
Improved precision and verification
for test selection in Modelica

Markus Olsson, Filip Stenström

MASTER’S THESIS | LUND UNIVERSITY 2018

Department of Computer Science
Faculty of Engineering LTH

ISSN 1650-2884
LU-CS-EX 2018-08

Improved precision and verification for test
selection in Modelica

Markus Olsson
markus.iluvatar@gmail.com

Filip Stenström
filip.stenstrom@hotmail.com

June 7, 2018

Master’s thesis work carried out at Modelon AB.

Supervisors:
Jon Sten, jon.sten@modelon.com

Niklas Fors, niklas.fors@cs.lth.se

Examiner: Görel Hedin, gorel.hedin@cs.lth.se

mailto:markus.iluvatar@gmail.com
mailto:filip.stenstrom@hotmail.com
mailto:jon.sten@modelon.com
mailto:niklas.fors@cs.lth.se
mailto:gorel.hedin@cs.lth.se

Abstract

Regression testing is a key concept to keep software in good shape, yet it
can be a time consuming process. Testing time can be reduced by using a test
selection technique which selects only the subset of tests that might have been
affected.

We have defined and implemented a high precision regression test selec-
tion technique for the modeling languageModelica by using static dependency
analysis. Our test selection technique provides better time savings compared
to a previous technique. The time savings were computed for tests in certain
Modelica libraries when one file or class was changed.

We verified our dependency analysis by finding a subset of the actual de-
pendencies and making certain they were found by our analysis. The actual
dependencies were found by mutating classes and seeing which tests were af-
fected. Furthermore, we evaluated our verification by analyzing the effective-
ness of the different kinds of mutations.

Keywords: Regression test selection, Modelica, static analysis, verification, mutation
testing

2

Acknowledgements

We would like to thank Jon Sten for helping us to learn Modelica and for taking his time
to ensure that the thesis was advancing in the right direction, and for the feedback on the
report.

Wewould also like to thank Niklas Fors, our supervisor at LTH, for giving us continued
advice on how to proceed with our thesis and for the feedback on the report.

3

4

Division of labor

For this thesis project we have both worked together at Modelon AB the whole time. We
have discussed every part of the project and how to proceed, and we have defined the rules
for the class dependencies together. The implementation of the dependency analysis, the
mutation framework and the general mutations was done by Markus. Filip implemented
the specialized mutations. We both worked on python scripts to generate the graphs. Filip
also ported the results of themutation dependency analysis to work with python and did the
evaluation of the mutations. Markus also implemented theModelica class dependency test
suite. In addition to this we have both worked on things that did not work out and therefore
was not included in this report.

For the report we initially worked on different chapters and sections. When we had
finished a first draft of all sections we both read the whole report and made improvements
on all sections regardless of who originally wrote them. The initial division was as follows:

• Introduction - Filip
• Background, Regression test selection - Filip
• Background, Modelica - Markus
• Background, OPTIMICA Compiler Toolkit - Both
• Background, Mutation testing - Filip
• Rules for dependencies - Markus
• Method - Filip
• Implementation - Filip
• Evaluation - Filip
• Discussion - Filip
• Related work - Filip
• Conclusions - Filip

5

6

Contents

1 Introduction 9

2 Background 11
2.1 Regression test selection . 11
2.2 Modelica . 12

2.2.1 Example . 12
2.2.2 Modelica classes . 14
2.2.3 Dot notation . 14
2.2.4 Name lookup and class access 14
2.2.5 Inheritance . 15
2.2.6 Modifications and redeclare . 16
2.2.7 Modelica tests . 16

2.3 OPTIMICA Compiler Toolkit . 18
2.3.1 Source tree . 18
2.3.2 Instance tree . 18
2.3.3 Flat tree . 19

2.4 Mutation testing . 19

3 Rules for dependencies 21
3.1 Descriptions and motivations . 22

3.1.1 Rule 1 . 22
3.1.2 Rule 2 . 22
3.1.3 Rule 3 . 24
3.1.4 Rule 4 . 27

4 Method 31
4.1 Dependency analysis . 31

4.1.1 External files . 31
4.2 Verification . 32

4.2.1 Mutation dependency analysis 32

7

CONTENTS

4.2.2 Test suite . 32

5 Implementation 33
5.1 Dependency analysis . 33
5.2 Verification . 34

6 Evaluation 39
6.1 Test selection performance . 39

6.1.1 Precision . 39
6.1.2 Savings when one class or file changed 40
6.1.3 MSL commit history . 43

6.2 Verification results . 43
6.3 Mutation type results . 44
6.4 Missing dependencies . 46

7 Discussion 49
7.1 Comparison with source tree analysis 49
7.2 Alternative technique . 51
7.3 Replace functions mutation . 53
7.4 Improvements to general mutations . 53
7.5 Threat to validity . 53

8 Related work 55
8.1 Runtime and static analysis . 55
8.2 Runtime analysis . 55
8.3 Static analysis . 56
8.4 Discussion . 56

9 Conclusions 57
9.1 Future work . 57

8

Chapter 1
Introduction

A software system under development experiences frequent updates, where each update
introduces a risk of breaking existing functionality. Regression tests attempt to ensure that
the system still works as expected after changes are made. Running the whole regression
test suite can be a time-consuming process though. In order to minimize the testing time,
regression test selection (RTS) techniques select only a subset of the tests. A safe RTS
technique ensures that all tests that might fail will always be selected [1].

Modelica is a language for modeling dynamical systems. Modelica tests generally
require the simulation of models, which is a time costly process. It is therefore of great
importance to reduce the number of unnecessary tests that run. As an example, testing the
Modelica Standard Library (MSL) takes about two to three hours when tested using the
Modelica Testing Toolkit [2].

Themain goal of our thesis is to define a RTS technique for theModelica language with
high precision, and to verify that the technique is safe. The aim is also for the technique
to have greater time savings compared to other techniques.

We have implemented our technique by performing class dependency analysis in a
Modelica compiler. This analysis finds dependencies between Modelica classes and tests
are selected if they have a dependency to any changed class. The rules for class dependen-
cies are implementation independent.

To our knowledge there is only one other RTS technique for Modelica, which has been
defined by Hedblom and Rundquist [3]. This technique also uses class dependency anal-
ysis to select tests. The implementation of our technique is done in the same compiler as
this technique, however our technique is implemented in a later phase of the compilation
process and define stricter rules for the dependency analysis to get a higher precision.

In order to verify the safety of our RTS technique we have performedmutations inMSL
to find dependencies from test classes. We have then ensured that our dependency analysis
found all those dependencies. Although this method could not guarantee the safety of our
technique, it increased the confidence that it was safe.

As a result of this thesis, we contribute to the body of knowledge three artifacts for

9

1. Introduction

further research on Modelica test selection:

• A set of dependency rules for Modelica classes

• An open source test suite for class dependency analysis in Modelica

• An open source database of dependencies for test classes in MSL

Both the test suite and the database of dependencies can be found online 1 for anyone
who wants to develop Modelica test selection techniques.

1https://github.com/modelon/MCDTS

10

Chapter 2
Background

In this chapter we will provide the necessary background to understand this report. This
includes an introduction to RTS techniques, an overview of Modelica, and information
about the compiler we have used for our implementation.

2.1 Regression test selection
The purpose of an RTS technique is to select a subset of tests that might have been affected
by a change in order to reduce the testing time. For the technique to be efficient, it is also
important that its execution time is short relative to the actual testing time.

In this report we denote an original version of a program as P, and the same program
but with changes as P′. A test is considered changed if it has a different execution path in
P′ compared to P. This is under the assumption that the test case is deterministic.

An RTS technique can be measured by its inclusiveness [1]. Given all changed tests
in P′, the inclusiveness of an RTS technique is measured as the percent of changed tests it
selects. If all changed tests always are selected, the techniquewill have 100% inclusiveness
and is then called safe.

The precision of an RTS technique is determined by its ability to exclude tests that
are not changed [1]. The precision is calculated as the percent of selected tests that are
changed. A technique with 100% precision will only select changed tests. A higher pre-
cision means that fewer tests are selected, however the analysis execution time might be
longer since it is usually involves more decisions.

In order to verify that an RTS is safe, one can exhaustively prove that all changes that
might result in a changed test is accounted for by the technique. Another way to verify the
technique, is by implementing it and thoroughly testing that all changed tests always are
selected.

Regression test selection is usually done with either static analysis [3, 4] or with run-
time analysis [5]. The runtime analysis uses code instrumentation to monitor the execution

11

2. Background

of the program. Extra instructions are then inserted into the program to get information
such as the execution path and code coverage [6]. It can also be used to find which files
a program has accessed, it depends on those files [5]. Static analysis can for example be
done with class dependency analysis.

2.2 Modelica
Modelica is an object orientedmodeling language for simulation of dynamical systems [7].
It can be used to simulate everything from electrical circuits to airplane dynamics. The
benefit of this wide application area is that subsystems from different domains can be con-
nected in the same model. For instance, the output from the model for an electrical circuit
can be used as input for the model of a motor, and the whole system can be simulated.

The modeling in Modelica is declarative, but it is also possible to specify algorithms
that are imperative.

