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Abstract

The last few years the world has seen an increase in fake and biased news in
the media and on the internet. Due to the pure amount of articles, the fake
news are basically impossible to manually sort out from the rest. Automatic
classification algorithms based on machine learning have therefore been sug-
gested.

This study examines different hierarchical attention networks for classify-
ing texts. The main focus has been on biased news but the models have also
been tested on other data.

The best classifier for fake news was a 3-level hierarchical attention net-
work with FastText embeddings with a f1-score of 0.96, recall of 0.96 and
precision of 0.96.

Keywords: NLP, Hierarchical Attention Network, 3HAN, Text Classification, Ma-
chine Learning



2



Acknowledgements

As customary there are a lot of people to acknowledge and some to unacknowledge. Here
follows a short summary of the former.

Firstly, I would like to thank my supervisor Marcus for his help, support and for always
being able to explain my page-long error messages. A thank you also goes out to all the
teachers I have had during the years. Thanks to the BBC for letting me use their articles
in my visualization.

Big thanks to 李志瑛 for helping me patch up the mess I called equations. Another
big thanks to Maria for finding the flaws in my English and spending hours discussing
“fancy” possible titles. So many great titles gone to waste. . . “Vectorization of Language:
Autodetermine Bullshit Websites Automatically” is a personal favourite.

The most important thanks of course goes out to my family. To my mom, my dad and
my brother for always supporting me and encouraging my interest in science. To my girl-
friend (do not worry, there is more below) and to Maya, the world’s only real “gosedjur”.
Love to you all.

Finally, a big thanks to my 端端 for always being there for me. For your love and
support and for filling my life with happiness. Sorry for ruining the amazing idea you
had for your own thesis acknowledgements. Hope this at least makes up for parts of the
damage.

3



4



Contents

1 Introduction 7
1.1 Background and purpose . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Theory 11
2.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Performance measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Bag-of-words model . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Bi-grams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.3 Word embeddings . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Baseline models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.1 SVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.2 Logistic regression . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5.1 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 Machine learning frameworks . . . . . . . . . . . . . . . . . . . . . . . 16
2.6.1 Dropout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6.2 Recurrent neural network . . . . . . . . . . . . . . . . . . . . . . 17
2.6.3 Gated Recurrent Unit - GRU . . . . . . . . . . . . . . . . . . . . 17

2.7 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.8 Attention GRU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.8.1 Word Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.8.2 Word Attention . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.9 Hierarchical Attention Network . . . . . . . . . . . . . . . . . . . . . . . 20
2.9.1 Sentence Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.9.2 Sentence Attention . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.10 3HAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.10.1 Headline Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5



CONTENTS

2.10.2 Headline Attention . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Method 25
3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Datasets and pre-processing . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Biased and normal news dataset . . . . . . . . . . . . . . . . . . 26
3.2.2 News classification example . . . . . . . . . . . . . . . . . . . . 26
3.2.3 Biased and normal news pre-processing . . . . . . . . . . . . . . 27
3.2.4 Swedish dataset and pre-processing . . . . . . . . . . . . . . . . 27
3.2.5 20 Newsgroups dataset and pre-processing . . . . . . . . . . . . 28
3.2.6 Embedding layer . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5 Training method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.6 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.6.1 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.6.2 Training, validation and test data . . . . . . . . . . . . . . . . . . 29
3.6.3 Oversampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.7 Simple neural network based models . . . . . . . . . . . . . . . . . . . . 30
3.7.1 GRU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.7.2 Attention layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.7.3 Attention GRU . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.8 Hierarchical attention network . . . . . . . . . . . . . . . . . . . . . . . 33
3.8.1 Swedish speeches classification using HAN . . . . . . . . . . . . 34
3.8.2 20 Newsgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.9 3HAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.9.1 Pre-trained 3HAN . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.9.2 Embedding improvements . . . . . . . . . . . . . . . . . . . . . 36

3.10 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Results 39
4.1 Real-Biased news classification . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Swedish Parliament Speeches classification . . . . . . . . . . . . . . . . 41
4.3 20 Newsgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Discussion 45
5.1 Swedish speeches dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3 20 Newsgroups dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6 Conclusion 47
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6



Chapter 1
Introduction

1.1 Background and purpose

News 

Articles 
Algorithm 

Real 

Biased 

Figure 1.1: A text classification problem where news articles are
classified as biased or real

A common task in natural language processing is text classification, sometimes also called
text categorization. The task consists of classifying texts based on their content into one
of several predefined categories and is described in Figure 1.1. This can be a very time
saving application of machine learning since manually classifying big amounts of text
can be very time consuming. If the machine learning algorithm is deterministic it also
guarantees consistency in the classification as a deployed machine learning algorithm will
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1. Introduction

classify the same text to the same class every time, while several humans might classify it
in different classes.

Text classification has historically been applied to for example research papers, news
articles, comments and emails Singhania et al. (2017) Hingmire et al. (2013) Yang et al.
(2016). The categories could be different topics for news and research articles, comments
containing hate speech or emails containing spam.

Recently, in the wake of the United States presidential election in 2016 and the appear-
ance of fake news a new application of text classification has risen in popularity. Distin-
guishing fake news from normal news has become a problem for many social networks
and news feeds Mihailidis and Viotty (2017). A problem that could potentially be solved
with automated text classification.

To solve the problem several methods have been proposed. Some methods such as
(Chopra et al., 2017) are based around the idea that comparing the title with the text will
give information about the articles authenticity as fake news tend to have titles either un-
related to or exaggerating the content of the articles. Other solutions such as (Yang et al.,
2016) are based on classic text classification methods only looking at the content of the
article. A combined method was proposed by (Singhania et al., 2017). They suggest a 3-
level hierarchical attention network with a structure focusing on each word in a sentence,
each sentence in text and finally the headline and the text. The model itself is an expansion
of the classical hierarchical attention network model suggested by (Yang et al., 2016).

The objective of this project is to examine and compare the hierarchical attention net-
work and 3-level hierarchical attention network (3HAN) models, primarily on English
fake news classification but also on other text classification tasks including a Swedish
dataset of speeches from the Swedish parliament (The Swedish Parliament, 2010) and the
20 Newsgroups dataset (Lang, 2008). Hierarchical attention models have to the best of my
knowledge not been applied to the Swedish language before. The study also involves look-
ing at potential improvements and variations of the 3HAN model such as different kinds
of word embeddings as few such modifications were examined in the original report.

1.2 Contribution
This work aims to give a better understanding of how the 3HAN structure suggested by
(Singhania et al., 2017) performs compared to the original hierarchical attention network
(Yang et al., 2016). This was done through re-implementing the models. They were then
optimized and compared on a news dataset.

In addition to the biased news classification the performance of the hierarchical at-
tention network on a Swedish classification task was tested. This has to the best of my
knowledge not been done before and provides new knowledge of the model’s possible
applications.

1.3 Outline
The Theory chapter introduces the reader to the theory behind text classification with ma-
chine learning. It starts by describing basic pre-processing and features used in natural
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1.3 Outline

language processing and then moves on to describing different kinds of machine learning
models used in the project.

The method chapter mainly describes the implementation of the models described in
the Theory chapter. It also describes how the data sets were processed to make the data
compatible with the models as well as which steps were taken to improve the models.

The Results chapter presents the performances that were achieved by the different mod-
els on the different data-sets as well as examples of the visualisation.

