data structure Range Trees.

Part of the work has been submitted to a peer-reviewed, specialist confer-
ence, as a joint paper with Bringmann and Husfeldt. In the paper, attached
as an appendix, we present new upper bounds by improving the analysis of
Range Trees.

This thesis provides more details to the background ideas and proofs cov-
ered in the paper, implementation, as well as empirical comparisons of running
times.

Keywords: Graph diameter, Wiener Index, parameterized algorithms, orthogonal
range searching, tree width, range trees, computational geometry

2

Acknowledgements

I want to thank my supervisor, Thore, for the many interesting discussions in his office,
that were very focused, politically correct, and never ever went out of bounds. However,
a word of advice, your shirts are not eccentric enough: the flowers have way too small
diameter.

Thank you, Karl, for finding critical errors, and lifting the paper to a higher dimension!

Thank you, Maj, for proofreading, proof reading, and a never ending range of queries
“What does this mean?”, which I’ve now cached the response for: “Oh, that’s an error.”.1

1Also she is of the controversial opinion that the maximum of 5, 7 and 8 actually is 8, and not 7.

3

4

Contents

1 Introduction 7
1.1 Definitions . 8
1.2 Related work . 9
1.3 Contributions . 10

2 Theoretical derivation 11
2.1 Diameter of an unweighted tree . 11

2.1.1 Applying Centroid Decomposition 12
2.2 Generalization . 14

2.2.1 Tree Decomposition . 14
2.3 Eccentricities . 16
2.4 Orthogonal Range Searching . 20

2.4.1 Preliminaries . 20
2.4.2 Range Trees . 20
2.4.3 Remark on Range Trees . 24

2.5 Asymptotics . 25
2.6 Wiener Index . 25

3 Experimental demonstration 27
3.1 Running Times . 27

3.1.1 Generation of test data . 27
3.1.2 Measurements . 28

3.2 Discussion . 28

4 Conclusions and Future Work 31

Bibliography 33

5

CONTENTS

6

Chapter 1
Introduction

Einstein was wrong, time is not relative, especially not in the world of algorithms. It
matters how much time it takes for our algorithms to execute. Will it finish in the blink
of an eye, in the time it takes to get coffee, in my lifetime or before the end of time?
Exponential growth is scary. We analyze our algorithms by finding upper bounds for the
number of operations as a function of the input size. Throughout this thesis you will
encounter “algorithm x is bounded by O(f (n))” where f (n) is some function of n. This
means that the number of operations needed to execute x does not grow faster than f .
Formally it means that there exists some constant c such that the number of operations is
less than c f (n) for every input of size n ≥ t, where t is a constant threshold. This is a
guarantee that should hold for all instances of the problem.

In this work we analyze different distance metrics of graphs. Graphs can vary in shape
and size, by more than one parameter, the amount of vertices, amount of edges and what
we are especially interested in, treewidth, which is a metric on how close a graph is to a
tree, in the sense that low treewidth graphs only have small cycles, while trees have none.

To analyze these algorithms we use multivariate bounds, where we have two, or more
parameters of the graph. One of the classic algorithms for graph traversal, breadth first
search (BFS), has a running time bounded by O(n + m), where n is the number of ver-
tices, and m is the number of edges. With this we mean that the number of operations are
bounded by c1n + c2m for some constants c1, c2, for all n ≥ t1 and m ≥ t2, where t1 and t2
are constant thresholds.

The graph metrics in focus are diameter, radius and Wiener index. These metrics are
defined in Section 1.1. However this is not just an amusing intellectual exercise, these met-
rics have various applications (even though I had to look hard for some of them). Graphs
can be used to model things in the real world, e.g., networks, like social networks, road
networks or the internet, graph databases or molecules.

In networks, questions like “What are the two furthest vertices apart”, make sense,
since we might want to modify the network to become more well connected. Or if we
wish to decide where to have a fire station we would like the time it takes to reach any

7

1. Introduction

intersection (vertex in a graph representation of the road network) to be minimal. If we
efficiently can compute the eccentricity of every vertex in the graph, we place the fire
station in the intersection where the eccentricity is minimal.

Perhaps more surprising are the chemical applications. Wiener showed that theWiener
index, in the original paper called path number, of an alkane molecule correlates strongly
with its boiling temperature [15]. There exists very large molecules with thousands of
atoms calledmacromolecules, where computing theWiener Index is a heavy computation,
and needs to improve. Note that molecules often have a tree-like structure, with possibly
small cycles, which fits our approach perfectly.

1.1 Definitions
Given a connected, undirected graph G(V, E) with non-negative edge weights, we define
the following terms:

• Distance between two vertices u, v ∈ V (G), denoted d(u, v) is the minimum sum of
edge weights along a shortest path from u to v. This can be found by the well known
Dijkstra’s algorithm. Letw(a, b) denote the weight of an edge between vertices a and
b. Formally the distance can be recursively defined as: for all u ∈ V (G), d(u, u) = 0,
d(a, b) = min(a,c)∈E(G)

(
w(a, c) + d(c, b)

)
.

• Eccentricity of a node u ∈ V (G), denoted e(u) = maxv∈V (G) d(u, v), the maximum
distance between u and any other vertex v in the graph.

• Diameter of G, denoted diam(G) = maxu∈V (G) e(u), the largest distance in the graph.

• Radius ofG, denoted rad(G) = minu∈V (G) e(u), the smallest eccentricity of the graph.

• Wiener Index of G, denoted wien(G) = 1
2
∑

u,v∈V (G) d(u, v), the sum of all distances
between all unordered pairs of vertices in the graph.

• Tree is a connected graph with exactly n − 1 edges, which means that there are no
cycles in a tree, and exactly one path between every pair of vertices.

• Centroid of a tree is a vertex that if removed cuts the tree into disconnected sub-
graphs, all with maximum size n/2.

In figure 1.1 an unweighted graph is shown, where the unique diameter is marked.

A

B

C

D

E

Figure 1.1: In this unweighted graph (all edges have weight 1) with 5 vertices, the
marked diameter is 3, between the vertices A and E. The radius is 2 (the eccentricities
of vertices B, C and D), and the Wiener index is 16, with 5 distances of length 1, 4 of
length 2 and 1 of length 3.

8

1.2 Related work

1.2 Related work
Dijkstra presented His Algorithm to find the shortest path from the vertex u to the vertex v
in a graph with n vertices and m edges in 1959 [8]. Dijkstra’s original algorithm finds this
distance in time O(n2), and just the distance between u and v, but it can easily be modified
to find the distances from u to all other vertices in the graph. The time complexity was
improved by Fredman and Tarjan in 1984 to O(m + n log n), by using a Fibonacci heap
to keep the vertices sorted, that reduces a step in the algorithm from linear to logarithmic
time [9]. Whenever Dijkstra’s Algorithm is mentioned throughout this report it will refer
to the algorithm presented by Fredman and Tarjan, and it will find the distance to all other
vertices in the graph, from a single vertex. A naive approach for calculating the diameter,
radius, eccentricities and Wiener index of a graph uses Dijkstra’s Algorithm, which is
similar to the described algorithm for Wiener index in unweighted graphs by Mohar [12]:

Algorithm D.
Given a graph G(V, E) with n = |V (G)| vertices and m = |E(G)| edges, calculates the
diameter, radius, the eccentricities and the Wiener index
D1 [Repeat] For each vertex u ∈ V (G):

D1.2 [Dijkstra] Compute a vector of distances to all other vertices in G with Dijk-
stra’s Algorithm. Save the vector in du.

D1.2 [Eccentricity] Save the eccentricity as e(u) = max du.
D1.3 [Wiener index contribution] Save theWiener index contribution as s(u) =

∑
du .

D2 [Return] maxu∈V (G) e(u),minu∈V (G) e(u), e, 1
2
∑

u∈V (G) s(u)

Let DDiameter return the diameter, DRadius return the radius, DEccentricities return the eccen-
tricities, and DWiener−index return the Wiener index.

Algorithm D runs in time O(n(m + n log n)), which for graphs with treewidth k is
O(n2(k + log n)), since the number of edges in a graph with treewidth k is at most nk, i.e.,
it has to be sparse. The argument for sparsity can be found in Proposition 3.3 by Rose [14],
although make sure to read Section 2.2.1 about tree decompositions first.

It is hard to improve upon this idea, even though very similar things are calculated in
each Dijkstra search from every vertex.

We focus our efforts on graphs with bounded treewidth. Cabello and Knauer show an
algorithm for diameter that runs in time O(n logk n) [5], where other dependence of k is
discarded, since k is viewed as a constant. Abboud et al. raise the question how this grows
with k, and if it is possible to separate the dependence of n and k into a multiplicative
dependence, which is answered by a new analysis of Cabello and Knauer’s algorithm, that
runs in time n1+ε exp O(k log k) [1].

Abboud et al. also prove that if an algorithm that computes the diameter is both sub-
quadratic in the number of vertices and sub-exponential in the treewidth then that algorithm
could solve some other algorithmic problems faster than the researching community thinks
possible. In particular such an algorithm would refute a widely believed hypothesis called
the Strong Exponential Time Hypothesis established by Impagliazzo [11].

9

1. Introduction

Range Trees, invented by Bentley [2] and explained later in Section 2.4.2, is a data
structure that finds which multi-dimensional points from a collection that satisfy restric-
tions given a criterion. The data structure is well studied in the field of computational
geometry, for example by Chan [6] and Monier [13].

1.3 Contributions
The main contribution of this work consists of showing that d-dimensional Range Trees
can be built in time nd

(
dlog ne+d

d

)
, and queried in time 2d

(
dlog ne+d

d

)
, which means that Wiener

index, Eccentricities, Diameter and Radius can be computed in a graph with treewidth k in
time n1+ε exp O(k), for all ε > 0, in other words super-linear in n times single-exponential
in k. This improves the bound presented by Abboud et al., in [1]. Also the multivariate
analysis of Wiener index is new, since [1] did not cover that. However the argument for
constant treewidth already exists in [5]. We can conclude that we answer the open question
“Closing the small gap in the dependence on k between the n1+ε exp O(k log k) upper bound
and the n2−ε exp o(k) conditional lower bound is a very interesting open question” in [1].
We also reject Husfeldt’s conjecture that “However, we conjecture that the diameter of a
graph with treewidth and diameter k cannot be computed in time n2−ε exp o(k log k)” [10].

We confirm the speculation in [1] that the Cabello andKnauer algorithm is practical by pro-
viding a complete implementation and compare it with the standard algorithm described
by Mohar [12].

We will in Chapter 2 present background ideas including diameter on trees, centroid
decomposition, tree decompositions and Range Trees, leading us to our solution that is
a presentation of Algorithm E that calculates the eccentricity of every vertex, in time
n1+ε exp O(k), for all ε > 0, where n is the number of vertices in the graph, and k is the
treewidth of the graph. One can think about a small treewidth as graphs with only small
cycles.

Our method can be modified to compute the Wiener index as well, which there is a
brief description of in the end.

In Chapter 3 experimental results of execution times of Algorithm D and Cabello and
Knauers algorithm will be presented, followed by a discussion.

10

Chapter 2
Theoretical derivation

In this chapter wewill present diameter algorithms for trees, definition of tree-decomposition,
an introduction to range trees, the algorithm we are analyzing in the submitted paper, and
notes on the analysis.

2.1 Diameter of an unweighted tree
Recall that a tree with n vertices is a connected graph with no cycles, it has exactly n − 1
edges, and all pairs of vertices are connected by exactly one path.

One endpoint of a diameter in a tree can be found by running a BFS from any vertex
u. The vertex visited last of the BFS will be an endpoint in a diameter of the tree, however
the proof for this is a bit intricate.

Lemma 1. The last visited vertex w by a BFS in a tree from an arbitrary vertex u will be
an endpoint of a diameter in the tree.

Proof. Let us call the endpoints of a diameter x and y, and the path between x and
y xPy. During the BFS we will find all vertices in the tree, since it is connected. Let us
call the first vertex found by the BFS that lies on xPy, v. Since v is on the path between
x and y, the vertex furthest away from v must be either x or y, otherwise x and y is not a
diameter. Without loss of generality, let that be vertex x, meaning that e(v) = d(v, x). We
would like to show that e(u) = d(u, x), and that all vertices at distance e(u) from u is an
endpoint of a diameter. Let the last visited vertex be called w. To derive a contradiction,
suppose d(u,w) > d(u, x), then d(u, v) + d(v,w) ≥ d(u,w) > d(u, x) = d(u, v) + d(v, x),
giving d(v,w) > d(v, x), which gives us a contradiction since e(v) = d(v, x).

Furthermore if instead d(u,w) = d(u, x), then d(u, v) + d(v,w) ≥ d(u,w) = d(u, x) =
d(u, v) + d(v, x), we get that d(v,w) ≥ d(v, x), which means that d(v,w) = d(v, x) since
e(v) = d(v, x). Also v is on the path from u to w, since d(u,w) = d(u, v)+d(v,w) and there
is only one path between any two vertices in a tree.

11

2. Theoretical derivation

We investigate two cases, either w is in the same subtree as x if we root the tree in v,
or it is not. If w is in the same subtree as x it creates a diameter with y, since d(w, y) =
d(w, v) + d(v, y) = d(x, v) + d(v, y) = d(x, y). Otherwise it creates a diameter with x since
then d(w, x) = d(w, v) + d(v, x) ≥ d(y, v) + d(v, x) = d(y, x), where we with inequality
get a contradiction of x, y being a diameter. This means that any vertex at distance d(u, x)
from u is an endpoint of a diameter.

When we have an endpoint of the diameter, we can just do a BFS again, and the diam-
eter will be the distance to the last visited vertex.

However, this approach does not generalize at all. For a graph that is not a tree and has
one small cycle, the proof does not work, since this cycle means that there are multiple
paths between vertices. More specifically w does not have to form a diameter with x or y,
since there might be a shorter path that does not go through v for both x and y.

Luckily there are other approaches.

2.1.1 Applying Centroid Decomposition

z

B

C

D

E

F

G

H

I

J

K

Figure 2.1: Algorithm CD will find vertex z as the centroid in the above tree. There
are 3 subtrees connected to Z, S1 = {B,C}, S2 = {D,E,F,G,H} and S3 = {I, J,K}.
The diameter is found between subtree S2 and S3, and the diameter is d(S2) + d(S3) =
3 + 2 = 5. More specifically the diameter is found between G and J (G and K also
creates a diameter).