2.2.1 Example
The bouncing ball model is good example to demonstrate the basics of Modelica.

model BouncingBall
parameter Real e=0.8;
Real h;
Real v;

initial equation
h = 1.0;
v = 0;

equation
v = der(h);
der(v) = -9.81;
when h<0 then

reinit(v, -e*pre(v));
end when;

end BouncingBall;

Listing 2.1: Modelica code describing a bouncing ball

The example – shown in Listing 2.1 – consists of a model named BouncingBall.
The model takes one parameter, the coefficient of restitution e. It has two variable com-
ponents, height h and velocity v. The height is initialized as one and the velocity as zero.
Equations define the velocity as the time derivative of the height, and the time derivative
of the velocity as the gravitational acceleration. There is also an equation that defines what
happens when the ball hits the ground; when the height becomes less than zero, the veloc-
ity is negated and multiplied with e. A simulation of the height over time can be seen in
Figure 2.1.

12

2.2 Modelica

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time (s)

0.0

0.2

0.4

0.6

0.8

1.0

he
ig
ht
 (m

)

h(t)

Figure 2.1: Simulation results of how the height of the bouncing
ball changes over time.

13

2. Background

2.2.2 Modelica classes
Modelica consists of different kinds of classes. The default class is simply called class
and defines all class functionality. All other classes are based on class but have some
restrictions, and they are called specialized classes. Examples of specialized classes are
model, package and function. For instance, package may not contain any non-
constant component. A component is an instantiation of a class or a primitive type, similar
to variables in imperative programming languages.

Throughout this report we use a number of specialized classes. The ones we use are
therefore in the following clauses given a short description.

The model specialization is used for classes that describe simulatable systems or parts
of such a system. This specialization is not very restricted; it can for instance contain class
declarations, equations, algorithms and components.

The package specialization is used to group other classes together. Packages can
contain declarations of classes and constant components.

The function specialization is used for functions. Functions have zero ormore input
arguments, one or more outputs and an algorithm section. The input arguments and the
output are declared as components with the keywords input and output respectively.
Functions can have the external keyword instead of an algorithm section, which means
that the algorithm is defined in an external file as C or Fortran code.

The record and operator record specializations are used to make data types
that are more complicated than the primitive types. Records are similar to models but do
not have equations. Operator records can also have operator functions that overload the
behavior of operators.

The connector specialization is used for connecting components. It can be seen as
a way of linking the output of one component to another.

The type specialization is used to extend the built-in primitive types.

2.2.3 Dot notation
Modelica supports having multiple classes with the same name, though they can not be
located in the same class. To uniquely identify a class, dot notation is used.

Dot notation is more generally used to access members of classes. The dot notation
consists of an access to the class (note that this access can use dot notation), a dot and
the name of the member. If the first identifier in a dot notation is a top level package, the
dotted name is called a fully qualified name.

Listing 2.2 features nested classes. C can be identified with dot notation as A.B.C.

2.2.4 Name lookup and class access
There are two types of name lookup in Modelica that are relevant for this thesis: simple
name lookup and composite name lookup.

Simple name lookup is used if the access is a single identifier (i.e. not dot notation).
The name lookup algorithm can be described as the following:

1. If inside a for-loop, check if the identifier matches an iteration variable.

14

2.2 Modelica

package A
model B

model C
end C;

end B;
end A;

Listing 2.2: Modelica code showing nested classes. C can be
identified with dot notation as A.B.C.

2. Look for the identifier in the scope of the current class. This includes imported
classes and the scope of the super classes.

3. If the identifier is not found in the current scope, change current scope to the scope
of the enclosing class and look again.

4. Repeat steps 2 and 3 until either the identifier is found or the current scope is the top
package.

5. If the identifier is still not found, check the global scope.

Composite name lookup is used if the access uses dot notation. The first identifier in
the dot notation will be found using simple name lookup. The following identifiers are
each looked for in the scope of the class found by the previous identifier.

Examples of accesses are seen in Listing 2.3. To access B from C, a member B in C is
looked for, when it is not found it will look in B, where it is not found either. Finally it will
look in A where class B is found. The access to C from A will not find the class C because
it is not found in A or the global scope. The access to B.C will find B in A and C in B.

package A
constant C c1; // Class C can not be found
constant B.C c2; // Class B.C can be found
model B

model C
B b; // Class B can be found

end C;
end B;

end A;

Listing 2.3: Modelica code demonstrating name lookup.

2.2.5 Inheritance
A class can inherit from another class with the same class specialization. When a class
extends another class, it inherits all elements except import statements. The inheriting
class can also access enclosed classes in the extended class. An examples of inheritance
can be seen in Listing 2.4.

15

2. Background

model A
model M

Real x;
end M;
Real x = 0;

end A;

model B
extends A;
M m;

equation
m.x = x;

end B;

Listing 2.4: An example of inheritance. The class B inherits the
component x from A, and can access M without using the compos-
ite access A.M.

model C = A;

Listing 2.5: An example of a short class declaration.

InModelica, there is a construct called a short class declaration. It is a class declaration
where the new class extends a target class. For example in Listing 2.5 the model C extends
A without adding anything new.

2.2.6 Modifications and redeclare
In Modelica, the behavior of classes can be altered by using modifications. They can be
applied to component declarations, extends clauses and short class declarations. There are
value modifications and redeclare modifications. Value modifications modify the value of
a component, see example in Listing 2.6. There are two types of redeclare modification.
Component redeclare modifications replace the declaration of a component. Class rede-
clare modifications replace the declaration of a class. Examples of component and class
redeclare modifications can be seen is Listings 2.7 and 2.8 respectively.

Classes and components can also be redeclared without modifications, by instead using
the redeclare keyword as a prefix for the declarations. In Listing 2.9 the class M is
redeclared using the redeclare keyword as a prefix on the declaration. This is equivalent
to using a redeclare modification on the extends statement, as in class F (Listing 2.8), but
more convenient when many classes are redeclared.

2.2.7 Modelica tests
Classes in Modelica can be annotated, which is a way to include metadata. A test in
Modelica is by convention a class that is annotated as an “experiment”. A test is generally

16

2.2 Modelica

model A
parameter Real x = 0;

end A;

model B
extends A(x = 1);

end B;

Listing 2.6: An example of a value modification. In the model B,
the value of the parameter x in the extends clause is modified.

model C
replaceable A a;

end C;

model D
C c(redeclare B a);

end D;

Listing 2.7: An example of a component redeclare modification.
The component c in the class D has a redeclare modification, re-
placing the type declaration of component a to the class B. The
replaceable keyword signals that the component can be rede-
clared.

model E
replaceable model M
end M;

end E;

model F
extends E(redeclare model M = M);
model M
end M;

end F;

Listing 2.8: An example of a class redeclare modification. The
class M is redeclared in the class F. Note that the expression
“M = M” means that M in E should be replaced with the M defined
in F.

17

2. Background

model G
extends E;
redeclare model M
end M;

end G;

Listing 2.9: An example of how the redeclare prefix is used. The
class M is redeclared using the redeclare prefix on the declaration.
This is equivalent to using a redeclare modification on the extends
clause (see Listing 2.8).

executed by simulating the test class and comparing the results of the simulation with
predefined expected results.

2.3 OPTIMICA Compiler Toolkit
JModelica.org is aModelica based open-source software platform used to model and solve
dynamical systems [7]. JModelica.org includes a Modelica compiler which is built with
the meta-compilation tool JastAdd [8]. OPTIMICA Compiler Toolkit (OCT) is a commer-
cial product byModelon AB that is based on JModelica.org [9]. OCT includes a Modelica
compiler which extends the JModelica.org Modelica compiler, and it is this compiler that
we have used to implement our test selection technique.

The abstract grammar for the OCT compiler is based on building three abstract syntax
trees (ASTs) instead of only a single tree. These trees are called the source tree, instance
tree and flat tree, and they will be further described in the next sections. Figure 2.2 also
further illustrates the difference between the trees.

2.3.1 Source tree
The source tree is an object representation of the source code. What you find in the source
code is what you find in the source tree. There is a one-to-one mapping, so if there is a
class declaration in the source code, there will be exactly one node for this in the AST.

In the source tree it is sometimes not possible to lookup the class from a qualified
access; we then say that the access is not resolvable. There are other things that are not
possible in the source tree, such as determining the type of expressions.

2.3.2 Instance tree
The instance tree represents a class instantiation, and is an intermediate tree where mod-
ifications have been resolved [10]. While the source tree contains AST nodes for all the
parsed classes, the instance tree represents a model instantiation and therefore mainly
contains the information necessary to simulate this model. One way the instance tree
differs from the source tree is that components in the instance tree contain all information

18

2.4 Mutation testing

package P
model A

Real x;
equation

x = time;
end A;

model B
A a;

end B;
end P;

P

A B

A.x B.a

access

P

A B

A.x B.a

access

B.a.x

B

Variables Equations

Real a.x a.x = time

Figure 2.2: An example of the different ASTs in OCT Modelica
compiler for the same source code. From left to right we have,
source code, source tree, instance tree and flat tree. In this example
only B was flattened.

about their corresponding classes. Building the whole instance tree will use a considerable
amount of memory, so in the OCT compiler the instance tree is dynamically expanded.

2.3.3 Flat tree
The flat tree is an AST where the hierarchy of the instance tree has been removed. The
flat tree is essentially what the Modelica specification refers to as a “flat Modelica struc-
ture” [11].

The flat tree is generated by flattening the instance tree, and can be described as an
intermediatemodel that only contains variables, equations and functions necessary to build
an equation system for simulation of the original model [10].

