
Chatbot for Configuration

Niklas Lindvall, Robin Ljungström

MASTER’S THESIS | LUND UNIVERSITY 2018

Department of Computer Science
Faculty of Engineering LTH

ISSN 1650-2884
LU-CS-EX 2018-07

Chatbot for Configuration

Niklas Lindvall
ada08nli@student.lu.se

Robin Ljungström
ada09rlj@student.lu.se

May 17, 2018

Master’s thesis work carried out at Axis Communications AB.

Supervisor: Daniel Andersson, Daniel.B.Andersson@axis.com
Johan Rönnåker, Johan.Ronnaker@axis.com

Ulf Asklund, ulf.asklund@cs.lth.se

Examiner: Martin Höst, martin.host@cs.lth.se

mailto:ada08nli@student.lu.se
mailto:ada09rlj@student.lu.se
mailto:Daniel.B.Andersson@axis.com
mailto:Johan.Ronnaker@axis.com
mailto:ulf.asklund@cs.lth.se
mailto:martin.host@cs.lth.se

Abstract

With the rise of artificial intelligence and the way of communicating is shifting
over to instantmessaging, the natural conjunction is intelligent chatbots. These
chatbots can be used to either talk about personal issues, technical issues with
a system or customer service.

The problem of understanding a system diminishes with a chatbot. Instead
of needing to understand a system, the system can understand the user. This
is also the obstacle to developing a chatbot. To develop a chatbot that can
understand natural language, and take sufficient decisions to understand the
important information from natural language.

Development of our chatbot was inspired both by other existing chatbots
and from conducted user tests. The user tests were observed and difficulties
were identified, difficulties that the chatbot needed to handle.

The result of the work is a prototype chatbot that can help guide a user
to configure a system and help with any question that might arise during the
configuration. The burden of understanding the system is shifted to the chatbot
rather than the user.

The prototype chatbot is evaluated with a concluding user test to see if it
is a suitable way of configuring a system, evaluate if the chatbot could help
with the problem of configuring a system and how it compares to the existing
graphical user interface.

From the evaluation we can draw the conclusion that a chatbot is suitable
for a configuration tool. It is best used as a complement to an existing tool, as
to help understand the underlying system.

Keywords: Conversation User Interface, chatbot, Configuration

2

Acknowledgements

We would like to thank everyone who made our master thesis possible. We would like
to express our gratitude to our supervisor Ulf Asklund for his patient guidance and all of
the great advice during many discussion. We wish to acknowledge Axis Communications
for their hospitality and engagement, which surpassed all expectations. We are thankful
towards everyone who participated in the user tests, discussions and the feedback they
provided. Finally we would like to extend a special thanks to Daniel Andersson and Jo-
han Rönnåker at Axis Communications for their encouragement, invaluable feedback and
expertise.

3

4

Contents

1 Introduction 9
1.1 Background . 10
1.2 Hypothesis . 10
1.3 Research Questions . 10
1.4 Disposition . 11

2 Theory 13
2.1 Conversational User Interface . 13
2.2 Chatbot . 14
2.3 Access Controller . 15
2.4 Application programming interfaces . 15
2.5 JSON . 16
2.6 JSON Schema . 17
2.7 Framework . 17
2.8 Bot frameworks . 18
2.9 Natural Language Processing . 19
2.10 Previous work . 20

3 Methodology 23
3.1 Scope . 23

3.1.1 Limitations . 24
3.2 Framework selection . 25

3.2.1 Framework identification . 25
3.2.2 Framework Requirements . 25
3.2.3 Evaluation . 26

3.3 Development . 26
3.4 Evaluation . 27

3.4.1 Scenarios . 27
3.4.2 User Test . 28

3.5 Analysis . 29

5

CONTENTS

4 Implementation 31
4.1 System overview . 31
4.2 Integration . 32
4.3 Dialogs . 32
4.4 Logical path . 32
4.5 Input Validation . 34
4.6 Choice . 34
4.7 Memory . 34
4.8 Optional values . 34
4.9 Confirmation . 35
4.10 Natural language processing . 35

5 Result 39
5.1 Framework Selection . 39
5.2 Framework evaluation . 40
5.3 User test . 40

5.3.1 Test overview . 40
5.3.2 User test 3 . 41

5.4 Focus areas . 43

6 Threats to validity 45
6.1 Internal validity . 45
6.2 External validity . 46

7 Discussion 47
7.1 Evaluation of framework . 47
7.2 Implementation . 47

7.2.1 Access Controller integration 48
7.2.2 Error handling . 48
7.2.3 Natural Language Processing . 48

7.3 User tests . 50
7.3.1 User test 1 . 50
7.3.2 User test 2 . 50
7.3.3 User test 3 . 50

7.4 Chat context . 51
7.4.1 Starting point . 51
7.4.2 Getting started . 51
7.4.3 Learning period . 51
7.4.4 Timed measurements . 52

7.5 Functionality overview . 52

8 Conclusion 53
8.1 Future work . 54

8.1.1 Expert system . 54
8.1.2 Linguistics . 54

Bibliography 55

6

CONTENTS

Appendices 59

A Framework - Overview 61

B Dialog relations 63

C Form 65

D User Test Scores 71

E Test observations 73

7

CONTENTS

8

Chapter 1
Introduction

We interact with many computerized systems in our daily life, in everything from the
payment method at the grocery store to traffic lights at an intersection. Sitting at a desk
with a screen and keyboard to interact with computerized systems is no longer the norm[1].
Laptops and smartphones brought us away from our desks and made us mobile. The
last decade has been revolutionized by smartphones, which made a compact, touch-based
interaction available everywhere. Recently a surge of Virtual Personal Assistants, such
as Apple Siri, Amazon Alexa, and Google Assistant and is shifting the way to interact
again[2][3].

The vision of conversational interfaces is that we would be able to communicate with
technology as freely as with another person. A user can simply, in a natural language, state
his intent and the system will parse what is needed to perform the intent.

The concept of technology imitating human interaction was popularized by the Turing
Test by Alan Turing in 1950 [4]. The foundation of the test is to see if a computer can
communicate in such a way that it is indistinguishable if communicating with a human or
a computer.

Joseph Weizenbaum is often contributed as the creator of the first chatbot ELIZA,
which tried to emulate Rogerian psychotherapist and was created in 1966. Up to 1980
language processing was based on written rules. But in 1980 the introduction of machine
learning gave way to more complex versions of language processing.

In early 2000, chatbots got popular again. Numerous chatbots were developed as cus-
tomer service helpers, such as Anna by IKEA[5] and Erik by the Swedish National Tax
Board[6], but they were limited in both use and capabilities. They were mainly controlled
by specified rules and could only answer questions.

During 2016 Microsoft introduced their bot framework and later Facebook opened
up their Messenger Platform[7][8]. This made it so that many companies started inte-
grating their services into chatbots. It is now possible from Facebook Messenger to or-
der a car from Uber, purchase a pizza from Dominos and receive breaking news from
CNN[9][10][11]. Axis Communications is now interested to see how a chatbot could be

9

1. Introduction

used to interact with their devices.

1.1 Background
Axis Communications is a security company based in Lund, with a large portfolio of se-
curity products such as security cameras, door access stations and access control systems.

The Access Control System is a device containing the logic for user permissions in a
physical security environment. The device handles the information received from a card
reader, decides if the card is allowed access and controls the opening of the associated
entrance. For small to medium business, Axis Communications provides a web applica-
tion available on the device to configure it, such as add new cards or change permissions.
Axis Communications are always looking to further improve the usability of their prod-
ucts and simplify the ease of use of their products. Can a chatbot make the device easier
to configure?

1.2 Hypothesis
Using a chatbot to interact with a system, can move the burden of understanding from the
user to the system. A user can often formulate their intent for an interaction and a chatbot
can from the given sentence construct a perception of the intent of the interaction. The
system also knows if any information is missing and can proceed to ask the user for any
additional information. If at any point the user doesn’t know what to do, a chatbot can
guide the user to what needs to be performed for the interaction.

Chatbots can be viewed as a human-like machines, and will therefor give a system
a friendlier face[12]. Describing a problem is often easier than trying to find the solu-
tion yourself, even if the listener is a computer with predefined answers[13]. A common
collection name for chatbots is Conversation User Interface.

1.3 Research Questions
From the hypothesis, we arrived at the following questions. Since we did not want to
develop the entirety of a chatbot a bot framework should be used.

As there already exists a tool for configuring the Access Controller, that gives us the
option to compare the two different approaches to configuration tools.

As describing a problem is easier than trying to find a solution by yourself, we have to
make the chatbot understanding and be able to describe solutions in a friendly manner.

RQ1 Are there any bot framework that can be used for this kind of work?

RQ2 Is it possible for a chatbot to be used as a substitute or complement to an existing
tool for configuration?

RQ3 How does a conversational user interface compare to a graphical user interface?

RQ4 Is it possible to have the chatbot be clear enough as to not require any external help
or information in order to make use of the system?

10

1.4 Disposition

1.4 Disposition
This is a brief overview of the thesis rapport and a short introduction to each chapter.

Chapter 2 - Theory gives a short theoretical background to the thesis work.

Chapter 3 - Methodology describes the methods and tools we used to develop the chat-
bot

Chapter 4 - Implementation describes the approach we used to solve the problems we
encountered.

Chapter 5 - Result shows the result from the different parts of the thesis work.

Chapter 6 - Threats to validity explains the ways we might have been wrong or how our
methods might have skewed the result

Chapter 7 - Discussion Discussion of what went wrong and how we interpreted the data
we gathered.

Chapter 8 - Conclusion is our ending statements, including future work, and answers the
research questions.

11

1. Introduction

12

Chapter 2
Theory

This chapter will explain the theory behind the many parts that make up the chatbot. The
features used to connect the chatbot to the Access Controller is explained in sections 2.3 -
2.6. The features used to make the chatbot understanding is explained in sections 2.9 and
2.9. The bot framework itself is explained in section 2.8.

2.1 Conversational User Interface
Conversational User Interfaces is the vision of trying to make the human-machine interac-
tionmore similar to a human-human interaction. By having a dialog where the information
or instructions are exchanged during a dialog, where the burden of understanding is moved
to the machine understanding humans, rather than humans understanding the machine. In
the ideal scenario, a person would be able to communicate in a natural language and the
machine would understand the intent of the dialog, similarly to how humans would per-
form the interaction. Unfortunately, language is complex and constantly evolving, which
makes this a hard, if not impossible, task to achieve fully. Therefore two broad categories
are used to describe a systems approach; conversational and command-based[14].

Conversational systems encourage communication in free form and are meant to be
more of a conversation companion, rather than an interaction with a system. As these
types of systems do not look to understand the intent, they instead look to understand the
context to have a meaningful answer to any given sentence. They seldom strive to achieve
more than the actual conversation.

Command-based systems share the burden of understanding between the human and
the machine. The user needs to communicate with clear actions and intent, with a structure
suited for the system. This way it is clear that you are communicating with an interface
for a system.

Most often a system cannot be purely defined as one of these approaches, but it is in
most cases clear which approach it has aimed for as a Conversational User Interfaces.