Remember that a centroid is a vertex in a tree that separates the tree into subtrees,
all with size at most n/2, if the size of the tree is n. We note that a diameter either has
to pass through the centroid or not. If it does not pass through the centroid it is fully
contained within an entire subtree, since there is only one path between two vertices in a
tree. Figure 2.1 and 2.2 both display a tree with a centroid Z, and the two different cases

12

2.1 Diameter of an unweighted tree

that can arise. Algorithm CD uses this to find the diameter.

Algorithm CD.
Given a tree T with n vertices, finds the diameter of T .
CD1 [Base case.] If n ≤ 2, return n − 1.

CD2 [Find centroid.]

CD2.1 [Root the tree] In any vertex u.
CD2.2 [Find children below] Do a depth first search from u that finds the number of

children below a given vertex in the rooted tree. Save this number as below(v)
for each vertex v ∈ V (T).

CD2.3 [Walk] Start walking from u towards the child v with the largest below(v),
while below(v) > n/2.

CD2.4 [Save Centroid] Save the vertex that CD2.3 stopped at as the centroid, call
it z.

CD3 [Group each vertex by subtree] Find the subtree each vertex belongs to with a depth
first search from z. Label the subtrees as S1, S2, . . . , Sk.

CD4 [Distance from centroid] Find the distance from z to each vertex with a breadth first
search.

CD5 [Distance to each subtree] Define the distance to each subtree Si as the maximal
distance to any vertex in the subtree, and label it d(Si).

CD6 [Find the two subtrees with largest distance] Let dthrough = maxi, j∈{i 6= j |1...k} d(Si)+d(S j)

CD7 [Recurse on each subtree.] Disconnect each subtree from z, and find D[i] = CD(Si).

CD8 [Return.] Return max(D[1], . . .D[k], dthrough).

To prove correctness we need to argue that no distance can be larger than the returned
distance. All pairs of vertices are covered by inspecting pairs from the same subtree and
pairs from different subtrees. If vertices x, y are in different subtrees, the path from x to
y has to go through z, so the distance d(x, y) = d(x, z) + d(z, y). d(Si) holds the largest
distance to a vertex in Si, the largest sum between two vertices is therefor dthrough. By
induction on tree-size, the largest distance for each subtree is found by Step CD7.

The running time of Step CD2 is dominated by CD2.2, which inspects the entire tree,
which is done in time O(n), because each edge and node is only inspected once. The
walk in Step CD2.3 will visit different vertices each time, so the running time for CD2 is
bounded by O(n). Step CD3, CD4 and CD5 can all be calculated in linear time. Step CD6
can also be implemented in linear time by iterating over all subtrees, remembering the two
largest so far found.

Let t(n) denote the running time of Algorithm CD for a tree of size n. We establish
the recurrence relation t(n) ≤ cn +

∑
i∈{1...k} t(|Si |). Clearly t is at least linear in the tree-

size. This means that t(x) + t(y) ≤ t(x + y). We will prove that there exists a subset of

13

2. Theoretical derivation

zB

C

D

E

F

G

H

I
J

K
L

M

N
O

Figure 2.2: Algorithm CD will find vertex z as the centroid in the above tree. However
the diameter is found within the large subtree containing {B,C,D,E,F,G,H}, between
vertices E and H at distance 6, that is CD({B,C,D,E,F,G,H}) = 6.

subtrees which size sums to s, such that n/3 ≤ s < 2n/3. Since the largest subtree has
size at most n/2, if any subtree has size at least n/3 that subtree on its own forms a subset
satisfying the criteria. On the other hand, if all subtrees are of size less than n/3, we can
add subtrees into one until the size is at least n/3, knowing that we never add more than
n/3 each time, which means that we will get a subset of subtrees where the sum is within
the range. Combining the rest of the subtrees creates another set, that also falls within the
range, since that will have size n − 1 − s. Because of t(x) + t(y) ≤ t(x + y), we now know
that t(n) ≤ cn+ t(s)+ t(n− 1− s). Let log denote log2. We will show that t(n) ≤ 2cn log n
solves this equation, since

t(n) ≤ cn + 2cs log s + 2c(n − 1 − s) log(n − 1 − s) ≤
≤ cn + 2cs log(2n/3) + 2c(n − 1 − s) log(2n/3) ≤
≤ cn + 2c(n − 1)(log n − log 3 + 1) ≤
≤ cn + 2cn(log n − log 3 + 1) ≤
≤ cn + 2cn(log n − 0.58) =
= cn − 1.16cn + 2cn log n ≤
≤ 2cn log n

This concludes t(n) is O(n log n).

2.2 Generalization
We will establish some more theory needed to generalize Algorithm CD.

2.2.1 Tree Decomposition
To use the ideas from centroid decomposition on graphs that are not trees, we use a tree
decomposition. The tree decomposition can be thought of as a tree that covers the graph.

14

2.2 Generalization

A

B C

D

E F

G

H I

{A,B,C}

{B,D}

{D,E,F}

{C,G}

{G,H, I}

Figure 2.3: To the left there is a graph G of size 9. To the right is a tree decomposition
of G, with multiple vertices inside each bag.

Inside each vertex, called bag, of a tree decomposition there exists multiple vertices from
the original graph G.

Definition of Tree Decomposition
We repeat the definition of a Tree Decomposition found in [4]. Let G = (V, E) be a graph.
A tree-decomposition of G is a pair ({Xi |i ∈ I},T = (I , F)), where {Xi |i ∈ I} is a family1 of
subsets of V (G). T = (I , F)2 is a tree, with the following properties:

1. ∪i∈I Xi = V (G)

2. For every edge e = (v,w) ∈ E, there is a subset Xi with v,w ∈ Xi.

3. For all i, j, k ∈ I , if j lies on the path in T from i to k, then Xi ∩ Xk ⊆ X j .

In “plain English”, a tree-decomposition is a tree T of vertices called bags, each con-
taining a set of vertices from the original graph G, for an example see Figure 2.3. Also
some conditions need to be fulfilled for T to be a tree decomposition of G.

• All vertices in G must belong to at least one bag in T .

• All edges in G must belong to a bag in T , i.e., both endpoints must be in some
common bag.

• If there are two bags that share some vertices, all bags on the path in T must contain
these vertices as well.

We want to use the following property of a tree-decomposition:

Lemma 2. Consider a path in G between vertices u and v and two bags Bu and Bv, where
Bu contains u and Bv contains v, then every bag B on the path in T between Bu and Bv
needs to contain at least one of the vertices on every path between u and v in G.

1A family is a collection of sets.
2I are the bags, and F are the edges between bags.

15

2. Theoretical derivation

Proof. Consider a pathP between u, v inG, as a sequence of edgesP(u, v) = {e1, e2, . . . , el}.
Let T be a tree decomposition of G. Each edge in P(u, v) needs to be inside a bag in T
because of property 2. Call these bags B1, B2, . . . Bl. Each pair of bags Bi, Bi+1 share a
common vertex, the i’th vertex on P. Because of property 3, the i’th vertex must be in
every bag on the path from Bi to Bi+1 in T . Therefore there exists a walk from bag B1 to
bag Bl, where all bags contains a vertex from some edge in P(u, v).

Definition of treewidth
There can exist multiple tree decompositions of a graph. The treewidth of G, usually
in this report referred to as k or tw(G), is the size of the largest bag in the tree decom-
position of G that has minimal largest bag, minus 1. Formally, let T denote the set of
tree-decompositions of G, then tw(G) = min(I ,F)∈T (maxXi |i∈I |Xi |) − 1. The reason for the
−1 is because then all trees T has tw(T) = 1.

Also, the number of edges in a graph G with n vertices and treewidth k is less than
nk. This is shown by Rose by a induction argument [14]. We will not cover that argument
since it is not in the right direction of the thesis.

2.3 Eccentricities
In this section we present an algorithm calculating the eccentricities of a graph using the
centroid bag of the tree decomposition. In the research paper, we used a more general
approach, that instead uses k-separators. The usage of k-separators yields a slightly more
general result, but would increase the complexity of the implementation.

Some problems arise when we try to use Algorithm CD on the tree decomposition. Espe-
cially, the only thing we know for sure is that paths between vertices in different subtrees
pass through some vertex in the centroid bag. The question is through which one, or pos-
sibly which ones, do the shortest path(s) pass through?

To find a centroid in a tree decomposition, the DFS in Algorithm CD needs to be
modified. In a tree the following holds: below(u) = 1 +

∑
c∈children(u) below(c). Because

vertices can reside in multiple bags, we can not add them indiscriminately anymore. Let
belowtd(i) denote the number of vertices from G inside all the bags in the subtree rooted
in bag i, then belowtd(i) = |Xi | +

∑
j∈children(i)(belowtd(j) − |Xi ∩ X j |). Because of the third

property of tree decompositions, every vertex inside both Xi and the subtree rooted at j
needs to be in X j , which means that the subtracted part |Xi ∩ X j | is exactly the amount that
would have been double counted.

In figure 2.4 we find that from the vertex x to vertices on the other side of the centroid
bag Z , some paths to vertices in Y go through vertices in Z are not shortest.
For a general graph G with tree decomposition T , and a centroid bag Z , let k = |Z |. Let X
be the vertices inside the bags of a set of subtrees in T rooted in Z . Let Y be the remaining
vertices of G that are neither in X nor in Z .

Since all paths from x ∈ X to y ∈ Y has to go through some vertex in Z , we know that
the shortest distance between x and a vertex y ∈ Y has z ∈ Z on its path, if for all zi ∈ Z ,

d(x, z) + d(z, y) ≤ d(x, zi) + d(zi, y).

16

2.3 Eccentricities

x

z1

z2

z3

y

Z

Y

Figure 2.4: Example where the centroid bag Z contains {z1, z2, z3}. The eccentricity
of x to Y is 3, however d(x, z1) + d(z1, y) = 4 and forms no shortest path. The longest
shortest path from x through z1 is 2, z2 and z3 are both 3.

These inequalities can be rearranged as, for all zi ∈ Z ,

d(z, y) − d(zi, y) ≤ d(x, zi) − d(x, z).

However d(z, y) − d(zi, y) is independent of x, and d(x, zi) − d(x, z) is independent of
y. We can represent these inequalities by k-dimensional points. Let p(x) = [d(x, z1) −
d(x, z), d(x, z2) − d(x, z), . . . , d(x, zk) − d(x, z)], and p(y) = [d(z, y) − d(z1, y), . . . , d(z, y) −
d(zk, y)]. z is on a shortest path from x to y, if and only if p(x) is at least as large as p(y) on
every coordinate.

For given x ∈ X and z ∈ Z , we would like to efficiently find the y that maximizes
d(x, y), and has z on a shortest path from x to y. If there only were a data structure that
could answer such questions! Luckily for us Bentley presented the data structure Range
Tree almost 40 years ago [2].
Characteristics of a Range Tree
Given a set P of d-dimensional points, a Range Tree finds all the points inside a d-
dimensional box, or some accumulative information about them. With a box B we
mean two corner points lo and hi, representing an interval, and a point p is inside the
box if for all i ∈ {1 . . . d}, loi ≤ pi ≤ hii. If we associate each point with a value f (p),
the max-Range Tree answers maxp∈P∩B f (p), for a box B, i.e., the maximum value of
f (p) of all points p ∈ P inside the box B.

Algorithm E.
Given a graphG with n vertices, and tree decomposition T (G), with treewidth k, calculates
the eccentricities of G.
E1 [Base case] If n < 2k, return DEccentricities(G).

E2 [Find centroid in T .]

E2.1 [Root T] In any bag b.
E2.2 [Find children below] Do a depth first search from b that finds the number of

vertices inside the union of all bags in the subtree rooted at c for every bag
c ∈ T . Save this number as belowtd(c).

17

2. Theoretical derivation

E2.3 [Walk] Start walking from b towards the child c with the largest belowtd(c),
while belowtd(c) > n/2.

E2.4 [Save Centroid] Save the bag that E2.3 stopped at as the centroid, call it Z .

E3 Collect subtrees connected to Z in T , and label the union of the vertices fromG inside
the subtrees as X, such that n/3 ≤ |X | ≤ 2n/3. Label the union of the vertices inside
the remaining subtrees as Y .

E4 Run Dijkstra from every vertex in Z in G and save all the distances for each z ∈ Z and
u ∈ V (G) into d(z, u).

E5 [Add shortcuts] for each pair of vertices zi, z j ∈ Z , add an edge G to have weight
d(zi, z j), if there was no edge, add it.

E6 Allocate eccentricities, where e(z) = maxu∈V (G)(d(z, u)), for all z ∈ Z , and e(u) = 0,
for all u ∈ V (G) \ Z .

E7 [Repeat] for each z ∈ Z:

E7.1 [Build range tree] build a max-range-tree over the points {p(y)|y ∈ Y }, where
p(y)

i = d(z, y) − d(zi, y), and f (p(y) = d(z, y).
E7.2 [For each x ∈ X] Query the range tree with the box lo = {−∞, . . . ,−∞},

hi = {d(x, z1) − d(x, z), . . . , d(x, zk) − d(x, z)}, and save the result in Q, which
is maxy∈Y∪B f (p(y)).

E7.3 [Eccentricity] Set e(x) = max(e(x),Q + d(x, z)).

E8 [Flip] Do Step E7 with X and Y flipped.

E9 [Recurse] on E(G[X ∪ Z], X ∪ Z) and E(G[Y ∪ Z],Y ∪ Z) and save the results in the
vectors eX and eY , where G[X ∪ Z] means that G is filtered to only contain vertices
in X ∪ Z .

E10 [Update] For x ∈ X, update e(x) = max(e(x), eX(x)), for y ∈ Y , update e(y) =
max(e(y), eY (y))

E11 Return the vector e.

Lemma 3. Algorithm E correctly computes the eccentricity of every vertex of its input
graph in time n1+εk2(R(n, k) + k4k), for every ε > 0, if it takes nR(n, k) time to create a
k-dimensional range tree with n points, and it takes R(n, k) time to query such range tree.