The Discussion and Conclusion chapters analyses the results and draws conclusions
from the work done in the project. They also suggests ideas for further work that can be
done on the topic.
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Chapter 2
Theory

2.1 Related work
Text classification is a well developed research area within natural language processing.
The first mention of a neural network based model with a hierarchical attention structure,
described in section 2.9wasmade by (Yang et al., 2016). They suggest a two-level attention
structure with word attention followed by sentence attention, described in section 2.9.2.
The suggested network is a general approach to text classification where the structure of
the article is taken into account.

On the topic of fake or biased news classification an approach has been to use LSTMs,
described in section 2.6.3 or other methods on the text and headlines using the assumption
that the headlines of fake news articles often are over dramatical and less connected to the
content of the actual article. By concatenation the text-body with the headline, a LSTM
basedmethod using both the text and the headline can classify the newswith less connected
headlines. This has for example been done by (Chopra et al., 2017).

An article where the previously described methods are somewhat combined was re-
cently published by (Singhania et al., 2017). They suggest using the same hierarchical
attention structure as (Yang et al., 2016) but with an extra layer. The extra layer involves
a headline-body attention. The idea being that the three level hierarchical attention net-
work (3HAN) can both compare the body and headline as done in (Chopra et al., 2017)
and utilise the article structure by the same principle as (Yang et al., 2016). The results
look very promising with the authors claiming to have reached a classification accuracy of
96.77%. They have however not published their test-set which raises questions about the
models performance.

11



2. Theory

2.2 Performance measures
The performance measures used are precision, recall and F1. These are defined using four
different concepts, true positive, false positive, true negative and false negative. If we see
a biased article as a positive classification a true positive, tp is when a biased article is
defined as biased. A false positive fp would be when a real article is defined as biased.
Similarly, a true negative tn is when a real article is classified as real and a false negative
fn is when a biased article is classified as real.

Precision is defined as
Precision =

tp

tp + fp
(2.1)

and a high precision means that the model has very few false positives for the class. Recall
is defined as

Recall =
tp

tp + fn
(2.2)

A high recall means that the algorithm miss very few positive values. F1 is defined as

F1 = 2 ·
precision · recall
precision + recall

(2.3)

The F1 score is the harmonic mean of precision and recall. A high F1 means a high score
on both the other measures.

2.3 Features
Features are ways of representing the data in a way that machine learning models can
interpret. As text can not be directly interpreted mathematically it needs to be transformed.
Five different kinds of features were used for the models. Bag-of-words and bigrams for
the baseline models, GloVe-embeddings and FastText-embeddings for the English neural
network based models and Word2Vec-embeddings for the Swedish model.

2.3.1 Bag-of-words model
A Bag-of-words model is a simple representation for a text. It does not take into consider-
ation the order of words but simply counts the number occurrences of each word. The text
is represented by a vector where the dimensions correspond to the amount of unique words
in the data-set. Every dimension represents a word and the value represents the number of
occurrences in a sentence. For example if we have the two sentences:

I like to watch football

and

I like football but I like tennis as well

we get:

12



2.3 Features

Table 2.1: Bag-of-words vector examples

I like as watch to well but football tennis
Sentence 1 1 1 0 1 1 0 0 1 0
Sentence 2 2 2 1 0 0 1 1 1 1

The Bag-of-words model makes it possible to represent all the texts in the data-set as
individual vectors. This gives the possibility to usemachine learning algorithms to classify
the texts.

2.3.2 Bi-grams
Using bi-grams in the model somewhat take the word order into account. Instead of sim-
ply counting the word frequency it counts the frequency of word pairs. For example the
sentence:

He is a bad president

becomes:

Table 2.2: The bi-grams for "he is a bad president"

(He, is) (is, a) (a, bad) (bad, president)
1 1 1 1

The advantage is that the order and context of the words are represented. For example
"bad president" contains information of what is bad which would not be caught otherwise.
The model can also be expanded to a N-gram model where N words are combined in a
dimension.

2.3.3 Word embeddings
Word embeddings is a feature where a word is translated into a vector of a given dimension.
This vector models the semantics of the word. Something that is not done by the bag-of-
words. The process of learning these embeddings can be done in several ways. The vectors
are created in such a way as to let the vectors of similar words lay close to each other in the
vector space. For example in GloVe embeddings supplied by the authors of the algorithm
(Pennington et al., 2014) the word "thesis" has the following closest word vectors with
corresponding cosine similarities:

Table 2.3: Closest words to "thesis" and corresponding cosine
similarities

dissertation 0.87781
doctoral 0.76769
phd 0.73197
ph.d. 0.69371
doctorate 0.62604

13



2. Theory

Where the cosine similarity for the two vectors A and B is defined as:

cos(θ) =
A · B
‖A‖‖B‖

(2.4)

Three different algorithms to create embeddings used in this article are described bel-
low.

Word2Vec embeddings
Word2Vec is an algorithm for obtaining word vectors. It was presented by (Mikolov et al.,
2013) and provides vectors similar in performance to GloVe. However the vectors are
trained in different ways. Word2vec are trained as a predictive model. Pre-trained vectors
for several languages are available around the web.

GloVe embeddings
GloVe - Global Vectors is an unsupervised algorithm for making word vectors. It was
presented by (Pennington et al., 2014) and produces vectors for words of a predefined
dimension. GloVe differs from Word2vec in that it is a count-based model.

Pre-trained vectors for English are supplied from the projects website. But the algo-
rithm also allows for new vectors to be trained on a data-set giving vectors specially made
for the data.

FastText
FastText is an open-source library developed by Facebook AI Research (Bojanowski et al.,
2017) for creating word embeddings and classifiers. It differs from GloVe and Word2Vec
embeddings since it can not only create embeddings for words in it’s vocabulary but also
predict an embedding for words not in the vocabulary through sub-word embeddings. This
makes it possible for a FastText model to predict a word embedding for any word.

2.4 Baseline models
To be able to make conclusions about the performance of more complex models a baseline
needs to be established. A baseline is a simpler model to witch the more advanced model
can be compared. If a simpler model performs as well then the more complex model is not
a reasonable choice for the problem. Two different models were used to establish a baseline
for the classification. A Support Vector Machine and a Logistic Regression based model.
These were chosen as they are simple and well examined models that are quick to train.

2.4.1 SVM
Support Vector Machine (SVM) is a classifier based around the idea of finding an optimal
boundary between the classes. It selects points from the training data as support vectors
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2.5 Neural networks

and use them to find a hyperplane that maximizes the boundary. A SVM generally per-
forms well when the amount of features are bigger than the number of training examples.
This is often the case for text data. It can classify with based on linear function of the
features. It can also be modified to perform a non-linear classification. The hyperplane
defining the classification is given by:

WT X + b = 0 (2.5)

Where W is the weight vector, b is the bias and X is the input.

2.4.2 Logistic regression
Logistic regression is a linear classifier suggested by (Cox, 1958). It outputs the probability
that a data point belongs to a certain class. The classes are usually labelled 0 and 1. But
the model can also be expanded to a multinomial logistic regression that can handle more
than two classes. The model is fitted to data using one of several possible optimization
algorithms. The probability of Y belonging to class 1 is described by:

Pr(Y = 1|X) =
1

1 + e−WT X
(2.6)

Where X is the input and W the weight vector.

2.5 Neural networks
A neural network is basically a network of nodes. The nodes are usually grouped into
several layers where one layer known as the input layer receives the data and one layer
known as the output layer outputs the result. Usually every node in each layer is connected
to every node in the next layer. That means that every node in one layer has every output
from the nodes in the previous layer multiplied by a weight for each as input. The node
applies a simple function, known as an activation function on the weighted inputs.