13

2. Theory

Command-based and Conversational system share many methodologies, in which the
most common one is domain limitation. When limiting the operational domain of a system,
it becomes easier to understand the intent of a user. This does require the user to gain or
have a certain understanding of the operational domain, so a user can communicate within
the set domain. For example, the scenario of ordering a pizza; The domain is the action
of purchasing and the subject is a pizza, the result is pizza. Assuming that you previously
enjoyed pizza, the conversation for this domain won’t confuse you and the system can be
constructed with the assumption of some expertize.

Command-based

human: I would like to order a pizza.
agent: Eat here, delivery or take-

away?
human: Take-away.
agent: Would you like a Vesuvio,

Capricciosa or Calzone?
human: Vesuvio
agent: Would you like to order an-

other pizza?
human: Yes.
agent: Would you like a Vesuvio,

Capricciosa or Calzone?
human: Calzone.
agent: Would you like to order an-

other pizza?
human: No.
agent: Your order will be ready in 10

minutes.

Conversational

human: I would like to order a Vesu-
vio and Calzone.

agent: Would you like it delivered?
human: No, I would like it take-

away.
agent: Anything more?
human: That is all.
agent: Your order will be ready in 10

minutes.

Figure 2.1: Example of Command-based vs Conversational

2.2 Chatbot
Chatbots are the subcategory of Conversational User Interfaces which are restricted to
written communication. This removes the subject of speech recognition, the process of
interpreting sound waves to sentences, and the uncertainty that comes from this process.
In a chatbot, it can be assumed that written sentences provided do not contain any uncer-
tainties, which is not necessarily the case after speech recognition. This makes chatbots
simpler to integrate than speech conversational user interfaces.

The popularity of chatbots are increasing, but they have been around for a long time.
One of the first being ELIZA which was released in 1966. However, improvements to AI
have made bots smarter and more coherent in their conversational skills to the point where
they can hold meaningful conversations about a given topic. The growth in messaging
platforms has also increased the demand for automated response systems.[15]

14

2.3 Access Controller

Figure 2.2: Relations in user management

Chatbots are best used when helping users with menial tasks. Chatbots are efficient
where the solution to a problem is easy and predictable. In many cases, you don’t need
to try and understand what the user wants, instead present every available command. If a
user for instance chats with a customer support bot, the chatbot can show everything it can
help with and if the chatbot is unable to help with the specific problem a human agent is
available to take over.

In cases where there are chatbots available to help users with these easier tasks, a
chatbot can solve the problem without any human interaction in about 80% of cases [15].

2.3 Access Controller
Access Controller serves the purpose of controlling access to an entrance, most commonly
a door or an elevator. The Access Controller contains which user owns which card, what
card have access to which door, during what hours of the day, if the door requires a PIN-
code etc. Based on this the Access Controller decides if you are authorized to enter.

For a user to gain access he must have a credential belonging to a group, a schedule
and a set of doors, as shown in Figure 2.2. This is most commonly configured through the
web clients user management screen, shown in Figure 2.3.

2.4 Application programming interfaces
Application Programming Interface (API) is a general term for away of interacting application-
to-application. The API exposes functionality within and can be used to build external
implementations, which can expand the functionality of the system or integrate the func-
tionality over multiple different systems.

The most commonly used API on the web is called a Representational State Transfer
(REST) API. This is a way to mainly exposing the representation of the data within a
system. By sending a query to the API a certain set of data is returned, based on the query.
The query of data is in this type of API described in the PATH, GET and/or POST field of
the HTTP request.

15

2. Theory

Figure 2.3: Interface for user management

2.5 JSON

JavaScript Object Notation is an open-standard data representation derived from JavaScript
and is used to transfer data between different systems running different programming lan-
guages. Values can be an object, list, string, number, true, false and null. A simple
example can be seen in Figure 2.4.[16]

{
" name " : " John Doe " ,
" age " : 23 ,
" n icknames " : [

"Doey " ,
" Johnny "

]
}

Figure 2.4: Example of JSON Object

16

2.6 JSON Schema

{
" t i t l e " : " Pe r son " ,
" d e s c r i p t i o n " : " A t t r i b u t e s o f a pe r son . " ,
" r e q u i r e d " : [" name " , " age "] ,
" name " : {

" t ype " : " s t r i n g " ,
" d e s c r i p t i o n " : " P rope r f i r s t and l a s t name . "

} ,
" age " : {

" t ype " : " number " ,
"minimum" : 0 ,
" d e s c r i p t i o n " : "Number o f y e a r s t h e pe r son has been a l i v e . "

}
" n icknames " : {

" t ype " : " a r r a y " ,
" d e s c r i p t i o n " : " F am i l i a r form of t h e p r op e r name " ,
" i t ems " : {
" t ype " : " s t r i n g "
}

}
}

Figure 2.5: Example of JSON Schema for Figure 2.4.

2.6 JSON Schema
JSON Schema is a complement to the JSON standard. It uses a JSON-based format to
specify the valid formation of a JSON object. The standard consists of a JSON object
describing each field present, what is required to contain, what is optional and other lim-
itations, such as for example length of the value. This opens up for a lot of possibilities,
such as automated validation or testing, since the specification is written in an easily tra-
versed format. It can act as a contract for local validation in a server-client solution, which
has led to its inclusion in the OpenAPI specification[17][18].

2.7 Framework
A framework is a software with generic abstract methods that can be expanded with user-
written code and enables the possibility to be changed for a specific application. Most
commonly frameworks consist of functionality shared by all applications within the do-
main, providing a reusable structure and base functionality. Often the framework provides
an abstraction of platform integration so that the application can be executed on different
platforms without separate implementations.

17

2. Theory

Figure 2.6: Illustration of a framework

2.8 Bot frameworks
A bot framework is an implementation that assists you when building a chatbot and pro-
vides functionality most chatbots require. Specific frameworks differ in their approach, re-
sponsibilities, and level of abstraction, but have many similarities. The most fundamental
functionality provided is a structured representation of a conversation, such as whenever a
message is sent to the bot, a response is generated and sent back. This can be represented
in simple trigger-action scenarios or more complex dialog flows with multiple interac-
tions. Many provide simplified ways of asking questions, receiving valid data and storing
the data in association with a dialog, a conversation or a user. Since language is inher-
ently a big part of chatbots, many also provide a format to keep track of and implementing
functionality towards multiple languages. A lot of them provide a way to interact with
messaging platforms, providing a unified way to integrate and deploy to multiple messag-
ing platforms, such as Messenger, Whatsapp, and WeChat. Many also provide some kind
of implementation to parse the intent of a user, through different kind of approaches. Since
communication takes place in a human written form, many frameworks also provide some
kind of natural language processing engine.

Microsoft Bot Framework

This section will briefly explain how Microsoft Bot Framework handles conversations.
Whenever a message is sent to the framework a so-called conversation is started.

Within that conversation, different dialogs can be started. A dialog consists of one or
more steps, which either gives information or expects additional input. Within a conversa-
tion, several dialogs can be held and freely switched between. Information within a dialog
is held within that dialog, and not accessible from other dialogs. However, information
held in the conversation is accessible for all dialogs.

To start a conversation an intent have to recognized from the input of a user. The intent
comes either from an internal class called recognizer or an external module supplied
by Microsoft called LUIS.

18

2.9 Natural Language Processing

2.9 Natural Language Processing
Natural Language Processing (NLP) is the theory of a computer being able to understand
humanwritten form and to translate computer output to natural language. This is necessary
for a chatbot to understand more than just predetermined commands.

The following subsections are theories that are commonly used in understanding nat-
ural language. These theories are in turn used either fully or partly in our chatbot.

Classifier
Classifiers are used to define which set of categories a new observation should belong to,
based on previous training data. In natural language processing, this is used to classify a
sentence into a group of commands that the chatbot can handle. A common technique for
this is the Naive Bayes Classifier [19]. Classifiers can be used to categorize larger sets of
text blocks to extract keywords.

Stemming
Stemming is a technique in which you can scale a word down to its base version. This is
not to be confused with the base version as singular, undefined. This is a base version done
computationally. For example, the base version of ”universal” is ”univers”. This makes it
easier to detect different inflections of words, such as plurals or defined versions. The issue
with stemming is also that some words gain the same base version. Such as ”universal”
and ”university” both have ”univers” as the base stem.[20]

Inflection is a subcategory of stemming. As most inflections in the English language
is changes to the end of the word, it will still manage to get the correct stem. However,
stemming can destroy vital words and vital information in a certain sentence which is why
lemmatization or morphological segmentation is done before stemming. These methods
first detect if the word is referring to something or if it is referring to a plural version of a
word.

Bag of words
Bag of words is a technique used when classifying sentences. In natural language, ordering
of words is important. In English, the word ordering is Subject - Verb - Object (I gave him
the book, subject being I, the verb is gave, and book is the object)[21]. The bag of words
technique does not take this ordering into consideration while classifying a sentence and
strictly considers which words have been mentioned.[22]

This technique makes it easier to classify sentences but some information may be lost
due to the fact that ordering is ignored.

Part of Speech
Part of speech tagging is the technique used to tag each part of the sentence as its type of
word, such as nouns, verbs, adjectives etc. This is done by using a big learning set and a

19

2. Theory

set of rules to train the tagger on what it should do. The learning set contains words with
their respective tags. The rule set contains rules for words with more than one possible
tag. For example, the word ”tackle” in ”fish tackle” is a noun, but the same word in ”the
player did a dirty tackle” is a verb. Using preceding tags will in most cases solve this.[23]

Word segmentation
Abig block of text is difficult to handle and because of that chunks of text is usually divided
up into smaller blocks. These smaller blocks are then broken up into n-grams or by word
lists.

N-grams divides the sentence up into chunks which are n words long. Google, for
instance, uses n-grams a lot to guess whichword ismost likely to come next in its predictive
search[24]. N-grams are mostly used in speech recognition to see if the word our speech
recognizer found is even likely to be there.

The smaller lists of texts are usually broken up by sentences. A good divider is a period
or comma. Within these smaller, texts you can either keep the order of words or treat it as
a bag of words and ignore ordering.

Feedforward Neural Network
Instead of using a Naive Bayes method to classify sentences, a neural network can be used.

Neural Networks is the practice of making a computer create a solution for a problem
based on a set of data, commonly referred to as a learning set. The system randomizes
values in a model, evaluates the result towards the learning set and adjust the model to get
a smaller error. This is performed a certain number of times or until a specified error is
achieved, then the model is considered trained. The models used differ based on what kind
of problem that needs to be solved. For a finite classification, a Feedforward model is often
used[25]. The Feedforward model consists of multiple layers, whereas the result is fed into
the following layer in a unidirectional manner. The layers are consisting of weights, which
are the values adjusted when training the model. The input data is an array of data points,
and the output consists of an array with the likelihood that the input can be classified as
any of the output parameters.

2.10 Previous work
We studied other chatbots and how they interacted. Some have a narrow domain of usage,
so talking about a certain subject will get a response while not talking about a certain
subject will yield an ”I do not understand” response. Other have a larger domain of usage,
so it will respond to almost anything you write. Since our work is domain restricted, we
studied the chatbots which had a narrower domain restriction in more detail.

In order to aid with the configuration of a system, tools are often developed to help
users with difficult tasks. These tools generate a complete configuration based a few inputs
provided by the user[26].