Proof. To see correctness, we argue that each distance is inspected. Each e(z), where
z ∈ Z , is correct since these are found by Dijkstra’s algorithm. For e(x) either the eccen-
tricity is inside X ∪ Z , in that case it is found by the recursive call, by induction on the
size of the graph. However this path can go through Z , into Y and then back to Z again,
which is the reason for the shortcut edges. Otherwise its eccentricity is inside Y , and then
the path to the eccentricity goes through some z ∈ Z . Step E7.2 and E7.3 calculates the
maximal shortest path from x to Y , via z for each z ∈ Z , and updates e(x) to the maximal
one. The argument for each y ∈ Y is similar.

18

2.3 Eccentricities

Denote the running time of the algorithm as T (n, k). The steps in the algorithm takes the
following time:

E1 O(n2 log n) for Algorithm D, which is O(k4k), for n < 2k.

E2 O(nk2) for finding the centroid, since there are atmost one bag per edge in the graph,
and each bag requiers k work.

E3 O(n), we might have very many bags leading out from the centroid bag, but at most
n.

E4 O(kn log n) Because of k Dijkstra computations.

E5 O(k2) Adding edges between each pair of verticies of Z .

E6 O(nk) Max in k vectors of size n and allocating vector of size n.

E7 O(nkR(n, k)) build k k-dimensional range trees, and query each one n times.

E8 O(nkR(n, k)) same as E7.

E9 T (s, k) + T (n − s + k, k), two recursive calls.

E10 O(n) updates n values.

E11 O(1).

The dominating factor is O(nkR(n, k)). We get the following reccurence relation: Let
S(n, k) = O(kR(n, k) + k4k). Let T (n, k) denote the running time of Algorithm E, in that
case:

T (n, k) ≤
O(k4k) , if n < 2k ;
n · S(n, k) + T (|X ∪ Z |, k) + T (n − |X ∪ Z | + k, k) , otherwise.

(2.1)

We will show
T (n, k) ≤ S(n, k) · 10n log n, (2.2)

which is true if n < 2k, since S(n, k) alone dominates O(k4k). Now do induction on n. Let
s = |X ∪ Z |, and r = n − s + k, and apply (2.2) to (2.1):

T (n, k) ≤ nS(n, k) + T (s, k) + T (r, k) ≤
≤ nS(n, k) + 10(S(s, k) · s log s + S(r, k) · r log r) ≤
≤ S(n, k) · (n + 10s log s + 10r log r).

(2.3)

We know that n/3 ≤ s < 2n/3, which means that both s and r are bounded by t = 2n/3+ k.
Applying these bounds of s and r to (2.3) gives us

n + 10(s log s + r log r) ≤
≤n + 10(s log t + (n − s + k)) log t =
=n + 10(n log t + k log t) ≤
≤n + 10(n log t + k log n).

(2.4)

19

2. Theoretical derivation

Step E1 ensures that 3k ≤ n/2, since 2k/2 > 3k for k ≥ 5, so we get:

t =
2n
3
+ k ≤

5n
6
.

Then log t ≤ log 5n
6 = log n − log 6

5 . Applying this to (2.4) gives us:

n + 10(n log t + k log n) ≤ n + 10(n log n − n log
6
5
+ k log n) ≤ 10n log n.

Step E1 ensures 2k ≤ n, taking the logarithm on both sides gives k ≤ log n, which is
applied in the last step, 10k log n+n ≤ 10 log2 n+n ≤ 10 ·n ·0.18 ≤ 10n ln 6

5 , for n > 500.
Now substitute back 1 + s log s + r log r ≤ n log n into (2.3), and we get

T (n, k) ≤ S(n, k) · (n + 10(s log s + r log r)) ≤ S(n, k) · 10n log n.

Since 10n log n grows slower than n1+ε for all ε > 0,

T (n, k) ≤ n1+εS(n, k),

which proves Lemma 3.

2.4 Orthogonal Range Searching
In this section a formal definition of the data structure Range Tree is provided, together
with analysis of running time of construction and query algorithms. This section is taken
as is from the paper. Please think about ⊕ as the max operator.

2.4.1 Preliminaries
Let P be a set of d-dimensional points. We will view p ∈ P as a vector p = (p1, . . . , pd).

A commutativemonoid is a set M with an associative and commutative binary operator
⊕ with identity. The reader is invited to think of M as the integers with −∞ as identity and
a ⊕ b = max{a, b}.

Let f : P → M be a function and define for each subset Q ⊆ P

f (Q) =
⊕
{ f (q) : q ∈ Q}

with the understanding that f (∅) is the identity in M.

2.4.2 Range Trees
Consider dimension i ∈ {1, . . . , d} and enumerate the points in Q as q(1), . . . , q(r) such that
q(j)

i ≤ q(j+1)
i , for instance by ordering after the ith coordinate and breaking ties lexicograph-

ically. Define medi(Q) to be the median point q(dr/2e), and similarly the mini(Q) = q(1) and
maxi(Q) = q(r). Set

QL = {q(1), . . . , q(dr/2e)}, QR = {q(1+dr/2e), . . . , q(r)} . (2.5)

For i ∈ {1, . . . , d}, the range tree Ri(Q) for Q is a node x with the following attributes:

20

2.4 Orthogonal Range Searching

x

y

z

p

q

rs
p (0, 0, 0) f (p) = 5
q (2, 0, 0) f (q) = 6
r (0, 2, 1) f (r) = 7
s (2, 1, 2) f (s) = 8

Figure 2.5: Four points in three dimensions. With the monoid (Z,max) we have
f ({p, r, s}) = 8.

• L[x], a reference to the range tree Ti(QL), often called the left child of x.

• R[x], a reference to the range tree Ti(QR), often called the right child of x.

• D[x], a reference to the range tree Ti+1(Q), often called the secondary, associate, or
higher-dimensional structure. This attribute only exists for i < d.

• l[x] = mini(Q).

• r[x] = maxi(Q).

• f [x] = f (Q). This attribute only exists for i = d.

In Figure 2.6 an example of a range tree is displayed, that contains the four points in Fig-
ure 2.5.

Construction Constructing a range tree for T is a straightforward recursive proce-
dure:

I Algorithm C Given integer i ∈ {1, . . . , d} and a list Q of points, this algorithm con-
structs the range tree Ri(Q) with root x.
C1 [Base case Q = {q}.] Recursively construct D[x] = Ti+1(Q) if i < d, otherwise set

f [x] = f (q). Set l[x] = r[x] = qi. Return x.

C2 [Find median.] Determine q = medi Q, l[x] = mini(Q), r[x] = maxi(Q).

C3 [Split Q.] Let QL and QR as given by (2.5), note that both are nonempty.

C4 [Recurse.] Recursively construct L[x] = Ri(QL) from QL. Recursively construct
R[x] = Ri(QR) from QR. If i < d then recursively construct D[x] = Ti+1(Q). If
i = d then set f [x] = f [L[x]] ⊕ f [R[x]].

The data structure can be viewed as a collection of binary trees whose nodes x represent
various subsets Px of the original point set P. In the interest of analysis, we now introduce
a scheme for naming the individual nodes x, and thereby also the subsets Px. Each node
x is identified by a string of letters from {L,R,D} as follows. Associate with x a set of
points, often called the canonical subset of x, as follows. For the empty string ε we set
Pε = P. In general, if Q = Px then PxL = QL, PxR = QR and PxD = Q. The strings over

21

2. Theoretical derivation

0:2
ε

0:0

0:0
p

LL

0:0
r

LR

L

2:2

2:2
q

RL

2:2
s

RR

R
0:2

0:0

0:0
p

DLL

0:0
q

DLR

DL

1:2

1:1
s

DRL

2:2
r

DRR

DR
0:2 8

0:06

0:05
p

DDLL

0:0 6
q

DDLR

DDL

2:2 8

1:17
r

DDRL

2:2 8
s

DDRR

DDR

0:2

0:0
p

LDL

2:2
r

LDR

LD

LD
0:1 7

0:05
p

LDDL

1:1 7
r

LDDR

LDD
0:1

0:0
q

RDL

1:1
s

RDR

RD

RD
1:2 8

1:16
q

RDDL

2:2 8
s

RDDR

RDD
0:0 6

0:05
p

DLDL

0:0 6
q

DLDR

DLD

DLD
1:2 8

1:17
r

DRDL

2:2 8
s

DRDR

DRD

DRD

D DD

Figure 2.6: Part of the range tree for the points from Fig. 2.5. The label of node x
appears in red on the arrow pointing to x. Nodes contain l[x] : r[i]. The references
L[x] and R[x] appear as children in a binary tree using usual drawing conventions. The
reference D[x] appears as a dashed arrow (possibly interrupted); the placement on the
page follows no other logic than economy of layout and readability. References D[x]
from leaf nodes, such as D[LL] leading to node LLD, are not shown; this conceals 12
single-node trees. The ‘3rd-dimensional nodes,’ whose names contain two Ds, show
the values f [x] next to the node. To ease comprehension, leaf nodes are decorated with
their canonical subset, which is a singleton from {p, q, r, s}. The reader can infer the
canonical subset for an internal node as the union of leaves of the subtree; for instance,
PDR = {r, s}. However, note that these point sets are not explicitly stored in the data
structure.

{L,R,D} can be understood as uniquely describing a path through in the data structure;
for instance, L means ‘go left, i.e., to the left subtree, the one stored at L[x]’ and D means
‘go to the next dimension, i.e., to the subtree stored at D[x].’ The name of a node now
describes the unique path that reaches it.

Lemma 4. Let n = |P|. Algorithm C computes the d-dimensional range tree for P in time
linear in nd ·

(
n+d

d

)
.

Proof. We run Algorithm C on input P and i = 1.
Disregarding the recursive calls, the running time of algorithm C on input i and Q is

dominated by Steps C2 and C3, i.e., splitting Q into two sets of equal size. It is known that
this task can be performed in time linear in |Q| [3]. Thus, the running time for constructing
Ri(Q) is linear in |Q| plus the time spent in recursive calls.

This means that we can bound the running time for constructing T1(P) by bounding
sizes of the sets Px associated with every node x in the data structure. If for a moment X
denotes the set of all these nodes then we want to bound∑

x∈X

|Px | =
∑
x∈X

|{ p ∈ P : p ∈ Px }| =
∑
p∈P

|{ x ∈ X : p ∈ Px }| .

Thus, we need to determine, for given p ∈ P, the number of subsets Px in which p appears.
By construction, there are fewer than d occurrences of D in x. Moreover, if x contains more
than h occurrences of either L or R then Px is empty. Thus, x has at most h + d letters.
For two different strings x and x′ that agree on the positions of D, the sets Px and Px′ are

22

2.4 Orthogonal Range Searching

disjoint, so p appears in at most one of them. We conclude that the number of sets Px such
that p ∈ Px is bounded by the number of ways to arrange fewer than d many Ds and at
most h non-Ds. Using the identity

(
a+0

0

)
+ · · · +

(
a+b

b

)
=

(
a+b+1

b

)
repeatedly, we compute

d−1∑
i=0

h∑
j=0

(
i + j

j

)
=

d−1∑
i=0

(
i + h + 1

h

)
=

d−1∑
i=0

(
i + h + 1

i + 1

)
=

(−1) +
d∑

i=0

(
i + h

i

)
=

(
h + d + 1

d

)
− 1 =

h + d + 1
h + 1

(
h + d

d

)
− 1 ≤ d

(
d + h

d

)
.

The bound follows from aggregating this contribution over all p ∈ P.

Search. In this section, we fix two sequences of integers l1, . . . , ld and r1, . . . , rd de-
scribing the query box B given by

B = [l1, r1] × · · · × [ld , rd] .

I Algorithm Q Given integer i ∈ {1, . . . , d}, a query box B as above and a range tree
Ri(Q) with root x for a set of points Q such that every point q ∈ Q satisfies l j ≤ q j ≤ r j for
j ∈ {1, . . . , i − 1}. This algorithm returns

⊕
{ f (q) : q ∈ Q ∩ B }.

Q1 [Empty?] If the data structure is empty, or li > r[x], or l[x] > ri, then return the
identity in the underlying monoid M.

Q2 [Done?] If i = d and ld ≤ mind[x] and maxd[x] ≤ rd then return f [x].

Q3 [Next dimension?] If i < d and li ≤ l[x] and r[x] ≤ ri then query the range tree at
D[x] for dimension i + 1. Return the resulting value.

Q4 [Split.] Query the range tree L[x] for dimension i; the result is a value fL. Query the
range tree R[x] for dimension i; the result is a value fR. Return fL ⊕ fR.

To prove correctness, we show that this algorithm is correct for each point set Q = Px.

Lemma 5. Let i = D(x)+ 1, where D(x) is the number of Ds in x. Assume that Px is such
that l j ≤ pi ≤ r j for all j ∈ {1, . . . , i − 1} for each p ∈ Px. Then the query algorithm on
input x and i returns f (B ∩ Px).

Proof. Backwards induction in |x|.
If |x| = h + d then Px is the empty set, in which case the algorithm correctly returns

the identity in M.
If the algorithm executes Step Q2 then B is satisfied for all q ∈ Px, in which case the

algorithm correctly returns f [x] = f (Px).
If the algorithm executes Step Q3 then B satisfies the condition in the lemma for i + 1,

and the number of Ds in PxD is i + 1, and D[x] store the (i + 1)th range tree for PxD. Thus,
by induction the algorithm returns f (PxD ∩ B), which equals f (Px ∩ B) because PxD = Px.

Otherwise, by induction, fL = f (PxL ∩ B) and fR = f (PxR ∩ B). Since PxL ∪PxR = Px,
we have f (Px ∩ B) = f ((PxL ∩ B) ∪ (PxR ∩ P)) = fL ⊕ fR.

23

2. Theoretical derivation

Lemma 6. If x is the root of the range tree for P then on input i = 1, x, and B, the query
algorithm returns f (P ∩ B) in time linear in 2d

(
n+d

d

)
.

Proof. Correctness follows from the previous lemma.
For the running time, we first observe that the query algorithm does constant work in

each visited node. Thus it suffices to bound the number of visited nodes as

2d
(
h + d

d

)
(d ≥ 1, h ≥ 0) . (2.6)

We will show by induction in d that (2.6) holds for every call to a d-dimensional range
tree for a point set Px, where h = dlog |Px |e. The two easy cases are Q1 and Q2, which incur
no additional nodes to be visited, so the number of visited nodes is 1, which is bounded by
(2.6). Step Q3 leads to a recursive call for a (d − 1)-dimensional range tree over the same
point set PxD = Px, and we verify

1 + 2d−1
(
h + d − 1

d − 1

)
≤ 2d

(
h + d

d

)
.

