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Abstract

This thesis analyzes the viability of neural networks for full-scale learned
image transformations, specifically with high dynamic range imaging. One
problem with enhancing photographs in mobile cameras today is that quan-
titative improvements to the sensor, such as higher resolution, provide little
enhancement. Computational photography is one venture that provides better
subjective results, but such algorithms can be costly and in some cases pro-
prietary. Estimating these transformations with neural networks is an ongoing
research problem.

Using variations of residual convolutional neural networks, we have cre-
ated high dynamic range images with similarity to the results of the applied
algorithm. Best performance was achieved using a model that takes multiple
burst images of the same scene as input. A number of artifacts were discov-
ered in the synthesized images, most of which could be reduced given further
research and improvements.

Keywords: HDR, Machine Learning, Convolutional Neural Network, Computational
Photography, Burst Photography
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Chapter 1

Introduction

Cameras and their sensors aremore advanced today than ever. With the case of diminishing
returns in quality improvement of pictures taken with higher pixel count, many experts
have moved towards computational photography to produce better images. Whether the
desired result is improved exposure, higher resolution or decreased noise, it can often be
achieved through post-processing with few caveats. This is made especially useful when
hardware is lacking, either due to cost or space.

One of the biggest challenges to taking high-quality pictures in phone cameras is deal-
ing with low-light situations. Cell phone cameras have small apertures, which limits the
number of photons they can gather, leading to noisy images in low light. They also have
small sensors and therefore small pixels, which limits the number of electrons each pixel
can store, leading to limited dynamic range. This is where High Dynamic Range imag-
ing, a technique using multiple similar images of the same scene to reproduce a greater
dynamic range of luminosity, excels. Dynamic range in imaging defines the ratio between
the largest and the smallest quantity of luminance level.

1.1 Problem Description
The purpose of this thesis is to evaluate deep learning approaches for High Dynamic Range
imaging (HDR). It is of interest to see if the effects of HDR can be applied reliably and
robustly in a deep neural net. From a practical standpoint a question to answer is if the rep-
resentation learned by the neural network could be applied on most images for an increase
in dynamic range without significantly sacrificing image quality.

Also, another area that is explored is if taking multiple images of the same scene taken
in a burst as input to the network can provide improvements to the final image.
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1. Introduction

1.1.1 Research Question
The main research question is whether deep convolutional neural networks can be used to
reliably apply HDR features to an image and further explore if multiple image inputs of
the same scene can provide a quality improvement to the final image.

1.2 Related Work
Hasinoff et al. [10] created the original HDR+ algorithm used for denoising and tone
mapping currently used in Google’s Pixel line of phones. Their main aim is to create
a robust system for improving an image. One way they accomplish this is by having a
merging method that is robust to misalignment. This is also the source for the dataset used
in our implementation.

Gharbi et al. [6] taught a neural network to approximate the enhancement made by a
reference imaging pipeline in real-time on a low performance device. They applied the
neural network on a low resolution version of the image to find global and local features
combined with a full scale mapping. The network is trained with a loss function based on
the final produced image. Because of the nature of the network it can be used to model
complex transformations where no reference implementation is available, such as human
retouches. While it uses HDR+ as an example function it does not use multiple images as
input.

Khademi Kalantari and Ramamoorthi [14] also propose a learning based approach to
address the issue of artifacting in an HDR based algorithm. To accomplish this they take a
set of three low dynamic range images of three different exposures to learn an appropriate
tone mapping which is then applied to the medium exposure image.

An and Lee [7] propose a single-shot HDR imaging algorithm using a convolutional
neural network (CNN). They aim to recreate under- and overexposed pixels and improve
image quality with more details and less artifacts than conventional algorithms. Their
approach builds on Nayar and Mitsunaga’s [13] spatially varying pixel exposure (SVE)
which spatially varies pixel exposures to simultaneously sample scene radiance along with
dynamic range dimensions.

Eilertsen et al. [5] propose a learning basedmethod for automatic recovery of highlight
information to reconstruct a visually convincing scene from a single exposed standard
image in the vein of HDR. They base their approach on a CNN design in the form of a
hybrid dynamic range autoencoder.

Ignatov et al. [12] suggest a solution for super-resolution, heightening the resolution
of a given low resolution image using a Residual CNN, with a unique loss that takes color,
texture and content loss into account. This is done in part by the use of an adversarial
CNN-discriminator and a pre-trained deep CNN. They use images from three different
older cameras of the same scene as input to their network and a DSLR camera image
as their ground truth. Their results show a quality improvement on par with that of the
DSLR-taken images.

Chen et al. [3] successfully create a high quality rendition of an extreme low-light
image using a deep convolutional neural network. It uses an external amplification ratio to
decide how much an image should be lightened and can visualize what seems like a black
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1.3 Scope

image to the human eye with low noise.