20

2.10 Previous work

ELIZA
ELIZA is considered one of the first chatbots ever created and was trying to emulate a
psychiatrist[27]. ELIZA could identify some words and put them into a sentence in the
type of a question. If you told ELIZA ”My head hurts”, it would answer with ”What makes
you say your head hurts?”. It gives the impression of a human talking, but it was purely
rule-based, with rules concerning certain trigger words. These include family-oriented
words (such as ”father”, ”mother” etc.) and the response was different in those cases. Most
responses were hard-coded and only switched out the trigger word used in the previous
sentence.

Ellie
Defense Advanced Research Projects Agency (DARPA) has performed a lot of research
into ways of identifying and treating people with depression and PTSD. A lot of time
diagnosing the problem is taking up a lot of resources. The study was meant to see if you
could have a virtual persona to perform the first interaction and do a basic diagnosis[28].

Ellie was the name of the virtual persona. They studied three approaches: Human,
wizard of oz and completely automated. They concluded that it is plausible to use a vir-
tual persona to perform the initial assessment of depression and PTSD. They found it in-
teresting that participants who thought they were interacting with the automated persona
acted differently than the participant who thought they communicated with another human.
Participants provided more information, reported a lower fear of evaluation and permit-
ted more emotional response when they thought they were interacting with an automated
system[29].

Tay & Zo
Microsoft Tay was a purely conversational chatbot encouraging free dialog and trying to
imitate a fourteen-year-old girl. It used unsupervised learning on twitter to learn how
to converse. While this was an interesting project, the unsupervised nature of Tay was
taken advantage of and was shut down after a mere 24 hours[30]. While Tay itself was
controversial, it spawned Zo which is arguably one of the better conversational chatbots1.

Iris
Iris, on the other hand, uses a complex engine to formulate its answers while interact-
ing with a mathematical system[31]. Iris was introduced as a helper with mathematical
problems. It distinguishes itself because of its ability to use memory and understanding
references. It uses what was the subject earlier to formulate answers, which is very com-
mon in conversations. This referencing can be incredibly difficult for a computer to under-
stand. Iris solves that by saving all information and word data for the following incoming
sentences.

1https://www.zo.ai/

21

https://www.zo.ai/

2. Theory

human: Can you calculate the calculate a person correlation between psitpe22 and
takr?

iris: Sure, the correlation is 0.817 with p-value of 0.0032.
human: Is that statically significant?
iris: Yes, p-value is less than 0.05.

Figure 2.7: Example from "Iris: A Conversational Agent for
Complex Tasks"[31]

22

Chapter 3
Methodology

To evaluate our research questions a prototype chatbot was integrated for an Access Con-
trol System. We identified the bot frameworks available, evaluated their capabilities and
selected one to be used in this implementation. The bot framework evaluation is described
in more detail in section 3.2. To gain knowledge in chatbot interaction, we studied previ-
ously created chatbots, which are summarized in section 2.10.

When implementing the chatbot, we divided the work into three phases, which had
different focus areas and concluded with a user test to evaluate the implementations. The
user test was designed from scope (see section 3.1) and the same test scenarios were used
during every evaluation. The user test observations and user feedback were analyzed as a
focus for the next phase.

An overview of the work and how each phase was designed can be seen in figure 3.1.
Phase 1 was focused mainly on the integration towards the Access Controller, the un-

derlying structure of our expert system and functionality observed from the study of exist-
ing chatbots. During phase 2 and 3, the focus was more user-centric, which is the reason
primarily user test 2 and 3 will be acting as a basis for analysis. Phase 2 focused on making
the chatbot understand the user and suitable communication for users with prior knowledge
of the Access Controller. Phase 3 was focused on making the chatbot suitable for interac-
tions with users with no prior knowledge of the system. After phase 3 the proof of concept
chatbot was considered implemented and the user test of the chatbot was performed in
comparison to the existing interface for the Access Controller.

3.1 Scope
The Access Controller has a lot of functionality for installation and configuration of the
environment which it will be working within. We choose to limit our scope to be the
operational use of the Access Controller because these were deemed to be a likely use
case for a chatbot. Operational use is big enough to describe advanced relationships and

23

3. Methodology

Figure 3.1: Overview of methodology

interactions, but small enough for a fully functioning chatbot to be constructed. The system
functionality we are limiting our scope to includes the actions;

• Add/edit/remove a user.

• Add/edit/remove a credential.

• Add/edit/remove an access profile.

• Associate a user with a credential.

• Associate a credential to an access profile.

• Associate a door to an access profile.

• Associate a schedule to an access profile.

Doors are set during installation and are assumed to be present and without change. A set
of schedules are present by default, such as workday, weekend and always.

3.1.1 Limitations
Some parts of this works is limited tomake it plausible to implement, evaluate and analyze.
There are many factors and perspectives when studying the interaction of a chatbot, but
for the sake of this project we have chosen to limit our scope as following:

24

3.2 Framework selection

Framework A bot framework will be used as a foundation for this work. The choice of
bot framework will be highly subjective and should not be taken as a defining fact
of superiority.

Environment The Axis Physical Access System is an existing product and will not be
subject to change during this work. All implementation will be performed towards
the openly accessible API called Vapix®.

Security Restrictions such as password and access security will not be part of this work
and therefore not taken into consideration.

Sample group User tests will not strive to be a truly unbiased test group, but rather a con-
venience sample. It will be geographically restricted to the southern part of Sweden
and people of a higher than average computer skill.

3.2 Framework selection
There are many frameworks available that can be used as a base for a bot. They provide
different levels of abstractions and approaches to integrating a bot. Our approach was to
find as many framework candidates as possible, if they fulfilled our requirements they were
evaluated and the best one was chosen to be used in the development.

3.2.1 Framework identification
We identified bot frameworks which had a certain level of popularity, which excluded
personal (lesser number of contributors) and abandoned projects (inactive for more than
a year). Identification of candidates was mainly performed from popular repositories, on
the service GitHub (which contained the tag ”Bot”), and from a comparative list of bot
framework from published by Chatbots Journal[32]. The list A.1 contains the possible
candidates and their basic attributes.

3.2.2 Framework Requirements
Requirements were described as easily identifiable attributes. We considered attributes
that would aid or be required to perform our work. We choose to use aMoSCoW (acronym
derived from ”Must have, Should have, Could have and Won’t have”) formation to our
requirements. The ”Must have” requirements are critical to the project. ”Should have” re-
quirements are important but not necessary for the project. ”Could have” requirements are
nice to have but won’t have any significant impact on the decision. ”Won’t have” require-
ments are not important to the project and won’t have any weight at all on the decision.

We arrived at these requirements partly based on inquiries from Axis Communication
and partly based on our own constraints and abilities. The ”Must have” requirements are
based on Axis Communications constraints, while the rest of the requirements are based
on our own constraints.

25

3. Methodology

Local environment The framework must be able to be hosted locally. Using an external
service could obscure functionality and make it harder to understand underlying
structure and functionality of the framework. It also creates a dependency on a
service outside our control. This dependency can affect our work in unforeseen
ways. Furthermore, the Access Controller can only be accessed locally.

Open source The framework must have an open source license. Open source provides
transparency of functionality and possibility to expand upon functionality if needed.
Open source frameworks often form a community around it, which in turn makes
the source code vetted and issues are resolved faster. The community also gives
stability in the case that the owner abandons the project, the community can fork the
source code and continue maintaining the framework.[33]

Support The framework should have one or more medium to large organizations or com-
munities supporting the framework. Knowing that larger companies are working
with the framework makes it less likely to be abandoned. It also gives an indication
of a certain level of stability and quality.

Language The framework could have a familiar programming language to the partici-
pants. Adding the complexity of learning a language on top of using a new frame-
work is not desirable.

Integration The framework could have integration towards familiar services. Having
integrations to services would enable us to deploy the chatbot in a familiar environ-
ment, such as Facebook Messenger.

3.2.3 Evaluation
An evaluation was performed on a smaller number of frameworks, that was deemed rele-
vant. To evaluate the final candidates’ suitability for the project a prototype activity was
performed for each framework. The prototype was a proof of concept of a chatbot pars-
ing basic data structure, constructing a dialog and performing simple web request. Each
framework was assigned a limited amount of time. When the activity started nothing re-
lated to the bot frameworks was installed on the computers used to evaluate.

The activity aim was to give a deeper knowledge of the setup process, tools used to
develop and the quality of the documentation. The selected framework was used during the
development of the bot. The selection was based on the experience during the prototype
development.

3.3 Development
Development was performed in a Debian environment with the Access Controller acces-
sible within the local network. Microsoft Bot Framework acted as the foundation and the
programming language Node.js was used to develop the chatbot. To understand how the
API and the relationships it contained, the official documentation was studied to gain an
overview of what was needed to configure a valid data object[34]. The valid configuration
can be seen in Figure 2.2.

26

3.4 Evaluation

The development of the prototype chatbot was done in a total of three phases. Each
phase ended with a user test to verify the goals of the phase had been met and to provide
goals for the next phase. The last phase’s user test was used as a ground to the conclusion
of the thesis work.

3.4 Evaluation
To test our chatbot we used a version of GUI testing[35]. We had a start state and a given
goal state. This both tests our bots behavior and the user interaction. The scenarios in
the test were designed based on our project scope in section 3.1. During the user test,
the chatbot was interacted with through Facebook Messenger, because of its popularity in
Sweden[36][37].

When testing chatbots, usually the human-like behavior (such as trying to pass the
Turing test) of the chatbot is tested[38]. As our chatbot was more of an assistant and not
trying to be human-like this was not be considered. The chatbot should communicate in a
human language form but only be able to converse about the topics that are present in the
Access Controller.

The participants were a sample of convenience from workplace and university. They
therefore shared some attributes; locality of the southern part of Sweden, native language
Swedish, but fluent in English, moderate to high computer knowledge. In user test 1 and 2,
the participants were employees of Axis Communications. In user test 3 the participants
were only consisting of people who have not been employed at Axis Communications.

Before each test the participants were given the following information:

• All interactions are recorded and will not be directly shared.

• Data that is used, will preserve anonymity.

• Tests will be performed individually.

• The purpose is to test the system and not the user.

The test participants received a short introduction to the chatbot and its context; A
chatbot to be used to manage access cards for a buildings physical access control system.
The participants were asked to follow the instructions and fill in their experience in the
form between the scenarios. After completing all scenarios, the participants were asked to
provide personal information in form of age group, occupation, computer skill and amount
of previous experience with chatbots.

3.4.1 Scenarios
The user test scenarios were created to from our scope and common user scenarios for the
Access Controller.
Scenario 1

27

3. Methodology

Create a new user with a new card and in a new group.

Exploratory scenario without any specific values, but presenting a general scenario to con-
figure a valid configuration. This scenario served the purpose of introducing the user to
the general concept of the chatbot and let the participant have a chance to learn before we
collected our data, so not to get skewed results based on the learning curve to be introduced
to a new system[39].
Scenario 2

Create a user with a specified name.
Create an associated, specified card with limited validity.

Associate it with a specified group.

Creating scenario. A specified task and a specified set of values, to emulate a use-case of
introducing a new user to the system.
Scenario 3

Edit a specified user.
Remove a specified user.

Correction scenario. Updating or removing information already persisted in the system.
Scenario 4

Retrieve group membership for a specified user.
Retrieve pin code for a specified user.

Retrieval scenario. Retrieval of specific information whereas the user searches for infor-
mation that isn’t readily available.