The interesting case is Step Q4. We need to follow two paths from x to the leaves of the
binary tree of x. Consider the leaves l and r in the subtree rooted at x associated with the
points mini(Px) and maxi(Px). We describe the situation of the path Y from l to x; the
other case is symmetrical. At each internal node y ∈ Y , the algorithm chooses Step Q4
(because li ≥ l[y]). There are two cases for what happens at yL and yR. If li ≤ medi(Py)
then PyR satisfies li ≤ mini(PyR) ≤ ri, so the call to yR will choose Step Q3. By induction,
this incurs 2d−1

(
d−1+i
d−1

)
visits, where i is the height of y. In the other case, the call to yL will

choose Step Q1, which incurs no extra visits. Thus, the number of nodes visited on the
left path is at most

h +
h−1∑
i=0

2d−1
(
d − 1 + i

d − 1

)
,

and the total number of nodes visited is at most twice that:

2h + 2d
h−1∑
i=0

(
d − 1 + i

d − 1

)
≤ 2d

h∑
i=0

(
d − 1 + i

d − 1

)
= 2d

(
d + h

d

)
.

2.4.3 Remark on Range Trees
The textbook analysis of range trees, and similar d-dimensional spatial algorithms and
data structures sets up a recurrence relation like

r(n, d) = 2r(n/2, d) + r(n, d − 1) ,

for the construction and

r(n, d) = max{ r(n/2, d), r(n, d − 1) } ,

for the query time. One then observes that n logd n and logd n are the solutions to these
recurrences. This analysis goes back to Bentley’s original paper [2].

24

2.5 Asymptotics

Along the lines of the previous section, one can show that the functions n ·
(
n+d

d

)
and(

n+d
d

)
solve these recurrences as well. A detailed derivation can be found in [13], which

also contains combinatorial arguments of how to interpret the binomial coefficients in the
context of spatial data structures. A later paper of Chan [6] also takes the recurrences as a
starting point, and observes an asymptotically improved solution for the related question
of dominance queries.

2.5 Asymptotics
Combining the analysis of range trees into n1+ε (k2R(n, k) + k4k) gives us n1+ε (k22k

(
k+h

h

)
+

k4k) where h = dlog2 ne.
To show that the complexity of Algorithm E is bounded by n1+ε exp O(k) all that re-

mains is to show that
(
k+h

k

)
is bounded by nε exp O(k) for all n and k and ε > 0.

We consider two cases. First assume d < εh for all ε > 0. From Stirling’s formula
(see property 2 inside Das’s note on binomial coefficients [7]) we know

(
a
b

)
≤

(ea
b
)k, so(

d + h
d

)
<

(
(1 + ε)h
εh

)
≤

(e(1 + ε)h
εh

)εh
<

(e(1 + ε)
ε

)2ε log n
= n2ε log(e(1+ε)ε−1) = no(1) ,

where the last expression uses that ε 7→ 2ε log e(1+ε)ε−1 is amonotone increasing function
in the interval

(
0, 1

2
]
.

On the other hand, if d ≥ ch for some constant c, we have(
d + h

d

)
≤

(
(1 + 1/c)d

d

)
< 2(1+1/c)d = exp O(d) .

Which concludes that the diameter can be found in time n1+ε exp O(k), for all ε > 0.

2.6 Wiener Index
To compute the Wiener index, some small modifications to Algorithm E are needed. We
modify the range trees such that instead of returning the maximum f (p) for points inside
the box, it returns a tuple N, S, the number of points inside the box, and the sum of the
points’ values inside the box. For a given vertex x ∈ X, the contribution to the Wiener
index of distances from x to all y ∈ Y through z. Remember the definition of P = {p(y)} for
each y ∈ Y from Section 2.3. P ∩ B denoted the points inside the box B defined by x and
z. Then, ∑

p(y)∈P∩B

d(x, y) =
∑

p(y)∈P∩B

(d(x, z) + d(z, y)) =

= d(x, z) · |{p(y) ∈ P ∩ B}| +
∑

p(y)∈P∩B

d(z, y) =

= d(x, z) · N + S

(2.7)

25

2. Theoretical derivation

Each leaf corresponding to a vertex y in the Range Tree of vertex z stores (1, d(z, y)).
Let the Range Tree operation ⊕ on two such values be (n1, s1)⊕ (n2, s2) = (n1 + n2, s1 + s2),
with (0, 0) as neutral element.

Two problems arise. First, the distances from x to vertices in Y may be double counted,
since there may exist a shortest path from x to y going through both zi and z j , as shown
in Figure 2.4. Secondly, the vertices in Z belong to both the left and the right subgraph,
meaning that distances between vertices in Z are counted twice.

The first problem can be fixed by changing the queries to the Range Trees. Instead of
only requiring that z is on the shortest path from x to y, we add the requirement that z also
is the vertex with the smallest index within Z that is on a shortest path from x to y. By
doing this we guarantee that the distance between x and y only is counted once. This is
accomplished by, for z j , changing some of the coordinates in the hi-point of the query in
Step E7.3. Specifically hii is changed to hii = d(x, zi) − d(x, z j) − 1 if i < j. This implies
that d(x, z j) + d(z j , y) < d(x, zi) + d(zi, y), for i < j.

Secondly, calculating the Wiener index from the results is a matter of set theory. Let
X ′ = X − Z,Y ′ = Y − Z . We will show that wien(G) = wien(G[X ∪ Z]) + wien(G[Y ∪
Z]) +

∑
x∈X′;y∈Y ′ d(x, y) − wien(G[Z]). We introduce the new operator ⊗ and define it as

follows. Let A ⊗ B =
∑

a∈A;b∈B d(a, b). Then wien(G[X]) = 1
2 X ⊗ X. Also note that

(A∪C)⊗B = A⊗B+C ⊗B− (A∩C)⊗B, and that A⊗B = B⊗ A. The reader is welcome
to think about ⊗ as multiplication and ∪ as addition, given that the sets the union is taken
over are disjunct, i.e, has the empty set as intersection.

Using these calculation rules its possible to derive

2
(
wien(G[X ∪ Z]) + wien(G[Y ∪ Z]) +

∑
x∈X′;y∈Y ′

d(x, y) − wien(G[Z])
)
=

(X ∪ Z) ⊗ (X ∪ Z) + (Y ∪ Z) ⊗ (Y ∪ Z) + 2X ′ ⊗ Y ′ − Z ⊗ Z =
(X ′ ∪ Z) ⊗ (X ′ ∪ Z) + (Y ′ ∪ Z) ⊗ (Y ′ ∪ Z) + 2X ′ ⊗ Y ′ − Z ⊗ Z =
X ′ ⊗ X ′ + 2X ′ ⊗ Z + Z ⊗ Z + Y ′ ⊗ Y ′ + 2Y ′ ⊗ Z + Z ⊗ Z + 2X ′ ⊗ Y ′ − Z ⊗ Z =
X ′ ⊗ X ′ + Y ′ ⊗ Y ′ + Z ⊗ Z + 2(X ′ ⊗ Z + Y ′ ⊗ Z + X ′ ⊗ Y ′) =
(X ′ ∪ Y ′ ∪ Z) ⊗ (X ′ ∪ Y ′ ∪ Z) =
2 wien(G[X ′ ∪ Y ′ ∪ Z]) = 2 wien(G)

Both of these arguments closely follows Cabello and Knauer’s arguments [5]. With
these modifications to Algorithm E, the Wiener index is computed. Hereafter we will
refer to this algorithm as Algorithm W.

26

Chapter 3
Experimental demonstration

To evaluate the theoretical results We have programmed the algorithm for Wiener index,
referred to as AlgorithmW, it is compared with the naive Algorithm D, that is modified to
compute Wiener Index as well. The code lives inside the same repository as this report,
which can be found at https://gitlab.com/exoji2e/exjobb.

3.1 Running Times
I have measured how the running times for Algorithm D and Algorithm W to compute
Wiener index depend upon the graph size and treewidth. The language of choice has been
Java, and I’ve generated test datamyself. However I have not implemented the computation
of tree-decomposition, instead I make sure to generate graphs and their tree-decomposition
at the same time.

3.1.1 Generation of test data
I have generated randomized graphs and their tree-decompositoins with n vertices and
treewidth k in the following way:

Algorithm G.
Generates a graph with n vertices and treewidth k.
G1 Generate a pre-tree T of size n/k. By selecting the parent of vertex i to be a random

vertex of the vertices {0 . . . i − 1}.

G2 Create G by replacing each vertex in T with a fully connected subgraph (clique) of
size k. For each pair of neighboring cliques, connect two random vertices, one from
each clique.

27

https://gitlab.com/exoji2e/exjobb

3. Experimental demonstration

G3 A tree-decomposition of size k can now be found by inserting each clique in a bag.
Insert each edge between cliques inside one bag each, then connect these two to the
clique bags their vertices belong to.

3.1.2 Measurements
We have in total done 4 test suites, with 4–14 data points in each, each data point is an
average of 10 runs. In the first test suite, see figure 3.1 we fix the treewidth to 2, and let the
graph size vary by a factor 2 from 16 to 131 072. In the second test suite, see figure 3.2 the
only difference to the first suite is that the treewidth is fixed to 4, and the maximum graph
size is 32 768. In the third test suite, see figure 3.3 we instead fix the graph size to 1000,
and let the treewidth vary from 2 to 7 in steps of 1. In the fourth test suite, see figure 3.4 we
increase the graph size to 10000, and lower the maximum treewidth to 5. We ran this on
a laptop with an Intel i7 processor with 4 cores, and gave the Java process 8GB of RAM.

101 102 103 104 105

10−1

100

101

Graph size

tim
e

s

Algorithm W
Algorithm D

Figure 3.1: Running times of Algorithm D and Algorithm W for treewidth = 2 in a
log-log diagram, dependent upon the graph size.

3.2 Discussion
In Figure 3.1 and 3.2 we see a slope very close to 2 for Algorithm D, which corresponds
to quadratic dependence.

For k = 2, Algorithm W performs significantly better than Algorithm D. For k = 4,
the log factors of AlgorithmW become more pronounced, hence any gain in running time

28

3.2 Discussion

101 102 103 104

10−1

100

101

102

Graph size

tim
e

s
Algorithm W
Algorithm D

Figure 3.2: Running times of Algorithm D and Algorithm W for treewidth = 4 in a
log-log diagram, dependent upon the graph size.

2 3 4 5 6 7

100

101

treewidth

tim
e

s

Algorithm W
Algorithm D

Figure 3.3: Running times of Algorithm D and Algorithm W on graphs of size 1 000
in a lin-log diagram, dependent upon the treewidth.

29

3. Experimental demonstration

2 2.5 3 3.5 4 4.5 5

101

102

treewidth

tim
e

s
Algorithm W
Algorithm D

Figure 3.4: Running times of Algorithm D and Algorithm W on graphs of size 10 000
in a lin-log diagram, dependent upon the treewidth.

does not show when n ≤ 20 000. Algorithm W goes out of memory for some instances
of size k = 4, n = 215 = 32 768, so this datapoint is excluded from the plot. However, for
some instances it was faster than Algorithm D.

Figure 3.3, and especially 3.4 shows the exponential dependence on k: the plots are linear
in the lin-log diagrams and linear growth in the plot corresponds to exponential growth.

These results are consistent with the theory presented in Chapter 2. Because of the
exponential dependence on k, we can only increase n as far as needed for Algorithm W to
overtake Algorithm D for small values of k. As expected, to benefit from Algorithm W as
k grows, n has to grow very rapidly.

A word of caution, while the graphs generated have treewidth k, they might have
smaller separators, that is, they are not necessarily the worst case instances for our algo-
rithm. Worst case instances where the separators are as close to the treewidth as possible,
are nontrivial to generate. However, this might be a cause for optimism, since unverified
rumors indeed states that graphs in the wild have smaller separators than treewidth. Of
course we will not fall into the trap of conjecturing anything about this.

It is now more accessible to implement1 a treewidth-based diameter or Wiener index
algorithm than it was before. We confirm the belief in Abboud, et al., [1] that those algo-
rithms are competitive compared to the naive algorithms, however we reject the belief that
they are easy to implement, since we skipped generating an approximate tree decomposi-
tion in lack of time, and they are very complicated compared to the naive Algorithm D.

1In fact the code is open source, and available at https://gitlab.com/exoji2e/exjobb.

30

https://gitlab.com/exoji2e/exjobb

Chapter 4
Conclusions and Future Work

In this thesis we have shown that the problems of calculating the graph metrics diameter,
radius, eccentricities and Wiener index can be computed in time O(n1+ε exp O(k)), where
k is the treewidth, closing an open gap in [1]. In the process, we rejected Husfeld’s invalid
and misguided conjecture [10]. We have presented both theoretical proofs and support-
ing experiments. Also it is possible to implement algorithms for these metrics with a low
constant, meaning that they are fast for reasonably large graphs. The algorithm is compet-
itive with the naive implementations, given enough specific graphs, i.e., extremely small
treewidth.

It remains open whether it is possible to calculate diameter in time O(n exp d), or if it
is impossible under current hypotheses.

Implementing this for a real application, for example themoleculemodelingmentioned
in the introduction, is out of scope for this thesis, and is left as future work.

Other interesting research directions include investigating the possibility of finding
small separators without a tree decomposition, which should lower the constant signif-
icantly. Future work also includes extending the theory to work for directed graphs, or
using another parameterization. Cabello and Knauer [5] mentions for example the Dila-
tion number.

But we will save the future for another day, now I will go out and play with my small
(motor)cycle.

31

4. Conclusions and Future Work

32

Bibliography

[1] Amir Abboud, Virginia Vassilevska Williams, and Joshua R. Wang. Approximation
and fixed parameter subquadratic algorithms for radius and diameter in sparse graphs.
In Proceedings of the Twenty-Seventh Annual ACM–SIAM Symposium on Discrete
Algorithms, SODA 2016, Arlington, Va, USA, January 10–12, 2016, pages 377–391.
SIAM, 2016.

[2] Jon Louis Bentley. Multidimensional divide-and-conquer. Commun. ACM,
23(4):214–229, 1980.

[3] Manuel Blum, Robert W. Floyd, Vaughan R. Pratt, Ronald L. Rivest, and Robert En-
dre Tarjan. Time bounds for selection. J. Comput. Syst. Sci., 7(4):448–461, 1973.