1.3 Scope
The thesis focuses on Google’s HDR+ technology as a baseline, not only because of their
recently released large dataset [9], but also because of the generally positive evaluation
it has received both objectively and subjectively. As the main interest lies in robustness
of the transformation, this thesis does not fully explore possibilities of extreme conditions
when it comes to complexity or network topology. It is assumed that quality improvements
could be made with a larger network at the cost of time and performance, and equally that
a structure could be made that performs better and can be evaluated faster at the cost of
quality.
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Chapter 2
Background

The main subjects this thesis explores are the fields of computational photography and
deep learning. High Dynamic Range imaging is a methodology of combining multiple
images into a single one with increased dynamic range. It is a time consuming process,
often split into multiple steps such as alignment, merging and tone mapping. As these
are functions applied to a set of images it is likely that deep learning is a good fit for
approximation.

2.1 High Dynamic Range Imaging
Leaps and bounds have been made in the improvement of sensors and other factors that
increase the quality of images, but real world capturing still proves a problematic task.
One of the main issues arises in the discretization of the color space and luminance range,
which often leaves photographs looking nothing like human perception of the real world.

Dynamic range in imaging defines the ratio between the largest and the smallest quan-
tity of luminance level.

One way to achieve a higher dynamic range (HDR) is to combinemultiple low dynamic
range (LDR) images into a single HDR image using computational methods. Excluding
special hardware, this is usually done sequentially by capturing multiple images with very
little time variance and at different exposures, which are then merged in software. The
merge is performed by a weighted average of the pixel values across the varying expo-
sures, usually after aligning the images. A naive HDR algorithm generally suffers from
a number of artifacts, such as ghosting due to misalignment of different exposures, ex-
cessive denoising in low light conditions leading to loss of fine detail and excessive range
compression giving an unconvincing painting rendition.

Hasinoff et al. [10] developed an algorithm based on HDR named HDR+ that com-
bines multiple, underexposed frames as a means of noise removal and further applies tone
mapping to maintain local contrast while brightening shadows. What sets it apart from the
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2. Background

standard HDR result is that overexposed and underexposed pixels cannot be reconstructed
into the dynamic range, due to using the same exposure for every image. Because of this
it is extremely important that the correct exposure is chosen. Using HDR+ today is made
easier by the current hardware implementation of burst photography on modern phones,
which can take a collection of similarly exposed images in a very short time span.

2.2 Machine Learning
Machine learning is a methodology which aims to get computers to act without being ex-
plicitly programmed. It has been applied in numerous fields, including natural language
processing, object recognition, search engines, medicine and many more. Machine learn-
ing is closely related to computational statistics and is often used as a means of searching
for patterns in data [2]. It has proven exceptional at finding patterns in data automatically.
One principle within machine learning is supervised learning, which takes a data set con-
taining training examples bundled together with their expected outcome. For example, a
set of pictures of handwritten digits along with their correct labels can be used to train a
network to classify numbers.

Typically, machine learning consists of two phases:

1. Training

• A training dataset is used to estimate model parameters.

2. Prediction

• Once the parameters have been estimated, the model can be used to classify
future data.

In general the training is going to be the most time consuming part, but there are some
models in which the prediction time increases with the size of the training data.

One sub-field withinmachine learning is called deep learning, which is a deep structure
with many hidden layers in contrast to a regular artificial neural network.

2.2.1 Training
The training of machine learningmodels can be seen as an incremental attempt at improve-
ment of accuracy towards a goal given by the training data. A given iteration consists of
submitting the input, applying a function with a set of weights, evaluating the output given
the correct answer and then updating the weights of the function accordingly. A complete
iteration over the entire set of training data is generally referred to as an epoch, and is gen-
erally the accepted way of expressing training duration. A model usually requires multiple
epochs in order to be properly trained, but if the volume of the training data is too small,
too much training can lead to overfitting to the data. Overfitting is a problem that arises
because of unevenly distributed or lacking data and causes the model to make assumptions
about future input which might not be ideal. For example, if the training set for classifying
digits consists of five times as many ones as sevens, the model might assume that ones
are more likely to be the answer regardless of the input. This problem can be avoided by
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2.3 Convolutional Neural Networks

gathering more training data and can be alleviated by regularization techniques such as the
addition of a regularization term, dropout or stopping the training early.

Loss Function
The loss function in machine learning describes how you evaluate the differences between
the output of the model with regards to the correct answer. It maps the differences to a real
number, which is then minimized in order to improve the model’s predictive capabilities.
The choice of loss function is very important, as it guides the entire learning process, and a
well formulated loss function can significantly speed up the training. An example of a loss
function, which is used in our implementation, is mean square error (MSE). It compares
the squared difference of every pixel in an image and computes the mean. It is defined as

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

[I(i, j) − K(i, j)]2 (2.1)

where I ,K are images, m, n are the image spatial dimensions.

2.3 Convolutional Neural Networks
Neural networks get their name from the biological representation of a brain, which con-
sists of neurons that transmit information. Generally we visualize neural networks as
graphs, with nodes as our neurons and edges connecting them making up the commu-
nication between layers [8].