3.4.2 User Test
At the end of each development phase, a user test was conducted to validate the goals of the
development phase. These tests was done people in our immediate surroundings, except
for user test 3. User test 3 were done by people in our immediate surroundings with the
exception of people employed at Axis Communications.

Each tester was given approximately 30 minutes to complete the test (in all different
user tests).

The user tests were recorded with a screen recording software in order to be able to
determine why a test participant answered in a specific fashion.

The test consisted of the scenarios mentioned before, a sample of how the test looked
like can be found in appendix C. The tests were done without any input from the observers
and included all information the test participant needed in order to complete the test.

28

3.5 Analysis

User test 1 Scenario 1, 2 and 3

User test 2 Scenario 1, 2, 3 and 4

User test 3 Tested on both the chatbot and the web application supplied by Axis Commu-
nication. Which system a participant started with was randomized. Scenario 1, 2, 3
and 4 as well as doing scenario 2, 3 and 4 on the opposite system.

The user tests were done during the development, both to identify focus areas and to test
if the focus area of the development phase had been met.

Phase 1
As of the first phase the chatbot had a very basic functionality of understanding a user,
and the chatbots answer was inherently difficult to understand. The functionality that was
considered to be done is the implementation towards the Access Controller. The chatbot
had good interaction with the Access Controller and this had to be tested.

The user test 1 was performed in an informal setting where the participants were en-
couraged to share their thought process during the tasks. The tests were recorded by notes
from the test observers based on observation and feedback from the participants.

Phase 2
This phase was focused on being able to properly understand a users intent and the bots
ability to communicate actions taken. The focus of the second phase was the development
of a coherent chatbot. Being able to communicate well enough to be understood by experts.
The tests were recorded for study afterward.

Phase 3
As the second phase was finished we had to get data on how the chatbot (Conversational
User Interface) compared to a web application (Graphical User Interface).

Participants in the user test had to test both systems and were randomized which sys-
tem they would start with. Since this will test the current web application a requirement
from our part was to have an independent tester, so no Axis employees were allowed to
participate in this user test.

3.5 Analysis
After the user test was completed, the results were analyzed to provide goals for the next
development phase. Each user test yielded a list of bugs that also had to be solved.

The screen recordings were analyzed where test results surprised us. From these, we
could extrapolate behaviors from the prototype chatbot that either had to be improved
(where the test showed bad results) or encouraged (where the test showed good results).

The focus of each phase was determined in advance to be Integration - Expert users
- Novice users. However, the user tests helped us shape and fine-tune how the prototype
chatbots interactions.

29

3. Methodology

30

Chapter 4
Implementation

The implementation of the chatbot was divided up into three phases, each phase had dif-
ferent targets for the chatbot in mind. The first phase had the Access Controller in focus,
to make sure the chatbot could ”talk” to the Access Controller. The second phase had an
expert user in mind, to make sure the chatbot could communicate in a way such that a user
which have knowledge of the system could use it. The third phase had a novice user in
mind such that a user who had never used the system still could use the chatbot.

4.1 System overview
The prototype chatbot acts as a tool to interact with an external system. Different sections
of the bot handle different areas. As seen in figure 4.1 there are three sections which each
have an individual problem to handle.

Language Processing will handle the conversion of natural language into an intent that
can be used to start a specific dialog and also extract any additional information that
can be of interest.

Bot Logic is the section that handles the intent and constructs a dialog that should handle
that intent. It also handles the conversion of the answers from the dialog into a valid
data object that is suitable for the external system.

External System is in our case the Access Controller.

Answer Synthesis is the section that handles the data coming from the external system
or the logical section. This data is usually not in a readable form so this section
converts data objects into a human-readable form.

The next sections will go into further detail on our own specific solutions.

31

4. Implementation

Figure 4.1: Overview of how the chatbot communicates with an
external system

4.2 Integration
The chatbot was integrated towards the Access Controller openly accessible API called
Vapix. Since the data was persisted within the Access Controller, no data was stored in
the chatbot. To be able to communicate a representation the API was needed. The rep-
resentation consisted of two parts: Definition of the interaction points in the API and
specification of data objects. The interaction points described the paths to the interaction
point, commands available and expected input/output objects. The objects were specified
using JSON Schema consisting of the structure of the object and information to construct
a valid data object.

4.3 Dialogs
The dialogs are directly representing the API commands available in the interaction points,
such as ”SetUser”, ”GetCredential” etc. These are separated into ”action” (set, get, re-
move) and ”subject” (user, credential, group). The action identified the type of dialog to
be started and the subject identified what JSON Schema was to be used to create the ex-
pected input. The dialog uses the JSON Schema to generate which questions need to be
answered to be able to generate a valid data object. If the dialog was performing an action
which would result in a persistent change a confirm prompt will be presented.

4.4 Logical path
The logical path to create a valid data object is User then Credential then, if necessary,
Group. These three data sets had to be connected in order to give a theoretical user access
to a door.

As a foundation, we set rules on where the chatbot will lead a user. This has the
characteristics of an expert system, which is what we were aiming for. The chatbot will
continue to ask for information to fill all the fields needed to achieve what we consider to
be a valid data object, and if the chatbot is somehow interrupted nothing will be created

32

4.4 Logical path

Figure 4.2: The different paths available to create a valid data
object.

and the information entered will be discarded.

The different paths to create a valid data object can be seen in figure 4.2. ”SetUser” will
start the dialog to create a User object. When that object is created it will then continue
on to create a Credential object with the User object automatically selected, then a Group
object will either be created or selected from a list of previously created Group object.
Once all of these things are fulfilled, a complete valid data object is created and the task
is done.

A different path is starting in Credential, then you need to either select or create a User
object and then either select or create a Group object.

Since the Group object can handle multiple Credential objects we decided to not try to
continue after successfully creating a Group object, because Group object is not contained
in any other object.

Using this, we can assure that every created entity is a valid data object, with any and
all requirements fulfilled. The way the chatbot is constructed it is theoretically impossible
for a data object to be created without the proper requirements fulfilled.

In appendix B the rest of the available dialogs are shown. They function in practice
the same as mentioned above.

33

4. Implementation

Figure 4.3: The chatbot asks for a number, but a string was en-
tered.

4.5 Input Validation
During dialogs, some question the chatbot asks expect an exact type of data to use in the
construction of a data object. These include alphanumerical names, a number for PIN-
codes and card numbers and dates etc. The framework supplied some functionality to
enable this, for instance, the validation and parsing of dates. An example of how the
chatbot answers when an incorrect type of data is supplied can be seen in figure 4.3.

4.6 Choice
The fields which required to be populated by a relation to an already existing data object
was a special case of input. This relationship is described as an alphanumerical string
identifier and could not be expected to be put in manually. Therefore we constructed a
choice dialog, where the chatbot let the user choose a relationship with an entity through
the human-readable content for said entity. The choice dialog also presents the user with
the option to create a new entity. Creating a new entity would trigger the creation dialog
as a sub-dialog, after which the dialog would use the newly created entity as the selected
choice in the choice dialog.

4.7 Memory
Memory is where the chatbot remembers and understands the use of previous data, and
doesn’t ask the user to repeat data previously mentioned. One very clear example of mem-
ory is whenever a user is created the chatbot continues on to create a credential for that
user. Creating a credential is a different dialog and needs the information about which user
the credential is supposed to be added to, the chatbot knows that a user was just created
and will therefore use that user object while creating the associated credential object. An
example can be seen in figure 4.4.

4.8 Optional values
As seen in figure 4.5 there is a lot of information needed for a valid credential object. Some
of these values can be seen as optional values, as they are not specifically required to make

34

4.9 Confirmation

Figure 4.4: A user has been created and then the associated cre-
dential is about to be created. The previously created user is auto-
matically entered.

a fully functional credential. As the chatbot needs an input for every field, some seemed
redundant to ask as they would not be used most of the time. To combat an overly talkative
bot, we decided to make some fields optional. These fields have a predetermined value,
such that the chatbot will not ask for it but can still be changed should that need arise. For
example, the fields ”Description”, ”ValidTo” and ”ValidFrom” are determined
to be optional values. As such the chatbot will not ask for input on these fields unless the
user specifically asks to change them. These include the values defined as memory values.

4.9 Confirmation
Before sending information to the system the chatbot has to ask if all the information the
user enteredwas correct. There are two differentmethods of using confirm dialogs, the first
being to confirm every step of the way (so confirming every input after the user has typed
it), this method is secure but very inconvenient. The other is to collect all information and
then present the information with options to change it. This method adds convenience but
makes it confusing if dialogs are overly long[40, p. 71]. We decided on going with the
latter of the two.

The confirmation prompt is shown every time a data object is about to be changed and
includes information on what is about to happen to the data object (if it will be removed,
created or changed etc.). At this prompt, there is also support to change data that was
entered during the dialog and change the default values that were predetermined by us.
See figure 4.6 of an example on how the confirmation prompt looks.

The response is whether the operation was a success (the object was edited, created or
removed etc.). This can be seen partly in figure 4.4.

4.10 Natural language processing
The language processing engine is a classifier that classifies the sentence as one of our
dialogs. The classifier is a neural network which was implemented with the help of an

35

4. Implementation

{ " p a c s a x i s : S e t C r e d e n t i a l " : {
" C r e d e n t i a l " : [{

" t oken " : " Axis −00408 c184bdb :1351593020 .016190000" ,
" UserToken " : " use r − t oken1 " ,
" D e s c r i p t i o n " : " C r e d e n t i a l d e s c r i p t i o n " ,
" Val idFrom " : " " ,
" Val idTo " : " " ,
" Enab led " : t r u e ,
" S t a t u s " : " Enab led " ,
" IdDa ta " : [{"Name " : " Card " ,

" Value " : "12345678"} ,
{ "Name" : " PIN " ,
" Value " : "1234"}] ,

" A t t r i b u t e " : [] ,
" A u t h e n t i c a t i o n P r o f i l e " : [] ,
" C r e d e n t i a l A c c e s s P r o f i l e " : [{

" A c c e s s P r o f i l e " : " Axis −00408 c184bdb :1351591416 .539133000"
" Val idFrom " : " " ,
" Val idTo " : " " ,

}]
}]}

}

Figure 4.5: An example of a JSON request sent to the Access
Controller in order to create a credential object.

Figure 4.6: The confirmation prompt when creating a user.

36

4.10 Natural language processing

Figure 4.7: Unrecognized response, user was the input.

Figure 4.8: Classifier works during a dialog.

external library called Brain.js[41]. It classifies each sentence and supplies a score on
how certain the neural network was that the classification is correct, ranging from 0 to
1. If the classifier fails to classify a sentence, the score is below a certain threshold, a
dialog will not be initiated and instead number of high scoring intents will be suggested as
guesses. For example, if ”user” is entered the classifier will not be able to with certainty
guess which dialog is intended and instead will show its’ guesses, shown in figure 4.7.
This is a way of asking for more information about a subject rather than saying it is wrong.

The result from the NLP engine is handled differently whether the chatbot currently
is in or outside a dialog. While the chatbot is currently inside a dialog, the unrecognized
dialog is not used, instead, the message is handled by the dialog. While outside a dialog
the message is either used to start a dialog or the unrecognized dialog is used. For instance,
if a name is entered as the chatbot asks for a name the NLP engine will try to classify the
message sent, but will not send the unrecognized prompt as it fails to classify the message,
instead the dialog will handle the message. However, if during a dialog a message is sent
that is classified as a command, the chatbot will attempt to exit the current dialog and start
whichever dialog the message was classified as. An example of this can be seen in figure
4.8.