X1 

X2 

f(x) Y 

w1 

w2 

Figure 2.1: A simple neural network with two input nodes and
one output node

A simple neural network is shown in Figure 2.1. For this network the output would be:
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2. Theory

Y = f (x1W1 + x2W2) (2.7)

Where the function f is an activation function. For example a sigmoid- or step-function.
Which is a simple function with many inputs.

The idea behind the neural network is that it can be "trained" on a specific problem. To
fit the network to a problem the weights in the network have to be changed. This is often
done by back-propagation. First a forward propagation is made, passing values through the
network and producing a result. Then a backward propagation is made. Using the correct
output for the given input deltas, a sort of error for each weight is calculated. These are
then used to calculate a numerical gradient for each weight. The gradient is then used by
an optimizer to make a small change to each weight resulting in a better model.

2.5.1 Training
When training the neural network with the previously described backwards propagation
one usually talks about epoch, iteration and batch. An epoch is when an entire training set
is passed forwards and backwards through the network once. A whole training set can not
be passed through the network at once. So it is divided into a number of batches, that are
passed through, one by one. Iterations is the number of batches that are needed for one
epoch.

Three other important concepts are training, validation and test data. The training
data is the data passed through the network during training. This is the data used for the
backwards propagation. The validation data is used to evaluate the training. For example
one could test a model on the validation data after one, two and three epochs to see how
many epochs gives the best results. The validation data can also be used to test different
values of hyper parameters described bellow. This makes the validation data part of the
training, which means that the performance of the model on the validation data is not
a good measure for how the model will perform on new data. Therefore there i a third
dataset, the test data. The test data is not part of the training process. It is only used to
evaluate the performance of the final model.

As mentioned earlier an optimizer is used to change the weights of the network using
the gradient. These optimizers usually have so called hyper parameters that can be tuned
to the specific problem. One example is the learning rate that governs how much the
weights are changed. A larger learning rate means a larger change in weights. In this
thesis two different optimizers were used, ADAM (Kingma and Ba, 2014) and NADAM
(Dozat, 2015).

2.6 Machine learning frameworks
To simplify the implementation of machine learning models, different pre-implemented
frameworks are usually used. One of the most common frameworks is Google’s Tensor-
Flow. One great advantage with TensorFlow is that it can automatically differentiate the
network which means one does not have to calculate the derivatives by hand. To simple
the limitation even further other frameworks built on top of TensorFlow can be used. In
this thesis Keras was chosen as it greatly simplifies the implementation and allows for
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2.6 Machine learning frameworks

quickly building new models. Keras has a layer-based approach for building networks.
For example the previously described GRU is a pre implemented layer in Keras that can
be put on top of other layers to create a network. Keras also have several pre implemented
optimizers that can be used.

2.6.1 Dropout
Dropout is a regularization technique used in neural networks suggested in (Srivastava
et al., 2014). During training several nodes in the network are "dropped" meaning they are
removed from the network along with it’s connections to other nodes. The nodes that are
removed are chosen at random with a given probability, the dropout rate. Dropout often
decreases the over-training as it forces the neurons to learn from multiple outputs.

2.6.2 Recurrent neural network

f(x) 

X 

Y 

Figure 2.2: A simple recurrent network with one in-node, one
out-node and one recurrent loop.

Recurrent neural networks are a subclass of neural networks. They are characterised by the
output of the current time-step being dependent on information from previous time-steps.
A simple version is shown in Figure 2.2 which has a node that gets input from the previous
time-step. This network has a problem. When optimizing the weights the gradient is
dependent on the previous time-steps. This can get very computationally complex and can
also sometimes results in the vanishing and exploding gradient problems.

2.6.3 Gated Recurrent Unit - GRU
The Gated Recurrent Unit (GRU) was first introduced by (Cho et al., 2014).It is a way of
reducing the computational complexity of recurrent networks and avoiding the vanishing
and exploding gradient problems. The GRU was presented after the Long Short-term
Memory (LSTM) and is a simpler version with only two gates and without an external
internal memory. The update gate z and the reset gate r are defined as:
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2. Theory

z = σ(xtUz + ht−1W z + bz) (2.8)

r = σ(xtUr + ht−1W r + br) (2.9)

WhereUz,W z,Ur ,W r are weights, xt is the input, ht is the output andσ is the activation
function (usually a sigmoid).

The candidate for the output value h̃t is determined using the reset gate as:

h̃ = tanh(xtUh + (ht−1r)W h) (2.10)

The output value is then determined by filtering with the update gate. Bigger z gives
focus on the new value:

ht = (1 − z)h̃ + zht−1 (2.11)

2.7 Notations
In the following sections more complex models are described and the notations are there-
fore described here to make it easier to understand.

Given an article with a headline and a body each word in the body is denoted wit, the
t:th word in the i:th sentence and the words embedding is denoted Xit. In the same way
a GRU going to the right starting from sentence i is denoted

−→
hi . A bidirectional GRU

starting from sentence i becomes hi =

[
←−
hi ,
−→
hi

]
, where

←−
hi and

−→
hi are concatenated. Finally

the i:th word in the headline is denoted yi and a bidirectional GRU over headline word i
is denoted h3

i . The 3 is to describe the 3 hierarchical level of the network as suggested in
(Singhania et al., 2017).

2.8 Attention GRU
Attention is a neural network design that allows the network to focus on a specific feature
and then use other features in the context of that feature. The attention GRU presented
here is one of the more simple versions. It involves the network focusing the attention on
each word and then running a GRU backwards and forwards from that word. This makes
it possible for the model to look at each word with the context for the other words. It then
allows the model to focus on the important words, giving them a higher weight value. The
model is described mathematically below.

2.8.1 Word Encoder
If we in a sentence si have Ti words each word can be denoted wit. Using an embedding
matrix We we can embed the words into vectors:

xit = Wewit, t ∈ [1,T ] (2.12)
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2.8 Attention GRU

If we denote a forward GRU, −−−−→GRU we can write a forward and a backward GRU for
each word as:

−→
hit =

−−−−→GRU(xit), t ∈ [1,T ] (2.13)

←−
hit =

←−−−−GRU(xit), t ∈ [1,T ] (2.14)

We can then concatenate the two GRU values as:

hi j =

[
−→
hi j ,
←−
hi j

]
(2.15)

2.8.2 Word Attention
To get more focus on the relevant words we add the attention mechanism given by the
following three equations:

uit = tanh(Wwhit + bw) (2.16)

αit =
euT

ituw∑
t euT

ityw
(2.17)

si =
∑

t
= αithit (2.18)

The first equation is basically the word annotation hi j being fed through a single layer
perceptron. How similar the resulting values are to the word level relevance vector uw gives
the attention weights αi j . We then get the sentence encoding through using the attention
weights to sum the word annotations.
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2.9 Hierarchical Attention Network
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Figure 2.3: The hierarchical attention network where v is the final
encoding of the text, the document vector.

The Hierarchical Neural Network (HAN) was presented by (Yang et al., 2016) and builds
on the same idea as the Attention GRU but also applies attention to each sentence. So just
as every word in each sentence is put in context of the other words and gets a weight value
depending on its importance for the classification each sentence encoding is also put into
context and gets a weight. This then results in a text encoding.

