
Web-based Tree Editor for JastAdd
Compilers

Marcus Lacerda

MASTER’S THESIS | LUND UNIVERSITY 2018

Department of Computer Science
Faculty of Engineering LTH

ISSN 1650-2884
LU-CS-EX 2018-19

Web-based Tree Editor for JastAdd
Compilers

Marcus Lacerda
dat11mla@student.lu.se

December 14, 2018

Master’s thesis work carried out at
the Department of Computer Science, Lund University.

Supervisor: Niklas Fors, niklas.fors@cs.lth.se

Examiner: Görel Hedin, gorel@cs.lth.se

mailto:dat11mla@student.lu.se
mailto:niklas.fors@cs.lth.se
mailto:gorel@cs.lth.se

Abstract

Domain Specific Languages (DSL) are programming languages created with
specific domains in mind. Programs in these domains may be more easily
represented as graphs or other structures, rather than text. Structure editors
do just that, represent programs as, for example, graphs (graphical editors)
or trees (tree editors), by using the programs’ underlying structures, making
structure editors useful tools for DSL programming. We will in this thesis
present a generic web-based tree editor that works for creating programs in
any language specified in the metacompilation system JastAdd. The tree editor
performs semantic analysis and displays semantic errors directly in the web
browser.

Keywords: compilers, abstract syntax trees, tree editors, JastAdd

2

Acknowledgements

I would like to thank my supervisor Niklas Fors for all his invaluable feedback and sup-
port during the course of this thesis. Furthermore, my thanks go to Görel Hedin, for her
enthusiasm regarding the project. Also, thanks to both Niklas and Görel, for providing me
with this very interesting research topic. Lastly, thanks to Alfred Åkesson, for his council
in the field of tree editors.

3

4

Contents

1 Introduction 7

2 Background 9
2.1 Compiler Overview . 9

2.1.1 Types of Compilers . 10
2.1.2 Abstract Syntax Tree . 10

2.2 Tree Editor . 11
2.3 JastAdd . 12

2.3.1 Classes . 13
2.4 Java and JavaScript . 14
2.5 Domain Specific Languages . 14
2.6 Related Work . 15

2.6.1 JATTE . 15
2.6.2 Jetbrains MPS . 15

3 System Overview 17
3.1 Client-Server . 17
3.2 The Tree Editor . 18

4 Implementation 19
4.1 Server Application . 19

4.1.1 Transpilation . 19
4.1.2 Encoding AST Information . 20
4.1.3 Automating the generation . 21

4.2 Client Application . 21
4.2.1 Tree Editor . 22

5 Evaluation 27
5.1 Random AST Generation . 27

5.1.1 Retrieving AST Information . 27
5.1.2 Nodes . 28

5

CONTENTS

5.1.3 Token Values . 29
5.2 Performance Evaluation . 29

5.2.1 Methodology . 29
5.2.2 Chromium V8 . 30
5.2.3 Results . 32

6 Future Work 35
6.1 Allowing Language Specification . 35
6.2 Customization . 35
6.3 Full Semantic Analysis . 36
6.4 Synthesis . 37
6.5 Interpreter . 37

7 Conclusion 39

6

Chapter 1
Introduction

There exist many different programming languages today, some of which are general and
used for almost any purpose and others that are created for specific problem-domains.
Therefore, there exists a distinction between programming languages: general purpose
languages (GPL) and domain specific languages (DSL). GPLs are languages such as Java,
C and python. These are created to allow the programmer to write any program, but, as you
may have encountered, some problems are quite difficult — or at least tideous — to solve
with a GPL. Compare for example the complexity of using Java to make matrix calcula-
tions to making those same calculations in a specialized language such as Matlab. This
is the prupose of DSLs: to facilitate solving problems in specific domains. For certain
domains however, something that in the context of GPLs seem quite natural, writing pro-
grams as text can seem unecessarily complicated. For such languages an editing tool that
uses a perspective with emphasis on the solution and not the implementation, the program
and not the source code, can be advantageous.[9] Editing tools that use a program’s un-
derlying structure are generally called structured editors. For example: a structured editor
for building finite state automata might display a state diagram instead of showing source
code. What we are interested in is a specific kind of structured editor, namely a tree editor.

A tree editor enables a user to edit programs as abstract syntax trees (AST) which is
a compiler’s internal representation of a program. This kind of editor is generic in the
sense that it can work with any compiler, as long as it can access and build ASTs for that
compiler. This gives us a broad structural editing tool and it also puts less demands on its
associated compilers: the compiler will not need a parses since the ASTs are built directly.
This also means that the corresponding programming language does not need to have a
syntax defined. Tree editors are therefore well suited for compiler development in that it
both allows users to build ASTs, which is a familiar structure and used by all compilers,
and use the compiler at a very early stage in development. But, for compiler development
you also need a something to build the actual compilers. This is what the metacompilation
system JastAdd is for.

Through JastAdd’s declarative language one can specify the abstract syntax, semantic

7

1. Introduction

analysis and synthesis of a compiler[4]. The abstract syntax is what specifies the structure
of the compiler’s ASTs. The semantic analysis is how the compiler should interpret the
ASTs—what they mean in a sense — and the synthesis is generation of some target code.
The JastAdd compilers are generated in Java. With JastAdd we can generate compilers,
and by extension, new programming languages.

In this thesis we present a web-based tree editor for facilitating the analysis and creation
of JastAdd compilers. The editor servers as a proof of concept showing how it can be built,
its complexity, limits and usefulness.

In the following chapter we will explain some key concepts necessary to understand
this master’s thesis. After that, an overview of the system built, followed by its imple-
mentation. We will then evaluate the performance of our system and lastly discuss future
improvements.

8

Chapter 2
Background

This chapter explains some key concepts necessary to understand this master’s thesis. We
will start with a brief overview of what a compiler is and how it works followed by a
description of how they can be built through the metacompilation system JastAdd. Lastly,
some key differences between Java and JavaScript will be examined.

2.1 Compiler Overview
A compiler is a program that translates source code written in a programming language
into another form called target code. This process is known as compiling and usually
consists of two main parts, analysis and synthesis. The former being when the source code
is processed and the latter when target code is generated. Figure 2.1 provides a simplified
overview of any generic compiler.

The compiler’s analysis usually consists of three distinct types of analysis: lexical,
syntactical and semantic. But, for our purposes we can view the lexical and syntactical
analysis as one step, parsing. Parsing is the process of examining the source code and
creating an internal representation describing the program. This representation is called
an abstract syntax tree and is in a sense the core of the compiling process. After an AST

Source code Parsing AST Synthesis Target code

Compiler

Figure 2.1: Simplified overview of a generic compiler.

9

2. Background

has been created, the semantic analysis is performed. This is when expressions, variables
and functions are bound to some sort of meaning. For example, that a variable has been
declared before use. This information can be encode in different ways, e.g., symbol tables
and attributed ASTs.[1]

After the semantic analysis has been completed the synthesis process can begin which
consists of generating the actual target code. This thesis will focus mainly on abstract
syntax trees and semantic analysis.