Input
layer

Hidden
layer

Output
layer

Input 1

Input 2

Input 3

Input 4

Output 1

Output 2

Output 3

Output 4

Figure 2.1: A typical representation of a neural network with
one input layer, one hidden layer and one output layer. The in-
put and output layers both have four nodes, the hidden layer has
three nodes and all of the layers are fully connected.
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2. Background

A convolutional neural network is a network architecture that gets its name from the
multiple convolutional layers that it employs. Its importance lies in the complexity reduc-
tion it provides compared to a fully connected network, with each node in one layer only
being connected to a fixed number of nodes on the next layer. This is called sparse con-
nectivity and makes use of a smaller viewing window remotely inspired by human vision,
which is known to focus in patches [4].

2.3.1 Convolution
Convolution is a linear operation which aims to average several measurements of data ( f ),
with the ability to specify weights (g) for a result of a weighted average.

( f ∗ g)(t) =
∞∫

τ=−∞

f (τ)g(t − τ) dτ (2.2)

In convolutional neural networks, the data f is usually referred to as the input and the
second argument g is called the kernel. Equation 2.2 is the definition in the continuous do-
main, where in the case of computers and digitalized media the input is generally discrete,
resulting in equation 2.3:

( f ∗ g)(t) =
∞∑

τ=−∞

f (τ)g(t − τ) (2.3)

In the case of neural networks, the input is usually a multidimensional array of data, for
example an image. As such, the kernel also consists of a multidimensional set of adaptable
parameters that can be trained. Because of these qualities, convolution is performed over
more than one axis at a time. With an example of a two-dimensional image I of size (m, n)
and a two-dimensional kernel K we have:

(I ∗ K)(i, j) =
∑

m

∑
n

I(m, n)K(i − m, j − n) (2.4)

Figure 2.2 is a visualization example of the two-dimensional convolution in equation
2.4.

0 1 1 1 0 0
0 0 1 1 1 0
0 0 0 1 1 1
0 0 0 1 1 0

∗

1 0 1
0 1 0
1 0 1

=
1 4 3 4
1 2 4 3

Figure 2.2: Convolution is performed by applying a sliding filter
(usually referred to as the kernel) over the input data.
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2.3 Convolutional Neural Networks

0 0 0
0 0 1 1 1 0
0 0 0 1 1 1

0 0 0 1 1
0 0 0 1 1

∗

1 0 1
0 1 0
1 0 1

=

0 2 2 3 1
1 1 4 3 3
0 1 2 4 3
0 0 1 2 2

Figure 2.3: 2-D convolution with padding, causing the output to
have the same size as the input.

2.3.2 Activation Function
The output of a given node is defined by its activation function, which introduces non-
linear properties to the network. The main reasoning behind its usage is that without it, the
output signal would be a simple linear function which has less complexity and less power
to learn function mappings from data. There are a multitude of non-linear functions which
are used in practice, all of which are slightly different in how they perform. One of these
is the Rectified linear unit (ReLU), which is defined in equation 2.5.

R(x) =
{

0 x < 0
x x ≥ 0 (2.5)

As is evident, the ReLU activation function is almost linear, consisting of two linear
components. The ReLU activation function can be seen in figure 2.4a.

−1.0 −0.8 −0.6 −0.4 −0.2 0.2 0.4 0.6 0.8 1.0

−0.2

0.2

0.4

0.6

0.8

1.0

(a) The Rectified Linear Unit (ReLU) acti-
vation function, defined in equation 2.5.

−6.0 −5.0 −4.0 −3.0 −2.0 −1.0 1.0 2.0 3.0 4.0 5.0 6.0

−0.2

0.2

0.4

0.6

0.8

1.0

(b) The sigmoid activation function, defined
in equation 2.6.

Figure 2.4: The two activation functions used in our implemen-
tation.

Another activation function is the Logistic function, usually referred to as the sigmoid
function, that is defined by

S(x) =
1

1 + e−x (2.6)

What sets the sigmoid apart from the ReLU is the fact that it is continuously differen-
tiable, which helps enabling gradient-based optimization methods. Its derivative is also
defined for zero where ReLU is not. The sigmoid activation function can be seen in figure
2.4b.
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2. Background

2.3.3 Backpropagation
There are several ways to measure the progression of the training. One is to count iter-
ations, which is a complete forward pass through the network and the update of weights
known as backpropagation. Another important measure is epochs, which is one iteration
for every set of input data.

Historically, a lot of neural network implementations have used stochastic gradient de-
scent to perform backpropagation. As the name implies it uses the gradient of the loss
function to decide how the weights should be updated. There have been a lot of improve-
ments made to this algorithm, one of themost used today is called Adam [15], which stands
for Adaptive Momentum estimation. The main idea of the use of this implementation is
that it takes momentum of the loss into account, running averages of both the gradients
and the second moments of the gradients.