In order to handle different inflections of words sent to the NLP engine, we used a
stemmer to scale the words down to their base stem.

To detect names outside of an ongoing dialog we use a huge dataset of the most popular
names in America. We check each word if it present in the dataset if it is then we save
it as a name. Numbers are simply extracted from a sentence using a regular expression
method. If a part of the sentence is only numbers, then we store it as a number.

37

4. Implementation

38

Chapter 5
Result

This chapter contains the results from all parts of the work. Starting with the framework
selection and continuing on to the results of the user tests.

During the work, we found some areas that were important in order to have a chatbot
be coherent in a natural setting. These areas are explained in section 5.4.

5.1 Framework Selection
We searched for larger projects that had not been abandoned by the author and had a
medium to large company backing project. The resulting framework that we found is
shown in appendix A.1.

In table 5.1 the results of the evaluation are presented. Our requirements of the frame-
work, being able to be run in a local environment and the project being open source, left
us with three choices. Hubot, Microsoft Bot Framework, and Botpress.

Framework Organization Local environment Open source
Watson IBM
Bot Framework Microsoft X X
BotPress BotPress X X
API.ai Google
Wit.ai Facebook
Messenger Platform Facebook
Hubot GitHub X X
Botkit BotKit (X) X

Table 5.1: Evaluation results

39

5. Result

5.2 Framework evaluation
After looking further into HuBot, we discarded it based on its functionality. Much of its
functionality revolved around doing silly things. We wanted a framework that had a more
professional feel to it.

Botpress had an advanced setup process. When testing the chatbot it needed to be
connected to a service, such as Facebook Messenger, which presented additional setup
of the service and configuration for connections. The framework had no official tools
which presented additional choices of the development environment. It was heavily geared
towards developers with experience in developing web. It used a proprietary format for
conversations called UMM (Universal Message Markdown) which was based on the more
commonly used YAML standard. At the end of the activity, we had the chatbot running
and answering with the static conversation format.

Microsoft Bot Framework had a simple setup, whereas we could run a ”Hello World”
within minutes of installing the corresponding development environment Visual Studio.
The chat emulator made it simple to get started with the chatbot in a local environment,
without setting up additional services. When deploying the chatbot through Azure a vari-
ety of chat channels are available, such as FacebookMessenger, Skype or Cortana. Dialogs
were represented in an intuitive way, whereas it uses a waterfall method. At the end of the
activity, we had constructed a basic proof of concept which could construct dialogs from
simple data and could trigger web requests and present it to the user.

After the evaluation of the two different frameworks, we decided upon usingMicrosoft
Bot Framework.

5.3 User test
There were three user tests done during the thesis work, the first and the second test was
mainly used for implementation goals while the third is used as a base for our conclu-
sion. The tests were done at different times during the thesis work. The first user test was
conducted early on, the second user test was conducted around the halfway mark, and the
third user test was done at the end of the thesis work. The third user test is detailed in this
chapter.

5.3.1 Test overview
In figure 5.1 the reported difficulties are shown. These are self-reported, where one is ”the
chatbot was easy to use” and five is ”the chatbot is difficult to use”. Scenario 1,2, and 3
all have a satisfactory curve. Scenario 1 during user test 2 was considered ”very easy” so
the small rise in difficulty for user test 3 was expected, due to the participants in user test
3 had never seen the Access Controller before. However, the rise in difficulty in scenario
4 was not expected, the cause of this will be further discussed in chapter 7.
Scenario 1 improved between user test 1 and user test 2 but had higher reported difficulty
for user test 3. Scenario 1 was reported to be the easiest scenario.
Scenario 2 showed a decrease in difficulty over the user tests.
Scenario 3 showed a decrease in difficulty over the user tests.

40

5.3 User test

Figure 5.1: Average reported difficulty per user test and scenario.
1 was considered easy and 5 was considered difficult.

Scenario 4 showed an increase in difficulty and was noted as the most difficult scenario.

Since reported difficult was used as a guideline improvements to the chatbot a decrease
in difficulty was desired.

In table 5.2 the participants’ occupation and age group are shown. Our goal was to use
mostly ”expert users” for user test 2 and ”novice users” for user test 3. The occupation row
in the table shows that we met that goal.

5.3.2 User test 3
User test 3 featured both the current web-application and our chatbot. Users were randomly
assigned to a starting version of interacting with the Access Controller and half of the
participants started using the chatbot and the other half started using the web-application
(in total 12 people participated in user test 3, 6 started with the chatbot and 6 started with
the web application).

If the chatbot was used first (see table 5.3) the fourth scenario was considered medium
difficulty, however, the answers were mostly represented on the extremes of easy or diffi-
cult. In all other cases, the chatbot did had little effect on being first or last in the user test.
The perceived difficulty of the bot were increasing as the test participants was using it.

The web-application, on the other hand had decreasing perceived difficulty as the test
participant continued using it. The perceived difficulties can be seen in table 5.4, and the
average difficulty of use, independent of whether the web-application was used first or last,
were decreasing over the scenarios.

The overall reported ease of use (see table 5.5) of the web was significantly improved

41

5. Result

User test 2 User test 3
Participants 25 12

Occupation

Student 0.0% 83.3%
Developer 44.0% 0.0%
Manager 36.0% 0.0%
Thesis student 20.0% 0.0%
Other 0.0% 16.7%

Age group

21-30 56.0% 100.0%
31-40 20.0% 0.0%
41-50 12.0% 0.0%
51-60 4.0% 0.0%

Previously used a bot Yes 60.0% 83.3%
No 40.0% 16.7%

Table 5.2: User test 2 and 3 - Participants

Bot first last
average median average median

Scenario 1 1.83 1 N/A N/A
Scenario 2 2 2 2.167 2
Scenario 3 2.167 2 2.167 2
Scenario 4 2.83 3 2.5 2.5

Table 5.3: User test 3 - Bot rating
1 was considered easy and 5 was considered difficult.

Web first last
average median average median

Scenario 1 2.5 2 N/A N/A
Scenario 2 1.333 1 2 1.5
Scenario 3 1.333 1 1.5 1
Scenario 4 1.167 1 1 1

Table 5.4: User test 3 - Web rating
1 was considered easy and 5 was considered difficult.

first last
average median average median

Bot 3.16 3 2.833 3
Web 2 1.5 3.833 4

Table 5.5: User test 3 - Overall ease of use rating
5 was considered intuitive and 1 was considered unintuitive.

42

5.4 Focus areas

Bot first last
average median average median

Scenario 1 4 m 38 s 2 min 43 s N/A N/A
Scenario 2 4 min 51 s 4 min 5 s 3 min 12 s 3 min 5 s
Scenario 3 3 min 54s 4 min 2 s 3 min 6 s 3 min 2 s
Scenario 4 3 min 38 2 min 50 s 3 min 8 s 3 min 12 s

Table 5.6: User test 3 - Average time measurements for bot

Web first last
average median average median

Scenario 1 2 min 32 s 2 min 33 s N/A N/A
Scenario 2 1 min 44 s 1 min 39 s 2 min 39 s 2 min 32 s
Scenario 3 57 s 57 s 56 s 45 s
Scenario 4 31 s 27 s 25 s 20 s

Table 5.7: User test 3 - Average time measurements for web

whether the chatbot was used before or not. However, the chatbot did not see any signifi-
cant improvements whether the web was used before or not.

convenience
Tables 5.6 and 5.7 shows the average time to complete each scenario in chatbot and

web.
When the chatbot was used first some outliers were present for Scenario 1 and 4, which

is indicated by the average deviating from the median. The chatbot saw an overall decrease
in time from being the last interaction.

Whenever the web-application was used for the first time (whether being used before or
after the chatbot), the time to complete that scenario was considerably longer than in other
scenarios. In the other cases, the time showed no significant difference between being the
first or the last. An overall comparison between the chatbot and the web, the web interface
was significantly faster.

5.4 Focus areas
We found four focus areas regarding Conversational User Interface during our work that
the chatbot was required to handle. These areas were derived from the user tests (See
appendix E) and study of other chatbot integrations (See section 2.10).

Integration The chatbot should always be functioning alongside the Access Controller.
The chatbot should be able to construct valid data object that can be sent to the
Access Controller without containing faulty information such that the Access Con-
troller won’t accept the data object.

Error-handling Handling faulty sentences is a form of error-handling in a conversa-
tional user interface. Everyone expresses intents in a different way and as many
of these variations as possible have to be handled. Incorrect information should not

43

5. Result

be considered wrong, instead the chatbot should ask for clarification or for more
information.[14]

Input requirements Creating a valid data object requires a lot of input and some of it
should be able to be skipped. Values that can be guessed, should be guessed and
later given the option to change it rather than asking too many questions. Input has
to be as easy as possible to generate, users should not be required to know exactly
what is needed to create a valid data object. Instead, the chatbot should ask what is
needed and give ample suggestions.

Feedback As the chatbot answers, the bots sentences cannot be overly long, neither can
it hide information. The feedback from the chatbot needs to be limited, to com-
bat information overload[42]. The chatbot has to talk in a human-like way, as to
displaying computer variables hastily thrown together will not be acceptable.

The focus areas were used as guidelines during the development phases. As predicting
how a certain individual will interact with a chatbot is impossible, these areas gave us an
idea on how to handle the interaction in an average case.

For example, during the development of new functionality, we had to make sure the
bot could skip as much as possible during the conversation while creating the data object.
During the conversation, the chatbot should not send messages that are unimportant and
the messages that the chatbot does send should not be longer than a sentence.

These focus areas are the result of the evaluation of the conducted user tests and should
be taken into consideration when developing a chatbot as a tool for configuration.

44

Chapter 6

Threats to validity

Threats to validity are the observed factors that could indicate that the conclusions and
results of this work are unreliable, inconsistent or incorrect. Within this chapter, we will
discuss the two categories of threats to validity affecting our work: Internal validity and
External validity.

6.1 Internal validity

Internal validity is whenever the results are caused by other factors than the ones observed[43].
The threat to our internal validity comes from two aspects: The subjectivity of self-reported
difficult and sample size.

The sample size, consisting of a total of unique 38 participants, could be considered to
be small. Some of our user tests and measurements contained extreme data points, which
within our smaller sample had a greater influence on the resulting averages. To combat this
threat we chose to display all averages next to their medians so that larger inconsistencies
would be easily identifiable.

In the user tests performed the difficulty was reported by the participants, with only
the extremes as references (”difficult” vs ”easy”), which makes the results subjective. The
perceived difficulty of a task is highly individual and dependent on previous knowledge
and experience.

Since these threats to validity were present for all user test we conclude that they do not
greatly affect the interpretation of the results since the results is interpretation are relative
relationships between tests.

45

6. Threats to validity

6.2 External validity
External validity discusses to what extent conclusions from this work can be general-
ized and applied in similar situations, not strictly within the scope and limitations of this
work[43]. This work has two major threats to external validity: Product dependency and
selection of test participants.

