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Abstract

OpenStreetMap (OSM) is a collaborative project with the aim of creating a
free editable map of the world. It is considered one of the most prominent
examples of Volunteered Geographic Information with the majority of data
generated and edited by user contributors. The OSM dataset describes real-
world phenomena by associating a set of attributes to geographic primitives.
The semantics of each entity are described using structured key/value pairs
called tags. Due to their simple and open semantic structure, the approach
often results in noisy, inconsistent, and ambiguous data.

In this thesis, we explore possible methods of improving the quality of
OpenStreetMap data in terms of attribute accuracy and consistency using ma-
chine learning techniques. During the process, we identify major challenges
together with viable solutions in an end-to-end application. The resulting sys-
tem is capable of highlighting aberrations and predicting true values for every
attribute with at least 80% accuracy depending on the attribute.

Keywords: openstreetmap, machine learning, data mining, feature engineering, de-
cision trees
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Chapter 1
Introduction

1.1 Purpose
The objective of this thesis is to explore possible methods of improving the quality of
OpenStreetMap data in terms of attribute accuracy and consistency usingmachine learning
techniques. Such improvements are necessary to obtain a consistent description practise
reducing data noise, increasing the amount of information associated with each object
and giving a more accurate description of the reality. The main focus of our work is to
identify challenges together with solutions in an end-to-end application providing both
error prediction and support while creating new or editing existing data.

1.2 OpenStreetMap
OpenStreetMap is a collaborative project with the aim of creating a free editable map of
the world. It is considered one of the most prominent examples of Volunteered Geographic
Information (VGI) (Wikipedia, 2017), where the majority of data is generated and edited
by common users. OSM has proven to be accurate and extensive enough to be considered
a serious alternative to commercial map services like Google and Apple Maps. Despite
constant improvements and a fast growing number of contributors (OpenStreetMap Wiki,
2017d), OSM data suffers (as many other Open Source projects of this kind) a quality
deficit in less populated regions, especially in terms of coverage and feature extent.

Positional accuracy and coverage degree can and have been measured by comparison with
commercial map services and datasets provided by governmental mapping agencies. The
real challenge however, lies in feature validation i.e. the semantic accuracy of each feature
and the consistency with which a feature is used in different scenarios (Haklay, 2010). Fig-
ure 1.1 shows the vast differences in description consistency between two similar objects.
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1. Introduction

Furthermore, a study conducted by Ali et al. (2014) addressing the problematic nature of
ambiguous feature classifiers (both tag keys and values) showed that contributors often
disagree among themselves over which descriptions to use given a certain element.

(a)An example of a well tagged entity - a stretch of
the Öresund Bridge connecting Sweden and Den-
mark.

(b) An example of a poorly tagged entity - a
stretch of Swedish highway 97 between Luleå
and Jokkmokk.

Figure 1.1: Two OSM road entities illustrating the vast difference in tagging consistency.

1.2.1 Architecture
The OSM dataset describes real-world phenomena by associating a set of attributes to
geographic primitives. The attributes of each element (a point, area boundary, or relation)
are described using structured key/value pairs called tags describing the semantic meaning
of the particular element (OpenStreetMap Wiki, 2017a). All elements consist of at least
one node – the smallest entity in the dataset. At its core, a node contains an id and the
coordinates of the node denoted in a latitude and a longitude value. To connect one or
more nodes, the OSM dataset uses elements called ways. A way element can be anything
from a stretch of a road to a building outline or an area boundary. The way contains an
ordered list of nodes defining its anchor points and position.

1.2.2 Example
To better illustrate the interaction between nodes, ways and tags, consider this example of
a way element – a stretch of the E6 motorway in Sweden, see Figure 1.2. Typically, such
an element will contain a list of nodes defining its position and shape and the tags listed
in Table 1.1 describing its properties.