[4] Hans L. Bodlaender. Dynamic programming on graphs with bounded treewidth. In
Timo Lepistö and Arto Salomaa, editors, Automata, Languages and Programming,
pages 105–118, Berlin, Heidelberg, 1988. Springer Berlin Heidelberg.

[5] Sergio Cabello and Christian Knauer. Algorithms for bounded treewidth with or-
thogonal range searching. Comput. Geom., 42(9):815–824, 2009.

[6] Timothy M. Chan. All-pairs shortest paths with real weights in O(n3/ log n) time.
Algorithmica, 50(2):236–243, 2008.

[7] Shagnik Das. A brief note on estimates of binomial coefficients. http://page.
mi.fu-berlin.de/shagnik/notes/binomials.pdf. Fetched 7th of
June 2018.

[8] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271, 1959.

[9] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network
optimization algorithms. In 25th Annual Symposium onFoundations of Computer
Science, 1984., pages 338–346, Oct 1984.

33

http://page.mi.fu-berlin.de/shagnik/notes/binomials.pdf
http://page.mi.fu-berlin.de/shagnik/notes/binomials.pdf

BIBLIOGRAPHY

[10] Thore Husfeldt. Computing Graph Distances Parameterized by Treewidth and Di-
ameter. In 11th International Symposium on Parameterized and Exact Computa-
tion (IPEC 2016), volume 63 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 16:1–16:11, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-
Zentrum für Informatik.

[11] Russel Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have
strongly exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.

[12] Bojan Mohar and Tomaž Pisanski. How to compute the wiener index of a graph.
Journal of Mathematical Chemistry, 2(3):267–277, Jul 1988.

[13] Louis Monier. Combinatorial solutions of multidimensional divide-and-conquer re-
currences. J. Algorithms, 1(1):60–74, 1980.

[14] Donald J. Rose. On simple characterizations of k-trees. Discrete Mathematics,
7(3):317 – 322, 1974.

[15] Harry Wiener. Structural determination of paraffin boiling points. Journal of the
American Chemical Society, 69(1):17–20, 1947. PMID: 20291038.

34

Appendices

35

Multivariate Analysis of Orthogonal Range
Searching and Graph Distances Parameterized by
Treewidth
Karl Bringmann
Max-Planck-Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany
kbringma@mpi-inf.mpg.de

Thore Husfeldt1

BARC, IT University of Copenhagen, Denmark, and Lund University, Sweden.
thore@itu.dk

https://orcid.org/0000-0001-9078-4512

Måns Magnusson
Department of Computer Science, Lund University, Sweden
mans.magnusson.888@student.lu.se

Abstract
We show that the eccentricities, diameter, radius, and Wiener index of an undirected n-vertex
graph with nonnegative edge lengths can be computed in time O(n ·

(
k+dlogne

k

)
·2kk2 logn), where

k is the treewidth of the graph. For every ε > 0, this bound is n1+ε expO(k), which matches a
hardness result of Abboud, Vassilevska Williams, and Wang (SODA 2015) and closes an open
problem in the multivariate analysis of polynomial-time computation. To this end, we show
that the analysis of an algorithm of Cabello and Knauer (Comp. Geom., 2009) in the regime of
non-constant treewidth can be improved by revisiting the analysis of orthogonal range searching,
improving bounds of the form logd n to

(
d+dlogne

d

)
, as originally observed by Monier (J. Alg.

1980).
We also investigate the parameterization by vertex cover number.

2012 ACM Subject Classification Theory of computation → Shortest paths, Parameterized
complexity and exact algorithms, Computational geometry. Mathematics of computing→ Paths
and connectivity problems.

Keywords and phrases Diameter, radius, Wiener index, orthogonal range searching, treewidth,
vertex cover number.

Acknowledgements We thank Amir Abboud and Rasmus Pagh for useful discussions.

1 Introduction

Pairwise distances in an undirected, unweighted graph can be computed by performing a
graph exploration, such as breadth-first search, from every vertex. This straightforward
procedure determines the diameter of a given graph with n vertices and m edges in time
O(nm). It is surprisingly difficult to improve upon this idea in general. In fact, Roditty
and Vassilevska Williams [16] have shown that an algorithm that can distinguish between
diameter 2 and 3 in an undirected sparse graph in subquadratic time refutes the Orthogonal
Vectors conjecture.

1 Swedish Research Council grant VR-2016-03855 and Villum Foundation grant 16582.

37

23:2 Orthogonal Range Searching and Graph Distances Parameterized by Treewidth

However, for very sparse graphs, the running time becomes linear. In particular, the
diameter of a tree can be computed in linear time O(n) by a folklore result that traverses the
graph twice. In fact, an algorithm by Cabello and Knauer shows that for constant treewidth
k ≥ 3, the diameter (and other distance parameters) can be computed in time O(n logk−1 n),
where the Landau symbol absorbs the dependency on k as well as the time required for
computing a tree decomposition. The question raised in [1] is how the complexity of this
problem grows with the treewidth of the graph. We show the following result:

I Theorem 1. The eccentricities, diameter, radius, and Wiener index of a given undirected
n-vertex graph G of treewidth tw(G) and nonnegative edge lengths can be computed in time
linear in

n ·
(
k + dlogne

k

)
· 2kk2 logn (1)

where k = 5 tw(G) + 4.

For every ε > 0, the bound (1) is n1+ε expO(tw(G)). This improves the dependency on
the treewidth over the running time n1+ε expO

(
tw(G) log tw(G)

)
of Abboud, Vassilevska

Williams, and Wang [1]. Our improvement is tight in the following sense. Abboud et al. [1]
also showed that under the Strong Exponential Time Hypothesis of Impagliazzo, Paturi, and
Zane [12], there can be no algorithm that computes the diameter with running time

n2−δ exp o(tw(G)) for any δ > 0 . (2)

In fact, this holds under the potentially weaker Orthogonal Vectors conjecture, see [18] for
an introduction to these arguments. Thus, under this assumption, the dependency on tw(G)
in Theorem 1 cannot be significantly improved, even if the dependency on n is relaxed from
just above linear to just below quadratic. Our analysis encompasses the Wiener index, an
important structural graph parameter left unexplored by [1].

Perhaps surprisingly, the main insight needed to establish Theorem 1 has nothing to
do with graph distances or treewidth. Instead, we make—or re-discover—the following
observation about the running time of d-dimensional range trees:

I Lemma 2 ([15]). A d-dimensional range tree over n points supporting orthogonal range
queries for the aggregate value over a commutative monoid has query time O(2d · B(n, d))
and can be built in time O(nd ·B(n, d)), where

B(n, d) =
(
d+ dlogne

d

)
.

This is a more careful statement than the standard textbook analysis, which gives the
query time as O(logd n) and the construction time as O(n logd n). For many values of d, the
asymptotic complexities of these bounds agree—in particular, this is true for constant d and
for very large d, which are the main regimes of interest to computational geometers. But
crucially, B(n, d) is always nε expO(d) for any ε > 0, while logd n is not.

After Lemma 2 is realised, Theorem 1 follows via divide-and-conquer in decomposable
graphs, closely following the idea of Cabello and Knauer [6] and augmented with known
arguments [1, 5]. We choose to give a careful presentation of the entire construction, as some
of the analysis is quite fragile.

Using known reductions, this implies that the following multivariate lower bound on
orthogonal range searching is tight:

38

K. Bringmann and T. Husfeldt and M. Magnusson 23:3

I Theorem 3 (Implicit in [1]). A data structure for the orthogonal range query problem for
the monoid (Z,max) with construction time n · q′(n, d) and query time q′(n, d), where

q′(n, d) = n1−ε exp o(d)

for some ε > 0, refutes the Strong Exponential Time hypothesis.

We also investigate the same problems parameterized by vertex cover number:

I Theorem 4. The eccentricities, diameter, and radius of a given undirected, unweighted
n-vertex graph G with vertex cover number k can be computed in time O(nk + 2kk2). The
Wiener index can be computed in time O(nk2k).

Both of these bounds are n expO(k). It follows from [1] that a lower bound of the form
(2) holds for this parameter as well.

1.1 Related work
Abboud et al. [1] show that given a graph and an optimal tree decomposition, various
graph distances can be computed in time O(k2n logk−1 n), where k = tw(G). This bound is
n1+ε expO(k log k) for any ε > 0. This subsumes the running time for finding an approximate
tree decomposition with k = O(tw(G)) from the input graph [5], which is n expO(k).

If the diameter in the input graph is constant, the diameter can be computed in time
n expO(tw(G)) [11]. This is tight in both parameters in the sense that [1] rules out the
running time (2) even for distinguishing diameter 2 from 3, and every algorithm needs to
inspect Ω(n) vertices even for treewidth 1. For non-constant diameter ∆, the bound from [11]
deteriorates as n expO(tw(G) log ∆). However, the construction cannot be used to compute
the Wiener index.

The literature on algorithms for graph distance parameters such as diameter or Wiener
index is very rich, and we refer to the introduction of [1] for an overview of results dir-
ectly relating to the present work. A recent paper by Bentert and Nichterlein [2] gives a
comprehensive overview of many other parameterisations.

Orthogonal range searching using a multidimensional range tree was first described by
Bentley [3], Lueker [14], Willard [17], and Lee and Wong [13], who showed that this data
structure supports query time O(logd n) and construction time O(n logd−1 n). Several papers
have improved this in various ways by factors logarithmic in n; for instance, Chazelle’s
construction [8] achieves query time O(logd−1 n).

1.2 Discussion
In hindsight, the present result is a somewhat undramatic resolution of an open problem
in that has been viewed as potentially fruitful by many people [1], including the second
author [11]. In particular, the resolution has led neither to an exciting new technique for
showing conditional lower bounds of the form n2−ε expω(k), nor a clever new algorithm
for graph diameter. Instead, our solution follows the ideas of Cabello and Knauer [6] for
constant treewidth, much like in [1]. All that was needed was a better understanding of
the asymptotics of bivariate functions, rediscovering a 40-year old analysis of spatial data
structures [15] (see the discussion in Sec. 3.3), and using a recent algorithm for approximate
tree decompositions [5].

39

23:4 Orthogonal Range Searching and Graph Distances Parameterized by Treewidth

Of course, we can derive some satisfaction from the presentation of asymptotically
tight bounds for fundamental graph parameters under a well-studied parameterization. In
particular, the surprisingly elegant reductions in [1] cannot be improved. However, as we
show in the appendix, when we parameterize by vertex cover number instead of treewidth,
we can establish even cleaner and tight bounds without much effort.

Instead, the conceptual value of the present work may be in applying the multivariate
perspective on high-dimensional computational geometry, reviving an overlooked analysis
for non-constant dimension. To see the difference in perspective, Chazelle’s improvement
[8] of d-dimensional range queries from logd n to logd−1 n makes a lot of sense for small d,
but from the multivariate point of view, both bounds are nε exp Ω(d log d). The range of
relationships between d and n where the multivariate perspective on range trees gives some
new insight is when d is asymptotically just shy of logn, see Sec. 2.1.

It remains open to find an algorithm for diameter with running time n expO(tw(G)), or
an argument that such an algorithm is unlikely to exist under standard hypotheses. This
requires better understanding of the regime d = o(logn).

2 Preliminaries

2.1 Asymptotics
We summarise the asymptotic relationships between various functions appearing in the
present paper:

I Lemma 5.

B(n, d) = O(logd n) . (3)

For any ε > 0,

B(n, d) = nε expO(d) , (4)
logd n = nε exp Ω(d log d) , (5)
logd n = nε expO(d log d) . (6)

The first expression shows that B(n, d) is always at least as informative as O(logd n).
The next two expressions show that from the perspective of parameterised complexity, the
two bounds differ asymptotically: B(n, d) depends single-exponentially on d (no matter how
small ε > 0 is chosen), while logd n does not (no matter how large ε is chosen). Expression (6)
just shows that (5) is maximally pessimistic.

Proof. Write h = dlogne. To see (3), consider first the case where d < h. Using
(
a
b

)
≤ ab/b!

we see that
(
d+ h

d

)
≤
(

2h
d

)
≤ (2h)d

d! = 2d
d! h

d = O(logd n) . (7)

Next, if d ≥ h then
(
d+ h

d

)
=
(
d+ h

h

)
≤
(

2d
h

)
= 2h
h! d

h ≤ dh ,

provided h ≥ 4. It remains to observe that dh ≤ hd = O(logd n). Ineed, since the
function α 7→ α/ lnα is increasing for α ≥ e, we have h/ ln h ≤ d ln d, which implies
exp(h ln d) ≤ exp(d ln h) as needed.

40

K. Bringmann and T. Husfeldt and M. Magnusson 23:5

For (4), there are two cases. First assume d < εh for all ε > 0. From Stirling’s formula
we know

(
a
b

)
≤
(ea
b

)k, so
(
d+ h

d

)
<

(
(1 + ε)h
εh

)
<
(e(1 + ε)h

εh

)εh
<
(e(1 + ε)

ε

)2ε logn
= n2ε log e(1+ε)ε−1

= no(1) ,

where the last expression uses that ε 7→ 2ε log e(1 + ε)ε−1 is a monotone increasing function
in the interval

(
0, 1

2
]
.

On the other hand, if d ≥ ch for some constant c, we have
(
d+ h

d

)
≤
(

(1 + 1/c)d
d

)
< 2(1+1/c)d = expO(d) .

We turn to (5). Assume that there is a function g such that

logd n = ncg(d) .

Then choose b > 1 and consider d such that d = b−1 logn . Then

g(d) ≥ logd n
nc

= 2d log logn−c logn = 2d log (bd)−cbd = exp Ω(d log d) .

Finally for (6), we repeat the argument from [1]. If d ≤ ε logn/ log logn then logd n =
2d log logn ≤ nε . In particular, if d = o(logn/ log logn) then logd n = no(1). Moreover, for
d ≥ log1/2 n we have log logn ≤ 2 log d and thus logd n = 2d log logn ≤ 4d log d. J

These calculations also show the regimes in which these considerations are at all interesting.
For d = o(logn/ log logn) then both functions are bounded by no(1), and the multivariate
perspective gives no insight. For d ≥ logn, both bounds exceed n, and we are better off
running n BFSs for computing diameters, or passing through the entire point set for range
searching.