The product used for this work is an Axis Communications Access Control System.
The scope used, user management, is a common type of configuration present in many
products and not unique for the Access Control System. The underlying data structure
does not greatly differ from other systems implementing some kind of user permissions
and it would therefore be plausible to use the results and conclusions of this work to for a
similar system.

Our biggest threat to external validity is sample bias since test participants consisted
of a sample of convenience. This included employees at Axis Communications, thesis
workers at Axis Communications, students at LTH and acquaintances. Most of which are
professionals, students or enthusiasts within the field of computer science, which is very
strong selection bias. This has probably affected their interaction and reported experience,
and could account for their overall low rating of difficulty. Therefore it could be concluded
that the conclusions are applicable for people with medium to high computer knowledge.

46

Chapter 7
Discussion

In this chapter, we will discuss the process’ and results from the different parts of the thesis
work.

7.1 Evaluation of framework
When we started to evaluate we had little to no knowledge about chatbot frameworks. We
constructed requirements from previous experiences of other types of frameworks. We
have been very satisfied with the choices we made.

Especially the attribute to be supported by a larger company, sincemany of other frame-
works we evaluated has by the end of this work been integrated into larger companies.
Wit.AI was acquired by Facebook[44] has been focusing more and more on working with
Messenger. API.AI was acquired by Google[45] and rebranded as DialogFlow.

We performed the evaluation on Windows computers which ended up being less the
ideal, because the computers we used for this work was Debian based. One of the rea-
sons we liked Microsoft Bot Framework was because of its use of C#, which is not very
suitable to be used in a Linux environment. This led us to switch over to the NodeJS im-
plementation of the framework, which was a blessing in disguise since the untyped nature
of JavaScript has been of great benefit for this work.

7.2 Implementation
During the development, many features were refined, improved and specified. These are
not decisions we actively took, but rather a natural evolution of the chat experience. As
such the areas where natural refinement was the case are not further explained more than
the result mentioned in the previous chapters. However, on some features, we had to decide

47

7. Discussion

how to approach and which approach suited our work and these decisions will be explained
and detailed in this chapter.

7.2.1 Access Controller integration
The initial thought was that we would be able to automate the whole process of under-
standing the capabilities when the chatbot was started, by traversing the APIs. This was
simply not possible to do without some manual work to specify the API. This made it so
that we could add content to the Access Controller, then generate the JSON Schema from
the populated objects. This worked until we realized that it was not possible to distin-
guish identifiers by their format, so that object references was just interpreted as a string
identifier, without any information about what kind of identifier this was. This had to be
manually edited to make the chatbot correctly understand object references. The format
we did this on was according to the JSON Schema specification.

It can be of note that during our work, Microsoft released support for using JSON
Schema to design chatbot dialogs[46], unfortunately only for the C# implementation. We
wouldn’t have used this functionality even if available since we wanted to maintain full
control over the dialogs, but we see it as an indication that the choice of JSON Schema as
an underlying structure was a good one.

The process of automation could have been feasible if a more descriptive API was
provided, such as the OpenAPI specification. Since it was not within the scope of this
work to make changes to the existing implementation of the Access Controller, it was not
attempted to implement this standard.

7.2.2 Error handling
A lot of time was spent on the focus area Error Handling. During user test, this was the
most common cause of increased perceived difficulty, so this was the highest priority to get
right. We noticed that no matter how much time we spent trying to understand a sentence
that was missing information, someone managed to construct a sentence which the chatbot
was unable to handle.

Seeing how difficult it is to handle every incorrect (from the bots point of view) sen-
tences, we are unsure if we should have dedicated less time on Error Handling and more
time on any of the other focus areas.

As mentioned, our observations told us that this should have been the most important
area, but maybe instead of making the chatbot understand supply the user test participants
with a user guide to make sure they know the available commands, instead of having the
chatbot trying to understand an intent from a participants who don’t know exactly what is
available.

7.2.3 Natural Language Processing
Our solution was mainly a classifier based on a neural network. During the work, we also
tried using a Naive Bayes as an approach to the classification issue. While Naive Bayes
is great at classifying a sentence as a single intent, the difference in our intents where so

48

7.2 Implementation

Hitrate
Natural Naive Bayes 52.2%
Custom Naive Bayes 56.3%
Neural network 68.2%

Table 7.1: Hitrate of the different versions of the NLP engine

small that it struggled to classify longer sentences. As an experiment, we used all the
messages sent to the chatbot during user test 2, around 2000 sentences, to see how much
of the set of messages the different classifiers managed to successfully classify. As the set
of sentences included answers to questions etc. which the classifiers should not manage
to classify, the perfect score is not 100%. The amount of sentences that were actually
classifiable is 75%. The different hitrates of the different NLP engines can be seen in table
??. The Natural Naive Bayes managed to classify 52.2% of the sentences in the test set,
while the Custom built Naive Bayes managed to classify 56.3% of the sentences. The
Neural Network classifier managed to classify 68.2% of the sentences.

We did not validate whether the classification was correct or not, we only tested if the
NLP engine managed to classify it or not.

During the development, we used an external library called Natural[47] to help with
natural language processing. While we thought that library would solve the problem for
us, it was quickly discovered that it lacked a lot of desired functionality. It used a Naive
Bayes classifier to classify sentences, which prompted us to develop our own Naive Bayes
classifier. Our own solution could be custom made to cover more of our specific cases.
However, it struggled with edge cases and when multiple subjects were mentioned in a
single sentence. As a sprint we looked into neural networks and how they can be used
a classifier. We developed a simple one layered neural network just to see how it could
handle simple words and noticed how simple it was to set up. The Brain.js module helped
us implement a multilayer neural network to be used as a classifier. The improvement can
be followed in table 7.1.

Every version of the classifier had issues when multiple subject or actions were men-
tioned in the same sentence. This was commonly used during our testing but how clas-
sifiers work, they will never be able to classify a sentence as more than one intent. This
is just one of our limitations, based both on our knowledge of NLP and linguistics. Stop
words are words that can divide a sentence into smaller individual sentences, stop words
are words such as ”to”, ”from”, ”when” etc. We never got around to using this information
in our NLP engine.

As the system handles users and their corresponding cards, names are a natural part
of the written language. Test participants often wrote sentences containing both a dialog
trigger and a name, such as ”Remove user John Smith”. Detecting the intention in the
sentence was easy due to the classifier, however, the name ”John Smith” was more difficult.
The best solution we found was to use a large dataset containing the most common names.
This will still generate errors as with names such as ”January” which can both be a name
and a month, or ”Robin” which can be a bird or a name. To solve this a proper part of
speech tagger have to be implemented with sufficient rules concerning what often preludes
a name. We did not have enough knowledge of linguistics to confidently do this. We
manually removed most of the names with dual contextual meanings.

49

7. Discussion

We put a lot of effort into making unrecognized work as well as possible. Having the
chatbot tell you that something is wrong, and nothing else (which is basically did during
user test 1) was very unhelpful. Seeing how we theorized on the strength of a chatbot is to
have the system understand the user rather than the other way around we devoted a lot of
time to build on this strength. Guessing what the user talks about is almost always better
than just announcing something is wrong. The art of guessing is difficult but made easier
since we have few commands to choose from. Better guesses could have been made, such
as if a name is mentioned the chatbot could assume a user is the subject. This is also a
more natural sentence, ”delete John Smith” sounds better than ”delete user John Smith”.
However, we never implemented this only talked about it in theory.

Our limited knowledge of linguistics made us take the decision on only implementing
a classifier, and not try to further the NLP engine more than that. We had some extras
developed, such as identifying names and stem support. To be able to further the func-
tionality of the NLP engine, we needed to dive much deeper into the field of linguistics
which wasn’t the focus of the thesis work and thus disregarded.

7.3 User tests
We decided on conducting a series of user tests to validate the prototype we developed
during the thesis work. The user tests are also the foundation of the conclusion. Some
comments on the user tests are necessary to strengthen the validity of the conclusion.

7.3.1 User test 1
The results from user test 1 are not considered in our conclusion. The version as of user test
1 was a prototype in where most functionality was very primitive. Which can be shown
in the difficulty reported during user test 1. The main goal of user test 1 was to begin
identifying the focus areas in section 5.4. Therefore this data was not included in results,
but can be viewed in Table D.1. The majority of the participants, 5 out of 6, from user test
1 also participated in user test 2.

7.3.2 User test 2
The goal of the second user test was to test it on ”Expert users”. These should be people
who have higher than average knowledge of the underlying system, we considered employ-
ees at Axis Communication to be ”Expert users”. During the second user test, the chatbots
functionality had improved greatly compared to the first user test. The main goal of this
user test was to validate the behavior of the chatbot and to provide the foundation of the
conclusion.

7.3.3 User test 3
The third user test was supposed to test the chatbot on ”Novice users”, people who have
little to no previous experience with the underlying system. We considered students at LTH

50

7.4 Chat context

university to be part of such a group. The functionality of the chatbot had been improved
since the second user tests to more easily convey what the chatbot was talking about.

The main goal of the third user test was to provide data to whether a chatbot should be
used as a replacement or a complement to an existing tool for configuration.

7.4 Chat context
We choose to deploy our chatbot to Facebook Messenger. Our decision to use Messenger
was based upon Messenger being the most commonly used in Sweden. Microsoft bot
framework allows deploying towards many of other channels: Cortana, Skype, Kik, Slack
or Telegram etc. What we didn’t consider is if popularity necessarily is the best choice in
this situation. It gives a familiar context, which is good, but it also comes with a natural
bias. Messenger is mostly used to communicate with friends and family, and bots are
a comparatively new phenomenon. Deploying it into a context where people are more
commonly interacting with chatbots, such as in Slack and Discord, would maybe have
given different observations.

7.4.1 Starting point
Participants were randomly assigned to the interface which they should do first. Our theory
was that whichever interface they did last would have a better experience. This theory was
seemingly correct as the chatbot and the web application were perceived to be a better
experience if they had used the other interface first. The web application experience was
lower if they started with the web system, but if they started with the bot, the experience
of the web were higher.

The chatbot did not seem to have this trend, it was perceived to be approximately the
same difficulty, as seen in Table 5.3. This is a good indication that the chatbot is easy to
use and learn from, and having previous knowledge of the system in question does not
greatly influence the experience.

7.4.2 Getting started
As of phase 2, we received feedback that participants had difficulties getting started which
we wrote off since the perceived difficulty of the scenario 1 was comparatively low. This
might have been an incorrect assessment. When a participant was presented with an empty
chat they had little insight in what the chatbot actually could do, and our ”help” dialogs
were almost more harmful than helpful (as it only explained the simplest set of function-
alities). This seems to have caused some participants to limit their input to simpler com-
mands, which was not intended.

7.4.3 Learning period
An interesting observation is that the first interaction with the web client has a significantly
higher time measurement than the following. This can be seen in Table 5.7 when compar-
ing first scenario 1 and last scenario 2. This is concluded to be from the visual elements

51

7. Discussion

has to be inspected before the user feels comfortable to start performing the scenario. If
the scenario 1 was present for the last interaction, we theorize that this increase in time
would have been present for scenario 1 rather then scenario 2 if this had been done.

7.4.4 Timed measurements
The measurement of time for the bot, declared in Table 5.6 was very distributed, as can be
indicated by the comparison between average and median. The recordings of the extreme
outliers were studied and identified to have been caused by external circumstances, such
as slow or unstable Internet connection. This did not as heavily affect the web client since
it used an internal cache. Therefore we did not use this measurement to study minor cor-
relations, but rather the larger ones we can conclude. We could observe that being first or
last did not affect the time of the interaction and that in general, the interaction was faster
to perform in the web client.