At least for the OCT Modelica compiler, the generation of the flat tree and its textual
representation, flat-code, is deterministic. This means that as long as the class or any of
the classes it depends on is not semantically changed or refactored, recompiling a class to
flat-code will always yield the same result. An exception to this is compile time evaluation
of external functions, as external functions may return random values.

2.4 Mutation testing
In this report we will not use any classic mutation testing, however we will use program
mutations in a similar way to detect class dependencies. We therefore include a description
of classic mutation testing.

Mutation testing [12] is the process of evaluating test suites. It is in general performed
by inserting semantic changes one by one into the original program, thereby producing
new programs. If all tests pass for a new program, although the change resulted in a bug,
then this means that the tests that cover the changed code can be improved.

19

2. Background

20

Chapter 3
Rules for dependencies

To perform the class dependency analysis it is necessary to have a set of rules for depen-
dencies between classes. We defined rules for Modelica Version 3.2 Revision 2 based on
the rules by Hedblom and Rundquist [3]. The following are the rules we have defined for
direct class dependencies:

1. (a) A class has a dependency on an accessed class.

(b) A class has dependencies on all classes in a composite access.

(c) A class using an overloaded operator has a dependency to the operator function.

2. A class has a dependency on the enclosing class.

3. A class that contains a redeclaration depends on all super classes and enclosed
classes of the replacing class (and all their enclosed classes and super classes re-
cursively).

4. A class has dependencies on all implicitly called functions.

(a) If a record or type encloses a function named equalityConstraint, it
has a dependency on that function.

(b) If a class extends ExternalObject, it has a dependency on the enclosed
function destructor.

Rules 1a and 1b were kept from the previous rules, though we did some minor changes
since our rules assume that the implementation can resolve all accesses. Rule 2 was also
kept from the previous rules, but it was not changed. The other rules were defined by us.

21

3. Rules for dependencies

3.1 Descriptions and motivations
This section describes the rules in more detail and motivates why each rule is necessary.
The motivations use figures which consist of some Modelica code and a graph with the
class dependencies our rules finds for the code. The nodes of the graph correspond to
Modelica classes and the edges to dependencies. Each edge is labeled with the rule from
which it is created. An edge is dashed if it was added by the change or dotted if it was
removed. A rectangular node marks the changed class, and a diamond shaped node marks
the affected class. There should be a path in the graph from the diamond to the rectangle.

3.1.1 Rule 1
This rule handles dependencies caused by accesses to other classes. Note that this can
include accesses to derivative and inverse functions in annotations.

Rule 1a. A class has a dependency on an accessed class.

If a class has a simple access to another class, it will depend on it. If it has a compos-
ite access, the dependency will only be to the final element in the composite name.
If for example a class has an access to A.B.C, this rule will only give a dependency
to C. This rule is intuitive enough to not need a motivation.

Rule 1b. A class has dependencies on all classes in a composite access.

If a class has a composite access to a class or component, it will depend on all classes
in the access except the final element. For example a class has an access to A.B.C,
this rule will create dependencies to A and B but not C. Figure 3.1 shows an example
of why this rule is necessary.

Rule 1c. A class using an overloaded operator has a dependency to the operator function.

If a class uses an overloaded operator for an operator record the class will depend on
the operator function. Figure 3.2 shows an example of why rule this rule is necessary.

3.1.2 Rule 2
A class has a dependency on the enclosing class.

Rule 2 is a complement to rule 1b. In Modelica – because of how the name lookup works
– a class enclosed in another class can access its content with a simple access. Figure 3.3
shows an example of why rule 2 is necessary. It is very similar to the example for rule 1b
in Figure 3.1. Unlike that example, C is enclosed in B, so the access to M is not qualified,
since the class M can be accessed directly. C must still depend on B, so rule 2 is used
instead.

22

3.1 Descriptions and motivations

package A1
model M
end M;

end A1;

package A2
model M
end M;

end A2;

package B
extends A1; // Removed
extends A2; // Added

end B;

model C
B.M m;

end C;

B

A1

1a

A2

1a

C

1b

A1.M

1a

A2.M

1a

Legend

Added

Removed

Changed

Affected

Figure 3.1: An example of why rule 1b is necessary. When the
class B is changed to extend A2 instead of A1, the class of the
component m in C is changed, therefore C must depend on B.

operator record A
Real x;

operator function '+'
input A a1;
input A a2;
output A a3;

algorithm
a3 := A(a1.x + a2.x);

end '+';
end A;

model B
A a1 = A(1);
A a2 = a1 + a1;

end B;

B

A

1a

A.’+’

1c

Figure 3.2: An example of why rule 1c is necessary. Changes in
operator function ’+’ will propagate to a2 in B.

23

3. Rules for dependencies

package A1
model M
end M;

end A1;

package A2
model M
end M;

end A2;

package B
extends A1; // Removed
extends A2; // Added

model C
M m;

end C;
end B;

B

A1

1

A2

1

B.C

2

A1.M

1

A2.M

1

2 2

Figure 3.3: An example showing why rule 2 is necessary. When
the class B is changed to extend A2 instead of A1, the class of the
component m in C is changed, therefore C must depend on B.

3.1.3 Rule 3
A class that contains a redeclaration depends on all super classes and enclosed classes of
the replacing class (and all their enclosed classes and super classes recursively).
Rule 3 describes all dependencies involving redeclarations. There are four types of re-
declarations: component redeclare modification, component declaration with the rede-
clare prefix, class redeclare modification, class declarations with the redeclare pre-
fix. Figure 3.4 shows an example of why rule 3 is necessary for redeclare modifications.
This example is also sufficient to motivate why we need it for the redeclare prefix, as the
redeclare prefix can be replaced with modifications on the extends statements (see
Section 2.2.6).

Figure 3.5 shows an example of why rule 3 must recursively depend on all enclosed
classes and super classes. The example features a class declaration with the redeclare
prefix, but can be constructed for each redeclaration type.

24

3.1 Descriptions and motivations

model A1
function f
end f;

end A1;

model A2
function f
end f;

end A2;

model B
replaceable model A = A1;
replaceable A1 a;
Real x = A.f();
Real y = a.f();

end B;

model C
extends B(redeclare model A = A2,

redeclare A2 a);
end C;

C

B

1

A2.f

3

A2

1

...

2

Figure 3.4: An example showing why rule 3 is necessary. When
the function f in A2 is changed, the value of C.x and C.y may
also change, hence C must depend on A2.f.

25

3. Rules for dependencies

package A
model M

Real x = P.f();
end M;

replaceable package P
function f
end f;

end P;
end A;

package B
function f
end f;

end B;

package C
extends A;
redeclare package P

extends B;
end P;

end C;

model D
C.M m;

end D;

D

C

1

A.M

1

...

1

C.P

3

B

3 B.f

3 1, 22

1 2

Figure 3.5: An example showing why rule 3 must depend on all
enclosed classes and super classes recursively. In the model D,
when the component m.x is set to the results of calling P.f, from
the context of C, P is replaced with a new package that extends B.
Therefore the function called will be B.f and D must depend on
it.

26

3.1 Descriptions and motivations

3.1.4 Rule 4
In Modelica simulations, there are sometimes function calls that are not visible in the
source code. These dependencies are caught by rule 4.

Rule 4a. If a record or type encloses a function named equalityConstraint, it has
a dependency on that function.
If a class with the record or type specializations contains a function equality-
Constraint, the class has a dependency to the function. Figure 3.6 shows an
example of why rule 4a is necessary. The reason equalityConstraint needs
to be included is because it will be called implicitly in the flattened class according
to the Modelica specification.

Rule 4b. If a class extends ExternalObject, it has a dependency on the enclosed
function destructor.
A class extending from ExternalObject must enclose functions named con-
structor and destructor. Theconstructor functionmust be calledwhen
a new instance of the class is made, this is caught by rule 1. The destructor will
be implicitly called at some point, according to the specification. Figure 3.7 shows
an example of this.

27

3. Rules for dependencies

record A
function equalityConstraint
end equalityConstraint;

end A;

connector B
A a;

end B;

model C
B b1;
B b2;
B b3;
Real x;

equation
b1.a.value = time;
Connections.root(b1.a);
connect(b2, b3);
Connections.branch(b1.a, b2.a);
b1.a = b2.a;
Connections.branch(b1.a, b3.a);
b1.a = b3.a;
x = b3.a.value;

end C;

C

B

1

A

1

A.equalityConstraint

4 2

Figure 3.6: An example showing why rule 4a is necessary. The
connect statement in C will be replaced with a function call to
A.equalityConstraint during compilation, so C must de-
pend on A.equalityConstraint.

28

3.1 Descriptions and motivations

class A
extends ExternalObject;

function constructor
output A a;
external;

end constructor;

function destructor
input A a;
external;

end destructor;
end A;

model B
A a = A();

end B;
B

A

1 A.constructor

1

A.destructor

4

2

2

Figure 3.7: An example showing why rule 4b is necessary. The
the destructor will be called implicitly, so B must depend on
A.destructor.

29

3. Rules for dependencies

30

Chapter 4
Method

In this section we describe our test selection algorithm and our approach to verify that the
RTS technique is safe.:

4.1 Dependency analysis
To be considered safe, it is essential for the test selection algorithm to select any tests that
might have changed, and to do this we perform a class dependency analysis to find class
dependencies for test classes. In Chapter 3 we defined rules for direct dependencies from
a class. The total set of dependencies, can be calculated as a dependency graph, where
classes are represented as nodes and dependencies are directed edges.