2.3.4 Batching
The process of training in batches (or the more accurate term mini-batches) is when you
bundle a number of input together for all forward passes. This serves to both reduce train-
ing time, as more samples can be handled simultaneously which leads to more optimiza-
tion, and gives a more robust gradient since it is based multiple inputs. Generally, a larger
batch size will improve the results at the cost of increased memory usage during training.

2.3.5 Normalization
In neural networks, two kinds of normalization need to be considered, input normaliza-
tion, which is used when inputs of different features tend to be on different scale, and
batch normalization, which is used inside the network. In our case, input normalization
is not needed as every input pixel is already normalized to the range 0 − 255, but batch
normalization is used.

Batch normalization makes sure to keep weights inside the network balanced and not
take on extreme high or low values. It increases the speed of the training process as well
as making each layer more robust and independent from the other layers. Each batch is
scaled by the mean and variance computed for that batch, which also helps with varied
data. Batch normalization is defined by

yti jk =
xti jk − µi√
σ2

i + ε
(2.7)

where

µi =
1

HWT

T∑
t=1

W∑
l=1

H∑
m=1

xtilm, σ
2
i =

1
HWT

T∑
t=1

W∑
l=1

H∑
m=1

(xtilm − µi)2 (2.8)

Batch normalization normalizes all inputs across the batch (T) and the height (H) and
width (W), with regard to the input x, the mean (µ) and variance (σ). A small epsilon (ε )
is used to avoid division by zero.
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2.3 Convolutional Neural Networks

A variation on batch normalization that is used in our implementation is instance nor-
malization [16], which is very similar to batch normalization, except that it doesn’t nor-
malize across the batch. Instance normalization is defined by

yti jk =
xti jk − µti√
σ2

ti + ε
(2.9)

where

µti =
1

HW

W∑
l=1

H∑
m=1

xtilm, σ
2
ti =

1
HW

W∑
l=1

H∑
m=1

(xtilm − µti)2 (2.10)

This avoids adding noise to our input which is introduced from the normalization over
the entire batch, which can have both a positive and a negative effect.

2.3.6 Residual Block

Input, x

x

conv conv + Output

Figure 2.5: An example of a residual block, consisting of two
convolutional layers and a direct connection between input and
output.

With deeper neural networks becoming more and more difficult to train, different at-
tempts have been made to alleviate the strain on resources and helping convergence. One
of these methods is the use of residual blocks [11], having a skip connection over multi-
ple layers. While residual neural networks have been shown to provide good results, they
are not well understood yet. They deal with the problem of having a vanishing gradient,
which causes the weights in the network to stop updating. This happens because of the
nature of backpropagation, where the weights are updated according to the derivative of
the loss function with respect to the current weight. In some cases, this gradient will be-
come so small that it essentially stops the weights from changing their values. The way
that residual networks alleviates this problem is through its construction of many short net-
works together, which doesn’t quite solve the vanishing gradient problem since it doesn’t
preserve the gradient flow through the depth of the network.

Because the vanishing gradient problem is less of an issue, networks can be built to be
deeper and more complex, which helps to get an accurate representation of the data.
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Chapter 3
Method

The bulk of our implementation focuses on deep learning and the convolutional neural
network, with a portion of pre-processing of the input data.

3.1 Dataset
The dataset used for this thesis was released by Google [9] and contains 3640 image burst
captures, made up of 28461 images in total. Each burst consists of the raw burst input
and metadata. The results provide both an intermediate aligned and merged image in raw
format, as well as the final result image in the form of a JPG.

The imageswere captured using a variety ofAndroidmobile cameras (Nexus 5/6/5X/6P,
Pixel, Pixel XL) and have a varying number of burst sizes (2 to 10). Each image is gen-
erally 12-13 Mpixels and was taken with the same exposure time and gain per burst. The
result images were generated using the HDR+ system in the Google Camera app [10].

This dataset is a perfect fit for this thesis, as it is quite large and fulfills all the require-
ments necessary to train our network. It is worth explicitly expressing that this is a dataset
for HDR+ and not regular HDR and therefore does not fulfill the same purpose in terms
of exposure variance.

3.1.1 Pre-processing
Before being fed into the network, the training data needs to be pre-processed. Training
on full-size RAW-format images would be unfeasible and slow. The processing is done in
two steps:

• Post-processing of RAW image

• Splitting images into patches of size 200x200 pixels
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3. Method

This way, each image created 50 patches, of 200 by 200 pixels. This increases the
total input data to 182 000 different images. These patches were chosen based on their
position in the photographs and were not especially curated to depict something, leaving
some images to be visually uninteresting, but important for the network to understand the
structure of regular scenes.

3.2 Tools
The training of the model was done on a 6-core hyperthreaded machine running Ubuntu
16.04 with an Nvidia GTX 1080 Ti graphics card and 32 GB RAM. The drivers required
for deployment of training on a graphics card was CUDA 9.0 and CUDNN 7.1.