7.5 Functionality overview
One of the observations during all our user test was that it is inherently hard to communi-
cate what functionality the chatbot has. We choose to communicate functionality in rela-
tion to error handling or when it is specifically asked for. We discovered no suitable way
of teaching the user more functionalities, which in some cases gave the user an insufficient
overview of the chatbots functionality.

This could be observed especially in the Scenario 4 interactions during user test 2 and
3, which was concluded to be the most difficult scenario during our user testing. Before
user test 3 specific functionality to handle this was developed so that the more advanced
interactions could be described in a natural language.

Short path ”Get pin-code for John Smith”

– The chatbot will respond with the pin-code. Test participants found the sce-
nario to be easy.

Long path ”Get user”, ”John Smith”, Lookup the card number, ”Get card” ”card num-
ber”.

– This is, according to the test participants, an excessively annoying amount of
steps to fetch specific data. Test participants found the scenario to be difficult.

Even though this functionality was present for user test 3 the perceived difficulty in-
creased. When investigating this phenomenon we found that few users realized there ex-
isted a short path and their perceived difficulty directly reflected if they did. We theorize
that if we could have communicated the functionality of the chatbot better, the result would
have been a lower perceived difficulty.

52

Chapter 8

Conclusion

The goal of the thesis work was to implement a prototype of a chatbot which could be used
to configure a system. Axis Communications supplied such a system for us to integrate the
chatbot to, the Access Controller. We found some problems which we think are common
while developing a conversational user interface, these areas are mentioned in section 5.4.
The conclusion of the thesis work is whether or not a chat could be used, and identify the
strengths of using a chatbot.

With our current solution and the results from user test 2-3, we can with confidence
say that it is plausible for a chatbot to substitute or complement a web application for user
management.

RQ1We choose theMicrosoft Bot Framework as our ground stone for this thesis work,
and in hindsight, we are very happy with our choice. The continued support from Mi-
crosoft and the Open Source community have been helpful and encouraging.

RQ2 As the perceived difficulty for the web application improved if they were using
the chatbot before, and seeing how much faster the web application is, the best way of
using a chatbot should be as a learning experience or as a complement to a graphical user
interface.

RQ3 The overall ease of use rating (seen in table 5.5) tells us that knowledge of the
underlying system had little impact on the usage of the chatbot. The initial reaction to
each interface was in favor of the chatbot but the later usage shows the web was more
favorable. As a conclusion, a chatbot has an easier time introducing a new system while a
web application might be easier to use eventually.

RQ4We did not find the suitable way of conveying the full functionality of the chatbot
in a non-intrusive way. Many of the difficulties test participants had with the chatbot stems
from the participant not gaining the knowledge of the full functionality of the chatbot.

53

8. Conclusion

8.1 Future work
As we did not find a satisfying answer to RQ4, that would be a good starting point. How
to convey functionality in a conversational user interface.

8.1.1 Expert system
As the expert system is the written references in the JSON Schema, these can be automat-
ically detected with a better tool for generating the Schema. We used a very simple one
where it took an already finished data object and substituted the data with the schematics
from a Schema. If the data object field contained numbers, then it is number, if there are
letters, then it should ask for a string. Since dates and references are either numbers or
alphanumerical strings, they will by our tool be marked as number or string, not date and
references. Developing a tool that can better understand these, should help the underlying
system to better generate the JSON Schema. Optional values cannot be set by our tool and
have to be manually added.

Instead of using an expert system which makes a decision on where to lead the user
when generating the JSON Schema, you could use a neural network to take a decision
based on previous conversations. This solves the problem of optional values, as the neural
network can decide on its own which field should be optional.

8.1.2 Linguistics
Understanding of natural language is essential when developing a chatbot. In order to
cover the problem of error handling the need for understanding natural language is great.
Be able to guess with information which is not included is also a necessity.

While our solution is functional, it leaves much to be desired. It cannot handle multiple
intents, it struggles to identify names and correctly map them to the corresponding field
in the data object.

An obvious improvement for the chatbot is better natural language processing. Have
it understand intents better than just a classifier, and have it respond to natural language
better.

The answers from the chatbot are also automatically generated from a pool of words
with intents that the chatbot uses to construct some answers, although many answers are
still hard coded. This can also be improved to get a more human-like behavior for the
chatbot answers.

54

Bibliography

[1] Aodhan Cullen. Mobile and tablet internet usage exceeds desktop for first
time worldwide. http://gs.statcounter.com/press/mobile-and-tablet-internet-usage-
exceeds-desktop-for-first-time-worldwide.

[2] Bret Kinsella. Gartner predicts 75% of us households will have smart speakers by
2020. https://www.voicebot.ai/2017/04/14/gartner-predicts-75-us-households-will-
smart-speakers-2020/, Apr 2017.

[3] Bret Kinsella. Forrester smart speaker forecast: 22 million amazon echo sales in
2017, 66 million us households 2022, Oct 2017.

[4] Alan M Turing. Computing machinery and intelligence. In Parsing the Turing Test,
pages 23–65. Springer, 2009.

[5] Chatbots Org. Chatbot anna ikea. https://www.chatbots.org/virtual_assistant/anna_sweden,
2005. Accessed 6-March-2018.

[6] Chatbots Org. Chatbot erik, the swedish national tax board.
https://www.chatbots.org/virtual_assistant/erik/, 2005. Accessed 6-March-2018.

[7] Microsoft. Introducing microsoft bot framework.
https://blog.botframework.com/2016/03/30/botframework/, 2016. Accessed
23-March-2018.

[8] Messenger platform - documentation. https://developers.facebook.com/docs/messenger-
platform/changelog. Accessed 28-March-2018.

[9] Rahul. Say hello to uber onmessenger. https://www.uber.com/newsroom/messengerlaunch/,
Dec 2015. Accessed 24-March-2018.

[10] Dominos facebook messenger bot. https://www.dominos.com.au/inside-
dominos/technology/messenger-bot.

55

BIBLIOGRAPHY

[11] CNN. News gets personal with cnn for facebook messenger.
http://cnnpressroom.blogs.cnn.com/2016/04/12/news-gets-personal-with-cnn-
for-facebook-messenger/, Apr 2016.

[12] Ingrid Sörensen. Expectations on chatbots among novice users during the onboarding
process. 2017.

[13] Barry J. Wadsworth. Piagets theory of cognitive and affective development: founda-
tions of constructivism. Longman, 1996.

[14] Gabriel Skantze. Error Handling in Spoken Dialogue Systems-Managing Uncer-
tainty, Grounding and Miscommunication. Gabriel Skantze, 2007.

[15] Chatbots in customer service. https://www.accenture.com/t00010101T000000__w__/br-
pt/_acnmedia/PDF-45/Accenture-Chatbots-Customer-Service.pdf.

[16] ECMA International. The json data interchange format. http://www.ecma-
international.org/publications/files/ECMA-ST/ECMA-404.pdf.

[17] A Wright. Json schema: A media type for describing json documents. Technical
report, Internet Engineering Task Force, 2016.

[18] Oai/openapi-specification. https://github.com/OAI/OpenAPI-Specification. Ac-
cessed 5-March-2018.

[19] Haiyi Zhang and Di Li. Naïve bayes text classifier. In Granular Computing, 2007.
GRC 2007. IEEE International Conference on, pages 708–708. IEEE, 2007.

[20] Julie Beth Lovins. Development of a stemming algorithm. Mech. Translat. & Comp.
Linguistics, 11(1-2):22–31, 1968.

[21] Harry F Gollob. The subject-verb-object approach to social cognition. Psychological
Review, 81(4):286, 1974.

[22] Yin Zhang, Rong Jin, and Zhi-Hua Zhou. Understanding bag-of-words model: a
statistical framework. International Journal of Machine Learning and Cybernetics,
1(1-4):43–52, 2010.

[23] Atro Voutilainen. Part-of-speech tagging. The Oxford handbook of computational
linguistics, pages 219–232, 2003.

[24] Jeffrey Barlow. Google’s ngram viewer. 2011.

[25] Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew. Extreme learning machine:
a new learning scheme of feedforward neural networks. In Neural Networks, 2004.
Proceedings. 2004 IEEE International Joint Conference on, volume 2, pages 985–
990. IEEE, 2004.

[26] Tamar Eilam, Michael H Kalantar, Alexander V Konstantinou, Giovanni Pacifici,
John Pershing, and Aditya Agrawal. Managing the configuration complexity of
distributed applications in internet data centers. IEEE Communications Magazine,
44(3):166–177, 2006.

56

BIBLIOGRAPHY

[27] Joseph Weizenbaum. Eliza — a computer program for the study of natural lan-
guage communication between man and machine. Communications of the ACM,
26(1):23–28, Jan 1983.

[28] David DeVault, Kallirroi Georgila, Ron Artstein, Fabrizio Morbini, David Traum,
Stefan Scherer, Louis-Philippe Morency, et al. Verbal indicators of psychological
distress in interactive dialogue with a virtual human. In Proceedings of the SIGDIAL
2013 Conference, pages 193–202, 2013.

[29] Jonathan Gratch, Ron Artstein, Gale M Lucas, Giota Stratou, Stefan Scherer, Angela
Nazarian, Rachel Wood, Jill Boberg, David DeVault, Stacy Marsella, et al. The
distress analysis interview corpus of human and computer interviews. In LREC,
pages 3123–3128. Citeseer, 2014.

[30] James Vincent. Twitter taught microsoft’s friendly ai chatbot to be a racist *******
in less than a day, Mar 2016.

[31] Ethan Fast, Binbin Chen, Julia Mendelsohn, Jonathan Bassen, and Michael
Bernstein. Iris: A conversational agent for complex tasks. arXiv preprint
arXiv:1707.05015, 2017.

[32] Olga Davydova. 25 chatbot platforms: A comparative table – chatbots
journal. https://chatbotsjournal.com/25-chatbot-platforms-a-comparative-table-
aeefc932eaff, May 2017. Accessed 29-September-2017.

[33] Karim R Lakhani and Robert G Wolf. Why hackers do what they do: Understanding
motivation and effort in free/open source software projects. 2003.

[34] Vapix - axis communications. https://www.axis.com/global/en/support/developer-
support/vapix.

[35] Atif M Memon, Martha E Pollack, and Mary Lou Soffa. Hierarchical gui test case
generation using automated planning. IEEE transactions on software engineering,
27(2):144–155, 2001.

[36] Joseph Schwartz. The most popular messaging app in every country.
https://www.similarweb.com/blog/worldwide-messaging-apps, May 2016.

[37] Liron Hakim Bobrov. Mobile messaging app map - february 2018.
https://www.similarweb.com/blog/mobile-messaging-app-map-2018, Feb 2018.

[38] Nicole M Radziwill and Morgan C Benton. Evaluating quality of chatbots and intel-
ligent conversational agents. arXiv preprint arXiv:1704.04579, 2017.

[39] Charles R Gallistel, Stephen Fairhurst, and Peter Balsam. The learning curve: impli-
cations of a quantitative analysis. Proceedings of the national academy of Sciences
of the united States of america, 101(36):13124–13131, 2004.