2.2 Model of computation
We operate in the word RAM, assuming constant-time arithmetic operations on coordinates
and edge lengths, as well as constant-time operations in the monoid supported by our range
queries. For ease of presentation, edge lengths are assumed to be nonnegative integers; we
could work with abstract nonnegative weights instead [6].

3 Orthogonal Range Queries

3.1 Preliminaries
Let P be a set of d-dimensional points. We will view p ∈ P as a vector p = (p1, . . . , pd).

A commutative monoid is a set M with an associative and commutative binary operator
⊕ with identity. The reader is invited to think of M as the integers with −∞ as identity
and a⊕ b = max{a, b}.

Let f : P →M be a function and define for each subset Q ⊆ P

f(Q) =
⊕
{ f(q) : q ∈ Q}

with the understanding that f(∅) is the identity in M .

41

23:6 Orthogonal Range Searching and Graph Distances Parameterized by Treewidth

x

y

z

p

q

rs

p (0, 0, 0) f(p) = 5
q (2, 0, 0) f(q) = 6
r (0, 2, 1) f(r) = 7
s (2, 1, 2) f(s) = 8

Figure 1 Four points in three dimensions. With the monoid (Z, max) we have f({p, r, s}) = 7.

3.2 Range Trees
Consider dimension i ∈ {1, . . . , d} and enumerate the points in Q as q(1), . . . , q(r) such
that q(j)

i ≤ q
(j+1)
i , for instance by ordering after the ith coordinate and breaking ties

lexicographically. Define medi(Q) to be themedian point q(dr/2e), and similarly the mini(Q) =
q(1) and maxi(Q) = q(r). Set

QL = {q(1), . . . , q(dr/2e)}, QR = {q(1+dr/2e), . . . , q(r)} . (8)

For i ∈ {1, . . . , d}, the range tree Ri(Q) for Q is a node x with the following attributes:

L[x], a reference to the range tree Ti(QL), often called the left child of x.
R[x], a reference to the range tree Ti(QR), often called the right child of x.
D[x], a reference to the range tree Ti+1(Q), often called the secondary, associate, or
higher-dimensional structure. This attribute only exists for i < d.
l[x] = mini(Q).
r[x] = maxi(Q).
f [x] = f(Q). This attribute only exists for i = d.

Construction

Constructing a range tree for T is a straightforward recursive procedure:

I Algorithm C (Construction). Given integer i ∈ {1, . . . , d} and a list Q of points, this
algorithm constructs the range tree Ri(Q) with root x.
C1 [Base case Q = {q}.] Recursively construct D[x] = Ti+1(Q) if i < d, otherwise set

f [x] = f(q). Set l[x] = r[x] = qi. Return x.
C2 [Find median.] Determine q = mediQ, l[x] = mini(Q), r[x] = maxi(Q).
C3 [Split Q.] Let QL and QR as given by (8), note that both are nonempty.
C4 [Recurse.] Recursively construct L[x] = Ri(QL) from QL. Recursively construct R[x] =

Ri(QR) from QR. If i < d then recursively construct D[x] = Ti+1(Q). If i = d then set
f [x] = f [L[x]]⊕ f [R[x]].

The data structure can be viewed as a collection of binary trees whose nodes x represent
various subsets Px of the original point set P . In the interest of analysis, we now introduce a
scheme for naming the individual nodes x, and thereby also the subsets Px. Each node x is
identified by a string of letters from {L,R,D} as follows. Associate with x a set of points,
often called the canonical subset of x, as follows. For the empty string ε we set Pε = P . In
general, if Q = Px then PxL = QL, PxR = QR and PxD = Q. The strings over {L,R,D} can
be understood as uniquely describing a path through in the data structure; for instance, L

42

K. Bringmann and T. Husfeldt and M. Magnusson 23:7

0:2
ε

0:0

0:0
p

LL
0:0
r

LR

L
2:2

2:2
q

RL
2:2
s

RR

R
0:2

0:0

0:0
p

DLL
0:0
q

DLR

DL
1:2

1:1
s

DRL
2:2
r

DRR

DR
0:2 8

0:06

0:05
p

DDLL
0:0 6
q

DDLR

DDL
2:2 8

1:17
r

DDRL
2:2 8
s

DDRR

DDR

0:0

0:0
p

LDL
0:0
r

LDR

LD

LD
0:1 7

0:05
p

LDLD
1:1 7
r

LDRD

LDD
0:0

0:0
s

RDL
0:0
q

RDR

RD

RD
1:2 8

1:16
q

LDLD
2:2 8
s

LDRD

RDD
0:0 6

0:05
p

DLDL
0:0 6
q

DLDR

DLD

DLD
1:2 8

1:17
r

DRDL
2:2 8
s

DRDR

DRD

DRD

D DD

Figure 2 Part of the range tree for the points from Fig. 1. The label of node x appears in red on
the arrow pointing to x. Nodes contain l[x]:r[i]. The references L[x] and R[x] appear as children
in a binary tree using usual drawing conventions. The reference D[x] appears as a dashed arrow
(possibly interrupted); the placement on the page follows no other logic than economy of layout and
readability. References D[x] from leaf nodes, such as D[LL] leading to node LLD, are not shown; this
conceals 12 single-node trees. The ‘3rd-dimensional nodes,’ whose names contain two Ds, show the
values f [x] next to the node. To ease comprehension, leaf nodes are decorated with their canonical
subset, which is a singleton from {p, q, r, s}. The reader can infer the canonical subset for an internal
node as the union of leaves of the subtree; for instance, PDR = {r, s}. However, note that these
point sets are not explicitly stored in the data structure.

means ‘go left, i.e., to the left subtree, the one stored at L[x]’ and D means ‘go to the next
dimension, i.e., to the subtree stored at D[x].’ The name of a node now describes the unique
path that reaches it.

I Lemma 6. Let n = |P |. Algorithm C computes the d-dimensional range tree for P in time
linear in nd ·B(n, d).

Proof. We run Algorithm C on input P and i = 1.
Disregarding the recursive calls, the running time of algorithm C on input i and Q is

dominated by Steps C2 and C3, i.e., splitting Q into two sets of equal size. It is known that
this task can be performed in time linear in |Q| [4]. Thus, the running time for constructing
Ri(Q) is linear in |Q| plus the time spent in recursive calls.

This means that we can bound the running time for constructing T1(P) by bounding
sizes of the sets Px associated with every node x in the data structure. If for a moment X
denotes the set of all these nodes then we want to bound

∑

x∈X
|Px| =

∑

x∈X
|{ p ∈ P : p ∈ Px }| =

∑

p∈P
|{x ∈ X : p ∈ Px }| .

Thus, we need to determine, for given p ∈ P , the number of subsets Px in which p appears.
By construction, there are fewer than d occurrences of D in x. Moreover, if x contains more
than h occurrences of either L or R then Px is empty. Thus, x has at most h + d letters.
For two different strings x and x′ that agree on the positions of D, the sets Px and Px′ are
disjoint, so p appears in at most one of them. We conclude that the number of sets Px such
that p ∈ Px is bounded by the number of ways to arrange fewer than d many Ds and at most

43

23:8 Orthogonal Range Searching and Graph Distances Parameterized by Treewidth

h non-Ds. Using the identity
(
a+0

0
)

+ · · ·+
(
a+b
b

)
=
(
a+b+1
b

)
repeatedly, we compute

d−1∑

i=0

h∑

j=0

(
i+ j

j

)
=
d−1∑

i=0

(
i+ h+ 1

h

)
=
d−1∑

i=0

(
i+ h+ 1
i+ 1

)
=

(−1) +
d∑

i=0

(
i+ h

i

)
=
(
h+ d+ 1

d

)
− 1 = h+ d+ 1

h+ 1

(
h+ d

d

)
− 1 ≤ d

(
d+ h

d

)
.

The bound follows from aggregating this contribution over all p ∈ P . J

Search.

In this section, we fix two sequences of integers l1, . . . , ld and r1, . . . , rd describing the query
box B given by

B = [l1, r1]× · · · × [ld, rd] .

I Algorithm Q (Query). Given integer i ∈ {1, . . . , d}, a query box B as above and a range
tree Ri(Q) with root x for a set of points Q such that every point q ∈ Q satisfies lj ≤ qj ≤ rj
for j ∈ {1, . . . , i− 1}. This algorithm returns

⊕{ f(q) : q ∈ Q ∩B }.
Q1 [Empty?] If the data structure is empty, or li > r[x], or l[x] > ri, then return the identity

in the underlying monoid M .
Q2 [Done?] If i = d and ld ≤ mind[x] and maxd[x] ≤ rd then return f [x].
Q3 [Next dimension?] If i < d and li ≤ l[x] and r[x] ≤ ri then query the range tree at D[x]

for dimension i+ 1. Return the resulting value.
Q4 [Split.] Query the range tree L[x] for dimension i; the result is a value fL. Query the

range tree R[x] for dimension i; the result is a value fR. Return fL ⊕ fR. J

To prove correctness, we show that this algorithm is correct for each point set Q = Px.

I Lemma 7. Let i = D(x) + 1, where D(x) is the number of Ds in x. Assume that Px is
such that lj ≤ pi ≤ rj for all j ∈ {1, . . . , i− 1} for each p ∈ Px. Then the query algorithm
on input x and i returns f(B ∩ Px).

Proof. Backwards induction in |x|.
If |x| = h+ d then Px is the empty set, in which case the algorithm correctly returns the

identity in M .
If the algorithm executes Step Q2 then B is satisfied for all q ∈ Px, in which case the

algorithm correctly returns f [x] = f(Px).
If the algorithm executes Step Q3 then B satisfies the condition in the lemma for i+ 1,

and the number of Ds in PxD is i+ 1, and D[x] store the (i+ 1)th range tree for PxD. Thus,
by induction the algorithm returns f(PxD ∩B), which equals f(Px ∩B) because PxD = Px.

Otherwise, by induction, fL = f(PxL ∩B) and fR = f(PxR ∩B). Since PxL ∪ PxR = Px,
we have f(Px ∩B) = f((PxL ∩B) ∪ (PxR ∩ P)) = fL ⊕ fR. J

I Lemma 8. If x is the root of the range tree for P then on input i = 1, x, and B, the query
algorithm returns f(P ∩B) in time linear in 2dB(n, d).

Proof. Correctness follows from the previous lemma.

44

K. Bringmann and T. Husfeldt and M. Magnusson 23:9

For the running time, we first observe that the query algorithm does constant work in
each visited node. Thus it suffices to bound the number of visited nodes as

2d
(
h+ d

d

)
(d ≥ 1, h ≥ 0) . (9)

We will show by induction in d that (9) holds for every call to a d-dimensional range tree
for a point set Px, where h = dlog |Px|e. The two easy cases are Q1 and Q2, which incur no
additional nodes to be visited, so the number of visited nodes is 1, which is bounded by (9).
Step Q3 leads to a recursive call for a (d− 1)-dimensional range tree over the same point set
PxD = Px, and we verify

1 + 2d−1
(
h+ d− 1
d− 1

)
≤ 2d

(
h+ d

d

)
.

The interesting case is Step Q4. We need to follow two paths from x to the leaves of the
binary tree of x. Consider the leaves l and r in the subtree rooted at x associated with the
points mini(Px) and maxi(Px) as defined in Sec. 3.2. We describe the situation of the path
Y from l to x; the other case is symmetrical. At each internal node y ∈ Y , the algorithm
chooses Step Q4 (because li ≥ l[y]). There are two cases for what happens at yL and yR. If
li ≤ medi(Py) then PyR satisfies li ≤ mini(PyR) ≤ ri, so the call to yR will choose Step Q3.
By induction, this incurs 2d−1(d−1+i

d−1
)
visits, where i is the height of y. In the other case,

the call to yL will choose Step Q1, which incurs no extra visits. Thus, the number of nodes
visited on the left path is at most

h+
h−1∑

i=0
2d−1

(
d− 1 + i

d− 1

)
,

and the total number of nodes visited is at most twice that:

2h+ 2d
h−1∑

i=0

(
d− 1 + i

d− 1

)
≤ 2d

h∑

i=0

(
d− 1 + i

d− 1

)
= 2d

(
d+ h

d

)
.

J

3.3 Discussion
The textbook analysis of range trees, and similar d-dimensional spatial algorithms and data
structures sets up a recurrence relation like

r(n, d) = 2r(n/2, d) + r(n, d− 1) ,

for the construction and

r(n, d) = max{ r(n/2, d), r(n, d− 1) } ,

for the query time. One then observes that n logd n and logd n are the solutions to these
recurrences. This analysis goes back to Bentley’s original paper [3].

Along the lines of the previous section, one can show that the functions n ·B(n, d) and
B(n, d) solve these recurrences as well. A detailed derivation can be found in [15], which
also contains combinatorial arguments of how to interpret the binomial coefficients in the
context of spatial data structures. A later paper of Chan [7] also takes the recurrences as
a starting point, and observes asymptotically improved solution for the related question of
dominance queries.

45

23:10 Orthogonal Range Searching and Graph Distances Parameterized by Treewidth

4 Graph Distances

We present the algorithm for computing the diameter. The construction closely follows
Cabello and Knauer [6], but uses the range tree bounds from Section 3. The analysis
is extended to superconstant dimension as in Abboud et al. [1]. Using the approximate
treewidth construction of Bodlaender et al. [5], we can pay more attention to the parameters
of the recursive decomposition into small-size separators.

4.1 Preliminaries
We consider an undirected graph G with n vertices and m edges with nonnegative integer
weights. The set of vertices is V (G). For a vertex subset U we write G[U] for the induced
subgraph.

A path from u to v is called a u, v-path and denoted uPv. For w ∈ V (uPv) we use the
notation wPv for the subpath starting in w. The length of a path, denoted l(uPv), is the
sum of its edge lengths.

The distance from vertex u to vertex v, denoted d(u, v), is the minimum length of shortest
u, v-path. The Wiener index of G, denoted wien(G) is

∑
u,v∈V (G) d(u, v). The eccentricity

of a vertex u, denoted e(u) is given by e(u) = max{ d(u, v) : v ∈ V (G) }. The diameter
of G, denoted diam(G) is max{ e(u) : u ∈ V (G) }. The radius of G, denoted rad(G) is
min{ e(u) : u ∈ V (G) }.