The majority of the implementation is done in Python 3.6.3, with the implementation
of the neural network done in TensorFlow [1]. For tracking progress during training and
generating graphs TensorBoard was used.

3.3 Network Structure
The main network used as the baseline for comparison is a 12-layer residual convolutional
neural network. The proposed solution is an end-to-end model that performs full-scale
quality improvement of an image based on high dynamic range imaging methodology.

3.3.1 Baseline Network
The baseline network is inspired by the generator network put forth by Ignatov et al. [12].
The reason this is used as a baseline is that it provides a good result (even with a simpler
loss function, which was examined by Ignatov et al.) for a similar problem. It also falls in
the category of medium-sized networks, not too small to properly model the images but
also not so massive as to become a complexity issue on its own.

Figure 3.1: The baseline network structure, consisting of 12-
layers split into 4 identical residual blocks.

3.3.2 Multi-Image Network
The Multi-Image Network (MIN) is created under the hypothesis that more input to the
network will yield a positive result on the outcome. In order to have as fair of a compari-
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3.3 Network Structure

son as possible, the MIN is a modification of the baseline network, containing 3 residual
blocks and an early component that separately processes the input images. Each input is
effectively going through 12 layers, which is similar to the baseline.

Figure 3.2: The network structure of the multi-image pipeline (in
this case with 2 input images), consisting of separate processing
of the input that is later combined and further fed through the net-
work.

Further expansion into more images as input would require changes to the first 3 layers
of the network. The latter part can’t be made smaller without limiting the processing of
the images too much.

3.3.3 Dataflow Graph

TensorFlow is made on the principle of building a dataflow graph to represent compu-
tations in terms of dependencies between individual operations. This gives the user the
ability to first define the graph, and thereby the network, before execution and feed data
into it. The nodes in the graph represent computations, whereas the edges represent the
flow of data in terms of input and output from the nodes.

The use of dataflow graphs gives many boons for program execution in terms of opti-
mization and usability. As the entirety of the graph is defined before execution, the system
easily identifies operations that can be executed in parallel. In the same vein, it makes it
possible to distribute computation to multiple units such as GPUs (Graphical Processing
Unit), CPUs (Central Processing Unit) and specialized hardware, even distribution across
different machines is possible. The compiler can make a number of optimizations in order
to generate faster code using the information in the dataflow graph, such as merging ad-
jacent nodes. Further, the nature of the graph is language-independent, meaning a saved
model can easily be used in another programming language which improves both collab-
orability and allows for development in one language and deployment in a more suitable
one.
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3. Method

3.4 Training
Training was done using the before mentioned hardware (3.2) in a number of different
tests. Generally each training session took between 3-7 days, which attests to the size of the
training set as well as the computational complexity of the network. The two experiments
that were examined finally were

1. Baseline network trained for 17 epochs

2. Multi-Image network trained for 17 epochs

For all tests the Adam algorithm (see section 2.3.3) was used for backpropagation.
The learning rate was set to 10−4 throughout the training processes and the batch size was
set to 20, which was the biggest possible due to memory limitations in the case of the
Multi-Image network. The training is performed on patches of size 200 by 200 pixels.

22



Chapter 4
Evaluation

4.1 Quantitative Measurements
4.1.1 Peak Signal-to-Noise Ratio
Peak Signal-to-Noise Ratio (PSNR) is a method for objectively comparing two images.
In our case, it is quite useful to compare the output of the network to the ground truth
images made available in the dataset, which is the result we are emulating. PSNR is also
closely related to the mean square error, which is our loss function (equation 2.1). PSNR
is defined as

PSNR (I ,K) = 10 log10

(
MAX2

MSE (I ,K)

)
(4.1)

where MAX is the maximum pixel value of the image, 255 for an 8 bit image. MSE
is the mean square error defined in equation 2.1. As PSNR is defined on a logarithmically
scaled value with the MSE in the denominator, the more alike the images are the higher
the PSNR. Two identical images would have MSE = 0, which means the PSNR goes to
positive infinity and is handled as a special case.

4.1.2 Structural Similarity
Structural SIMilarity (SSIM) is a well-used quantitative measurement developed to be
better correlated with the perception of the human visual system [17]. Much like PSNR,
it is used to compare two images and this means we again evaluate our output based on
the ground truth image. Where it differs though is that PSNR estimates an absolute error
between the images whereas SSIM tries to compare perceived changes in structural infor-
mation in the image. It combines a loss of structure (s), contrast (c) and luminance (l) and
is generally defined as
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4. Evaluation

SSIM (I ,K) = [l(I ,K) · c(I ,K) · s(I ,K)] (4.2)

where l, c, s are defined as

l(I ,K) =
2µIµK +C1

µ2
I + µ

2
K +C1

(4.3)

c(I ,K) =
2σIσK +C2

σ2
I + σ

2
K +C2

(4.4)

s(I ,K) =
σIK +C3

σIσK + σ
2
K +C3

(4.5)

C1 = (0.01 ·MAX)2 and MAX is the maximum pixel value of the image. (µi, σ2
i ) are

the average and variance of the image i.
C2 = (0.03 ·MAX)2.
C3 =

C2
2 =

(0.03·MAX)2

2 and σIK is the covariance between I and K .
For the purposes of comparing images of multiple channels (RGB in our case), each

channel is compared in the image separately and the results are then averaged.