2.1.1 Types of Compilers
Compilers, as mentioned above, translate source code into target code. The target code is
usually represented in either intermediate or executable code. Examples of such compil-
ers are javac, which translates a program written in the Java language into Java-bytecode
(intermediate code which is run on a Java Virtual Machine) and GCC, a compiler for the
language C, which takes a C program and returns executable code. Although these are
the most common types of compilers, there may be situations when you want to translate
source code from one programming language into source code in another language, as is
the case in this thesis project. This kind of compilers are called source-to-source compil-
ers or transpilers and further on in this report we will explain how a transpiler was used
to compile source code from Java to JavaScript.

2.1.2 Abstract Syntax Tree
The thesis work described and discussed in this report will reference abstract syntax trees.
Therefore, it is important to give a basic, but detailed, description of what an AST is. It
can be seen as the interface between the parsing process and the following steps of the
compilation (semantic analysis and synthesis). The nodes of the abstract syntax tree are
specified in the abstract syntax. Usually, each of the AST’s nodes represent a construct
in the programming language. The AST itself is usually built based on the result of the
parsing, a parse tree, but as will be shown in this thesis, ASTs can also be created directly.

Program

Addition

Literal
Value=2

Literal
Value=2

Figure 2.2: Example AST representing the expression 2 + 2.

We will clarify with an example. Say we have a toy programming language made
for creating simple mathematical expressions. In this language we have the following
constructs: Program, Expression, Addition and Literal. We define the language so that a

10

2.2 Tree Editor

Program-node is the root-node of the AST and has an Expression-node as its only child.
We also define Addition and Literal to be of the type Expression, where an Addition-
node can have two Expression-nodes as its children, and a Literal-node only has a token
representing its value. In this language, we can create the tree seen in Figure 2.2, where the
root-node of the AST is a Program-node having a child expression of the type Addition.
This child in turn has two children of its own, each a Literal with the value 2. The resulting
AST describes the mathematical expression 2 + 2.

2.2 Tree Editor
An editor in this context is a tool for editing programs in some given programming lan-
guage. A text editor allows a user to edit the source code of a program. Whereas a tree
editor, allows a user to edit the abstract syntax trees of a program directly, see Figure 2.3.

So where a text editor has to pass its data (in the form of text) to a compiler which then
parses the code and builds an AST. The tree editor instead allows you to skip the parsing
since the data you are modifying is an AST already. This means that a compiler used with
a tree editor does not need to have a parser, which makes it easier to create new languages.
Allowing the creation of abstract syntax, semantical properties and even synthesis before
constructing a parser.

Source code Parsing AST Synthesis Target code

Compiler

Tree editor
Text editor

Figure 2.3: With a text editor the user modifies the source code.
With a tree editor the user modifies the abstract syntax tree (AST).

Some drawbacks however, include that the format of the code in the tree editor is not
as uniform as that of a text editor. Code in text editors are usually written in the Latin
alphabet whereas there are many different formats for representing abstract syntax trees,
e.g. XML or JSON. One could also assume that people are not generally as used to seeing
programs in the context of syntax trees as they are seeing text.

An example tree editor is the JastAdd tunable tree editor called JATTE. The picture
shown in Figure 2.4 demonstrates how JATTE displays the abstract syntax tree from the
example in Figure 2.2.

11

2. Background

Figure 2.4: Example of how the tree editor JATTE shows the AST
from Figure 2.2.

2.3 JastAdd
JastAdd1 is a system for generating language-based tools based on attribute grammars[4],
for example compilers, which is what we will use it for in this project. JastAdd takes
three file types ".ast", ".jrag" and ".jadd" and generates a compiler which consists of Java-
classes, each representing a node in the AST, see Figure 2.5 for an overview. The ".ast" files
contain the abstract syntax, which specifies the structure of the AST-nodes.2 The ".jrag"
and ".jadd" files are for declaring the semantic analysis and synthesis of the language. A
bit simplified one could say that the former is for adding declarative attributes defined by
equations and the latter for adding imperative methods. So where the abstract syntax in
the ".ast" files describe the AST’s structure, the other files describe the nodes’ attributes
and methods, in other words, how to create the attributed AST (and later synthesis). The
process of creating the attributed AST is, as the observant reader might recall, the result
of the semantic analysis process.

.ast

.jadd

.jrag

Specification

JastAdd
Compiler
(Java)

Figure 2.5: JastAdd takes specification files and generates a com-
piler.

To clarify the concept of attributed abstract syntax trees, we will go back to the toy
example from Figure 2.2. This time we will add an attribute to the Expression type called
"eval" which will represent the evaluation of an expression. Each subtype of Expression
will now have an "eval" attribute, representing how that specific expression should be

1http://jastadd.org/web/
2The nodes of the abstract syntax tree.

12

2.3 JastAdd

Program

Addition
eval=4

Literal
Value=2
eval=2

Literal
Value=2
eval=2

Figure 2.6: The attributed abstract syntax tree after evaluation.

evaluated. Addition’s "eval" is the sum of its children’s "eval" and the Literal’s "eval" is
simply its value. The evaluated tree is shown in Figure 2.6. This is about as simple as an
attributed AST can get. The attributes are often used for more complex things such as type
checking, name lookup and error handling. Although these concepts are mainly part of
the semantic analysis, parts of the synthesis, such as code generation, can be written with
attributes as well.

What follows is the code written in JastAdd’s declarative language that specifies the
AST nodes as shown in Figure 2.6. The first code snippet is that from the ".ast" file, it
specifies that the Program node can have an Expression node as a child. An Expression
can be either an Addition or a Literal. The Addition node has two children, A and B, which
both are Expressions. Lastly the Literal node has a token called "Value" of the type int3.
Note that Expression is abstract.

Program ::= Expression;
abstract Expression;
Addition : Expression ::= A:Expression B:Expression
Literal : Expression ::= <Value:int>

The second code snippet adds the specification of the evaluation attribute "eval" for
Expression and its subtypes. The "eval" attribute is specified as synthesized attribute at
Expression with the equations for the attribute specified in Addition and Literal seperately.
In Addition it is specified as the added values of its child nodes’ "eval" attributes.

syn int Expression.eval();
eq Addition.eval() = getA().eval() + getB().eval();
eq Literal.eval() = getValue();

2.3.1 Classes
We previously mentioned that JastAdd compilers consist of Java-classes. We will now
give brief descriptions of the classes that are escpecially relevant in this report.

3The primitive type called int in Java corresponding to an integer.

13

2. Background

The ASTNode class is the base class for all nodes in the AST. So, in our previous
example from Figure 2.6, all the node classes inherit from the ASTNode class.

List and Opt are two other important classes, they are also ASTNodes but fulfill a
special purpose. A List class contains zero ormore ASTNodes, while anOpt class contains
zero or one ASTNode. Furthermore, tokens, as shown in the code snippet when defining
the node Literal, are meant for holding literal values such as strings or integers and are not
implemented as ASTNodes.

2.4 Java and JavaScript
Since JastAdd generates Java code and we want to build a web application using JavaScript
we have to transpile the code from Java to JavaScript. When using such transpiled code,
there are some key differences to note. Java is a static type language, meaning that a
variable has a type which cannot be changed, whereas JavaScript, which is a dynamic
type language, variables have a type that can be changed any time. This is important to
note because the compiler in Java would protest if you tried writing over the value of an
integer with e.g. a string but JavaScript will not. And since what we want to do is to use
a program in JavaScript, but in the manner it was intended to function in Java, we have to
enforce all the rigor of static typing by ourselves.