2.9.1 Sentence Encoder
Applying a GRU to the sentence encoding si we get:

−→
hi =

−−−−→GRU(si), i ∈ [1, L] (2.19)
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←−
hi =

←−−−−GRU(si), i ∈ [1, L] (2.20)

Where L is the number of sentences in the text. If we concatenate
−→
hi and

←−
hi we get

hi =

[
−→
hi ,
←−
hi

]
.

2.9.2 Sentence Attention
Using the same attention mechanism as for words we get:

ui = tanh(Wwhi + bw) (2.21)

αi =
euT

i uw∑
t euT

i yw
(2.22)

v =
∑

t
= αihi (2.23)

Here v is a document vector that contains the information for each sentence. A simple
illustration of the hierarchical attention network where the creation of the attention weights
is left out is shown in Figure 2.3.
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2.10 3HAN
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Figure 2.4: The 3HAN network where vb annotate the body en-
coding from figure 2.3.

The 3 level Hierarchical Neural Network (3HAN)was presented by (Singhania et al., 2017)
and offers a new take on the classical HAN model tailored for detecting fake news. Since
one of the main features of a fake news article often is a headline that exaggerates or is
not related to the content of the article the authors suggest a separate attention structure
for the headline. Each word gets an attention weight and the body encoding is appended
to the end of the sentence as an extra word.

2.10.1 Headline Encoder
Denoting the k words in the headline w01 through w0k and concatenating the text body
encoding v onto the word vector as seen in Figure 2.4 we get the word embedding:

yi = We(w0i) (2.24)

Running a bidirectional GRU over the words and body encoding gives:
−→
hi

3 =
−−−−→GRU(y j), j ∈ [1, i] (2.25)

−→
hi

3 =
←−−−−GRU(y j), j ∈ [1, i] (2.26)
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That can be written:
h3

i =

[−→
h3

i ,
←−
h3

i

]
(2.27)

Where the 3 in the above equations denotes that this is the third layer of the hierarchical
network.

2.10.2 Headline Attention
Similar to the previous attention mechanisms the news vector vn is given by:

ui = tanh(W3h3
i + b3) (2.28)

βi =
exp(uT

i u3)∑
i exp(uT

i u3)
(2.29)

vn =
∑

i

βih3
i (2.30)

An illustration of the headline encoder from the body encoding v to the news vector vn
can be seen in Figure 2.4.

23



2. Theory

24



Chapter 3
Method

3.1 Methodology
As a first step both the hierarchical attention and the 3HAN model are implemented as
TensorFlow backed Keras models in Python. Most of the models are built from basic
Keras layers but the attention mechanism is implemented as a separate custom made layer.

The two models are compared with each other as well as several baseline models such
as Support vector machine and logistic regression as well as simpler neural network based
models on a dataset consisting of news from biased and trusted sources. To compare the
performance precision, recall and F1-score are used.

Several different embeddings such as GloVe and FastText with different embedding
dimensions as well as different training data are tested for the 3HAN model to see if the
performance can be improved compared to the model with 300-dimensional GloVe em-
beddings proposed in the original article.

The hierarchical attentionmodel is tested on the already well examined 20 Newsgroups
dataset (Lang, 2008) to get a result that can be compared with other state of the art models.
This dataset is not what the model is intended for but the comparison might still give a hint
of the models performance compared to other models.

The hierarchical attention model is also applied to a Swedish dataset consisting of po-
litical speeches from the Swedish parliament (The Swedish Parliament, 2010) to examine if
its performance can be generalized to other languages and types of classification tasks. For
this model several different set-ups are examined to improve the performance, for example
different embeddings, embedding dimensions and different amounts of training data.

To properly compare the hierarchical attention model and the 3HAN model a way of
visualising the attention is implemented. This allows for comparison of what the models
focus on when making a classification, both at a word, sentence and headline level. The
implementation is done in Flask (Ronacher et al., 2010) as a web page with the Python
model in the background.
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3.2 Datasets and pre-processing
3.2.1 Biased and normal news dataset
The data set is put together from two different sources. The (Corney et al., 2016) and the
Kaggle (Risdal, 2016) data set. The sources were checked so that the news are only from
active websites claiming to publish "news". The "real" news are taken from several news
websites. The original dataset contains a million articles and from these I have randomly
sampled the same amount of articles as are in the fake news set. The same amount as the
number of usable articles from the biased news dataset.

The Fake News dataset from Kaggle originates from the BS detector (Sieradski, 2017)
and contains several labels such as fake news, bs and junksci. These were merged into one
class labelled "biased". This is of course not a perfect way of creating a data set. Preferably
all articles should have been fake news which might make the results more useful. The
line between fake news and the other classes in the original dataset is however slim and
the results from the combined dataset might still be useful as a comparison.

A first step for the fake news dataset was to go through all sources and check so they
actually contained "news". Some of the sources were micro-blogs with short opinions and
didn’t publish articles. These were removed from the dataset along with sites that were no
longer online as the content of these sites were uncertain.

The dataset with real news contained one million articles, way too much data. So
an equal amount of data to the fake news was sampled. As there is no guarante that the
dataset does not contain fake news only articles from big media houses such as CNN, The
Guardian, etc were used.

3.2.2 News classification example
The texts that should be classified in the biased news dataset are news articles or articles
claiming to be news articles from several different sources. Here follows parts of two ex-
amples with headline and text as they are provided in the dataset:

Headline:
’Report: Eating RawWeed Prevents Bowel Cancer, Fibromyalgia and Neuro-degenerative
Diseases’

Text:
"Cannabis is taken in different forms all over the world, while being primarily smoked,

being eaten raw has been proven to provide incredible health benefits, whilst also being
non-psychoactive, therefore more appealing to a wider range of people. Marijuana can
be described as the new range of superfoods, it contains over 400 chemical compounds
containing beneficial vitamins, essential oils, and acids."

Headline: ’XPrize’s $20m carbon recycling award aims to cut fossil fuel emissions’

Text: ’The idea of capturing carbon emissions and turning it into something valuable
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has long intrigued scientists, businesses, politicians and environmentalists alike. But it’s
never proven economically viable. Could the XPrize change that? Given the threat of cli-
mate change, what should the world do with its reserves of fossil fuels?"

The first article is from the website "humansarefree.com" (Humans are Free, 2016),
a pseudo science website publishing health advice. The second is an article from the
Guardian "guardian.co.uk" (Gunther, 2015), a renounced media source based in the UK.
The task consists of classifying articles like these. The first should be classified as biased
while the second should be classified as "normal" news.

3.2.3 Biased and normal news pre-processing
The data was formatted into three columns, headline, text body and class. The classes
were labelled 0 and 1. The texts and headlines were then processed with Beautiful Soup
(Richardson, 2014) to remove HTML tags. The stopwords were removed and all upper-
case letters were replaced with lower-case letters. Finally the texts and headlines were
tokenized using a tokenizer with the most common 200000 words trained on the training
data. Depending on the model they were either tokenized into a sequence of words or into
a sequence of sentences that consisted of sequences of words. Rows that after the text
pre-processing were missing either text body or headline were removed. The texts were
then split into half resulting in one training and one testing dataset.

Due to the fact that the input data always has to have the same dimensions, a maximum
amount of words in a sentence and a maximum amount of sentences in a document have to
be chosen. Should a sentence be longer the words will be cut away. Should it be shorter the
remaining word-places will be filled with zeros. Most models have been of the dimension
100 sentences and 30 words per sentence. But some bigger and smaller dimensions have
also been tested.