4.2 Separation
A skew k-separator tree T of G is a binary tree such that each node t of T is associated with
a vertex set Zt ⊆ V (G) such that
|Zt| ≤ k,
If Lt Rt denote the vertices ofG associated with the left and right subtrees of t, respectively,
then Zt separates Lt and Rt and

n

k + 1 ≤ |Lt ∪ Zt| ≤
nk

k + 1 , (10)

T remains a skew k-separator even if edges between vertices of Zt are added.

It is known that such a tree can be found from a tree decomposition, and an approximate
tree decomposition can be found in single-exponential time. We summarise these results in
the following lemma:

I Lemma 9 ([6, Lemma 3] with [5, Theorem 1]). For a given n-vertex input graph G, a skew
(5 tw(G) + 4)-separator tree can be computed in time n expO(k).

4.3 Algorithm
Given graph G, let S denote the set of shortest paths. Let e(x;W) denote the distance from
x to any vertex in W . Formally,

e(x;W) = max{ l(xPw) : xPw ∈ S, w ∈W } .

The central idea of the algorithm, following [6], is the computation for x ∈ X, z ∈ Z
of z-visiting eccentricities e(x, z;Y) defined as follows. Enumerate Z = {z1, . . . , zk}. Then
define, for x ∈ X, zi ∈ Z the value e(x, zi;Y) as the maximum distance from zi to y over all

46

K. Bringmann and T. Husfeldt and M. Magnusson 23:11

x

z1
z2

z3

y
Y

Figure 3 Example with Z = {z1, z2, z3}. The eccentricity of x to Y is e(x; Y) = 3. Also,
e(x, z1; Y) = 1, e(x, z2; Y) = 2. Note e(x, z3; Y) = 1 despite the z3, y-path.

y ∈ Y such that some shortest x, y-path contains zi but no shortest x, y-path contains any
of {z1, . . . , zi−1}. Formally,

e(x, zi;Y) = max l(zPy)
such that y ∈ Y ,

xPy ∈ S ,

Z ∩ V (xPy) 3 zi ,
{z1, . . . , zi−1} ∩ V (xQy) = ∅ for all zQy ∈ S .

See Figure 3 for a small example.
This definition ensures that in situations where x and y are connected by two shortest

paths of the form xPzjPy and xPziPy with j 6= i, then exactly one of them contributes to
e(x, zj ;Y) and e(x, zi;Y). This is important for avoiding over-counting in Section 4.5.

I Lemma 10. For x ∈ X, e(x;Y) = max{ d(x, z) + e(x, z;Y) : z ∈ Z }.

The proof is in Appendix B. The connection to orthogonal range queries is the follow-
ing. Enumerate Z = {z1, . . . , zk}. A shortest path xPziPy attaining the distance e(x;Y)
maximises d(zi, y) over all y ∈ Y , where zi ∈ Z is such that for all zj ∈ Z,

d(x, zi) + d(zi, y) < d(x, zj) + d(zj , y) , (j < i) ,
d(x, zi) + d(zi, y) ≤ d(x, zj) + d(zj , y) , (j ≥ i) ,

equivalently,

d(x, zi)− d(x, zj) < d(zj , y)− d(zi, y) , (j < i) ,
d(x, zi)− d(x, zj) ≤ d(zj , y)− d(zi, y) , (j ≥ i) .

We are ready for the algorithm, which closely follows [6]:

I Algorithm E (Eccentricities). Given a graph G and a skew k-separator tree with root t,
this algorithm computes the eccentricity e(v) of every vertex v ∈ V (G). We write Z = Zt,
X = Lt ∪ Zt, and Y = Rt ∪ Zt.
E1 [Base case.] If n/ lnn < 4k(k + 1) then find all distances using Dijkstra’s algorithm and

terminate.
E2 [Distances from separator.] Compute d(z, v) for every z ∈ Z, v ∈ V (G) using k applica-

tions of Dijkstra’s algorithm.
E3 [Add shortcuts.] For each pair z, z′ ∈ Z, add the edge zz′ to G, weighted by d(z, z′).

Remove duplicate edges, retaining the shortest.
E4.1 [Start iterating over {z1, . . . , zk}.] Let i = 1.

47

23:12 Orthogonal Range Searching and Graph Distances Parameterized by Treewidth

E4.2 [Build range tree for zi.] Construct a k-dimensional range tree R of points { p(y) : y ∈
Y } given by p(y) = (p1, . . . , pk) where

pj = d(zi, y)− d(zj , y) j ∈ {1, . . . , k}

and f(p(y)) = d(zi, y) using the monoid (Z,max).
E4.3 [Query range tree.] For each x ∈ X, query R with l1 = · · · = lk = −∞ and

rj =
{
d(x, zi)− d(x, zj)− 1 , (j < i) ;
d(x, zi)− d(x, zj) , (j ≥ i) .

The result is e(x, zi;Y).
E4.4 [Next zi.] If i < k then increase i and go to E4.1.
E5 [Recurse on G[X].] Recursively compute the distances in G[X] using the left subtree

of t as a skew k-separator tree. The result are eccentricities e(x;X) for each x ∈ X.
For each x ∈ X, set e(x;Y) = max{ d(x, zi) + e(x, zi;Y) : i ∈ {1, . . . , k} }, then set
e(x) = max{e(x;X), e(x;Y)}. Set e(z) = max{ d(z, v) : v ∈ V (G) } for z ∈ Z.

E6 [Flip.] Repeat Steps E4–5 with the roles of X and Y exchanged.

4.4 Running Time
I Lemma 11. The running time of Algorithm E is O(n ·B(n, k) · 2kk2 lnn).

The proof is in Appendix C. We can now establish Theorem 1 for diameter and radius.

Proof of Thm. 1, distances. To compute all eccentricities for a given graph we find a k-skew
separator for k = 5 tw(G)+4 using Lemma 9 in time n expO(tw(G)). We then run Algorithm
E, using Lemma 11 to bound the running time. From the eccentricities, the radius and
diameter can be computed in linear time using their definition. J

4.5 Wiener Index
Algorithm E can be modified to compute the Wiener index, as described in [6, Sec. 4],
completing the proof of Theorem 1. The main observation is that the sum of distances
between all pair u, v ∈ V (G) can be written as pairwise distances within X, within Y , and
between X and Y , carefully subtracting contributions from these sums that were included
twice.

The orthogonal range queries for vertex x ∈ X now need to report the sum of distances
to every y ∈ Y , rather than just the value of the maximum distance e(x;Y). To this end, we
use the monoid of positive integer tuples (d, r) with the operation

(d, r)⊕ (d′, r′) = (d+ d′, r + r′)

with identity element (0, 0). The value associated with vertex y in Step E4.2 is f(p(y)) =
(1, d(zi, y)).

We also observe the matching lower bound:

I Theorem 12. An algorithm for computing the Wiener index in time n2−ε exp o(tw(G))
time for any ε > 0 refutes the Orthogonal Vector conjecture.

Proof. The diameter of G is 2 if and only if wien(G) = 2
(
n
2
)
−m. Thus, an algorithm for

Wiener index is able to distinguish input graphs of diameter 2 and 3. This problem was
shown hard in [1]. J

48

K. Bringmann and T. Husfeldt and M. Magnusson 23:13

References
1 Amir Abboud, Virginia Vassilevska Williams, and Joshua R. Wang. Approximation and

fixed parameter subquadratic algorithms for radius and diameter in sparse graphs. In Pro-
ceedings of the Twenty-Seventh Annual ACM–SIAM Symposium on Discrete Algorithms,
SODA 2016, Arlington, Va, USA, January 10–12, 2016, pages 377–391. SIAM, 2016.
doi:10.1137/1.9781611974331.ch28.

2 Matthias Bentert and André Nichterlein. Parameterized complexity of diameter. CoRR,
abs/1802.10048, 2018. arXiv:1802.10048.

3 Jon Louis Bentley. Multidimensional divide-and-conquer. Commun. ACM, 23(4):214–229,
1980. doi:10.1145/358841.358850.

4 Manuel Blum, Robert W. Floyd, Vaughan R. Pratt, Ronald L. Rivest, and Robert En-
dre Tarjan. Time bounds for selection. J. Comput. Syst. Sci., 7(4):448–461, 1973.
doi:10.1016/S0022-0000(73)80033-9.

5 Hans L. Bodlaender, Pål Grønås Drange, Markus S. Dregi, Fedor V. Fomin, Daniel Lok-
shtanov, and Michał Pilipczuk. An O(ckn) 5-approximation algorithm for treewidth. SIAM
J. Comput., 45(2):317–378, 2016. doi:10.1137/130947374.

6 Sergio Cabello and Christian Knauer. Algorithms for bounded treewidth with orthogonal
range searching. Comput. Geom., 42(9):815–824, 2009. doi:10.1016/j.comgeo.2009.02.001.

7 Timothy M. Chan. All-pairs shortest paths with real weights in O(n3/ logn) time. Al-
gorithmica, 50(2):236–243, 2008. doi:10.1007/s00453-007-9062-1.

8 Bernard Chazelle. Lower bounds for orthogonal range searching: I. The reporting case. J.
Assoc. Comput. Mach., 37(2):200–212, 1990. doi:10.1145/77600.77614.

9 Jianer Chen, Iyad A. Kanj, and Weijia Jia. Vertex cover: Further observations and further
improvements. J. Algorithms, 41:280–301, 2001. doi:10.1006/jagm.2001.1186.

10 Rodney G. Downey and Michael R. Fellows. Parameterized complexity. Springer-Verlag,
New York, 1999.

11 Thore Husfeldt. Computing Graph Distances Parameterized by Treewidth and Dia-
meter. In 11th International Symposium on Parameterized and Exact Computation (IPEC
2016), volume 63 of Leibniz International Proceedings in Informatics (LIPIcs), pages
16:1–16:11, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.IPEC.2016.16.

12 Russel Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have
strongly exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.
doi:10.1006/jcss.2001.1774.

13 Der-Tsai Lee and Chakkuen K. Wong. Quintary trees: A file structure for mul-
tidimensional database systems. ACM Trans. Database Syst., 5(3):339–353, 1980.
doi:10.1145/320613.320618.

14 George S. Lueker. A data structure for orthogonal range queries. In 19th Annual Symposium
on Foundations of Computer Science, Ann Arbor, Michigan, USA, 16-18 October 1978,
pages 28–34. IEEE Computer Society, 1978. doi:10.1109/SFCS.1978.1.

15 Louis Monier. Combinatorial solutions of multidimensional divide-and-conquer recurrences.
J. Algorithms, 1(1):60–74, 1980. doi:10.1016/0196-6774(80)90005-X.

16 Liam Roditty and Virginia Vassilevska Williams. Fast approximation algorithms for
the diameter and radius of sparse graphs. In Symposium on Theory of Computing
Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 515–524, 2013.
doi:10.1145/2488608.2488673.

17 Dan E. Willard. New data structures for orthogonal range queries. SIAM J. Comput.,
14(1):232–253, 1985. doi:10.1137/0214019.

49

23:14 Orthogonal Range Searching and Graph Distances Parameterized by Treewidth

18 Virginia Vassilevska Williams. Hardness of easy problems: Basing hardness on popular
conjectures such as the strong exponential time hypothesis (invited talk). In 10th Interna-
tional Symposium on Parameterized and Exact Computation, IPEC 2015, September 16-18,
2015, Patras, Greece, pages 17–29, 2015. doi:10.4230/LIPIcs.IPEC.2015.17.

A Parameterization by Vertex Cover Number

We show Theorem 4.
A vertex cover is a vertex subset C of V (G) such that every edge in G has at least one

endpoint in C. The smallest k for which a vertex cover of size k exists is the vertex cover
number of a graph, denoted vc(G). The number of edges in a graph is at most n · vc(G).

A.1 Eccentricities and Wiener Index
A graph with vertex cover number 1 is a star, and its pairwise distances can be determined
from the input size. It follows from [1] that the complexity of computing the diameter
must depend exponentially on vc(G), in the same way as for tw(G). We observe here that
algorithms that match this lower bound are quite immediate. The idea is that each v /∈ C
has its entire neighbourhood N(v), defined as

N(v) = {u ∈ V (G) : uv ∈ E(G) } ,

contained in C. Thus, all paths from v have their second vertex in C. In particular, two
vertices v and w with N(v) = N(w) have the same distances to the rest of the graph.
Since N(v) ⊆ C is suffices to consider all 2k many subsets of C. The details are given in
Algorithm V.

I Algorithm V (Eccentricities Parameterized by Vertex Cover). Given a connected, unweighted,
undirected graph G and a vertex cover C, this algorithm computes the eccentricity of each
vertex and the Wiener index.
V1 [Initialise.] Set wien(G) = 0. Insert each v /∈ C into a dictionary D indexed by N(v).
V2 [Distances from C.] For each v ∈ C, perform a breadth-first search from v in G,

computing d(v, u) for all u ∈ V (G). Let e(v) = maxu d(v, u) and increase wien(G) by
1
2
∑
u d(v, u).

V3 [Distances from V (G)− C.] Choose any v ∈ D. Perform a breadth-first search from v in
G, computing d(v, u) for all u ∈ V (G). For each w ∈ D with N(w) = N(v) (including v
itself), let e(w) = maxu d(v, u), increase wien(G) by 1

2
∑
u d(v, u), and remove w from D.

Repeat step V3 until D is empty.

I Theorem 13. The eccentricities and Wiener index of an unweighted, undirected, connected
graph with m edges and vertex cover number k can be computed in time O(m2k). Any
algorithm with running time m exp o(k) would refute the Strong Exponential Time Hypothesis.

Proof. It is well known that a minimum vertex cover can be computed in the given time
bound [10].

For the running time of Algorithm V, we first observed that for each v /∈ C the neigh-
bourhood N(v) is entirely contained in C. Thus, there are only 2k different neighbourhoods
used as an index to D and we can bound the number of BFS computations in Step V3
by 2k. (Step V2 incurs another k such computations.) Assuming constant-time dictionary
operations, the running time of the algorithm is therefore bounded by m expO(k).

50

K. Bringmann and T. Husfeldt and M. Magnusson 23:15

v

E(v)

C

u

Figure 4 The distance from v to u is 3 and N(u) ⊆ E(v).