Another important difference is that there are no private or protected variables in
JavaScript. Any variable or object belonging to a class in JavaScript can be readily re-
trieved and manipulated. You therefore have to be very careful when handling class-
variables.

In general, where you can make sure that programmers can not violate how the code
was intended to work in Java, you cannot do so, at least not as easily, in JavaScript.

2.5 Domain Specific Languages
A domain specific language (DSL), is a programming language created to work very well
in a narrow context[8]. HTML might be a familiar example. It is used for specifying
the layout of webpages, but is not used for much else. For example, just as you would
not write a calculator program in pure HTML, you also would not write a webpage using
only Java. Java, in contrast to HTML, is a general purpose language (GPL), a language
in which you (in theory) can write any program. What we tried to demonstrate with the
example is the tradeof between DSLs and GPLs. An analogy would be that a GPL is like
a swiss army knife. It has a lot of tools for doing many different things. But if you have
the option of using either a potato peeler or a swiss army knife to peel a potato, the choice
is obvious. The point being, some problems are really difficult to solve with a general
purpose language, so we instead use a domain specific language.

The reason this is important, is that for many DSLs, structural editing is advantageous
compared to textual editing. Also, one could argue that there is more incentive to create
newDSLs thanGPLs. Creating a programming language for solving problems in a specific
context seems intuitively more useful than creating a new GPL that tries to do the same
thing as other GPLs.

14

2.6 Related Work

2.6 Related Work
Wewill now briefly introduce two structured editors, related to field of this master’s thesis.

2.6.1 JATTE
JATTE is self-described as a tunable tree editor for integrated DSLs[7]. It is, just as our
web-based tree editor, based on JastAdd compilers but it is implemented in Java in contrast
to our editor which is implemented in JavaScript.

Through attributes in a language’s specification JATTE allows users to customize how
the ASTs should be displayed for different languages. Allowing users to specify which
nodes should be hidden and when, how nodes should be labeled, default values and more.

2.6.2 Jetbrains MPS
Jetbrains Meta Programming System (MPS) is a system for creating and using DSLs.[8] It
is meant to allow creation and use of languages in an integrated development environment,
introducing a concept called language oriented programming. LOP is a programming
paradigm based on the perspective that programming languages are tools for communi-
cating ideas between humans and computers, and that the ideas themselves should be in
focus.

The MPS has been a good source of inspiration during this thesis, showing the frontier
of the field of structural/projectional editing.

15

2. Background

16

Chapter 3
System Overview

Building a tree editor that works through a web browser and uses JastAdd compilers in-
troduces one key problem. JastAdd generates compilers in Java code while the tree edi-
tor (running in the web browser) is written in JavaScript. Somehow we have to transfer
information between the compilers and the editor, so that the semantic analysis can be
performed on the constructed abstract syntax tree. This can be done, either by creating a
server that transmits the necessary information between the compiler (in Java) and the tree
editor (in JavaScript) or, by transpiling the compiler into JavaScript and building the tree
editor directly on top of the compiler which is what we chose to do. This means that the
server sends a compiler to the client and that the compilation of ASTs (semantic analysis
and synthesis) is done in the web browser. In Figure 3.1 you can see a simple schematic
overview of the system.

JastAdd Transpiler Server Client

Server Application Client Application

Language
Specification

Compiler
(Java)

Compiler
(JavaScript)

Compiler

Figure 3.1: A simplified overview of how the system is structured.

What follows in this chapter is an overview of the system built during the course of
this master’s thesis.

3.1 Client-Server
When building a web application, the client-server paradigm is common[3]. This means
splitting the application into two seperate parts, a server and a client application, where

17

3. System Overview

the server runs continuously while waiting for clients to connect and retrieve or transmit
information. For our purposes, the client-server model works quite well.

The server provides the client with a transpiled compiler and the associated abstract
syntax. The server has a couple of different compilers stored and is also responsible for
loading and saving ASTs built with the tree editor. The client application on the other hand
consists of a webpage where one can choose a language (actually choosing the associated
compiler) as well as edit, load and save ASTs with the tree editor.

3.2 The Tree Editor

Figure 3.2: The tree editor displaying a simple AST.

The most important part of the system is the tree editor. In Figure 3.2 a simple AST is
shown for the minimal language minicalc. The AST is the same as in Figure 2.2, describ-
ing the mathematical expression 2 + 2. We will thoroughly describe how it works in the
following chapter regarding implementation.

The tree editor is built using the architectural patternmodel-view-controller (MVC)[6].
This means that the editor is split into three separate parts namely model, view and con-
troller.

The model is the core in this architecture. In our case, the model is an abstract syntax
tree where the nodes of the tree are provided by our transpiled compiler. The view displays
the state of the model, which for the tree editor means mapping the nodes of the AST to a
graphical elements. In this way the structure of the AST is displayed as well as any relevant
information contained in each node. Furthermore, the view also has to indicate what the
user can do, which in this case means showing what actions can be performed on which
nodes. For example removing and adding nodes, changing values and so on. Lastly, the
controller, which is responsible for modifying the model, listens for user actions and then
manipulates the AST accordingly. This architecture, gives us the ability to modify model,
view and controller separately. Allowing us, for example, to create different views for
different programming languages, without it affecting the model or the controller. It also
makes debugging easier since the errors can be located more easily in this architecture than
if the code was written in a less modular fashion. As an example, since we can examine the
view and the model separately, we can see if the view is correctly displaying the contents
of the model.

18

Chapter 4
Implementation

Here we will present the different parts of the system created during the course of this
master’s thesis. We will describe how the system was built and the relevant details of
how it works. The first section contains the server application implementation and lays a
foundation for understanding the second section regarding the client application.

4.1 Server Application
The server is built with a lightweight Python framework called Flask1. It allows us to
register different endpoints (URLs) for different HTTP-requests, e.g. an endpoint for a
GET request that retrieves an HTML-document (a webpage).

As was briefly explained in the system overview, the server application is tasked with
supplying the client with compilers along with their associated abstract syntax, as well as
enabling ASTs to be saved and loaded. What follows, is a description of the implementa-
tion details of each part of the server application.

Figure 4.1 describes the process of generating a compiler and transpiling it into JavaScript
as well as extracting the needed information about the AST structure (the abstract syntax)
from the language specification.

4.1.1 Transpilation
For our Java to JavaScript transpilation we chose to use a transpiler called JSweet2. It is
built to enable Java programmers to write web applications in JavaScript. The programs
are written in Java with certain JavaScript libraries and then translated into JavaScript.
Despite JSweet not fitting our purpose perfectly, we could not find a more suitable tool,

1http://flask.pocoo.org/
2http://www.jsweet.org

19

4. Implementation

.ast

.jadd

.jrag

.ast parser
(Python)

JastAdd
Python

Preprocess JSweet Server Client

Specification

Server Application

Client Application

Abstract syntax (JSON)

Compiler
(Java)

Compiler
(Java)

Compiler
(JavaScript)

Figure 4.1: The process of generating the necessary information
for the tree editor.

all Java-to-JavaScript transpilers we found seemed tailored for the same purpose (build-
ing web application with Java). However, there is an extension for JSweet called J4TS3

which contains a close emulation of Java’s standard libraries, allowing us to translate the
compilers written in Java to JavaScript with only some modification.