If a class that is marked as changed is reachable from a test class, that test class is
selected for testing. By calculating the dependency graph for all test classes it is therefore
possible to select all tests that might be affected by changes.

4.1.1 External files
Modelica has functions that access external files, both as resources and as runnable C or
Fortran code. This means that there are dependencies to external files that can not be found
with a class analysis. It is therefore necessary to consider additions, removals and changes
to existing files. For example, it is possible for an external C function to use any other file
as input data. It is also possible for external functions to generate random values.

One alternative is therefore to always select classes that depend on external resources.
To keep it reasonable though, another alternative is to flag all Modelica functions that call
external functions as changed if any resource file (non-directory and non-*.mo) within the
Modelica project directory is changed. Another alternative is to let the user decide if any
external file has been changed, which would result in the selection of all tests that depends
on any external file.

31

4. Method

4.2 Verification
In this section we describe the method we used to verify that the RTS technique is safe.
We also describe our test selection test suite for Modelica.

4.2.1 Mutation dependency analysis
Since Modelica is a complex language, we found it impossible to formally prove that our
technique was safe. Instead we decided to test our implementation and verify that we
selected all changed tests. We therefore had to show that for any change to the Model-
ica project, our technique would find all changed tests. If possible, we would have used
code instrumentation to find all classes which a test class depends on. However, to our
knowledge there exists no tool that can log accessed classes for Modelica.

Instead, we decided to use a process we call mutation dependency analysis. It is quite
similar to “mutation testing” which is described in Section 2.4.

This process works by changing the program P to P′ by altering some class, and then
comparing which test classes that were identical in P and P′. The changes we made were
similar to the ones used in mutation testing, which is why we call a single change to a class
a mutation. To determine if a test class was different in program P′, we compared it to its
counterpart in P. The comparison for the test classes was between their textual flat-code
representations. The important part to note about why we did this comparison is that if
the test class in P′ was changed, then there was a dependency from the test class to the
mutated class, which is what we were looking for.

4.2.2 Test suite
We built a test suite for regression testing of the dependency analysis. It contains tests
based on dependencies that we have manually determined from the Modelica specification
[11]. It also contains tests for language constructs that we discovered from the mutation
dependency analysis. That is, when we fixed bugs related to missing dependencies in the
test selection algorithm, we also added new test cases.

This test suite has been made public and is available online 1 for anyone who wants to
test their Modelica class dependency analysis.

1https://github.com/modelon/MCDTS

32

Chapter 5
Implementation

In this section we will describe the implementation of both the test selection technique
and the verification system. Both implementations are done in the OCT compiler, which
is generated with the meta-compilation tool JastAdd [8].

5.1 Dependency analysis
We used JastAdd’s collection attribute feature to add a method to Modelica classes to
statically calculate their direct dependencies according to Chapter 3. A dependency to
a class is uniquely identified as the fully qualified name of the class. The method was
declared for AST class InstClassDecl, which represents a class declaration in the
instance tree.

To calculate all the dependencies (direct and transitive), we added another method
to InstClassDecl that recursively added all direct dependencies from the dependent
classes. The calculations of direct dependencies are cached, so if multiple classes have
dependencies to the same class c, the direct dependencies of c will only be computed
once.

The test selection technique runs the method to calculate all dependencies for each test
class. If the set of dependencies for a test class intersects with the set of changed classes,
the test is selected for testing.

An exception where we did not implement exactly according to the rules was for
rule 1c, which is for operator functions. It was hard to find accesses to operator functions
with our implementation, so instead we just let operator records have a dependency
on all its enclosed operator functions. This should have a small impact on the number of
dependencies.

External file dependencies are handled separately, such that the class is given an ex-
tra dependency to external files. This dependency is represented as the string “external”
instead of a class name. It is currently not further handled. See Section 4.1.1 for more

33

5. Implementation

details.

5.2 Verification
To implement what we describe as mutation dependency analysis, we used JastAdd to
modify the source tree in order to create mutations. This was easier than modifying the
source code because we wanted the mutations to be found and applied automatically. The
mutations were done to classes by mutating their AST nodes in the source tree. We per-
formed our mutation dependency analysis for MSL.

We will now describe the algorithm for the mutation dependency analysis. For each
test class we first created a reference value of its flat-code when there were no mutations
to the program. We then mutated all classes one by one and recompiled the flat-code for
each test class. The new flat-code was then compared with its reference value. We could
then determine that the test was affected by the mutation if the flat-code was changed. This
is also described in Algorithm 1.

for t in tests do
re ft ← flatcode(t);

end
for c in classes do

mutate(c);
for t in tests do

f codet ← flatcode(t);
if re ft 6= f codet then

add_dependency(t, c);
end

end
end

Algorithm 1: Mutation dependency analysis algorithm.

We always mutated only one class for each iteration. If the flat-codes did not match,
we could therefore be certain that the change introduced in the mutated class resulted in
a change in the test class. We could then determine that there existed a dependency from
the test class to the mutated class.

Due to MSL having an indeterministic external function that was evaluated at compile
time, flattening some test models would result in different flat-code every time. We solved
this by changing the function to be deterministic.

Given a class to mutate, we only performed a single type of mutation at once. We could
then get more data about this kind of mutation, and it also reduced the risk of compilation
errors. For each mutation type, we performed mutations to as many AST nodes as possible
to increase the likelihood of changing the flat-code. When we looked for possible nodes to
mutate, we stopped looking further into subtrees with a binary expression as root though.
The reason for this is that there would be no difference in mutating one or several binary
expressions if they were in the same expression.

Some mutations could result in compilation errors, that did not give any information.
If this happened, we decided to try two times with just a single mutation to the class, in

34

5.2 Verification

hope that this mutation would not lead to compilation errors. If both attempts lead to
compilation errors, we gave up and continued with the next mutation type to save time. If
no mutation resulted in any found dependencies, this could either be because there actually
was no dependency, or that the changes made by our mutations were insufficient to change
the flat-code.

If there were compilation errors, there was no way to determine whether there existed a
dependency from the compiled test class to the mutated class. We came to this conclusion
by experimenting with a class that caused compilation errors for a test class. We first as-
serted that mutating the class caused a compilation error for the test. We then removed the
mutation and instead manually changed the source code for the class that was previously
mutated in such a way that the flat-code should change if there was a dependency from the
test class. We then recompiled the test class and found that the flat-code was not changed,
which means that the compilation error was not related to a dependency. Instead, it was
the compiler that did extra error checking, and this was not something that we could easily
modify.

The different type of mutations we performed, and examples of each type, are listed
in Table 5.1. To perform the mutation we first used static analysis to determine what
AST nodes could be mutated, and by what type of mutation. We then tried to apply all the
mutations of the same type, and if this resulted in compilation errors, we instead performed
them one at a time, as described in Section 4.2.1.

Table 5.1: Examples for mutation types.

Mutation type Example before Example after Specialized
Add component in function See Listing 5.1 - yes
Arithmetic binary expression 1 + 2 2 + 1 no

Literal expressions 39 40 no
Logical binary expression f() > 0 f() <= 0 no

Redeclare functions See Listing 5.2 - yes
String comment M m; “comment” M m; “mutated” no

In addition to using mutations which are used in classical mutation testing (such as
changing the value of literal expressions) we also used specialized mutations that targeted
a certain Modelica language construct. One of the reasons we introduced specialized mu-
tations was because we wanted mutations that could target common language constructs
such as functions. Another was that we wanted to target language constructs we thought
could result in unexpected dependencies. Since we knew the environment of the mutation,
we could invest effort in making the mutations compile and produce changes to flat-code
more often. This is compared to for instance mutations to literal expressions, since they
can appear about anywhere.

We will now describe the different mutations in more detail. First of all, we had a mu-
tation type that targeted String comment nodes and changed their content. String comment
is a language construct that has no semantic meaning but can be included in the flat-code
by the OCT compiler.

We also mutated arithmetic binary expressions and logical binary expressions. Both
types were mutated by switching to another operator, with two exceptions. Addition is the
only binary operation that can be done on strings, so it can not be replaced with another

35

5. Implementation

operator without potentially causing errors. For additions, the mutation instead switched
left and right operands. Multiplication onmatrices can not be replaced with another binary
operation, nor can the operands be switched. To account for this, multiplications instead
were changed to have an additional multiplication with 2. As an example, a · b becomes
a · b · 2.

Literal expressions were also mutated. String literals were appended with a character,
while integers were incremented by 1, and floats were multiplied with 2 (or were changed
to 1 if their value was 0).

Add component in function is a specialized mutation that targets function declaration
nodes. It adds a protected component to the function and adds an annotation which in-
dicates for the compiler to not inline the function. If the function had been inlined, the
protected variable would be removed and thereby make the mutation useless. An exam-
ple is given in Listing 5.1. The changes in function f will be reflected in the flattened
version of A since it accesses f. One of the main reasons for this mutation was to find
dependencies to implicitly called functions, as described by rule 4.