Figure 4.1: Comparison between the mean square error and the
SSIM as a measurement of the quality of an image. The two
rightmost images have the same MSE and therefore also the same
PSNR.

4.2 Evaluation Limitations
Because of the nature of the problem and the proposed solution, quantitativemeasurements
might not be the best way to evaluate the end result of the network. Firstly, they are only
comparisons between the produced image and the ground truth, which is the HDR+ gener-
ated images. This means we have to assume that the ground truth is the optimal outcome,
which is completely fine for the training of the network but might be wrong and would re-
quire another kind of evaluation. Secondly, as we’re entirely looking for an improvement
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4.2 Evaluation Limitations

in quality and positive subjective perception of the output, quantitative measurements tend
to fall short. There is no such thing as a perfect numerical evaluation of the quality of an
image, which tends to push research towards utilizing subjective blind tests for preference.
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Chapter 5
Results

A larger number of tests were done for each type of network and the results given are the
ones that gave the best quantitative scores. The evaluation is done on 50 images that were
excluded from the training to give as much of an un-biased result as possible.

5.1 Training
The training process can be seen in figure 5.1. It has plateaued quite early during the
training process, roughly at the tenth epoch.
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5. Results

(a) The loss progression of the baseline net-
work.

(b) The loss progression of the multi-image
network.

Figure 5.1: These figures show how the loss (y-axis) lowered with
the number of iterations (x-axis). The graphs are displayed with a
smoothing factor of 0.9.

5.2 Baseline Network
The baseline network was trained for 17 epochs, which is 154 700 iterations and it took
roughly 3 days on the previously specified hardware. Example images can be seen in figure
5.2.
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5.3 Multi-image Network

Figure 5.2: From left to right columns: Input images, images gen-
erated by the baseline network and finally the ground truth images.

5.3 Multi-image Network
The multi-image network was for comparison also trained for 17 epochs, and it took
roughly 4 days. Example images can be seen in figure 5.3. More images generated by
the multi-image network can be seen in Appendix A.
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5. Results

Figure 5.3: From left to right columns: Input images, images gen-
erated by the multi-image network and finally the ground truth im-
ages.

5.4 Comparison
The networks were numerically compared using PSNR and SSIM (explained in chapter 4)
and the results can be found in table 5.1. Generally, a high PSNR and SSIM is desirable,
with more subjective measurements generally beingmore important but harder to quantify.

Comparison images for the two networks and the improvements that were made from
the input images can be seen in figure 5.4.
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5.4 Comparison

Figure 5.4: From left to right columns: Input images, images
generated by the baseline network, images generated by the multi-
image network.

PSNR SSIM
Test Epochs µ σ µ σ

Input Image n/a 16.57 3.09 0.41 0.21
Baseline Network 17 18.96 2.80 0.55 0.13

Multi-Image Network 17 20.13 2.53 0.62 0.15

Table 5.1: The quantitative results for the input as well as the test
runs compared to the ground truth HDR+ image. The PSNR and
SSIM are the mean (µ) and standard deviation (σ) of 50 images.
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5. Results

5.5 Performance
When it comes to the performance of the networks during inference, it is clear that it is
costly to perform full-size image transformations using neural networks. The maximum
resolution image that can be evaluated is 2000 by 2000 pixels, and larger images cannot fit
in memory (32 GB) together with the model, as it scales with the input size. The inference
of themulti-image network on that resolution takes roughly 2.4 seconds on our CPU,which
is within the same order of magnitude in time as performing regular HDR. For comparison,
the HDR+ pipeline has a requirement of roughly 300 MB of memory, but gets significant
speed-up from using all the memory of the device.

5.6 Limitations
Included in the images are a number of artifacts, introduced by the network as it tries to
perform full-scale image improvements.

1. Inaccurate colorization.

2. Introduction of noise.

3. Ghosting.

All of the artifacts are present in both types of network, with no real discernible dif-
ference. Examples seen in figure 5.5.
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5.6 Limitations

Figure 5.5: Examples of artifacts introduced by the network. Left
to right: Inaccurate colorization, noise introduction and blurry,
ghosting edges. Top to bottom: Original image, image generated
by multi-image network.
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Chapter 6

Discussion

The images produced by the networks provide a believable HDR-like effect both for the
baseline network and the multi-image network. After a lot of different tests trying to im-
prove the performance of the network, we finally ended up with the results given in chapter
5. It shows that an improvement was made with the multi-image network. The number of
epochs trained is quite low and given more time/resources, better results are likely achiev-
able. This also ties into the computational performance of the network, which is quite
costly, especially in terms of memory bandwidth, both during training and inference.