The description pattern described in Table 1.1 will be found in most parts (way ele-
ments) of the E6 motorway, but not all of them. Some users may want to add the layer = 0
tag as the road is positioned on ground level. Some may add the tag foot = nomarking the
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1.3 Research questions

Figure 1.2: An example of an OSM entity – a stretch of the E6 motorway. Nodes denoted
as circles, way denoted as the solid black line.

Table 1.1: Tags associated with the example element in Figure 1.2

Key Value Tag description
highway motorway the type of road
maxspeed 110 the speed limit expressed in km/h
ref E06 the reference number
name E6 the name of the road
lanes 2 the number of lanes
oneway yes binary value describing weather the road is a one-way road or not

road as forbidden for pedestrians. Both descriptions are correct but do not comply with
the general patterns of OSM as they can be derived from implications. These examples of
structural aberrations make the data noisy and inconsistent. In an analytic context, each
new feature added to an element of the same kind will extend the number of possible fea-
tures for all other similar elements. Furthermore, the data itself can contain errors without
deviations from the general pattern. A speed limit of 20 km/h in our example element is
most probably incorrect. Such an error can be discovered and highlighted/fixed by using
the patterns associated with the other tags in the element where a motorway with two lanes
typically has much higher limits.

1.3 Research questions
To solve the problem described in Section 1.1, the following questions are addressed and
answered:

• How can defect entities be found using machine learning techniques?

• Which features are wrong in a defect entity?

• How can the proper value of a feature be derived?

1.4 Related work
There have been several projects aiming to improve the quality of OSM data. A majority
of these target positional and structural accuracy leaving the semantics aside. Trajectory
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1. Introduction

mining by Basiri et al. (2016) is an example of positional accuracy improvement systems
utilizing GPS trails provided by anonymous users. Most error detecting systems are built
using static if-statements looking for structural errors and other flaws easily detected by a
set of handcrafted rules.

The attempt closest to our approach was a software developed as a result of a semantic
similarity study of the OSM wiki by Vandecasteele and Devillers (2013). The OSM Se-
mantic Network was developed by parsing the wiki using an altered version of the search
engine algorithm used by Google called PageRank. The Penetration-Rank algorithm com-
putes a network based on nodes, tags in this case, referencing and being referenced by other
nodes. The software was deployed in the official OSM editing software JOSM giving the
editors suggestions in a fashion similar to ours. The suggestions were based on the sim-
ilarity computed by the network looking at objects within close proximity. For unknown
reasons, the plugin was discontinued and is no longer available in the JOSM plugin man-
ager. The approach was a good try to improve the semantic accuracy of OSM but had a
major drawback. The system was built on wiki-page references and not the actual data.
The network could only detect closely related tags by page correlation for each tag, ignor-
ing the influence of other tags present in the element.

We did not manage to find any related work using machine learning to improve the se-
mantic accuracy of OSM. Countless studies have of course been performed in the machine
learning field where similar methods are used in different contexts.

1.5 Limitations
One of the biggest challenges in any machine learning context is the evaluation process.
Obtaining reliable results and verifying their reliability requires extensive testing and suffi-
cient amounts of data. Due to the limited time scope of this thesis, we had to make certain
assumptions based on previous experiences and literature. To evaluate newly introduced
features, we relied upon evaluation performed on randomly chosen fractions of the main
dataset.

1.6 Contributions
The entire thesis was conducted in complete collaboration.
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Chapter 2
Theory

This chapter explains the fundamentals of machine learning and the processes used in the
method of this report.

2.1 Machine learning
Machine learning (ML) is a subfield of computer science, which evolved from the study
of pattern recognition and statistics. By exploring patterns in input data, ML algorithms
derive models used to make predictions on novel input without the need of explicit pro-
gramming. Learning in this context means an agent’s ability to improve on future tasks by
making observations about the previously provided data. There are three different types
of machine learning:

• Unsupervised learning – The agent learns patterns in the input without explicit feed-
back. The most common unsupervised learning task is clustering, where input data
is clustered by similarity (such as minimum Euclidean distances between numerical
values).