Redeclare function is also a specialized mutation. This mutation targets classes that
have a base class that declares a replaceable function. When applied, this mutation adds
modified function declarations to the targeted class, such that the functions redeclares the
base class’s functions. An example is given in Listing 5.2, which illustrates that B.f2()
accesses B.f as a result of the mutation.

function f
output Real y;

protected // Added
Real MUTATION_VARIABLE; // Added

algorithm
y := 0;
annotation(Inline = false); // Added

end f;

model A
Real x = f();

end A;

Listing 5.1: Example of the “Add component to function”
mutation. The mutation adds the local variable MUTA-
TION_VARIABLE, which will show up in the flat-code for A.

36

5.2 Verification

model A
replaceable function f

output Real y;
algorithm

y := 0;
end f;

function f2 = f;

end A;

model B
extends A;

redeclare function extends f // Added
protected // Added

Real MUTATION_VARIABLE; // Added
annotation(Inline = false); // Added

end f; // Added
end B;

model C
Real x = B.f2();

end C;

Listing 5.2: Example of the “Redeclare function” mutation. The
mutation redeclares f in B and adds the local variable MUTA-
TION_VARIABLE at the same time. This changes the behavior
of B.f2 and will therefore also change the flat-code for C.

37

5. Implementation

38

Chapter 6
Evaluation

In this chapter we will evaluate our technique by comparing its performance to the tech-
nique defined by Hedblom and Rundquist [3]. In this section we denote our technique
as the “instance tree technique” and Hedblom and Rundquist’s as the “source tree tech-
nique”. We will also evaluate our verification. To do this we will for each mutation type
compare the results in terms of found dependencies. To provide a basis for improvements
for specializedmutations wewill also show the total number and distribution of specialized
classes that we found dependencies to.

6.1 Test selection performance
In this section we evaluate the precision and time savings of our test selection technique.
We do this by showing that we have increased the average precision and increased the
average time savings for small changes in MSL and the Heat Exchange Library (HXL).
MSL consists of 5946 classes, where 366 are tests. The corresponding number for HXL
is 871 classes where 227 are tests.

All measurements are done with both our instance tree technique and with the source
tree technique. Tomake the comparison fair, the source tree analysis was modified to make
it safe (see Section 7.1).

6.1.1 Precision
One of the goals with this thesis was to define a test selection techniquewith high precision.
In Table 6.1 we show the average number of found dependencies in MSL for both our
instance tree analysis and the source tree analysis. As can be seen, the instance tree analysis
has a lower average amount of dependencies. We therefore reached our aim to increase
the precision.

39

6. Evaluation

Table 6.1: Average number of transitive dependencies per class
and per test class in MSL.

Classes Avg. num. deps. % change
Source tree any class 128.8 -
Instance tree any class 84.0 -34.8%
Source tree test class 194.0 -
Instance tree test class 164.4 -15.2%

We discovered that the dependencies from the instance tree analysis is a subset of the
ones from the source tree analysis, for all test classes in MSL. It is not quite a subset
when used on all classes in MSL though. Our implementation found 73 dependencies
that were not found by the source tree implementation. The total number of dependencies
found by our analysis was 498240. By excluding tests not found by the source tree analysis
we could reduce the number of dependencies found by 0.015%. The reason for the extra
dependencies is due to our implementation for dependencies to operator functions (see
Section 5.1). We think this amount of extra dependencies is negligible.

6.1.2 Savings when one class or file changed
We compared the savings for our instance tree technique with the source tree technique.
The comparison is based on the assumption that a single class or file (which contains a set
of classes) is changed. According to the techniques, each test class has a set of dependen-
cies, and if there exists a dependency to any changed class, then the test is selected.

To calculate the savings we first mapped each test to a typical simulation time for that
test. The total testing time was then calculated as the simulation time for all selected tests
plus the execution time for the test selection analysis. By doing this for all classes in MSL
we could calculate the average and median savings by comparing the total testing time
with the time it takes to run all tests without any test selection.

The results for the comparison with the source tree technique was that our instance tree
technique had a better performance for both average savings and for average and median
testing times. Although the analysis execution time was longer, the reduced test execution
timewas worth it since it had better savings. These results are shown in Table 6.2. The data
for the calculations for changed classes is also shown in Figure 6.1. The y-axis corresponds
to the percent of time it would take to run all tests, and the x-axis corresponds to a changed
class. The classes have been sorted in ascending order of test time.

Table 6.2 also shows that the analysis execution time is very low compared to the to-
tal execution time for running all tests. The precision therefore did not have to increase
much in order for its benefits to outweigh the cost of the increased analysis execution time.
Relative to the source tree analysis, our instance tree technique provides on average 8.0%
shorter testing time if a file is changed, and 35.1% shorter testing time if only a single class
is changed. These values are also shown in Table 6.3.

We also took time measurements for HXL and performed the same comparison as
for MSL. The reason for this is that HXL has a different structure compared to MSL. In
Table 6.4 we show that the instance tree technique provides higher savings for both changes
to one class and to one file. Figure 6.2 show the data used to calculate the savings. As

40

6.1 Test selection performance

Table 6.2: Performance results for MSL. All units are in % of the
time it takes to run all tests.

Analysis Avg. savings Avg. test time Median test time Analysis time
File: Source 87.880 12.083 1.737 0.036
File: Instance 88.845 11.018 1.186 0.136
Class: Source 93.100 6.864 0.325 0.036
Class: Instance 95.519 4.345 0.215 0.136

Table 6.3: Howmuch shorter our testing times are for MSL, com-
pared to the source tree technique.

Change type Percent shorter (%)
File 8.0
Class 35.1

shown in Table 6.5, for HXL our technique provides on average 22.7% shorter testing time
when only one file has changed, and 24.7% when only one class has changed.

Table 6.4: Savings compared to not using test selection. Also
test times and analysis execution time in % of running all tests for
HXL.

Analysis Avg. savings Avg. test time Median test time Analysis time
File: Source 74.765 25.134 15.693 0.101
File: Instance 80.482 19.399 3.768 0.119
Class: Source 72.011 27.888 15.693 0.101
Class: Instance 78.934 20.947 3.613 0.119

Table 6.5: Howmuch shorter our testing times are for HXL, com-
pared to the source tree technique.

Change type Percent shorter (%)
File 22.7
Class 24.7

41

6. Evaluation

Classes
0%

20%

40%

60%

80%

100%

Ti
m
e

Source

Instance

Figure 6.1: Expected testing times when one class changed in
MSL, for both instance and source tree techniques. The figure can
be viewed as a bar chart where each x-value represents a class, and
the corresponding y-value is the total expected testing time if the
class is changed. The classes on the x-axis have been sorted in
ascending order.

Classes
0%

20%

40%

60%

80%

100%

Ti
m
e

Source

Instance

Figure 6.2: Expected testing times when one class changed in
HXL, for both instance and source tree techniques.

42

6.2 Verification results

6.1.3 MSL commit history
In order to get more realistic measurements we wanted to analyze the time savings of a
real example. We chose to analyze how much time would have been saved if our analysis
was used to select tests for every commit in MSL. In our measurements we assume that all
the tests exist for all commits and that their simulation times do not change.

In Figure 6.3 you can see the results of our instance tree analysis and the source tree
analysis. On the y-axis is the testing time of the selected tests in percent (100% means all
tests selected). On the x-axis are the commits sorted by testing time in ascending order.
The average saving is 68.9% for the instance tree technique and 57.0% for the source tree
technique. This indicates an improvement in precision.

Commit0%

20%

40%

60%

80%

100%

Ti
m
e

Modelica Standard Library commit history

Source
Instance

Figure 6.3: Testing time for the instance tree analysis on the MSL
commit history.

6.2 Verification results
The mutation dependency analysis resulted in a set of class dependencies for each test
class in MSL. These sets of dependencies are available online 1 for anyone who wants to
define a Modelica test selection technique. From our mutation dependency analysis we
discovered rules 1c and 4. We also discovered that we had to make adjustments to rule 3.
Furthermore we found six implementation bugs.

Another important discovery from themutation dependency analysis was that the source
tree technique was not safe. In this report, all measurements are based on a version of the
source tree analysis where these problems have been fixed, such that all comparisons are
between safe techniques. This means that the results for the source tree technique will be
different in this report compared to the report by Hedblom and Rundquist [3]. More details
about the problems are given in Section 7.1.

Although we did not fully verify that our technique is safe, we have verified that it is
safe for large parts of MSL based on the results of our mutation dependency analysis. The
verification only includes test classes though. It would be possible to extend the verifica-
tion to find dependencies from all classes that can be flattened, however this would be very

1https://github.com/modelon/MCDTS

43

6. Evaluation

time consuming. Just running the mutation dependency analysis for MSL’s 366 tests took
about 280 days of execution time, and the total amount of classes that can be flattened is
much larger.

6.3 Mutation type results
In this section we will compare the results for the different kind of mutations we used. The
results from the mutation dependency analysis are comparable since each type of mutation
was executed independently of the other types. We have also abbreviated the names of the
mutation types in this section. The mappings for the abbreviations are shown in Table 6.6.

Table 6.6: Abbreviations for mutation types.

Short name Full name
AddComp Add component in function

Arit Arithmetic binary expression
Lit Literal expression
Bool Logical binary expression
Redecl Redeclare function

Comment String comment

For each mutation type, we counted the number of classes that we applied the mutation
to. For each mutated class, we also counted how many dependencies from test classes to
this mutated class we found. We denote the efficiency for the mutation type as the average
number of dependencies found per mutation. The results for these metrics and the total
mutation dependency analysis execution times are shown in Table 6.7.