[40] Johannes Pittermann, Angela Pittermann, andWolfgangMinker. Handling emotions
in human-computer dialogues. Springer, 2010.

57

BIBLIOGRAPHY

[41] Brain.js. https://github.com/BrainJS/brain.js.

[42] Pattie Maes. Agents that reduce work and information overload. In Readings in
Human–Computer Interaction, pages 811–821. Elsevier, 1995.

[43] Per Runeson and Martin Höst. Guidelines for conducting and reporting case study
research in software engineering. Empirical software engineering, 14(2):131, 2009.

[44] The Wit.ai Team. Wit.ai is joining facebook. https://wit.ai/blog/2015/01/05/wit-ai-
facebook, Jan 2015.

[45] Making conversational interfaces easier to build.
https://developers.googleblog.com/2016/09/making-conversational-interfaces-
easier-to-build.html, Sep 2016.

[46] Define a form using json schema and formflow - bot service.
https://docs.microsoft.com/en-us/bot-framework/dotnet/bot-builder-dotnet-
formflow-json-schema.

[47] Natural. https://github.com/NaturalNode/natural.

58

Appendices

59

Appendix A
Framework - Overview

61

A. Framework - Overview

Bot Framework Organization License Language Integrations
Watson IBM Monthly Java, Python

Bot Framework Microsoft Free .NET
C#

Bing
Cortana
Facebook Messenger
Kik
Telegram
Slack
Skype

Botpress Botpress Free Node JS

Facebook Messenger
Telegram
Kik
Slack

API.ai Google Free

Java
Swift
JavaScript
.NET
Ruby
C++
Python
PHP

Google Assistant
Facebook Messenger
Slack
Kik
Line
Skype
Telegram
Twitter
Viber

Wit.ai Facebook Free

Java
Swift
C#
JavaScript
Ruby
Python
PHP

Messenger Platform Facebook Free Web API Facebook Messenger

Hubot GitHub Free CoffeeScript
node.js

Campfire
Gitter
HipChatt
IRC
Slack
XMPP

Botkit Howdy Free Javascript Slack
Facebook

Table A.1: Framework - Overview

62

Appendix B
Dialog relations

63

B. Dialog relations

64

Appendix C
Form

65

26/04/2018 Scenario 1

https://docs.google.com/forms/d/1_H7ZXkUzauBlWPRN0ro65PO387Gr7mEo_4JpSwUaR6o/edit 1/5

Scenario 1
Godtycklig användare

* Required

Mål

En användare med kort och tillhörighet i en ny grupp.

1. Hur svårt var det att klara uppgiften? *
Mark only one oval.

1 2 3 4 5

Lätt Svårt

2. Vilken del var svårast att förstå?

3. Vilken del var lättast att förstå?

4. Ytterligare kommentarer

Scenario 2
Specifik användare

Mål

26/04/2018 Scenario 1

https://docs.google.com/forms/d/1_H7ZXkUzauBlWPRN0ro65PO387Gr7mEo_4JpSwUaR6o/edit 2/5

En användare vid namn John Smith.
Ett kort: nummer 45, pin kod 1234 och giltig mellan förste januari 2018 till december 31 2020.
Sammankoppling mot tidigare skapad grupp.

5. Hur svårt var det att klara uppgiften?
Mark only one oval.

1 2 3 4 5

Lätt Svårt

6. Vilken del var svårast att förstå?

7. Vilken del var lättast att förstå?

8. Ytterligare kommentar

Scenario 3
Uppdatera användare

Instruktioner

Användaren John Smith namn ska vara Jonathan Smith
.
Ta bort Jonathan Smith samt hans kort 45.

9. Hur svårt var det att klara uppgiften?
Mark only one oval.

1 2 3 4 5

Lätt Svårt

26/04/2018 Scenario 1

https://docs.google.com/forms/d/1_H7ZXkUzauBlWPRN0ro65PO387Gr7mEo_4JpSwUaR6o/edit 3/5

10. Vilken del var svårast att förstå?

11. Vilken del var lättast att förstå?

12. Ytterligare kommentar

Scenario 4
Stort system

Mål

Ta reda på vilken grupp Gabe Lynn tillhör.
Vilken PINkod Kit Holmes använder.

13. Hur svårt var det att klara uppgiften? *
Mark only one oval.

1 2 3 4 5

Lätt Svårt

14. Vilken del var svårast att förstå?

26/04/2018 Scenario 1

https://docs.google.com/forms/d/1_H7ZXkUzauBlWPRN0ro65PO387Gr7mEo_4JpSwUaR6o/edit 4/5

15. Vilken del var lättast att förstå?

16. Ytterligare kommentarer

Helhetsupplevelse

17. Helhetsupplevelse?
Mark only one oval.

1 2 3 4 5

Usel Fantastisk

Allmänna frågor

18. Ålder?
Mark only one oval.

 1020

 2130

 3140

 4150

 5160

 61+

19. Datorvana?
Mark only one oval.

1 2 3 4 5

Låg Hög

20. Har du använt en chatbot förut?
Mark only one oval.

 Ja, många!

 Ja, någon enstaka

 Nej

26/04/2018 Scenario 1

https://docs.google.com/forms/d/1_H7ZXkUzauBlWPRN0ro65PO387Gr7mEo_4JpSwUaR6o/edit 5/5

Powered by

21. Sysselsättning

Appendix D
User Test Scores

Subject Scenario 1 Scenario 2 Scenario 3
1 3 4 4
2 4 2 3
3 4 4 4
4 3 3 3
5 4 4 4
6 4 3 3

Average 3.6 3.3 3.5

Table D.1: User test 1 - Scores

71

D. User Test Scores

72

Appendix E
Test observations

• Typing a lot of information on a single line must be supported. Sentences such as
”Create a user, the name is John Smith” is a common way of interacting with the
bot.

• Optional values being skipped does not have to be shown, as long as they are easy
to notice at the end of the dialog (at the confirm prompt).

• During creating, removing etc. the chatbot has to make clear at the end what is about
to happen as well as being clear on what just happened, when participants agreed to
the confirmation prompt.

• At more difficult decisions the chatbot have to supply ample suggestions to the ques-
tion such that a participant knows from context what is needed to answer the ques-
tion.

• When the chatbot cannot understand which dialog it is supposed to start, a well for-
matted message has to sent which includes guesses on which dialog the participant
meant.

• Incorrect information has to be able to changed or further explain, never let the
chatbot say something is incorrect without ample reason.

• As the chatbot jumps between different dialogs a clear message has to be sent based
on which dialog the chatbot is currently

• Information should only be displayed when it is necessary. If it is not important to
the current question, it can be said at later time or not at all.

• Never ask for information twice. If information has been mentioned earlier (such
as when starting the dialog, or objects being created during the conversation), the

73

E. Test observations

chatbot should not ask for it again. Instead keep a memory of all things mentioned
and created.

74

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTATIONSDAG 2018-04-19

EXAMENSARBETE Bot for Configuration
STUDENT Niklas Lindvall, Robin Ljungström
HANDLEDARE Ulf Asklund (LTH), Daniel Andersson & Johan Rönnåker (Axis Communications AB)
EXAMINATOR Martin Höst (LTH)

Chattbot för konfiguration av produkter

POPULÄRVETENSKAPLIG SAMMANFATTNING Niklas Lindvall, Robin Ljungström

Chattappar är de mest använda apparna enligt rapporter från Business Insider. Detta
arbete undersöker huruvida en chattbot kan användas till att konfigurera en produkt
och på så sätt kringgå behovet för en applikation.

Allt fler produkter i våra hem är digitala och
måste konfigureras. Detta sker vanligtvis via
en app eller en hemsida specifik för produkten,
vilket kräver att du sätter dig in i hur produk-
ten fungerar. Hade det inte varit bättre om du
kan säga vad du vill åstadkomma och produkten
förstår dig?

Med en chattbot kommunicerar du i ett
naturligt språk och kan säga vad du vill utföra.
Chattbotten försöker förstå vad du vill och kan
ställa motfrågor om ytterligare information be-
hövs. Om något är oklart så kan du be om för-
tydliganden eller be om hjälp. På så sätt behöver
du endast en ytlig förståelse av de underliggande
relationerna och vilken information som behövs.
På senare år har intresset för chattbottar ökat,

framförallt från många större företag. Facebook
har öppnat upp sin platform, Messenger, för chat-
tbottar och Microsoft har tagit fram ett ramverk
för utveckling av chattbottar. Detta gör det
möjligt att utveckla en chattbot och introducera
den i en chatt där användaren redan pratar med
vänner och familj.
Ur en enkel mening kan mycket utvinnas, såsom

ny information, referenser till innehåll i tidigare
dialoger och/eller till existerande konfigurationer.
För att chattboten ska kunna förstå en mening
krävs det att chattbotten förstår naturligt språk,
vilket är svårt, men har gjorts lättare av framsteg
inom neurala nätverk och maskininlärning.

I vårat arbete har en prototyp av en chattbot
tagits fram till Axis Communications AB Access
Controller, vilket är en produkt som hanterar
kortaccess för byggnader. Vår prototyp gener-
erar dialoger från en beskrivning av vad pro-
dukten kan utföra, vilket gör det enkelt att ex-
pandera funktionaliteten utan ytterligare utveck-
ling. Tanken med dialogerna är att du kan säga
en enkel mening, såsom "Ge Ohlsson tillgång till
garaget på torsdagar" och chattbotten ska hjälpa
dig att utföra det. Chattbotten vill bara ha en
avsikt om vad användaren vill göra och därefter
leds användaren igenom konfiguration, med en-
klare frågor när ytterligare information behövs.
För att utvärdera prototypen fick en testgrupp

konfigurera produkten med hjälp av chattboten.
Resultaten visar att testarna tyckte chattbotten
var lättare att använda än den produktspecifika
applikation och den produktspecifika applikatio-
nen upplevdes som lättare ifall chattbotten hade
använts först. Från detta drar vi slutsatsen att en
chattbot lämpar sig framförallt för nya användare
eller vid kortare interaktioner.

	Introduction
	Background
	Hypothesis
	Research Questions
	Disposition

	Theory
	Conversational User Interface
	Chatbot
	Access Controller
	Application programming interfaces
	JSON
	JSON Schema
	Framework
	Bot frameworks
	Natural Language Processing
	Previous work

	Methodology
	Scope
	Limitations

	Framework selection
	Framework identification
	Framework Requirements
	Evaluation

	Development
	Evaluation
	Scenarios
	User Test

	Analysis

	Implementation
	System overview
	Integration
	Dialogs
	Logical path
	Input Validation
	Choice
	Memory
	Optional values
	Confirmation
	Natural language processing

	Result
	Framework Selection
	Framework evaluation
	User test
	Test overview
	User test 3

	Focus areas

	Threats to validity
	Internal validity
	External validity

	Discussion
	Evaluation of framework
	Implementation
	Access Controller integration
	Error handling
	Natural Language Processing

	User tests
	User test 1
	User test 2
	User test 3

	Chat context
	Starting point
	Getting started
	Learning period
	Timed measurements

	Functionality overview

	Conclusion
	Future work
	Expert system
	Linguistics

	Bibliography
	Appendices
	Framework - Overview
	Dialog relations
	Form
	User Test Scores
	Test observations
	Tom sida
	Tom sida