There is a general problem of robustness in the generated images. The photographs
all acquire the HDR tone mapping, but a number of images contain severe artifacts that
visually ruin the image for the viewer.

6.1 Performance
There are a few different ways in which the performance issues can be handled. First
and foremost, using the network on a lower resolution would be possible. One applica-
tion that is quite common is to down-sample an image, apply a transformation and then
subsequently up-sampling it again. This does however come with issues on its own, as
the up-sampling process is essentially an approximation. One could also reduce the rep-
resentation inside the network, so that instead of going for a full-size representation in
each layer you have smaller dimensions. This is called an autoencoder network and has
proven to perform well on similar tasks. There is also the possibility of splitting the image
into overlapping patches that are run through the network separately and then merged, this
would however introduce another image processing step and would not let the network
handle global image effects.
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6. Discussion

6.2 Multi-image Network
The results from the multi-image network are quite promising, with higher PSNR/SSIM
values compared to the similarly trained baseline network. The hypothesis that more input
information would garner a better result were correct in some regards. There is, however,
a disconnect in results achieved and the state of the art, in which the networks have been
optimized and tweaked to their limits.

One big issue that comes with multiple images is that there needs to be an understand-
ing between actual differences in the images compared to noise. There is also the consid-
eration of increased computation time and memory usage and the need to take a burst of
images instead of simply taking one picture. Also, because of the time difference between
the burst images, a fast moving object would in all likelihood give a visually undesirable
result.

These findings would have to be verified further after tweaking, as we don’t know if
there is an upper limit to how well this network structure can perform.

6.3 Limitations
For the limitations given in the results 5.6, there are a number of problems that were in-
troduced by the network that were not present in the original images.

Given the nature of the dataset, which includes a number of noisy images that HDR+
accurately de-noises, the network learns a representation that introduces noise as it tries to
accomplish the same result. This can be seen in figure 6.1. This is especially obvious in
uniform surfaces of a single color or gradient, such as the sky. This is made worse by the
fact that the dataset uses a number of different phone cameras, all likely giving different
noise. In order to rectify this, either the dataset can be made less diverse, thereby splitting
the different issues of the original image into smaller sub-problems, or a higher batch size
can be used in order to teach the network to differentiate between noisy images and clear
ones.

The main effect of the dataset that is applied to the images is that of the tone mapping,
i.e. the colorization of different parts of the image. While often accurate and heightening
the dynamic range of the image, it can sometimes be unreliable in terms of portrayal of
reality. Examples of this effect are turquoise seas, as can be seen in figure 6.2. Whether
this is an artifact from the dataset or a faulty connection within the network is hard to say,
as this might be a desired effect. In order to correct it, more training on more data would
bring the result closer to the ground truth. The introduction of a more complex loss would
also allow for more accurate targeting of the colors, for example using the color histogram
of the images. The current loss compares the color channels individually, which should
be sufficient for most color transformations.

Occasionally the network introduces a ghosting effect that duplicates edges in images
as can be seen in figure 6.3. Google use a reference frame that is the basis of their align-
ment, which means that this is the most accurate image in terms of edges. However, as they
merge multiple different images with a slightly differing composition, this seems to cause
confusion in the network. Theoretically this means that the multi-image network, that also
takes multiple input images, would be better at suppressing this type of edge inconsistency
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6.3 Limitations

Figure 6.1: The result of the network trying to do noise cancelling
where there isn’t that much noise to begin with. Left image is the
input image, right image is generated by the multi-image network.

Figure 6.2: The image shows inaccurate and less lifelike colors.
Left image is the input image, right image is generated by the
multi-image network.

but the differences are hard to confirm. A more edge aware loss would penalize this type
of generation, which can be achieved in a number of ways. For example, using SSIM
would take the structure of the image into account or possibly an edge detection together
with MSE. Permutations of the training images such as rotation and mirroring could also
achieve a better result.
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6. Discussion

Figure 6.3: Blurry edges introduced by the network. Left image
is the input image, right image is generated by the multi-image
network.
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Chapter 7
Conclusions

While there is a big improvement from the input image to the synthesized image, the quan-
titative scores are somewhat low compared to the state of the art in similar applications.
This can have several different reasons, but the most likely one is that either the dataset
doesn’t represent the possible image space properly or the application of HDR+ is too
complex to model with a network of our topology and size. There exists a problem with
robustness, related to the number of artifacts that can be created in the images, which
makes this method of applying the desired transformation less desirable. Whereas most
images are quite good and generate a positive result, as can be seen in Appendix A, the
images that do contain issues are problematic if it were to be used in a commercial appli-
cation. One could imagine a situation in which the end user could choose from a number
of different images to make this less of an issue, but it is not an attractive solution.

As for performance, the requirements on CPU/GPU and memory makes this type of
application unfeasible for mobile deployment at high resolutions. There is the possibility
of using a server-based structure to run the network, but that would require uploading the
image before the expensive computation and then return the image to the mobile device,
which would be quite expensive in terms of bandwidth and data usage on the consumer’s
side.