There were however a few problems regarding JSweet, such as default methods in Java
interfaces not being handled correctly. The transpiler did not copy the methods as required
by Java, instead raising errors related to missing methods. To solve this problem a Python
program was written that modified the compilers slightly before transpilation by simply
copying the aforementioned default methods into the Java files where they were missing.

A problem that could not be solved in this fashion however, was that JastAdd annotates
some methods with information related to the abstract syntax of the associated AST. This
information is meant to be retrievable through reflection. Reflection can generally be de-
scribed as the ability for a program to examine and modify itself during runtime.[2] How-
ever, since there is limited support for retrieving annotated information in JavaScript the
information passed through annotations by JastAdd could not be retrieved in JavaScript,
despite it being present in the transpiled target code.

Since the information about the abstract syntax is absolutely vital for any tree editor,
we had to find another way of transferring this information. The solution implemented
was a program written in Python. It translated the information contained in .ast files (used
to specify the abstract syntax in JastAdd) into JSON (JavaScript Object Notation). The
JSON files were then used as a basis for construction of ASTs in the tree editor.

4.1.2 Encoding AST Information
To save and load ASTs we chose to encode the information in JSON format. This due to
the client application being written in JavaScript and the server application being written
in Python, which both have close connections to JSON. JavaScript for obvious reasons,
and Python because its syntax for lists and dictionaries is almost identical to the syntax for
lists and objects in JavaScript, making JSON an almost seamless bridge between the two
languages.

However, there were arguments to be made for XML encoding too, specifically, com-
patibility with the related tree editor JATTE. However, due to time constraints we chose to

3https://github.com/j4ts/j4ts

20

4.2 Client Application

only implement JSON encoding.
The actual encoding is done by creating an equivalent tree structure to that of the AST

to be saved. This tree does not contain all the information that the AST does, only the
information absolutely necessary for recreating the AST. For each node the information
stored is what children it has and any token values. This is stored as key value pairs where
the key is the child or token name and the value either the child’s class or the token’s value.
Attributes are not stored.

{
"Program": {

"Expr : Expr": {
"Addition": {

"A : Expr": {
"Literal": {

"Value : Token<Integer>": 2
}

},
"B : Expr": {

"Literal": {
"Value : Token<Integer>": 2

}
}

}
}

}
}

As an example, the code above shows the JSON encoding of the AST shown in Figure 2.6.

4.1.3 Automating the generation
To allow easy generation of compilers from language specifications written in JastAdd,
another Python script was created that automates the process described in Figure 4.1. I.
e. running JastAdd, followed by preprocessing, JSweet and so on and lastly placing the
resulting files in a structured manner and supplying the client application with JavaScript
compilers and corresponding abstract syntax.

4.2 Client Application
The client application consists of some HTML documents supplied by our server as well
as CSS for styling. All functionality is written in JavaScript, as is standard practice for
web applications. This includes, choosing compiler, loading and saving files, as well as
the tree editor. We chose not to use external JavaScript libraries such as jQuery, which is
quite common practice, instead writing the client application in standard JavaScript. The
only external code dependency is on the JavaScript library J4TS4 previously mentioned.

4J4TS version 0.5.0 to be specific, https://github.com/j4ts/j4ts

21

4. Implementation

In Figure 4.2 below, you can see a screenshot of the client application, as shown in a
Chromium web browser. The tree editor is displaying the AST from Figure 2.2.

Figure 4.2: Showing the graphical user interface, the tree editor
is showing the example from Figure 2.2.

The user can change the types of expressions, e.g. from Addition to Literal or vice
versa, as well as collapse parts of tree and change the token values of the Literal-nodes.
Another screenshot, shown in Figure 4.3 on the next page, displays a more complex AST.
What is shown is a program in SimpliC consisting of one empty function declaration ’f’.
Here you can add nodes of different types using the add buttons, building the AST.

Figure 4.3: The tree editor is showing the example from a function
declaration "f" in the SimpliC language.

What follows will be a thorough explanation of the inner workings and implementation
of the client application.

4.2.1 Tree Editor
Building the tree editor was the most time consuming part of the whole implementation
process. We started by including a transpiled compiler in the web page and exploring how

22

4.2 Client Application

the classes in the compiler could be manipulated. After being convinced by our explo-
ration that the compiler was at the very least able to build abstract syntax trees we started
implementing the actual tree editor.

The first iteration resulted in a somewhat working tree editor that could add nodes and
display an AST. After the first iteration, the tree editor was split into three separate parts,
as mentioned in chapter 3, namely model, view and controller.

Tree Model
The model is built as an interface to access the imported compiler. It contains methods for
different manipulations of ASTs such as creating and removing nodes as well as setting
child nodes and tokens. Furthermore, it provides different getters and somemethods for re-
trieving information about the AST nodes such as inheritance and child nodes. The model
is also tasked with creating an AST from the JSON representation as well as encoding its
internal state, the AST, into JSON.

We want to make sure that the AST is always a complete tree that does not violate
the abstract syntax of the language it corresponds to. To achieve this, we have to create
a complete and correct subtree when the user makes changes to the tree. But, creating
a complete subtree is not entirely trivial. We made the choice that we should premier
smaller subtrees, minimizing both the amount of nodes in the subtree and its depth. We
constructed an algorithm that weighs each node class based on the class’s children and
tokens. If the class only has tokens we define its weight as the number of tokens, which
can be computed directly. If a class has child nodes the class’s weight is defined as the
number of tokens plus the minimal possible weight for each child node plus the number of
child nodes. When a weight is added, the choice of children corresponding to that weight
is also stored. This weighing process is iterated until all nodes have weights and a list of
children that make up this minimal weight. A class that contains child nodes that do not
yet have weights will be skipped and re-evaluated next iteration.

If we process the available classes by taking the AST leaf nodes first (the classes with
only tokens), followed by the rest of the classes sorted by number of child nodes in as-
cending order, we get fewer iterations in the weighing process. This is mainly a heuristic
to minimize the times a node class has to be skipped due to incomplete weight.

Tree View
The view is built with an object oriented approach, where the classes in the view corre-
spond to nodes and tokens in the model. The base class is called ViewNode and corre-
sponds to base class ASTNode. The sub classes are ViewList, ViewOpt, ViewRoot and
ViewToken. The first two correspond to the List and Opt classes whereas the ViewRoot is
its on class simply because the root node cannot be handled analogously with other nodes
due to it being placed differently in the HTML document. Lastly, the tokens need to be
handled as if they were nodes in the AST since we want to enable user input for token
values, and this makes it easy to handle tokens differently from nodes.

We choose to limit the number of classes representing nodes and tokens to the men-
tioned five since we want to keep the view as generic as possible. Enabling it to work in
tandem with any compiler generated by JastAdd. Another approach that might be feasible

23

4. Implementation

would be to represent only the ASTNodes that are neither Opts nor Lists. Instead showing
the Lists and Opts as a part of its parent node’s view. This might correspond better to the
general structure of JastAdd compilers.