One text inputed into the model with 100 sentences and 5 words per sentence will have
the dimension (100, 5). One row could for example look like:

[1964 9371 158936 567 3] (3.1)

If the sentence only had 4 words.

3.2.4 Swedish dataset and pre-processing
The Swedish data set consists of speeches made in the Swedish parliament. They are
downloaded from the Swedish government’s website (The Swedish Parliament, 2010). The
last ten years of speeches were used. The data was divided into eight different classes, one
for each party, V, S, MP, C, L, M, KD, SD. The classification task consists of determining
to which party the speaker belongs. These Speeches have no headlines so they can only
be used for the models that only uses the text body.

The Swedish data was formatted into two columns where the first contains the text of
the speech and the second contains the one hot encoded classes. This means that a speech
from V gets a vector that looks like:

[1 0 0 0 0 0 0 0] (3.2)
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and a vector for a speaker from L looks like:

[0 0 0 0 1 0 0 0] (3.3)

The text data was processed in the same way as the news dataset.

3.2.5 20 Newsgroups dataset and pre-processing
The 20 Newsgroups dataset contains newsgroups posts of 20 different subjects. They were
divided into 4 groups, comp, politics, news and religion as done in (Hingmire et al., 2013)
to allow for comparison of the results. It was pre-processed in the sameway as the previous
datasets. The different categories were represented in the same way as the different parties
for the Swedish dataset.

3.2.6 Embedding layer
The tokenizer was as mentioned used to find the 200000 most common words in the train-
ing data. This was done to resemble a human vocabulary. These words were then used to
create a embedding layer for the model together with several different types of embedding
models such as GloVe and FastText. The embedding layer maps an index of a certain word
to an embedding for that word. Using the layer one can input a sequence of word-indexes
into the model and these will then be transformed into word embeddings.

3.3 Output
The target values for the neural network based models are chosen to be two values of the
form [0, 1] for a real news article and [1, 0] for a biased news article. Another choice would
be to use a single digit with either 1 or 0 for the different classes. Two values were chosen
as it sometimes gives better results even if it should theoretically give the same results.

To get an output of the desired form every neural network based model has a dense
layer as the last layer. The dense layer uses a single layer perceptron to dense the input
down to two values. The dense layer have softmax activation functions.

3.4 Baseline
The first step of the project was to establish a baseline for the biased news classification.
Using the sklearn package a Naive Bayes model, a Logistic Regression model and a SVM
was implemented in Python. These are quite simple and quick models and the best per-
forming one was used as a baseline for the more complicated neural network basedmodels.
A grid search was used to find the best features. Either just words or bi-grams.
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3.5 Training method
3.6 Optimization
Most of the neural network models in this section uses ADAM for optimization. The
only exception is the Swedish dataset and the 20 Newsgroups dataset where the NADAM
optimizer was used in addition to ADAM. The NADAM optimizer was only used with
standard hyperparameters but for the ADAMwhere they were changed as described below.

3.6.1 Hyperparameters
As mentioned in the theory there are several parameters that can be tuned when training
a model. Due to the growing parameter space the tuning was limited to a few parameters,
learning rate, number of epochs and dropout rate. The other parameters involved were
found to give very little effect on the training and were frozen to limit the parameter space.

The tuning was in the beginning not done in a systematic way. This method quickly
gave way to a systematic grid search, usually running over night. This was mostly due to
the increasing time required per epoch. In the grid-search the learning rate ranged between
1 and 0.0001. The dropout ranged from 0 to 0.9. Usually a broader search was made and
then a more specific closer to the best values of the first search. The best learning rate
differed a lot between models but the dropout often ranged from 0.15-0.35.

3.6.2 Training, validation and test data
To evaluate what combination of parameters gave the best model the validation data was
used. Usually one would train until the validation performance has reached a maxima and
starts decreasing. For this dataset however this was not a useful method. The validation
performance would usually not reach a maxima but would instead start oscillating around
a value. This made it hard to simply look for the best validation performance as this could
still give a lot of over-training. Instead the best way was to look at the gradient of validation
and training loss. In the beginning the loss would decrease in big steps. Then the gradient
became less steep and the loss decreased slower. This was the best point to stop the training
as the small adjustments most of the time only caused over-training.

When the models had been trained with the above described methodology they were
evaluated on the test dataset. This gives an approximation of how the models perform in
general, on new data.

3.6.3 Oversampling
Since the biased news dataset was rather small a problem during training might be lack
of data. To solve this problem more real news articles were sampled from the real news
dataset. To avoid unbalance the biased news were oversampled to give a better distribution
between the classes. The proportions used was four times more real news and as before
approximately the same amount of real and biased news.
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As the above mentioned approach results in the fake articles being greatly oversampled
another approach was also tested to avoid overtraining on the fake data. The extra real
news were added as before but the fake news were kept without oversampling resulting in
an uneven training set which was used for training.

3.7 Simple neural network based models
3.7.1 GRU

Input

Embedding

B-GRU

Output

Dropout

Figure 3.1: The structure of the GRU model, where B-GRU is a
bidirectional GRU

The first neural network-basedmodel implemented was a simple GRU. It was implemented
in Python usingKeraswith a Tensor-flow back-end. The structure can be seen in Figure 3.1.
The model consisted of an input layer, an embedding layer, a bidirectional GRU without
sequential return and finally a dense layer.

The model was primarily trained with GloVe embeddings with 300 dimensions but
also smaller dimensions. Several modifications to the model were also tested. For example
adding more GRU layers of different width and using dropout layers in between.

This model does not take the sentence structure into account but will instead receive
a one dimensional input consisting of all the words. So if the model takes 3000 words it
will receive a vector with 3000 values. The embedding layer will then transform it into
(3000, 300) if 300 dimensional embeddings are used. Then the bidirectional GRU returns
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the depth chosen for the GRU times two as it is bidirectional. Finally the dense layer will
return 2 values.

3.7.2 Attention layer
The original 3HAN article (Singhania et al., 2017) used a Theano backed attention layer.
To be able to use TensorBoard for analysing the model and because Theano is not being
developed anymore, an attention layer was implemented with a TensorFlow backend. Most
of the code was inspired by the attention layer developed by (Baziotis, 2017).

The layer takes the bidirectional GRU values and calculates the encoding vector either
for a sentence, a text or a headline. It returns the results but also has an option to return the
attention weights as well. This is to allow for a deeper analysis of how the models work.

3.7.3 Attention GRU

Input

Embedding

B-GRU

Output

Dropout

Attention

Dense

Figure 3.2: The structure of the Attention GRU model, where B-
GRU is a bidirectional GRU
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The structure of the Attention GRU model can be seen in Figure 3.2 and was built with
an input layer, an embedding layer, a bidirectional GRU layer, a dropout layer and then
the attention layer on top of the GRU layer. The bidirectional GRU here outputs not only
the last value but all values along the way giving the hi j . These values are then densed
down to two output values with a dense layer. The two output values represent the two
classes "normal" and "biased" where the predicted class has a 1 and the other class has a
0. Several trainings are done for the model all using 300 dimensional GloVe embeddings
but with different GRU breadth.

Similar to the GRU model the attention GRU does not take the sentences into account.
The difference comes after the bidirectional GRU. The GRU is set to return sequences.
This means that the GRU will return (3000, 600) and the attention layer will give a vector
with 600 values. This is finally passed through the dense layer to give 2 values.
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3.8 Hierarchical attention network
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Figure 3.3: The structure of the hierarchical attention network,
where B-GRU is a bidirectional GRU

The hierarchical attention model can be seen in Figure 3.3. It is implemented with a nested
model structure. This means that one model is used inside the other model. The nested
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model is the word encoder. It consists of an input layer, an embedding layer, a bidirectional
GRU and an attention layer.