To see correctness, we need to argue that the distances computed for w ∈ D in Step 4 are
correct. First, to argue d(v, z) = d(w, z) for all z /∈ {v, w} consider shortest path vPz and
wQz. Let v′ and w′ denote the second vertices on these paths (possibly v′ = z or w′ = z).
Then v′Pz and w′Qz are shortest paths of length l(vPz)− 1 and l(wQz)− 1, respectively.
Since N(v) = N(w), the path wv′Pz exists and is a shortest w, z-path as well, of lengths
l(vPz). We conclude that l(vPz) = l(wQz).

It is not true that d(v, z) = d(w, z) for z ∈ {v, w}. Instead, we have d(v, w) = d(w, v)
(both equal 2) and d(v, v) = d(w,w) (both equal 0). Thus, the contributions from v and w
to W are the same, and the sets d(v, ·) and d(w, ·) have the same maxima.

For the hardness result, we merely need to observe that reduction in [1] has vertex cover
number k + 2. J

A.2 Faster Eccentricities

Vertex cover number is an extremely well studied parameter, so the analysis need not stop
here. The best current algorithm for finding a vertex cover runs in time O(nk + 1.274k) [9],
so the bound in Theorem 13 is dominated by the distance computation. Thus it may make
sense to look for distance computation algorithms with running times of the form nk + g(k)
rather than m · g(k).

We can find such an algorithm for eccentricities, but not for Wiener index. First, we
observe that if C is a vertex cover then no path can contain consecutive vertices from V (G)−C.
Thus, we can modify the graph by inserting length-2 shortcuts between nonadjacent vertices
in C that share a neighbour without changing the pairwise distances in the graph. We
can now run Dijkstra restricted to the subgraph G[C ∪ {v}], noting that the second layer
of the Dijkstra tree consists of N(v), which is contained in C. Thus the number of such
computations that are different is bounded by 2k, the number of neighbourhoods. The
eccentricity e(v) can be derived from this Dijkstra tree as follows. Let E(v) denote the
eccentric vertices from v in C, i.e., the vertices at maximum distance from v in C. Note
that E(v) contains exactly the vertices at the deepest layer of the Dijkstra tree from v in
G[C ∪ {v}]. The only vertices u in G that can be farther away from v than E(v) must have
their entire neighbourhood N(u) contained in E(v). See Figure 4.

The only confusion arises if the only such vertex is v itself. To handle these details we
need to determine, for each cover subset S ⊆ C, if the number of u with N(u) ⊆ S is 0, 1, or
more. This can be solved by fast zeta transform in time 2kk, or more directly as follows. For

51

23:16 Orthogonal Range Searching and Graph Distances Parameterized by Treewidth

each S ⊆ C, let

h(S) =

{w} , if N(w) ⊆ S for exactly one w /∈ C ;
∅ , if there is no w /∈ C with N(w) ⊆ S ;
C , otherwise .

(The third value is an arbitrary placeholder.) Then h(S) can be computed for all S ⊆ C in a
bottom-up fashion.

The details are given in the following algorithm.

I Algorithm F (Faster Eccentricities Parameterized by Vertex Cover). Given a connected,
unweighted, undirected graph G and a vertex cover C, this algorithm computes the eccentricity
of each vertex.

F1 [Initialise.] Insert each v ∈ V (G) into a dictionary D indexed by N(v). Set h(S) = ∅ for
all S ⊆ C.

F2 [Compute h.] For each u /∈ C, set h(N(u)) = {u} if h(N(u)) = ∅, otherwise h(N(u)) = C.
For each nonempty subset S ⊆ C in increasing order of size, compute W =

⋃
w∈S h(S −

{w}). If |W | > 1 then set h(S) = C. Else set h(S) = W .
F3 [Shortcuts.] For each pair of covering vertices u, v ∈ C, if uv /∈ E(G) but u and v share

a neighbour outside C, add the edge uv to E(G) with length 2.
F4 [Eccentricities from C.] For each v ∈ C, compute shortest distances in G[C] from v. Set

d = maxu∈C d(v, u) and let E(v) denote the vertices in C at distance d. Let

e(v) =
{
d+ 1 , if h(E(v))− {v} 6= ∅ , [equivalently, E(v) ⊇ N(w) for some w 6= v] ;
d , otherwise .

F5 [Eccentricities from V (G)−C.] For each v ∈ D, compute shortest distances in G[C∪{v}]
from v. Set d = maxu∈C d(v, u) and let E(v) denote the vertices in C at distance d. For
each u ∈ D with N(u) = N(v) (including v itself) let

e(u) =
{
d+ 1 , if h(E(u))− {u} 6= ∅ , [equivalently, E(u) ⊇ N(w) for some w 6= u] ;
d , otherwise .

and remove u from D.

I Theorem 14. The eccentricities an unweighted, undirected, connected graph with m edges
and vertex cover number k can be computed in time O(nk + 2kk2).

Proof. Step F1 needs to visit every of the nk edges. There are 2k subsets of C, bounding
the running time of Step F2 to O(2kk). Step F3 can be performed in time O(2kk2) (instead
of the obvious O(nk2)) by iterating over w ∈ D and all pairs u, v ∈ N(w). The shortest path
computations in Steps F4 and F5 take time O(k2) each using Dijkstra’s algorithm, for a
total of O(2kk2). The dictionary contains at most n values, so the total time of Step F4 and
F5 is O(n+ 2kk2).

To see correctness, assume without loss of generality that we already performed the
shortcut operation in Step F3.

We argue for correctness of Step F5, Step F4 is similar. Consider a shortest u, v-path
uPv to an eccentric vertex v of u. If v ∈ C then v belongs to E(v). Moreover, there can be

52

K. Bringmann and T. Husfeldt and M. Magnusson 23:17

no vertex w with N(w) ⊆ E(v), because otherwise uPvw is a shortest path and therefore v
is not eccentric. Thus, Step F5 correctly sets e(u) to d(u, v).

Otherwise, assume all such paths have v /∈ C. There are two cases. If uPv is just the edge
uv then every vertex in G has distance at most 1 to u. If G is a star then C = N(v) = {u}
and d = 0. Moreover, h(E(u)) 3 v, so Step F5 correctly computes e(u) = d+ 1 = 1. If G
contains a triangle then |C| > 1 and the vertices in E(u) are at distance 1. Moreover, there
cannot exist w 6= u with N(w) ⊆ E(u) because then there would be a u,w-path of length 2.
Thus, Step F5 correctly computes e(u) = d = 1.

The remaining case is when uPv contains at least 3 vertices. Let w denote the penultimate
vertex, so the path is of the form u · · ·wv. Since v /∈ C we have w ∈ C. Moreover, we have
w ∈ E(u). (Otherwise there would be an eccentric path to another vertex w′ ∈ C.) Let
d = d(u,w). Every neighbour x of v must belong to C, and by the shortcutting Step F3, we
can assume it also belongs to N(w) ∪ {w}. The distance d(v, x) is at most d+ 1 (because
it is a neighbour of w, or w itself), but cannot be d + 1 (because then there would be an
eccentric u, x-path for x ∈ C.) Thus, we have d(u, x) = d and therefore x ∈ E(u). We have
established that N(v) ⊆ E(u), so we can again conclude that Step F5 correctly computes
e(u) = d+ 1. J

B Proof of Lemma 10

Proof. Let xPy be a shortest path of length e(x;Y). Since Z separates X from Y , any
x, y-path must contain a vertex from Z. In particular, this is true of xPy, so we can choose
zi ∈ Z ∩ V (xPy) for some i ∈ {1, . . . , k}. Assume xPy was chosen so as to minimize i.
Since xPzi is a shortest path, we have l(xPzi) = d(x, zi). Moreover, ziPy is a shortest path,
and there are no shortest x, y-paths through {z1, . . . , zi−1}, so l(ziPy) ≤ e(x, zi;Y). Thus
e(x;Y) ≤ d(x, zi) + e(x, zi;Y) for some zi ∈ Z.

For the opposite inequality, choose any z ∈ Z and shortest paths xPz and xQy with
z ∈ V (xQy) such that l(xPz) = d(x, z) and l(zQy) = e(x, z;Y). Since xQz is a shortest
path, we see that

d(xPz) + e(x, z;Y) = l(xPzQy) = l(xQzQy) = l(xQy) ,

which is the length of a shortest x, y-path, and therefore at most e(x;Y). J

C Proof of Lemma 11

Proof. Assume n ≥ 8. Let T (n, d) denote the running time of Algorithm E.
Step E1 consists of n executions of Dijkstra’s algorithm on a graph with n vertices and

treewidth O(k), and n bounded by O(k2 log k). This takes time O(k5 log3 k). The range
query operations in Steps E4.2–3 can be performed in time O(n2k ·B(n, k)) according to to
Lemma 2. They are executed 2k times, twice for each zi ∈ Z. Thus, adding the recursive
calls in step E5 for both X and Y using |Y | ≤ n− |X|+ k, we arrive at the recurrence

T (n, k) =
{
O(k5 log3 k) , if n/ lnn < 4k(k + 1) ;
n · S(n, k) + T (|X|, k) + T (n− |X|+ k, k) , otherwise.

for some non-decreasing function S satisfying S(n, k) = O
(
2kk ·B(n, k)

)
.

We will show

T (n, k) ≤ 4(k + 1) · S(n, k) · n lnn .

53

23:18 Orthogonal Range Searching and Graph Distances Parameterized by Treewidth

Write s = |X| and r = n− s+ k, and consider

T (s, k) + T (r, k)
4(k + 1) = S(s, k) · s ln s+ S(r, k) · r ln r ≤ S(n, k) · (s ln s+ r ln r) . (11)

From the bounds (10) on s we have s ≤ nk/(k+1) and r ≤ n−n/(k+1)+k = (nk/(k+1))+k,
so we can bound both r and s by t given as

t = nk

k + 1 + k .

Thus we can bound (11) by

T (s, k) + T (r, k)
4(k + 1) · S(n, k) ≤ s ln t+ (n− s+ k) ln t = n ln t+ k ln t ≤ n ln t+ k lnn . (12)

Step E1 ensures k(k + 1) ≤ n/(4 lnn) ≤ 1
2n , so we get

t ≤ nk

k + 1 + k ≤ nk

k + 1 + n/2
k + 1 .

Using the bound ln y ≤ 1/(y− 1) for y ∈ (0, 1), we see ln((k+ 1
2)/(k+ 1)) ≤ −1/(2k+ 2), so

ln t ≤ ln
(
n(k + 1

2)
k + 1

)
≤ lnn− 1

2k + 2 , (13)

Using this in (12), we have

T (s, k) + T (r, k)
4(k + 1) · S(n, k) ≤ n lnn− n

2k + 2 + k lnn .

The last term satisfies k lnn ≤ n/4(k + 1) because of the guarantee in Step E1. Thus,

T (s, k) + T (r, k)
4(k + 1) · S(n, k) + n

4(k + 1) ≤ n lnn ,

so that T satisfies the recurrence. J

54

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTATIONSDAG 2018-05-31

EXAMENSARBETE Orthogonal Range Searching and
Graph Distances Parameterized by TreeWidth
STUDENT Måns Magnusson
HANDLEDARE Thore Husfeldt (LTH)
EXAMINATOR Krzysztof Kuchcinski (LTH)

Avstånd i trädbreddsbegränsade grafer
genom söking över ortogonala intervall

POPULÄRVETENSKAPLIG SAMMANFATTNING Måns Magnusson

Grafer, bestående av noder och bågar, kan användas för att modellera många olika
saker, t.ex. infrastruktur som vägar och elledningar, men också molekyler och so-
ciala nätverk. Detta arbete undersöker olika algoritmers beräkningskomplexitet och
exekveringstider för att hitta grundläggande avståndsmått på grafer. Några av dessa
är det största avståndet i grafen – diametern, samt summan av alla avstånd i grafen
– wienerindexet.

För att minska tidsåtgången för att räkna ut dessa
avstånd (se figur 1) i stora grafer vill vi ha effektiva
algoritmer. Det visar sig att beroende på grafens
utseende kan olika algoritmer användas. Det finns
en generell algoritm som fungerar på alla grafer,
men som utför mycket arbete, för varje nod in-
spekterar algoritmen hela grafen. För grafer med
mer än 104 noder börjar denna algoritm gå väldigt
långsamt. För 106 noder tar det i storleksordnin-
gen en timme för algoritmen att exekvera.

Det finns en effektiv algoritm för den speci-
fika graftypen träd. Algoritmen inspekterar hela
grafen endast två gånger, och hittar diametern av
ett träd med 106 noder inom en sekund. Ett träd
är en graf utan cykler, och det finns endast en väg
mellan varje par av noder. Frågan är, går det att
använda dessa trick för trädlika grafer?
Jag har använt idéer från trädalgoritmer för att

ta fram en algoritm som är snabb på grafer med
endast små cykler, dvs de är trädlika med liten
trädbredd. Lösningen beräknar den maximala dis-
tansen genom att modellera avstånden i grafen
som flerdimensionella punkter där de intressanta
punkterna finns inom ortogonala intervall.

A

B

C

D

E

Figur 1: I denna graf med 5 noder och 5 bågar är di-
ametern 3, mellan noderna A och E, och wienerindexet
5·1+4·2+1·3 = 16, summan av de kortaste avstånden
mellan alla par av noder.

Anledningen till att dessa grafer är intressanta
är att många grafer som modellerar en fysisk verk-
lighet har en liten trädbredd, då de är kopplade
till en fysisk geometri.
Wienerindexet, uppkallat efter kemisten Harry

Wiener, används för att estimera kemiska egen-
skaper av exempelvis alkaner. Bland annat
kokpunkt korrelerar med wienerindexet och därför
kan denna beräknas innan dyra experiment uförs.
I mitt examensarbete har jag dels bevisat teo-

retiskt hur exekveringstiden för min algoritm
växer beroende av grafen, dels implementerat min
algoritm och jämfört den mot den mer generella,
men långsammare, algoritmen. Vi har därmed
besvarat en öppen fråga inom algoritmforsknin-
gen, vilket har resulterat i en inskickad artikel till
en algoritmkonferens.

	Introduction
	Definitions
	Related work
	Contributions

	Theoretical derivation
	Diameter of an unweighted tree
	Applying Centroid Decomposition

	Generalization
	Tree Decomposition

	Eccentricities
	Orthogonal Range Searching
	Preliminaries
	Range Trees
	Remark on Range Trees

	Asymptotics
	Wiener Index

	Experimental demonstration
	Running Times
	Generation of test data
	Measurements

	Discussion

	Conclusions and Future Work
	Bibliography
	Tom sida
	Tom sida