Tree Controller
The controller might be interesting from an implementation point of view, despite it using
a somewhat standard implementation of the Command pattern. For each possible modifi-
cation of the AST, which we will call an action, there is a corresponding command class.
This class consists of the encapsulated action, how to undo the action and how to redo it.
Redo might seem redundant but we actually want to end up in the exact same state as if
we had just performed the action. E.g., if we add a node with some action, then undo the
action, the following redo should add the node we just removed, not a new node, which
is what the action would have done. The reason we want to make sure we are not, as the
example showed, adding new nodes when we redo an action is twofold. The first one being
that we do not want to perform unnecessary computations; it is much easier to reattach a
child node to its parent than to create a new node and then attach it. Secondly, if we see
each action as a state transition, taking the AST from one state to another, then the undo
should do the opposite state transition, going from the later state to the previous. The redo
should then do the opposite of the undo transition, making sure that the state we end up
in is identical to the next state, and not a new state. Ensure that these transitions change
the states as expected is a way to ensure that the program represented by the AST is not
altered in some subtle, unexpected way.

As mentioned, each action corresponds to a command class. When an action should be
performed the corresponding command is created and added to what we call the command
stack after which the encapsulated action is performed. The command is created by a view
component but all model alterations are contained in the controller according to the MVC
pattern. One thing that was not implemented completely according to the MVC pattern
is that after a command has altered the model, the model should update the view. In our
implementation, it is the controller that prompts the view to update, the model itself does
not know if it has been updated or not.

Error Handling
After the tree editor had been implemented and ASTs could be manipulated, we wanted
to see if we could display semantic errors in some meaningful way. And this seems like
a good time to mention it, for most of the testing we used a language called SimpliC. It is
basically a simplified version of the language C and is created as an laboratory exercise in
a compiler course at LTH.5 The error aspect specified for this language links the semantic
errors to specific line numbers that are part of the information supplied by the parser. But
line numbers in our context of a tree editor do not correspond to anything. Thus the error
aspect had to bemodified to instead refer to nodes. To do this we generated an identification
number for each node and refered to this number instead of a line number, otherwise the
aspect is unchanged.

5It is called EDAN65 Compilers, for anyone who might be interested.

24

4.2 Client Application

The resulting language and corresponding compiler is something we can use with our
tree editor. To provide the desired feedback about erroneous nodes, we mapped each node
ID to its corresponding view component. After an update of the view or directly after the
editor has finished loading, it calls the model to see if there are any errors and outlines the
nodes containing errors accordingly.

Since there is nothing that ensures that an attribute is valid after the AST has been
altered, and the only attributes that we examine at this point are those related to errors, all
attributes are recomputed on change.

Figure 4.4 shows how errors are displayed in the tree editor. In this case, it highlights
the invalid node "WholeNumber" which has a value of 2.1, informing the user that 2.1 is
not a valid value for whole number.

Figure 4.4: Example of how the tree editor displays errors.

Figure 4.5 shows another error, now in the SimpliC language. Here we can see that
the variable x is being used before it has been declared. The user is trying to assign it the
value 10.

25

4. Implementation

Figure 4.5: Example of a semantic error in a SimpliC AST dis-
played in the tree editor.

26

Chapter 5
Evaluation

To evaluate the editor we wanted to examine its runtime performance, getting a sense of
how execution time and tree size relate to each other. To measure this link, we chose to
generate randomized abstract syntax trees. What follows is a section about how we chose
to implement random AST generation followed by the performance evaluation of the tree
editor.

5.1 Random AST Generation
We chose to implement the random tree generator in Java. The original reason for this was
to allow for comparing performance between the Java compiler and transpiled JavaScript
compiler. A later decision took us in a different direction regarding evaluation but the gen-
erator was at that point already built. Furthermore, the generator is built specifically for
the language SimpliC and is thus only tested, at this point, with that language. However,
it can easily be modified to support any language specified with JastAdd since the imple-
mentation is generic and does not assume any specific properties of the language, except
for the generation of random token values.

The purpose of the random tree generator is to generate random, somewhat erroneous
(from a semantic perspective) ASTs, so that we can use these trees for evaluation.

5.1.1 Retrieving AST Information
To be able to construct a valid abstract syntax tree for a given programming language one
has to know its abstract syntax, which in our case is given as Java annotations by JastAdd.
These annotations give information regarding the specific node’s children. It describes
each child of the node by supplying its name, type and kind. Name is simply the name
of the child. Type is the class of the child and lastly kind describes whether the child is
a node, list, opt or a token. (Note that the term child is used loosely, it usually refers to

27

5. Evaluation

a child node, a token is not technically a node. We can view child in this context as any
meaningful class or construct in the context of the AST.)

But solely the abstract syntax is not enough to build a random tree. We also need to
know the class inheritance of all our AST nodes. To do this we had to evaluate each class in
the compiler’s package and build a tree describing the class inheritance of all AST nodes.
When building the tree we also checked to see which classes were abstract.

After computing both the class inheritance and examining the constructor annotations,
there is enough information to build random abstract syntax trees.

5.1.2 Nodes
To understand how the random trees are built we will start by describing how a single node
is built. First, we instantiate a node of a given class by that class’s constructor without any
arguments. The node instantiated will have any List or Opt child initialized but nothing
else meaning that it may or may not violate the abstract syntax. If there are uninitialized
children or tokens, they must be initialized so any child node is therefore instantiated and
any token is given a value (more on token values shortly). As you might see, this leads to
some recursive calls, since the instantiated child might have children of its own that have
to be constructed.

To see which nodes can be chosen as children to a parent node we first have to examine
what class this child has to extend. Then we can examine our class inheritance tree and
see which classes inherit from that given class. After retrieving a list of classes we can
chose one of them randomly and instantiate it, setting it as the child. But, this is where
we run in to a problem. For example, say that we want to choose a class inheriting from
an abstract super class Expression. Maybe there are 20 expressions where 10 of them
are binary, 9 unary and 1 is a literal. If the probability of choosing any of these class is
distributed evenly over all classes we see that the probability of a child being a leaf node,
which is only the case if the child is a literal, is 1

20 and the probability of choosing a binary
expression is 1

2 . Which will most likely lead to an infinite recursion.
To offset this, we change the probability of choosing a leaf node. If there is are classes

corresponding to leaf nodes in the set of valid child classes we choose such a child with
probability 2

3 and choose a child from the whole set of valid classes with probability 1
3 .

At this point, we can construct random abstract syntax trees that coincide with to the
abstract syntax. However, the sizes of these random trees are also random and that is
something we whish to control. To do this, we will use the List and Opt classes. The List
class holds any number of nodes and the Opt class can hold zero or one node. For each
node we create, we register its List and Opt nodes, if any. Then, if after a complete AST is
built, it has less than the desired number of nodes, we chose one of the List or Opt nodes
registered by random1 and add a node to it. (Which in turn will generate a few children
of its own.) This process is iterated until we have reached the desired number of nodes or
more. Now we can generate arbitrarily large random abstract syntax trees.

1The random selection of List and Opt nodes is not as uniformly distributed over all these classes. It is
instead distributed over all classes cotaining Lists and Opts. (Opts however can only be choosen once since
it can only hold one node, resulting in approximately uniform distribution of over all nodes containing List
nodes.)

28

5.2 Performance Evaluation

5.1.3 Token Values
The last part of the random tree generator is the generation of random token values. We
wanted the token values to at least mimic both general coding conventions and some sort
of meaningful use of variables and functions. So we choose to randomly join metasyn-
tactic variable names such as foo and bar as function names, sequences of random letters
followed by numbers as variable names and random integers, doubles and floats for num-
bers.

To determine if a token should be a variable, function or a number it suffices to examine
the class which has the token and its parent.