As can be seen from Table 6.7, the mutation with the highest number of found depen-
dencies was Lit. This is most likely related to the fact that it was the most pervasive
mutation with about 52% of the classes mutated. Lit could have had even better results,
however as mentioned in Section 5.2 we stopped looking for mutations in binary expres-
sions, which means that we did not include all literal expressions. Both AddComp and
Comment had about half the performance of Lit, while the rest were worse. Since the
execution time is very long (total of about 280 days) it is important to choose mutations
that have a high efficiency. In this regard, all mutations types were about equal except
Redecl that was much worse, and Comment that was slightly better.

To improve the verification with mutation dependency analysis, it is important to find
as many new dependencies as possible. To see which mutations that found “new” depen-
dencies, we also counted the number of unique dependencies and unique mutations for
each mutation type, and this result is shown in Table 6.8. We define a mutation as unique
when it is the only type that can mutate a class (without regard to compilation errors). We
define a dependency as unique if only one mutation type discovered it. As can be seen
in this table, the number of unique mutations is somewhat proportional to the number of
unique dependencies. A good strategy would therefore be to find mutations types that can
be applied as unique mutations. This was the plan with AddComp and Redecl, however
as seen in the table and figures, the result were very different. As the result was positive for
AddComp, it would appear that it is beneficial to create specialized mutations for common

44

6.3 Mutation type results

Table 6.7: Number of mutated classes and data related to number
of found dependencies.

Mutation Type Mutated classes Dep. found Efficiency Exec. time, days
AddComp 30.1% (1792) 7205 4.02 50.8

Arit 34.2% (2035) 8742 4.30 56.4
Lit 53.4% (3173) 14404 4.54 80.6
Bool 15.6% (925) 3984 4.31 26.5
Redecl 1.1% (68) 16 0.24 2.2

Comment 27.7% (1650) 10037 6.08 43.0

language constructs. Considering the more general mutations, Lit and Comment found
many more unique dependencies than Arit and Bool. The reason for this is most likely
because binary expressions appear where other mutations also are applicable.

Table 6.8: Unique mutations and dependencies for the mutation
types.

Mutation Type Unique mutations Unique dep.
AddComp 425 2725

Arit 16 225
Lit 805 6698
Bool 17 228
Redecl 17 5

Comment 206 3540

We also counted the total number of times a mutation type got compilation errors for
all attempts to mutate a class. This result is shown in Table 6.9. It was to be expected
that Arit, Lit and Bool would result in compilation errors, however it was not for
AddComp. Although AddComp is a more complex mutation, our plan was for it to never
cause compilation errors. Most likely there are some language constructs that we did not
consider, and to make it always compile, some updates will have to be done.

Table 6.9: Compilation errors for each type of mutation.

Mutation Type Classes compile err.
AddComp 6.9% (132)

Arit 0.4% (9)
Lit 4.3% (142)
Bool 1.6% (15)
Redecl 0.0% (0)

Comment 0.0% (0)

45

6. Evaluation

6.4 Missing dependencies
In our mutation dependency analysis we could not find dependencies to all classes. We
believe that one of the reasons was that not all classes are used in tests. Another reason
that we know of was that we could not find mutations for all classes. Furthermore, in some
cases the mutations did not result in any change that propagated to the flat-code, which was
also a problem. Table 6.10 shows that we managed to find at least one dependency from
any test class to about 40% of the classes inMSL. The table also shows that we attempted to
mutate about 77% of the classes, which indicates that about half of the mutated classes did
not result in any found dependencies. To fully verify the safety of our technique for MSL,
we would have had to find all dependencies for each test class. To achieve this we would
most likely have to use code instrumentation instead of our approach with mutations.

Table 6.10: The number of classes we tried to mutate and the
number of classes which we found dependencies to, compared to
the total number of classes.

Total number of ... Num. (%)
mutated classes with deps. 2345 (39,4)
classes attempted to mutate 4587 (77,1)
MSL classes 5946 (100.0)

In Table 6.11 we show the distribution of classes (sorted by specialization) which we
did not find any dependencies to. As can be seen in the table, the most common class type
to which there are no dependencies is function. We think that one of the most important
things to do in order to improve the mutation dependency analysis is to improve the spe-
cialized mutations and create new ones. This includes to investigate why the specialized
mutation for functions “Add component in function” sometimes resulted in compilation
errors (see Table 6.9) and why it many times did not result in a changed flat-code (see
Table 6.11).

Two notable results are that we did not find dependencies to any unspecialized class or
operator. We have investigated some unspecialized classes and we did not find anything
that indicated that they could not be mutated like any other class. To check if any unspe-
cialized class actually was used in any tests, we ran our dependency analysis on the tests
and found dependencies to 8 unspecialized classes. We investigated those 8 classes, and
our conclusion was that none of them could be mutated. For operators, we did not find
any mutations that we could apply. The reason for this is that the operator specialization is
similar to the package specialization, except that it has even more restrictions. There is no
point in mutating this class though, since there will always be a dependency to it according
to rule 2 in combination with rule 1c, if it contains any function declarations.

From the mutation dependency analysis we also found a dependency to only one op-
erator record of 22 possible. The reason for this is that the only operator record with a
full definition is the class Complex. All other operator records in MSL extend Com-
plex (and sometimes also redeclare the type of the input). It would be possible to mutate
these operator records by adding modifications, however it would most likely only yield
the same result as mutating models. Since the models are more in number, they should

46

6.4 Missing dependencies

have higher priority for implementation of better mutations.
Our conclusion is that most classes needs more testing, and although we have used

general mutations such as “Literal expression” mutations that were successful in our ver-
ification, we think that the next step to improve the mutation dependency analysis is by
introducing more specialized mutations. This makes it easier to target specific types of
classes and reduces the risk of compilation errors.

Table 6.11: Number of classes which we both did and did not find
any dependencies to for MSL. The table is sorted by the number of
classes with no found dependency to. These numbers include both
classes that we tried to mutate, but did not find any dependencies
to, and classes that we did not find any mutations for.

Class specialization Num. no deps (%) Num. deps (%) Total
function 1094 (58,2) 786 (41,8) 1880
package 686 (88,6) 88 (11,4) 774
model 576 (36,9) 987 (63,1) 1563
type 533 (77,7) 153 (22,3) 686
class 220 (100,0) 0 (0,0) 220
record 219 (66,6) 110 (33,4) 329
block 189 (53,2) 166 (46,8) 355
connector 52 (51,5) 49 (48,5) 101
operator record 21 (95,5) 1 (4,5) 22
expandable connector 4 (66,7) 2 (33,3) 6
operator function 4 (57,1) 3 (42,9) 7
operator 3 (100,0) 0 (0,0) 3
sum 3601 2345 (39,4) 5946

47

6. Evaluation

48

Chapter 7
Discussion

In this section we will discuss the difference between our instance tree technique and the
source tree technique in more detail. We will also discuss an alternative approach for the
test selection technique that we considered.

7.1 Comparison with source tree analysis
We will begin with the comparison of our instance tree technique, and Hedblom and
Rundquist’s source tree technique.

One of the major problems with the source tree analysis was that it could not resolve
the name of an accessed class in some cases when using a composite access. That is, the
lookup for the class from a name failed. It therefore had to select all classes that could
possibly be associated with the class that could not be resolved. This problem does not
exist in the instance tree, which made it possible to define implementation independent
rules.

On the other hand, the problemwith the instance tree is that it takes longer to instantiate
and requires more memory. It is also technically more complex than the source tree, which
makes the test selection algorithm harder to implement.

If we just compare the set of dependency rules for our technique and for Hedblom and
Rundquist’s, we can summarize it as the following:

• Ours can resolve all accesses.

• Ours checks for special language constructs and operators.

• Ours creates dependencies to enclosed classes recursively for classes with any re-
declarations.

• Theirs creates dependencies to enclosed classes recursively for accesses to the last
resolvable access in a qualified access.

49

7. Discussion

In many cases, the fact that theirs includes enclosed classes from accesses saves it
from having to consider most special language constructs. The same rule also finds most
of the dependencies for redeclarations, however as we have shown in Section 6.2, it was
not enough and had to be fixed. It is also this rule which makes their technique coarse,
and by reducing it to only redeclares we have managed to increase the precision.

According to the rules, we expected our technique to always find a subset of the depen-
dencies which theirs did. We checked if this was the case, and the result was that we found
some dependencies which they did not. That is, we did not find a subset of dependencies.
There are two reasons for this. The first is that the instance tree analysis includes a depen-
dency to the equalityConstraint function, as per rule 4a. The source tree analysis
only finds a dependency to equalityConstraint if it has an access to the enclosing
class. The second is that our implementation of rule 1c will create dependencies from one
operator function to all other operator functions in the same operator record. Since both
techniques are safe, the extra dependencies are redundant and can be removed by improv-
ing our implementation. However a reduction of transitive dependencies by 0.015% is not
much of an improvement.

model A
model M

Real x = f()
end M;

replaceable function f
end f;

end A;

model B
extends A;
redeclare function f
end f;

end B;

model C
B.M m;

end C;
C

A.M

1

B

3

A.f

1

A

2

2

B.f

2

4

4

4

Figure 7.1: Dependency graph showing that there is no depen-
dency from C to B.f. Note that the rules applied are for the source
tree analysis.