The next model has an input layer where the actual sequential data is inputed. It then
has a masking layer to speed up the calculations. Then the nested word encoder is used.
It gives the Si for each sentence. After the nested model a bidirectional GRU and then an
attention layer is placed. This finishes of the model giving the text encoding that is fed to
the final dense layer.

Themodel was trained on 300 dimensional GloVe embeddings. Thewidth of theGRUs
was not variated as it is locked to half the dimension of the word embedding as described
earlier.

The hierarchical attention model receives an input of the dimension (100, 30) for a
text of 100 sentences and 30 words per sentence. The dimensions of the following layers
output can be seen in Figure 3.3.

3.8.1 Swedish speeches classification using HAN
To test the hierarchical attention model on a Swedish dataset the only modification that
has to be done is to the embeddings. As the dataset described in (The Swedish Parlia-
ment, 2010) does not contain any headlines but just the content of the speech the classical
hierarchical attention network is used instead of the 3HAN model.

The dataset itself is a more difficult classification task than the biased news dataset
previously examined. Since it’s a 8 class problem the difficulty is higher. Therefore more
effort was put into optimizing the model. Two different embeddings were examined, Sw-
evec (Fallgren et al., 2016) and FastTexts Swedish embeddings. As with the previous
models ADAMwas used for the optimization with different learning rates. In addition the
optimiser NADAM was tried. It is similar to ADAM but uses Nesterov momentum.

3.8.2 20 Newsgroups
The 20 Newsgroups is tested to give results that can be compared to other articles. The
classification was done with the hierarchical attention network as the 3HAN requires head-
lines. Both FastText and GloVe embeddings were tried as well as NADAM and ADAM
optimizers.
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Figure 3.4: The structure of the 3HAN model, where B-GRU is
a bidirectional GRU

The 3HANmodel is implemented in the same way as the hierarchical attention model with
some additions. It’s structure is described in Figure 3.4. Instead of the last dense layer there
is a reshape layer. This is followed by an input layer for the headline and another embedding
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layer. In these layers the value from the reshape is not used, only the new input. The same
is true for the next layer, a masking layer. Then the output from the masking layer and the
output from the reshape are concatenated together and fed into a bidirectional GRU. This is
followed by a dropout layer and the final attention layer. The model is finished of with the
standard dense layer. The model was trained with 300 dimensional GloVe embeddings.

The 3HAN model takes an input of the shape ((100,30), 30). This is the same 100
sentences and 30 words per sentence as the hierarchical attention network. In addition it
has a 30 dimensional vector containing the headline.

3.9.1 Pre-trained 3HAN
In their paper (Singhania et al., 2017) gets the best performance when first pre-training the
word encoder of their 3HAN model on the headlines of the training data. This was done
by training the word encoder on the headline data. On top of the word encoder, a dense
layer is placed, with the same output as the 3HAN network. This is then trained as the
same classification problem but with only the headline as input.

This method was also examined on the biased news dataset. It was simple to implement
in Keras as the word encoder already is a nested model. The word encoder was thus trained
on the headlines and the weights were then loaded into the whole 3HAN model that was
trained as before.

3.9.2 Embedding improvements
To try to improve the performance of the 3HAN model different kind of embeddings were
tried with the model to see what gives the best performance. The original article only used
300 dimensional GloVe embeddings. As a greater number of dimensions of the embed-
dings are not always a guarantee for better results smaller dimensional embeddings were
tested, namely 50, 100, 150 and 200 dimensional GloVe embeddings all taken from (Pen-
nington et al., 2014). As noticed before this also means changing the depth of the GRUs
from 150 to 25, 50, 75 and 100.

In addition to different dimensions 300 dimensional embeddings with randomly initi-
ated values were tried. This means that the embeddings are trained together with the model
on the training data so that all the weights in the embedding layer are also changed during
training. Another way of fitting the embeddings to the data is to first train the embeddings
to the data and then use them in the model. This was also tested, the embeddings were
trained using Gensim as Word2Vec embeddings. These were then used to train the model.

A recently published kind of embeddings are Facebooks FastText embeddings. These
have the advantage of being able to predict an embedding for every word, not only the ones
in the embeddings vocabulary. Two different approaches were tried when using FastText
embeddings. Firstly they were used in the same way as other embeddings, simply to build
the embedding layer. Secondly another approach was tried. Theoretically the model can
be adapted to input the data already processed with the embeddings. Then no embedding
layer is required. This way all the words are replaced with embeddings, not just the most
common ones. This approach was tried but sadly the model required too much modifica-
tion for it to work. Instead a work around was implemented. Using a bigger embedding
layer and building it from both the training and testing data basically all words will be
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included and it will give approximately the same result as inputing the data already pro-
cessed with the embeddings. It is important however to point out that the embeddings are
locked during the training and therefore are not influenced.

3.10 Visualization
As the attention weights in the hierarchical attention models are tied to specific words and
sentences the models allow for a visualization of the underlying "focus" of the network.
The visualization then enables further analysis of the models.

To build a visualization model for the hierarchical attention network and the 3HAN the
flask (Ronacher et al., 2010) framework was used as it allows for easily incorporating the
Python based Keras models. The visualization was essentially designed as a web page with
an input box for the text on the hierarchical attention network version and two input boxes
for the 3HAN version, one for the headline and one for the text. A simple "Analyse" button
then starts the same pre-processing and models as used for the biased news classification
described before. To allow for simple visualization reduced models with only 10 sentences
and 10 words per sentence were used.

To be able to visualize the attention the attention weights α and β are needed. These
can be easily outputted from the Keras model by creating intermediate outputs for the
different attention layers. As the α values are basically the importance of each word and
sentence for the models decision, visualizing these give a way to see what the model deems
important features.

The word attention was visualized as a 10 times 10 matrix. Every cell contains a word
and the background colour corresponds to the attention weight for that word. Similarly
the sentence attention is visualized with a 10 times 1 matrix to the side of the word atten-
tion matrix. Here every cell only contains a colour, also corresponding to the particular
sentences attention weight. Finally, for the 3HAN model an attention matrix is also made
for the headline. The first 10 cells contain the words of the headline colour-coded with
their respective attention weight. The 11th and last cell contains the text body attention
and therefore has the text "Body".

To implement the matrices the package SeaBorn’s heatmap was used. It allows for
colour-coding the matrices and adding texts in the cells as annotations. The figures are
then outputed to a new page that also displays the result of the analysis.
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Chapter 4
Results

In the following sections the best performances from the different models are presented.
The length of the data were 30 words per sentence and 100 sentences for the hierarchical
models and 3000 words for the simpler as this was found to be the length giving the best
time performance without affecting the results. The metrics used are the metrics described
in chapter 2.2. In the last section an example of the visualisation model is presented.