Now, to the actual generation of random values. For functions, we chose to construct a
list of commonly used metasyntactical variable names, which we will refer to as function
phonemes. To create a function name, a random phoneme is chosen. If a function with that
name already exists, we do one of the following: append another phonemewith probability
0.5, append a random digit with probability 0.25 or accept a name conflict with probability
0.25. If the outcome is other than accepting the name conflict, we try again to see if the
name is in our list of already declared function names and so on in a loop until either we
accept a conflict or an unused name.

The variable names are choosen similarly although the probability of choosing the
same name is higher. We choose to accept the same name with the probability 0.5 and
append a random character or digit with the probability 0.5. The somewhat arbitrary deci-
sion of having more name collisions of variable names is based on the scoping of SimpliC
where all functions share the same scope, whereas variables do not. A variables scope in
this language is limited to the function where it is declared. Furthermore, we want erro-
neous name collisions, we want the AST we generate to have semantic errors so that we
can examine these errors in the tree editor.

5.2 Performance Evaluation
We approached the evaluation thinking: what are the important performance aspects of
our tree editor from a user perspective and how can we measure them. We chose to select
the loading time, meaining the time it takes for a saved AST to be loaded into the tree
editor, followed by the time it takes to create nodes in the tree as well as the time it takes
to compute the semantic errors in the AST.

5.2.1 Methodology
The tests made to measure the editors performance are based on A. Georges et al. Statis-
cally Rigorous Java Performance Evaluation[5] and the assumption that the JavaScript
compiler we used, the V8 engine, exhibits a startup and steady-state behaviour, which
should be the case for any compiler with runtime optimizations. We will later show that
this is the case but we will first describe the concept of startup and steady-state.

In Java, the startup includes class loading as well as just-in-time (JIT) compilation,
which is when code is being compiled and optimized during runtime. This results in quite
rapid decrease in execution time, due to the code being optimized with each iteration. This

29

5. Evaluation

is similar to our JavaScript case at least in the sense that both the Java Virtual Machine
(JVM) and the V8 engine use runtime optimizations.

Tomeasure the startup performance one should execute the codewith only one iteration
at a time, so as to onlymeasure the worst case, since every iteration, to a point, should result
in more optimized code.

Since most JIT compilation is performed during startup, and thus also optimized dur-
ing startup, the steady-state varies less based on these optimizations. The code can only
be optimized to a point, after which the execution time for each iteration will be more con-
sistent. Our approach to finding the steady-state was more lax than the rigorous method-
ology described by A. Georges et al. We examined the data from our steady-state tests
(Figure 5.1) and approximated when the steady-state was reached.

5.2.2 Chromium V8
The V8 engine is written in the language C++ and does not interpret JavaScript, it directly
compiles the source code into native machine code (JIT compilation). Finding out exactly
which optimizations the JavaScript compiler performs seemed like tedious task so we in-
stead focused on examining the behaviour of the V8 engine. One of the key behaviours we
were looking for was if the compiler exhibited a distinct startup and steady-state phase. As
mentioned previously, this means that if you execute some process n times, the first few
times will vary greatly due to optimizations and after some amount of iterations, the code
will be optimized and the execution time will be stable.

We can assume that the V8 engine exhibits this startup - steady-state behaviour since
we know it performances runtime optimizations but we would like to actually prove it and
also see how many iterations it takes to get to the steady-state. So we made two series of
tests. Each test serie consists of 50 tests with 200 iterations each. We made the arbitrary
choice of using a random tree with 800 nodes for all of these tests.

The first test serie, see Figure 5.1, measures the time it takes for the editor to build
an AST from the encoded format described in section 4.1.2. This means going through
a tree structure and instantiating classes for each node in the tree. Each iteration consists
of rebuilding the same AST from the same encoded data. The time it takes to load the
encoded data is not included in the measured time.

The second test, see Figure 5.1, measures the time it takes to remove all attribute values
(flush) in the AST and then compute the semantic errors. To be specific, we call a method
that clears all attributes, starting from the root, and then an error attribute which goes
through the AST in search of semantic errors. Computing the semantic errors should be
much more computationally expensive than removing the attribute values. Each iteration
consists of first performing the flush operation and then the error operation.

Both of these tests were done without any graphical components, using only the tree
editors model, as we wanted to reduce any noise generated by graphical updates of the
HTML document.

As is shown in Figure 5.1, the computation time seems to strongly decrease with the
first couple of iterations to ultimately stabilize around some value. This is exactly what we
were looking for and we can conclude that the V8 engine exhibits the startup and steady-
state behaviour, as is expected of any compiler using runtime optimizations.

30

5.2 Performance Evaluation

0 50 100 150 200
6

8

10

12

14

16

18

Iteration

Ti
m
e
(m

s)
Build time

0 50 100 150 200
0

10

20

30

40

Iteration

Ti
m
e
(m

s)

Error
Flush

Figure 5.1: The graphs represents the mean computation time for
error, flush and build. Each dot represents the mean of 50 tests.

Testing and Asynchrony
JavaScript is an asynchronous language, meaning that the execution order of a program
is not necessarily the same as the order of the instructions in the source code. This is
quite useful when dealing with HTTP-requests and user inputs so that the execution of a
program does not halt when waiting for such responses. But, this introduces difficulties
for evaluating performance.

Somethingwe did not previously know about V8 is how it updates theHTML document
object model (DOM). If you make changes to the DOM through JavaScript code, this
starts an asynchronous processes that update the visual components or just the underlying
document structure. Measuring the time it takes to make these updates becomes quite
difficult due to the fact that there is no clear way to see if the changes have been completed.

It becomes even more difficult due to the varying implementations of JavaScript com-
pilers between web browsers, but something that seems to work in our context of the
Chromium browser is using the method setTimeout which takes a callback function
reference and a optionally a wait time as arguments. It seems that calling this timeout
function with some callback function but without the wait time argument (or 0) schedules
the callback as soon as possible but after the current code has executed. Effectively call-
ing the callback function only after in this case the DOM operations are done. If this is
actually the case is quite hard to verify but it seems to at least give a decent estimate of the
perceived time of the graphical updates.

We used this setTimeout callback method to measure the time it takes for changes
that include DOM modifications.

Standard and Incognito Mode
Chromium has two modes, standard and incognito. The second being a mode where no
data is cached for privacy purposes, but it is also very useful when building web applica-
tions due to it not caching e.g. JavaScript code. It can be quite frustrating to debug code
when the code in the browser does not update when the source code is changed. We ran
a few tests to determine if we could find significant performance difference between the

31

5. Evaluation

two modes. But since we could not, we chose to measure performance mainly in incognito
mode, simply due to preference.

5.2.3 Results
The trees used for these tests are generated by the aforementioned random AST generator.
We chose to use only fairly large trees, 800 to 6400 nodes, since evaluating performance
for smaller trees seemed to generate a lot of noise. Also note that in both graphs shown
in this section, the confidence intervals are very small and cannot be made visible in the
graphs.

The first results, see Figure 5.2, are measures of the computational time of performing
the flush and error operations. That is, removing all attribute values and computing all
semantic errors in the AST respectively. The computation time is measured in steady-
state, which we approximated as the last 30 measurements in every set of 100 iterations.
We ran each set of iterations 50 times per tree for four different tree sizes: 800, 1600, 3200
and 6400. Each point in the graph is calculated as:

x̄k =

∑50
i=1

∑100
j=71 xi j

30

50

where k = 800, 1600, 3200, 6400, i is test run and j the iteration. Meaing that each point
is the mean of the steady-state means.