As mentioned before, the source tree technique was not safe. The problem was that the
analysis does not account for classes with the redeclare prefix. The technique will fail
to find all dependencies since it has no equivalent to our rule 3 for redeclares. An example
of where it fails can be seen in Figure 7.1. Note that the figure uses the rules and rule
numbering defined in Hedblom and Rundquist’s report [3]. The technique does not find
the dependency from C to B.f because their rule 4 does not apply to B in the access to
B.M. This could be fixed by adding dependencies to enclosed classes with redeclare prefix

50

7.2 Alternative technique

(and their enclosed classes recursively).
There was also an implementation bug which caused the analysis to include too many

dependencies in some situations, which we have fixed. In addition to our fix to make the
source technique safe (see Section 6.2), this is another reason why the results for the source
tree technique will be different in this report.

Regarding the size of the implementation, the size of our technique’s class dependency
analysis is 201 lines of source code, while theirs was 134. This number was measured with
the tool cloc1 and the input source files were treated as Java files.

7.2 Alternative technique
An alternative to defining a small amount of direct dependencies and then using transitivity
to find the other dependencies is to find all dependencies at once as direct dependencies.
Since expanding the instance tree will resolve all modifications, it is possible to find all
dependencies, including the ones in modified classes. Our rule 3 can then be skipped,
since an access to a redeclared class will find the correct class.

If applied to the example in Figure 3.4, the analysis would expand the extends clause
node and the contained component declaration nodes and find a function call node which
accesses A2.f.

We also implemented this algorithm, and as can be seen in Table 7.1 savings are worse
compared to the transitive dependencies approach, although the precision is higher as
shown in Table 7.1 (the average test execution time is lower). The reason for this is that the
analysis execution time is too high relative the increased precision. In Figure 7.2 the top
layer represents time spent on test selection, and the bottom layer represents test execution
time. As can be seen, a lot of time is wasted on analysis execution time even if no tests
have to be executed. Another problem was also that this algorithm required a lot more
memory compared to using transitive dependencies.

Table 7.1: Performance results for MSL for algorithms based on
source tree and instance tree. All units are in % of the time it takes
to run all tests.

Analysis Avg. savings Avg. test time Median test time Analysis time
File: Source 87.880 12.083 1.737 0.036
File: Inst. Transitive 88.845 11.018 1.186 0.136
File: Inst. Alternate 86.458 11.267 1.408 2.274
Class: Source 93.100 6.864 0.325 0.036
Class: Inst. Transitive 95.519 4.345 0.215 0.136
Class: Inst. Alternate 94.444 3.282 0.086 2.274

1https://github.com/AlDanial/cloc

51

7. Discussion

Class
0%

20%

40%

60%

80%

100%

Ti
m
e

Figure 7.2: Expected execution times when one class changed in
MSL, for test selection with instance tree indirect algorithm. Top
layer is test selection time and bottom layer is test execution time.
100% is the time for running all tests. The total expected testing
time can be larger than 100%, since the total time also includes
the time for test selection.

52

7.3 Replace functions mutation

7.3 Replace functions mutation
The “Replace functions” mutation was originally meant to be a mutation that shadowed
functions from the base classes, as can be done in Java for example. This is not valid
syntax in Modelica though, so we instead changed it to redeclare replaceable functions.

At that point in time wewere still learning theModelica language (and we still are), and
the consequences of redeclaring replaceable functions regarding the dependencies were
not obvious. From the result of the mutation dependency analysis, we can see that the
performance of the mutation was very low. This was related to the fact that the mutation
rarely could be applied. The mutation was also overly complex in the regard that it was
hard to get it to compile. Based on the results and on the effort to create the mutation, we
think that creating simpler mutations that target a specific class specialization will provide
the best results for Modelica-specific mutations.

7.4 Improvements to general mutations
Since it is very time consuming to perform the mutation dependency analysis, it is impor-
tant to choose efficient mutations from the beginning. After we did the mutation depen-
dency analysis we came up with some improvements for the general mutations, however
we did not implement them.

Our Comment mutation only attempted to mutate existing comments. One way to
make it more pervasive is to add comments whenever possible.

Another general mutation would be to add simple value modifications on accesses.
Many types of classes does in some way contain a value of a primitive type, for instance
Real. Those classes can be mutated by modifying the start value of this Real. This
mutation might not be trivial to implement, but it will most likely provide good results
since the modification will show up in the flat-code if there is a dependency.

7.5 Threat to validity
Although we have verified the dependency rules for large parts of MSL, it is still possible
that our dependency rules are not complete. For instance, there might be language struc-
tures that we have missed if they were not present in MSL. Another problem was that we
could not determine the completeness for the set of actual dependencies for test classes
that we found from our mutation dependency analysis. The verification of the technique’s
safety is therefore not complete.

53

7. Discussion

54

Chapter 8
Related work

There exists RTS techniques which are based on static analysis, runtime analysis or both.
In this section we briefly describe some techniques of each type and compare our technique
with the different approaches.

8.1 Runtime and static analysis
One of the most basic RTS techniques that use both static and runtime analysis is called
the class firewall technique and was first introduced by Hsia et al. [13]. The technique
requires calculating one set of classes for each test, and another set of classes for each
changed class. To calculate the set for the tests, the idea is to instrument the test cases and
add all classes used to a set called the touch set. The set for the changed class c is instead
statically computed as the set of classes that transitively have a dependency on c. This set
is denoted as the class firewall of c. If the touch set for a test intersects the class firewall
for any changed class c, then the test is selected.

Another approach called TwoPhase performs the test selection in two phases to keep
the analysis time low while increasing the precision. In the first phase it partitions the
program such that only parts of the program that might be affected by the changes remains.
This is done with static analysis. In the second phase it uses runtime coverage information
for the partition of the program that remains. If the changes might lead to new execution
paths for a test, then the test is selected [14]. Harold et al. implemented this technique in
the tool DejaVOO for Java.

8.2 Runtime analysis
A technique called Change-based test selection was proposed by Skoglund and Rune-
son [15] for Java. To form this technique, they removed the class firewall set from the

55

8. Related work

original class firewall technique, and instead only select tests if their touch set include a
changed class. This way, their technique only requires runtime analysis. They also provide
a proof that Changed-based test selection is safe [15].

Another approach on how to perform test selection is implemented by the tool Ek-
stazi [5] for Java. The tool follows the concept of Change-based test selection, but it
creates a dependency to all accessed files instead of classes. This is done by instrumenting
the test and saving a dependency to each file it accesses. One of the major benefits with this
approach is that dependencies to local external files are also collected. The verification of
the tool’s safety was based on the proof provided for Changed-based test selection [15].

8.3 Static analysis
An example of a technique that only uses static analysis is the technique defined by Hedin
et al. called Extraction-Based RTS for Java [4]. They developed a tool called AutoRTS
which statically calculates the dependencies for each test, and saves the dependencies as
a dependency graph. Tests that depend on changed classes are selected for testing. By
incrementally updating the graph instead of recomputing it from scratch, the test selection
time is proportional to the size of the update instead of the project size.

8.4 Discussion
Our RTS technique forModelica share similarities with the Extraction-Based RTS for Java
in the sense that both techniques use static analysis to build a dependency graph and se-
lects the tests that depend on changed classes. One difference is that the Extraction-Based
technique performs incremental updates to the graph to save time, while our technique
recomputes the graph after each change. The runtime of Java regression testing can be
comparable to the time it takes to perform the test selection, why it is important to keep
the test selection time short. In Modelica, the testing time is much longer compared to the
test selection time, why reducing the test selection time (at least for our technique) won’t
provide a considerable increase in time savings.

A test selection similar to how Ekstazi for Java works would be possible for Modelica.
Instead of using runtime information to get file accesses, it’s possible to add a dependency
to all files that the compiler loads during flattening of a test. This technique will probably
be inefficient though, since the process of flattening is time costly, and it’s possible that
the compiler loads more files than necessary.

Using runtime analysis to get class dependencies like in imperative languages is not
applicable for Modelica. Since tests in Modelica are transformed to equation systems, it’s
not possible to get a code coverage like in imperative languages. Because of this, tech-
niques such as TwoPhase won’t work. However, in the same way as dependencies to files
can be added during the compilation process, it should be possible to add dependencies to
classes necessary for compiling a test. This requires in-depth knowledge of the compiler
though, and is at least for the OCT Modelica compiler that we have used not something
easily achieved.

56

Chapter 9
Conclusions

We have defined a safe test selection technique for Modelica that is based on a class depen-
dency analysis. To perform the analysis we have defined rules for Modelica class depen-
dencies. We have shown that our technique has a higher precision and increased average
time saving for MSL and HXL compared to the previous test selection technique by Hed-
blom and Rundquist. For MSL we managed to reduce the testing time by 88.8% when
one file changed, and by 95.5% when one class changed, as compared to running all test
classes. In comparison to Hedblom and Rundquist’s technique, this corresponds to our
technique having a 8.0% shorter test time for one file change, and 35.1% shorter for one
class change. Similar results were attained for measurements on HXL.

We have worked with verifying the safety of our test selection technique by making
certain that a subset of the actual dependencies that we found with mutation dependency
analysis were found by our dependency analysis. Although we did not find dependencies
to all classes with the mutation dependency analysis, we believe that this was partially
because not all classes were tested, and partially because we could improve the choice of
mutations and their implementation. More specifically, to further improve the verification
we recommend further use of mutations that are specialized for specific types of classes.
If possible, we also recommend the use of code instrumentation instead of mutation de-
pendency analysis to find dependencies if possible.