4.1 Real-Biased news classification
The table below shows the results for the real-biased news dataset. Only the best perform-
ing models in each category are shown.
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Table 4.1: Results for the biased news dataset with 10496 articles
support

Model Precision Recall F1-score
LogReg 0.86 0.85 0.85
SVM 0.88 0.87 0.87
GRU 300 0.87 0.86 0.86
Attention 100 0.88 0.88 0.88
Attention 200 0.89 0.89 0.89
Attention 300 0.91 0.91 0.91
Hierarchical 50 0.95 0.95 0.95
Hierarchical 100 0.95 0.94 0.94
3HAN 300 0.94 0.94 0.94
3HAN 50 0.91 0.91 0.91
3HAN 100 0.94 0.94 0.94
3HAN 200 0.92 0.92 0.92
3HAN 300 Trainable 0.91 0.91 0.91
3HAN Random 300 0.84 0.84 0.84
3HAN Word2Vec trained on data 0.93 0.93 0.93
3HAN 300 pre-train 0.95 0.95 0.95
3HAN FastText train 0.96 0.96 0.96
3HAN FastText train and test 0.96 0.96 0.96
3HAN Oversampled 7:7 0.93 0.93 0.93
3HAN 5 times real 0.86 0.83 0.83

The two best performing baseline models are presented in the first section of table 4.1.
They are not limited to 3000 words but are trained and tested on the whole articles. Both
performed better without bi-grams and those results are the ones presented.

The second section of table 4.1 contains the GRU and attention GRUmodels. They are
trained and tested with articles limited to 3000 words. For the GRU only the best model
is presented while several are presented for the attention GRU to show how the depth of
the GRU influences the results.

The hierarchical attention network models results are shown in the third section of
table 4.1. It was as mentioned trained and tested with 100 sentences and 30 words per
sentence. The 300 dimensional GloVe embeddings were used and different depths were
tried. However increased depth did not influence the result and therefore only the two
lowest depths are presented.

In the fourth section of table 4.1 the 3HAN model, trained with 100 sentences and 10
words per sentence, is presented. 300 dimensional GloVe embeddings are used. In the
subsections different modifications are tested to increase the performance of the model.
The 300 dimensional model is followed by models with different embedding dimensions.
The 3HAN 300 trainable uses the same 300 dimensional models that are tested earlier but
this one has used a trainable embedding layer so that the embeddings are changed during
training. The final three models in section 4 are the 3HAN with randomly initialized
trainable embeddings, the 3HAN with 300 dimensional Word2vec embeddings trained on
the data and the 3HAN model with the word encoder pre-trained on the headlines.
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4.2 Swedish Parliament Speeches classification

The fifth section of table 4.1 contains the 3HANwith 300 dimensional FastTest embed-
dings. The first one has the tokenizer only trained on the training data while the second one
is also trained on the training data to simulate the performance if every word is replaced
with an embedding.

The final section is dedicated to the models with extra real news data and oversampled
biased news. Several different oversampledmodels were triedwith the extra real news data.
The listed two models, one with equally sampled and oversampled data with a 7:7 ratio
and one with 5 times more real data but no oversampling. Both are the best performing in
their respective categories.

4.2 Swedish Parliament Speeches classifi-
cation

For the Swedish dataset two kinds of embeddingswere tested. The SweVec and the FastTest
embeddings. Below follows both kinds trained with NADAM as well as the best perform-
ing model trained with ADAM.

Table 4.2: Hierarchical attention network using 300 dimensional
SweVec embeddings and trained with NADAM

Precision Recall F1-score Support
V 0.81 0.40 0.54 1882
S 0.83 0.64 0.72 8857
MP 0.79 0.19 0.30 3053
L 0.81 0.29 0.43 1627
C 0.88 0.21 0.35 1766
M 0.55 0.75 0.64 5134
KD 0.56 0.43 0.49 1421
SD 0.69 0.37 0.48 2052
avg / total 0.74 0.51 0.57 25792

Table 4.3: Hierarchical attention network using 300 dimensional
FastText embeddings and trained with NADAM

Precision Recall F1-score Support
V 0.79 0.56 0.66 1882
S 0.74 0.87 0.79 8857
MP 0.80 0.35 0.49 3053
L 0.90 0.36 0.52 1627
C 0.92 0.31 0.46 1766
M 0.70 0.69 0.70 5134
KD 0.91 0.35 0.50 1421
SD 0.63 0.59 0.61 2052
avg / total 0.76 0.63 0.66 25792
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4. Results

Table 4.4: Hierarchical attention network using 300 dimensional
FastText embeddings and trained with ADAM

Precision Recall F1-score Support
V 0.55 0.66 0.60 1882
S 0.76 0.80 0.78 8857
MP 0.60 0.51 0.55 3053
L 0.73 0.36 0.48 1627
C 0.56 0.51 0.53 1766
M 0.66 0.69 0.67 5134
KD 0.70 0.41 0.52 1421
SD 0.66 0.52 0.58 2052
avg / total 0.68 0.64 0.65 25792

4.3 20 Newsgroups

Table 4.5: Results for the hierarchical attention model trained
with 300 dimensional GloVe embeddings and NADAM

Precision Recall F1-score Support
comp 0.97 0.89 0.93 1955
politics 0.77 0.83 0.80 1050
rec 0.94 0.85 0.89 1590
religion 0.93 0.70 0.80 968
avg / total 0.92 0.83 0.87 5563

For the 20 Newsgroups dataset the best model was found to be the hierarchical attention
network trained with NADAM and using the 300 dimensional GloVe embeddings. Its
results are shown in table 4.5. This can be compared with the results from (Hingmire
et al., 2013) where the best model gets a f1 of 0.93.

4.4 Visualization
The following text is from the BBC News website (News, 2018) and is classified as real
by both the hierarchical attention network and the 3HAN.

Headline:
"Brexit: EU leaders warn time is running out for a deal"

Text:
"Time is running out for a Brexit deal, leaders of European countries have warned

ahead of more talks in Salzburg.
There is still no agreement on issues including how to avoid new checks on the North-

ern Irish border.
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4.4 Visualization

At the EU summit on Wednesday evening Mrs May stressed her "serious" proposals
for future co-operation would ensure a "shared closed relationship".

European Commission chief Jean-Claude Juncker described her 10-minute presenta-
tion as "interesting".

"It was polite, it was not aggressive, she was doing her job," he told reporters as he
arrived for a second day of talks.

Kuenssberg: The sound of "no, no, no" EU must ’evolve’ Irish plans, insists May
Sturgeon calls for Brexit to be delayed Brexit: All you need to know Speaking to BBC
Radio 4’s Today programme, two of the EU leaders said they hoped the UK would hold
another referendum on Brexit, in the hope of reversing the 2016 result.

Maltese Prime Minister Joseph Muscat said most of his counterparts would like the
"almost impossible" to happen.

Andrej Babis, the Czech Republic’s prime minister, added he hoped the British people
might change their minds.

But Mrs May said there was no question of the UK seeking to extend its EU member-
ship.

The UK is due to leave the EU on 29 March 2019, and both sides are trying to reach a
deal in time, with a crunch summit specially convened in mid-November."

Figure 4.1: The attention weights visualized for the hierarchical
attention network. The sentence attention is visualized in the table
to the right. Each square representing the sentence to it’s left.
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4. Results

Figure 4.2: The attention weights visualized for the 3HANmodel.
The sentence attention is visualized in the table to the right.

Figure 4.3: The headline attention visualization for the 3HAN
model. The scale is the same as for Figure 4.1.

In Figure 4.1 the attention weights of the hierarchical attention network for the text
above are visualized. In Figure 4.2 the same is done for the 3HANmodel. The headline for
the 3HANmodel is visualized in Figure 4.3. The headline is not fed in as the first sentence
of the hierarchical attention network as to allow for comparison between the weights.
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Chapter 5
Discussion

The best performing baseline model was the SVM as can be seen in 4.1. When comparing
to other models the hierarchical models perform better than all the baseline models. They
also perform better than the basic neural network based models. We can see that the best
performing attention GRU is the only non-hierarchical model to outperform the baseline
models.