1,000 2,000 3,000 4,000 5,000 6,000
0

20

40

60

Nodes

Ti
m
e
(m

s)

Error
Flush

Figure 5.2: Error and flush time, without graphical componenets.

As we can see there seems to be a linear relationship between the number of nodes
in the tree and the computation time to perform the flush and error operations. We can
also see that the error operation takes signifacantly more time to perform than flush, about
10 times as much. This test only measures tree model time meaning that the view and
controller part of the tree editor are disabled. No graphical updates are performed during
the test as to avoid any noise caused by asynchronous function calls, as discussed in section
5.2.2.

32

5.2 Performance Evaluation

It is worth noting that the timescale given in Figure 5.2 is in milliseconds; performing
semantic analysis on a tree with 6400 nodes takes about 68 ms, which is quite fast.

The next test measures the time it takes to build an AST, including the graphical com-
ponents. The tests are perfromed by restarting the Chromium browser for each test. This
should mean that we get the worst case in terms of computation time since no runtime op-
timizations have yet been done. Furthermore, since incognito mode is used, nothing will
be cached between the tests, which could be the case otherwise, leading to an improved
runtime.

1,000 2,000 3,000 4,000 5,000 6,000

500

1,000

1,500

2,000

2,500

Nodes

Ti
m
e
(m

s)

Build

Figure 5.3: The tree editor build time, including graphical com-
ponents. Each point is the mean of 5 samples.

The graph in 5.3 shows the time it takes for the tree editor to build ASTswith 800, 1600,
3200 and 6400 nodes respectively. This should correspond with the worst case for loading
the tree editor. As can be seen, this graph also shows a somewhat linear relation between
the number of nodes and time it takes to build it, which is reasonable, since the number of
graphical elements is proportionate to the number of nodes in the AST. Furhtermore, this
shows that opening the largest tree in our case takes about 2.5 seconds in the worst case
scenario. This is most likely acceptable performance. One could also argue that the trees
used in this tool would probably not be as large as 6400 nodes, maybe not even 800 nodes,
meaning that the performance of the tree editor in general would probably not deter users
from using it.

33

5. Evaluation

34

Chapter 6
Future Work

There were many things that could not be included in this thesis due to time constraints.
Things that would make the tree editor we developed more useful. We will therefore dis-
cuss some known limitations of the tree editor, as well as some areas of future improvement
that unfortunately could not be implemented during the course of this master’s thesis.

6.1 Allowing Language Specification
One of the purposes behind building this JastAdd tree editor was to encourage users to
make their own programming languages and allowing users a glimpse behind the scenes
of programming; into the field of compilers. We believe it would be a good tool for learning
about abstract syntax trees, semantic analysis and attribute grammars for anyone interested.

At this point, the JastAdd specifications have to be added manually to the server. To
allow users to add their own languages we just need to allow them to add specifications.
The simplest solution would be to let users input specifications as text or files to the client,
which are subsequently sent to the server.

Another approach would be to build some sort of structured editor for JastAdd’s declar-
ative language. This approach is more in line with the rest of the project but will probably
be a lot more time consuming.

6.2 Customization
A feature that unfortunately had to be left unimplemented was the graphical customization.
Allowing users to specify how the ASTs were displayed for a given language. For example,
say that you wanted to create a programming language for mathematical expressions. In
such a language, viewing ASTs could be comparatively foreign in relation to the actual
mathematical expressions. In Figure 6.1 you can see how such an AST would be displayed

35

6. Future Work

in the current tree editor.

Figure 6.1: Example AST of the mathematical expression square-
root of 10

As you can see, there is a lot of information displayed that might not be relevant to the
user. It would be clearer to simply display:

√
10

Something, that most users probably would prefer. There are many other cases where
viewing the complete AST is just to verbose. Therefore, allowing customization of the
graphical components is something that would be a valuable improvement to the current
tree editor.

Exactly how graphical customization should be implemented is up for debate. JATTE’s
customization is based on specific attributes in the JastAdd specification. It allows a user
to specify for example which nodes should be hidden and when, what labels the nodes
should have, default values, as well as drag and drop behaviour.

JATTE’s approach would probably work quite well in the context of our web-based
tree editor as well. However, it is hard to tell if this approach is flexible enough to allow
customization that changes the display from a generic tree editor to that of a graphical
editor. For example, if you have a language for describing finite state automata, could
you describe a customization based on attributes, that transforms an AST into something
resembling a state diagram?

6.3 Full Semantic Analysis
The tree editor supports error checking which is only one part of the semantic analysis.
The reason we only support error checking is that the tree editor only retrieves the abstract
syntax, it has no knowledge of any added attributes and merely checks if the root node of
the AST has a function called error.

To run the full semantic analysis we have to somehow retrieve all the added attributes.
One possible route would be to implement a Java program which through reflection can
extract all the information annotated in the generated JastAdd compiler. This information
gives not only a full description of all the attributes added through aspects but also the
structure of the abstract syntax tree. It has also been suggested that the annotated infor-
mation could be gathered by writing an extension to the ExtendJ Java compiler (built with
JastAdd). The ExtendJ approach is probably the most robust and rigourus. Furhtermore,
actually compiling the generated compiler before transpilation would probably facilitate

36

6.4 Synthesis

.ast

.jadd

.jrag

JastAdd ExtendJ JSweet Server Client

Specification Server Application Client Application

Abstract syntax + attributes (JSON)

Compiler
(Java)

Compiler
(Java)

Compiler
(JavaScript)

Figure 6.2: Example overview of how the compiler generation
would be if ExtendJ was used for retrieving attributes and AST
structure.

debugging of language specifications and could thus be useful in the context of what was
discussed in section 6.1.

Using ExtendJ to extract information instead of Python, which is what is used at this
point in time, would change the process from specification to compiler (in JavaScript),
shown in Figure 4.1, into something like what is shown in Figure 6.2.

6.4 Synthesis
We do not support synthesis either, that is, the generation of target code. So you cannot
at this point test if a compilers synthesis is working as it should. In other words, you can
only examine the program that you built with the tree editor in either the form of an AST,
attributed or not attributed, but you cannot transform an AST into target code, which might
be desirable when building a compiler.

This problem however is closely linked to what was discussed in the previous section,
if the full semantic analysis can be performed, and all the attributes are known by the tree
editor, the synthesis can be performed. (As the synthesis is written as JastAdd aspects and
thus correspond to the aforementioned attributes.) When the synthesis can be performed
it is simply the somewhat trivial problem of returning the results in some format to the
user, e.g. as a downloadable file.

6.5 Interpreter
Another area, closely related to synthesis, is interpretation. It is when a program is run
directly, interpreted, without being compiled into target code.

Allowing a program constructed in the tree editor to be interpreted, run directly in the
webbrowser, would be a useful feature. It would allow the user to evaluate if programs
behave as expected, something quite essential when building a programming language.

One possible implementation of this would be to have some sort of console that gives
feedback to the user. The easiest being textual feedback but graphical or structured feed-
back would be preferable since it is more in line with the rest of the project.

37

6. Future Work

38

Chapter 7
Conclusion

This thesis has described our solution for running JastAdd on the web by building a web-
based tree editor.