9.1 Future work
For future work we think that the most important thing to do is to improve the verification
of the test selection technique’s safety. The verification we performed showed that the
test selection algorithm implemented by Hedblom and Rundquist [3] was not safe, and
although we have performed systematic verification, it is possible that the same might
happen to our technique. We think that future work should strive to further verify our test
selection technique so that it can be applied without any worry about it’s safety.

57

9. Conclusions

One way to improve the verification is to continue with the mutation dependency anal-
ysis we performed by testing more libraries and improving the mutations. Another path
which we did not try but did consider is to try to use code instrumentation to collect ac-
cessed classes during model flattening, and thereby find actual dependencies.

58

Bibliography

[1] Gregg Rothermel and Mary Jean Harrold. A safe, efficient regression test selection
technique. ACM Trans. Softw. Eng. Methodol., 6(2):173–210, 1997.

[2] Modelica testing toolkit. http://www.modelon.com/products/
model-testing-toolkit/. [Online; accessed 8-May-2018].

[3] Erik Hedblom and Kasper Rundquist. Safe test selection for modelica using static
analysis. Master’s thesis, Lunds Tekniska Högskola, Department of Computer Sci-
ence, Faculty of Engineering, 2017.

[4] Jesper Öqvist, Görel Hedin, and Boris Magnusson. Extraction-based regression test
selection. In Proceedings of the 13th International Conference on Principles and
Practices of Programming on the Java Platform: Virtual Machines, Languages, and
Tools, Lugano, Switzerland, August 29 - September 2, 2016, pages 5:1–5:10, 2016.

[5] Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. Practical regression test se-
lection with dynamic file dependencies. In Proceedings of the 2015 International
Symposium on Software Testing and Analysis, ISSTA 2015, Baltimore, MD, USA,
July 12-17, 2015, pages 211–222, 2015.

[6] Source code instrumentation overview. https://www.ibm.com/support/
knowledgecenter/SSSHUF_8.0.0/com.ibm.rational.testrt.
doc/topics/cinstruovw.html. [Online; accessed 8-May-2018].

[7] Jmodelica.org. https://jmodelica.org/. [Online; accessed 7-May-2018].

[8] Görel Hedin and Eva Magnusson. Jastadd–an aspect-oriented compiler construction
system. Sci. Comput. Program., 47(1):37–58, 2003.

[9] Optimica compiler toolkit. http://www.modelon.com/products/
modelon-creator-suite/optimica-compiler-toolkit/. [Online;
accessed 7-May-2018].

59

http://www.modelon.com/products/model-testing-toolkit/
http://www.modelon.com/products/model-testing-toolkit/
https://www.ibm.com/support/knowledgecenter/SSSHUF_8.0.0/com.ibm.rational.testrt.doc/topics/cinstruovw.html
https://www.ibm.com/support/knowledgecenter/SSSHUF_8.0.0/com.ibm.rational.testrt.doc/topics/cinstruovw.html
https://www.ibm.com/support/knowledgecenter/SSSHUF_8.0.0/com.ibm.rational.testrt.doc/topics/cinstruovw.html
https://jmodelica.org/
http://www.modelon.com/products/modelon-creator-suite/optimica-compiler-toolkit/
http://www.modelon.com/products/modelon-creator-suite/optimica-compiler-toolkit/

BIBLIOGRAPHY

[10] Johan Åkesson, Torbjörn Ekman, and Görel Hedin. Implementation of a modelica
compiler using jastadd attribute grammars. Sci. Comput. Program., 75(1-2):21–38,
2010.

[11] Modelica Association et al. Modelica - a unified object-oriented language for physi-
cal systems modeling - language specification version 3.2 revision 2. https://
modelica.org/documents/ModelicaSpec32Revision2.pdf, 2013.
[Online; accessed 7-May-2018].

[12] Richard A. DeMillo, Richard J. Lipton, and Frederick G. Sayward. Hints on test data
selection: Help for the practicing programmer. IEEE Computer, 11(4):34–41, 1978.

[13] David Chenho Kung, Jerry Gao, Pei Hsia, Jeremy Lin, and Yasufumi Toyoshima.
Class firewall, test order, and regression testing of object-oriented programs. JOOP,
8(2):51–65, 1995.

[14] Alessandro Orso, Nanjuan Shi, and Mary Jean Harrold. Scaling regression test-
ing to large software systems. In Proceedings of the 12th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, 2004, Newport Beach,
CA, USA, October 31 - November 6, 2004, pages 241–251, 2004.

[15] Mats Skoglund and Per Runeson. Improving class firewall regression test selection
by removing the class firewall. International Journal of Software Engineering and
Knowledge Engineering, 17(3):359–378, 2007.

60

https://modelica.org/documents/ModelicaSpec32Revision2.pdf
https://modelica.org/documents/ModelicaSpec32Revision2.pdf

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTATIONSDAG 2018-05-31

EXAMENSARBETE Improved precision and verification for test selection in Modelica
STUDENT Markus Olsson, Filip Stenström
HANDLEDARE Niklas Fors (LTH), Jon Sten (Modelon AB)
EXAMINATOR Görel Hedin (LTH)

Förbättrat testurval för Modelica

POPULÄRVETENSKAPLIG SAMMANFATTNING Markus Olsson, Filip Stenström

Testurvalstekniker för mjukvara kan spara mycket tid vid testning. I detta arbete
har en ny testurvalsteknik för modelleringsspråket Modelica definierats, med högre
precision än tidigare tekniker och med verifierad säkerhet.

I dagens mjukvaruindustri släpps det kontinuerligt
nya uppdateringar. För att säkerställa att dessa
uppdateringarna inte inför nya buggar, kan man
använda så kallade regressionstester. Det innebär
att man testar programmets funktionalitet för att
upptäcka om något oförutsett ändras. Ett prob-
lem är att det kan ta lång tid att köra alla tester.
Men det är onödigt att köra tester som inte har
påverkats av en ändring. Därför kan man använda
en testurvalsteknik för att välja ut och köra de
tester som man tror kan ha påverkats av uppda-
teringen. Om urvalstekniken garanterat väljer alla
tester som har påverkats så kallas den säker.

I vårt examensarbete har vi definierat en säker
testurvalsteknik för modelleringsspråket Model-
ica. Vårt mål var att förbättra precisionen – det
vill säga att minska antalet oförändrade tester som
valdes ut – jämfört med en tidigare teknik och
det lyckades vi med. Den genomsnittliga testti-
den minskade med ca 96% för Modelicas standard-
bibliotek vid små ändringar jämfört med att köra
alla tester. Vår teknik minskar testkörtiden med
ca 35% jämfört med den enda tidigare testurval-
stekniken för Modelica som vi känner till.
För att utvecklare ska våga använda en testur-

valsteknik är det viktigt att visa att den är säker.
I vårt arbete analyserade vi först Modelicas stan-
dardbibliotek för att hitta beroenden från tester
till vanliga klasser. Med hjälp av denna informa-
tionen kunde vi sen skapa en uppsättning tester

som verifierar att en urvalsteknik för Modelica är
säker. En intressant upptäckt under vår verifiering
av teknikens säkerhet var att den tidigare urval-
stekniken faktiskt inte var säker. För att göra den
säker lade vi därför till det som saknades i dess
implementation. Det var den säkra versionen som
vi använde till tidsmätningarna.
Vår teknik är baserad på att analysera beroen-

den mellan Modelica-klasser. En stor del av vårt
examensarbete var att definiera reglerna för dessa
klassberoenden. Tekniken fungerar på så sätt att
den först hittar alla beroenden för testklasserna i
ett Modelica-projekt, och väljer sedan ut de tester
som har beroenden på klasser som användaren har
ändrat på.
För att tekniken ska spara tid är det viktigt

att beroendeanalysen inte tar längre tid än vad
det hade tagit att köra alla testerna. För t.ex.
Java-program kan detta vara ett problem, men i
Modelica tar testerna så lång tid att vår analystid
är under 0,3% av den totala testtiden.
En del av verifieringen var att utföra automa-

tiska ändringar i varje klass, en i taget, och un-
dersöka vilka tester som påverkas. Om ett test
påverkades, så innebär det att testklassen beror
på den ändrade klassen. Om beroendeanalysen
inte hittar det beroendet så är testurvalstekniken
inte säker.

	Introduction
	Background
	Regression test selection
	Modelica
	Example
	Modelica classes
	Dot notation
	Name lookup and class access
	Inheritance
	Modifications and redeclare
	Modelica tests

	OPTIMICA Compiler Toolkit
	Source tree
	Instance tree
	Flat tree

	Mutation testing

	Rules for dependencies
	Descriptions and motivations
	Rule 1
	Rule 2
	Rule 3
	Rule 4

	Method
	Dependency analysis
	External files

	Verification
	[M]
	Test suite

	Implementation
	Dependency analysis
	Verification

	Evaluation
	Test selection performance
	Precision
	Savings when one class or file changed
	MSL commit history

	Verification results
	Mutation type results
	Missing dependencies

	Discussion
	Comparison with source tree analysis
	Alternative technique
	Replace functions mutation
	Improvements to general mutations
	Threat to validity

	Related work
	Runtime and static analysis
	Runtime analysis
	Static analysis
	Discussion

	Conclusions
	Future work

	Tom sida
	Tom sida