The hierarchical models give a clearly better performance than the baseline and basic
models. It is however not a cheap performance increase. The best deep hierarchical models
take hours to train, the best deep basic neural network based models take around an hour
and the baseline models take five minutes. Depending on the purpose of the model this
might be worth if to get the extra performance as it pushes all metrics close to 1.

Interestingly enough the performance of 0.95 of the pre-trained 3HAN with GloVe
is not far away from the 0.9677 that (Singhania et al., 2017) reached on their fake news
dataset. It is not the same training or test data so they can not be directly compared.
However, the model performs well on two totally different datasets which is encouraging.

Another important observation is that the hierarchical attention network outperforms
the 3HAN model. An interesting question is if the third layer actually does what it is
supposed to do. The idea in the original article (Singhania et al., 2017) was that the third
layer would compare the text body to the headline. But I am not sure that is what the model
is doing. This will be discussed further in the visualization section.

As the 3HAN model is the less examined I have focused my work on examining and
improving it. Mostly this has consisted of trying different embeddings. The only obvious
improvement was made by the FastTest embeddings. Interestingly the makeshift solution
to having all words embedded with FastText by training the tokenizer on the test data as
well did not perform better than just using FastText as embeddings for the 200000 most
commonwords in the training set. The randomly initiated embeddings and the embeddings
trained on the training data did not perform well. Not surprisingly as the dataset is quite
small and might not be enough to train well performing embeddings.
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5. Discussion

5.1 Swedish speeches dataset
For the Swedish dataset there are not many comparisons to be made. This is to the best
of my knowledge the first time a hierarchical attention model has been applied to Swedish
data and the first text classification of the used dataset. We can however see that the Fast-
Text embeddings in table 4.3 outperformed the SweVec in table 4.3. Another interesting
observation that can be seen from table 4.4 and 4.3, is that the NADAM optimizer out-
performs the ADAM even if NADAM only used standard parameters and ADAM was
parameter optimized.

5.2 Visualization
There are interesting observations to be made from the visualization examples. Though
it is difficult to draw any conclusions from the attention weights of single words we can
see that words like brexit and 2019 get a high attention value in both models. Brexit is of
course an important word as it is a sensitive political subject. 2019 is harder to analyse.
As the dataset is two years old, 2019 would refer to a time three years into the future. This
might be an important feature as biased or fake news might be more focused on current
affairs.

The absolutely most stand-out fact is that the headline in Figure 4.3 has basically no
attention. All the weight has been put on the text body. This is a pattern being repeated
in a lot of the test cases. Some have a small attention weight on one word but the body
always has most attention. I think this is due to the model not doing what the original
authors intended. All the information in the headline is basically lost as the model has
learnt to recognise and focus on the body encoding as it contains more information about
the article. The idea that the model would be able to compare the headline with the body
seems unlikely. An important reason for this is that the model does not knowwhat position
is the body encoding but has to learn this. As it does not focus on other words it is more
reasonable to assume that it has simply learnt to ignore the headline. This would make it
less effective than the hierarchical attention network which is usually fed the headline as
a sentence and therefore makes more use of it.

5.3 20 Newsgroups dataset
The best model for the 20 Newsgroups dataset in table 4.5 got a f1 of 0.87. It is not
as good as the state of the art performance of (Hingmire et al., 2013) with a f1 of 9.93,
but it is comparable to the other models in the paper. From this it is easy to see that
the hierarchical attention network has an overall good performance on text classification
even if the model probably don’t benefit from its structured approach when classifying the
posts. It is also interesting to see that the GloVe embeddings outperformed the FastText
on this classification task. So what embeddings to chose depend not only on the model
and task but also on the data being classified. However NADAM outperforms ADAM on
this dataset as well. So for this model it seems to be a good choice.
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Chapter 6
Conclusion

6.1 Conclusion
Some important conclusions can be made from the studies of the hierarchical attention
network models. The obvious one is that the FastText embeddings performs better than
any other tested embeddings on two out of three tasks. Another is that the 3HAN model
has performed well on the dataset created and the dataset in its original article. So it seems
to be a well working model.

Interestingly enough the 3HAN model does not seem to outperform the hierarchical
attention model. In (Singhania et al., 2017) it did outperform the hierarchical attention
network but it should be noted that the 3HANwas pre-trained on the headlines which both
the original article and this thesis found to improve the model performance. This was not
done to the hierarchical attention network in (Singhania et al., 2017). So the comparison
made in the original article is not fair.

From the visualization analysis we can see that the model does not compare the head-
line to the text body. Instead the model has learnt to most of the time ignore the headline
and focus on the text. It can however notice an important word in the headline sometimes.
On the dataset however, it performs worse than the hierarchical attention network.

Another thing that should be noted is that the NADAM algorithm seem to give better
results than the ADAM optimizer even if the NADAM only uses standard parameters and
the ADAM is optimized in a grid search.

6.2 Future work
The most obvious opportunity for further examination and something that I would love to
see done is having the models tested on a proper real and fake news dataset. A dataset
that is public and of high quality with a specific test-set so that the 3HAN and hierarchical
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6. Conclusion

attention network models can be properly compared to other models by other researchers.
Another thing that could be done is comparing the hierarchical attention network and

3HAN on other datasets. Would they perform at an equal level with each other on other
datasets as well? And could this mean that the third hierarchical attention level is obsolete?

A thorough analysis of the attention weights could be useful. A study of the weights
for more examples might give a more conclusive answer to the question if the headline is
usually ignored by the model, or not.
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Machine learning for distinguishing fake news 

In recent years there has been a dramatic increase of fake news in the media. This article takes a 

machine learning approach, trying to tackle the problem. 

A main problem for social media networks trying to deal with fake news is the pure amount of 

articles being published and shared every day. It is practically impossible for social networks like 

Facebook or Twitter to manually go through every article and sort out the fake ones. Thankfully 

recent years advances in artificial intelligence and machine learning makes it possible to automate 

the process of determining if a news article is trustworthy or not. 

The process of automatically classifying a text into two or more classes is called text classification. In 

this case the classes will be “fake” and “real”. In this study a method based around “hierarchical 

attention networks” is used. The idea behind a “hierarchical attention network” is that the 

information in the article is contained not only in the words but in the context. So instead of counting 

the occurrences of words like simpler methods do, each word is instead put into context of the 

surrounding words. The same is done for sentences. Each sentence is treated in the context of its 

surrounding sentences. In this way the network learns what information is important at each level. 

That means that it can distinguish what words are important for a sentence and what sentences are 

important for the text. 

For example, fake news would usually be about politics and rarely about catastrophes. So the word 

“earthquake” might be important in determining if the article is fake or not.  In the same way a 

sentence describing the current weather conditions of a city might not be relevant on its own as it 

could be part of a fake article about how a political candidate uses taxpayer’s money to travel but 

could just as likely be part of a travel guide. 

In addition to applying this method to fake news the study has examined different ways of “training” 

the model. Training is the process of feeding the model with examples, allowing it to improve how 

well it performs. The best result that could be reached on the “test set” (a set of data, not part of the 

training process) was 96% accuracy.  A result this good could of course decrease the amount of 

manual work that would be required for a company to sort out the fake news in its feeds. At the very 

least it could be used to make a rough filter that could decrease the amount of time required to rout 

out fake news from our news feed. 
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