Through attribute grammar the JastAdd system can construct tools for analyzing lan-
guages, e.g. compilers. The compilers are generated as packages of Java classes, de-
scribing the nodes in the abstract syntax tree and their corresponding attributes. These
compilers can be transpiled into JavaScript, maintaining the same structure and the same
key properties as the original compilers.

We built a tree editor using a server-client paradigm, where the actual tree editor is a
part of the client which is run in a web browser. The server is responsible for the process
from the JastAdd specification all the way to the transpiled compiler (in JavaScript). The
tree editor is split up in a model-view-controller pattern where the model is an interface to
the transpiled compiler.

With the tree editor a user can build any abstract syntax tree that follows its language’s
abstract syntax. The compilers semantic analysis is limited to checking for semantic errors
and it is run directly in the web browser. The results of the error analysis is provided as
visual feedback to the user. The editor is mainly tested in the web browser Chromium.

During the testing we examined the computation time of different operations such as
building an abstract syntax tree from stored data, performing semantic error analysis and
removing all the attributes in the (attributed) AST. We could see that the time seemed to
be linearly dependent on the number of nodes in the current AST. We could also show
that the tree editor will be affected by runtime optimizations (in the Chromium browser),
resulting in different computation times characterized as startup-state and steady-state.
Furthermore, we stated that the performance time of the tree editor seemed adequate.

There is yet much left to be done if the tree editor is to work as a useful tool for devel-
oping new languages and compilers. It can still work as a tool for demonstrating some of
the properties of JastAdd compilers, but it is far from anything like an integrated develop-
ment environment. Despite this, the tree editor serves as a proof of concept; showing how
web-based tools for JastAdd can be built.

39

7. Conclusion

40

Bibliography

[1] Andrew W. Appel and Jens Palsberg
Modern Compiler Implementation in Java
Cambridge University Press, 2009

[2] J. Malenfant, M. Jacques and F.-N. Demers
A Tutorial on Behavioral Reflection and its Implementation
Proceedings of the Reflection, 1996 - academia.edu

[3] Behrouz A. Forouzan
Data Communications and Networking Fifth Edition ch. 25
McGraw-Hill, 2013

[4] Görel Hedin
An Introductory Tutorial on JastAdd Attribute Grammars
Springer-Verlag Berlin Heidelberg, 2011

[5] A. Georges, D. Buytaert and L. Eeckhout
Statistically Rigorous Java Perfomance Evaluation
OOPSLA ’07, ACM, 2007

[6] Glenn E. Krasner and Stephen T. Pope
ADescription of theModel-View-Controller User Interface Paradigm in the Smalltalk-
80 System
ParcPlace Systems, 1988

[7] Alfred Åkesson, Görel Hedin
JATTE: A Tunable Tree Editor for Integrated DSLs
CoCoS ’17, ACM, 2017

[8] Sergey Dmitriev
Language Oriented Programming: The Next Programming Paradigm
JetBrains onBoard, 2004

41

BIBLIOGRAPHY

[9] Tim Teitelbaum and Thomas W. Reps
The Cornell Program Synthesizer: A Syntax-Directed Programming Environment
Communications of the ACM volume 24 issue 9 (1981), (p. 563–573), ACM, 1981

42

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTATIONSDAG 2018-04-20

EXAMENSARBETE Web-based Tree Editor for JastAdd Compilers
STUDENT Marcus de Lacerda
HANDLEDARE Niklas Fors (LTH)
EXAMINATOR Görel Hedin (LTH)

Webbaserad trädeditor

POPULÄRVETENSKAPLIG SAMMANFATTNING Marcus de Lacerda

Det finns ett växande behov för nya programmeringsspråk. Vi har byggt en webbaserad
editor som faciliterar skapandet av nya språk och användandet av dessa vid ett tidigt
utvecklingsstadium.

I en värld som blir alltmer digitaliserad finns
det behov av att kunna skriva mängder av olika
program med vilt skilda syften och applikations-
områden. Dessa program skrivs i diverse olika
programmeringsspråk, men för att en dator ska
kunna köra ett program så behövs det något som
översätter programmet till en form som en dator
kan förstå: en kompilator.

En kompilator kan ses som tolken mellan män-
niska och maskin. Den översätter från program-
mingsspråk, något vi människor kan läsa och
förstå, till instruktioner som datorn förstår. Kom-
pilatorer är alltså ytterst nödvändiga och något
som personer i gemen kanske inte vet så mycket
om.
Det vi har gjort är att skapa ett verktyg som

fungerar direkt i webbläsare, en trädeditor, för att
analysera samt utveckla kompilatorer och därmed
i förlängingen även programmingsspråk. Med en
trädeditor så kan användaren skapa program på
ett sätt som är nära kompilatorns eget sätt att
representera program. Detta står i kontrast till en
texteditor där programmet istället skrivs i kod,
vilket i sin tur måste analyseras i flera steg av
kompilatorn. En trädeditor kan därför vara till
stor fördel vid utveckling av kompilatorer och
programmeringsspråk: det innebär att språket
inte behöver någon syntax (regler för hur språket
skrivs). Det enda som behövs är semantiken, re-
glerna för hur program ska tolkas, vilket ofta är

det intressanta vid utveckling av nya språk och
kompilatorer.
Med hjälp av ett system för att utveckla kompi-

latorer vid namn JastAdd kan vi smidigt gå från
en formell beskrivning av ett programmerings-
språk och dess egenskaper till en kompilator som
sedan kan användas i vår webbaserade trädeditor.
Detta är alltså ett verktyg som kan användas
väldigt tidigt i språk- och kompilatorutvecklingen.
Det ger dessutom en särskild insikt i maskineriet
bakom självaste programmeringen, något som så
ofta annars förblir omärkt.
Men varför vill man ens skapa nya kompila-

torer? En anledning kan vara att man vill ha en
ny kompilator till ett redan existerande språk, ex-
empelvis när en ny version av ett språk ges ut.
I andra fall vill man skapa helt nya språk och
ofta specialiserade programmeringsspråk. Språk
som är särskilt anpassade för att lösa problem
inom specifika områden och därmed kan fylla be-
hov som inte tillgodoses av mer generella språk.
Det finns mängder av så kallade domänspecifika
språk: HTML, CSS och LATEXför att nämna nå-
gra. Och då tekniken alltjämnt utvecklas kom-
mer nya knepiga problemdomäner upptäckas som
kräver nischade programmeringsspråk. Därmed
följer ett behov av nya kompilatorer och verktyg
för att utveckla de. Vår trädeditor tar ett steg för
att fylla detta behov samt att sänka tröskeln för
att komma in kompilatorprogrammering.

	Introduction
	Background
	Compiler Overview
	Types of Compilers
	Abstract Syntax Tree

	Tree Editor
	JastAdd
	Classes

	Java and JavaScript
	Domain Specific Languages
	Related Work
	JATTE
	Jetbrains MPS

	System Overview
	Client-Server
	The Tree Editor

	Implementation
	Server Application
	Transpilation
	Encoding AST Information
	Automating the generation

	Client Application
	Tree Editor

	Evaluation
	Random AST Generation
	Retrieving AST Information
	Nodes
	Token Values

	Performance Evaluation
	Methodology
	Chromium V8
	Results

	Future Work
	Allowing Language Specification
	Customization
	Full Semantic Analysis
	Synthesis
	Interpreter

	Conclusion
	Tom sida
	Tom sida