When comparing to similar work, Gharbi et al. [6] achieved a PSNR of 28.6 using
their Deep Bilateral Learning algorithm which takes knowledge of image transformations
into account when creating their full pipeline. As their network is only applied on low
resolution to generate a bilateral grid containing coefficients for applying the changes in
the image on full resolution, their method is significantly faster.

Another quite similar network by Ignatov et al. [12] also achieves good results with the
slightly lower PSNR of 21.81, but with an SSIM of 0.947 when improving an image from
a Sony Xperia Z cell phone camera and comparing to an image taken by a Canon 70D
DSLR camera. However, their problem is fundamentally different as they simply try to
improve the quality of an image. Nonetheless their results are very impressive and create
images that rival those of HDR+.
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7.1 Future Work
The possible improvements that could be made to the network are:

1. Application of network on RAW photos.

2. Increased batch size training.

3. More complex loss function.

4. Changing network topology.

These areas would need to be explored as well as tweaking of hyperparameters, some-
thing that is simply out of scope for this thesis. The more parameters that are available for
tuning, the more possible combinations exist. While some settings are binary and always
have a positive impact, like using RAW images as input, some are complex and continuous,
like the choice of learning rate.

With a disregard of performance, there are several areas left unexplored for this type
of network. Simply exchanging the dataset and training on another problem would be in-
teresting, having more of a specified application than HDR could certainly provide good
results. Themost interesting application in ourmindwould be low-light scenes, attempting
to restore information that simply isn’t visible to the human eye. In many ways this corre-
lates with HDR, but is a more niche case. More problems to explore would be restoration
of noisy or blurry images.

With regards to performance, further exploration research would be best spent on ways
to apply the network on a lower resolution as a way to reach a performance that would be
competitive on mobile platforms compared to the original algorithm. Therefore, a method
for smart upsampling with regards to the input would probably be a good approach to
explore.
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Appendix A
Additional images

This appendix contains a number of extra images to show the performance of the Multi-
Image Network (MIN).

The left-most column contains the input images, the middle column is the generated
images from the Multi-Image Network and the right-most column is the ground truth
HDR+ images.
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A. Additional images

Input MIN HDR+
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Input MIN HDR+
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A. Additional images

Input MIN HDR+
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Utvärdering av Deep Learning metoder
för HDR

POPULÄRVETENSKAPLIG SAMMANFATTNING Simon Johansson

Efter-processering blir allt vanligare i bildhantering för att nå resultat som ögat före-
drar. Detta arbete försöker uppnå goda resultat för en sån teknik, HDR, med hjälp
av neurala nätverk och bedöma dess lämplighet för fullskaliga bildtransformationer.

Förbättring av kamerasensorer ger idag inte så
stor skillnad på bildkvalité, speciellt inte på mo-
bila platformar där allt måste bli mindre. Många
vänder sig då till olika metoder för att förbättra
bilder efter att de har tagits med olika beräkn-
ingsmetoder. En sådan metod är High Dynamic
Range imaging, eller HDR, som tar en samling av
bilder tagna med kort slutartid och litet tidsin-
tervall och slår ihop dem till ett bättre fotografi
med större intensitetsomfång. Det finns en rad
olika algoritmer för HDR, som ständigt utvecklas
och blir bättre, idag finns det till exempel metoder
som även reducerar brus.

Fokuset i examensarbetet var att återskapa
Google’s HDR+ algoritm med hjälp av ett djupt
neuralt nätverk och avgöra om detta typ av
nätverk var lämpligt, både i mån av kvalité och
prestanda. Neurala nätverk har förmågan att
återskapa vilken funktion som helst, det är bara
en fråga om olika bestämbara parametrar, så
som nätverksstruktur, träningshastighet och full-
ständigt beskrivande data. Eftersom både bild-
kvalité och prestanda är av intresse blir detta en
balansgång, då nätverket inte kan vara för kom-
plext eller för simpelt för att kunna representera
informationen i bilderna. Ett försök till förbät-
tring genom att emulera själva HDR algoritmen
med att använda flera bilder gjordes också, ledd av

Förbättring av ursprungsbilden av nätverket

hypotesen att ju mer information om själva bilden
som nätverket kan ta del av, desto bättre resultat
kommer den bidra med.
Resultatet visar på att fullskalig bildtransfor-

mation är mycket resurskrävande, både i proces-
sorkraft och minneskapacitet. Nätverket åter-
skapar en HDR-liknande bild som är trovärdig,
med spektakulära färger och hög varians mellan
snarlika färger. Det inför dock en rad artifakter, så
som introduktion av brus och skuggningar av kan-
ter vilket gör att robustheten av metoden försäm-
ras. Nätverket som använder sig av flera bilder
genererar bättre resultat än det nätverk som bara
tittar på en bild.
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