• Supervised learning – The agent derives a mapping function between input and out-
put values supplied in a training set.

• Reinforcement learning – The agent is either rewarded or penalized based on its
performance given a certain task. The retroactive feedback is used to improve the
agent model.

This thesis focuses on supervised learning as both input and output values are pro-
vided in training datasets. Unsupervised learning was used in an imputation attempt but
was later abandoned, see Section 3.4.3.

Regardless of the machine learning algorithm, the supplied data needs to be transformed
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2. Theory

into aN-dimensional matrix where each entity (observation) corresponds to one row in the
matrix xi = { x1, x2, ..xn} . This is of significant importance when dealing with OSM data
as each new attribute extends the matrix by one N-dimensional column for every instance
present in the dataset (Russell and Norvig, 2010).

Table 2.1: Input vector matrix

xi x1 x2 ... xn
x1 value1 value2 ... valuen
x2 value1 value2 ... valuen
...

2.1.1 Classification and regression
A training set in supervised learning consists of N example input-output pairs.

(x1, y1), (x2, y2), ...(xN, yN )

As each y j is generated by an unknown function y = f (x), the goal is to discover a func-
tion h that approximates the true function f. The function h is called the hypothesis and
aims to generalize f to correctly predict the value of y for novel instances of x. When the
output y is a finite set of values, the problem is called classification. When y is a number,
the problem is called regression where the predicted output is a conditional expectation or
an average value of y as the probability of finding the exact value of y is 0. (Russell and
Norvig, 2010)

2.1.2 Decision Trees – J48
A decision tree represents a function that outputs a single decision given a vector of at-
tribute values. Each tree node Ai corresponds to a test of the values of one of the input
attributes with branches labeled with all possible values of the assessed attribute. A de-
cision is made by reaching one of the leaf nodes where the return value is specified, see
Figure 2.1. The main advantage of decision trees over other classification algorithms such
as support vector machine, naive bayes and neural networks is the natural representation
of the classifier model. The tree is easily understood by humans where all decisions can
be traced by simply inspecting the tree.

J48 is a Java implementation of the C4.5 algorithm used to generate decision trees.
C4.5 constructs the tree in a top-downmanner by exploiting subset impurity called entropy.

Entropy : H(X) = −
∑

k

p(xi) log2 p(xi) (2.1)

Splitting the main dataset on each attribute and comparing the entropy before and after the
split yields the information gain for each attribute. The attribute with highest information
gain is chosen as the root node while attributes with lower gain are placed as children
in descending order. Overly complex trees may suffer from overfitting as the number of
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2.1 Machine learning

Figure 2.1: A simplified decision tree determining whether the input x =

{ lanes,maxspeed} is a motorway.

attributes and/or their values relative to the number of observations grows. Overfit trees
fail to capture general trends and perform poorly on novel instances. To combat this issue,
the tree needs to be pruned. C4.5 uses both statistical confidence estimates and a minimal
number of instances within each node to decide whether to keep a node or make it a leaf
and rely on the nodes further up the tree. The error confidence interval p is calculated as
follows.

p = f ± z
√

f ( f − 1)
N

(2.2)

Where f is the observed error rate measured over the set of N training instances and z is
a factor dependent on the desired level of confidence C. The upper bound of the produced
error estimate is used for pruning as it makes for a pessimistic assumption for future error
rates (Witten et al., 2016). In this thesis, we utilize decision tree algorithms to construct
classification models in order to predict the most probable tag values given a certain ele-
ment.

2.1.3 Association analysis – Apriori
TheApriori algorithm is used tomine frequent itemsets for Boolean association rules high-
lighting general trends in datasets. Itemsets are considered frequent when the occurrence
of the itemset is higher then a pre-defined threshold min_support.

supp(X) = P(X) (2.3)

The algorithm uses a level-wise search where k-itemsets are used to explore (k+1)-
itemsets thus extending the tested itemsets by one item in each iteration. The process,
known as candidate generation, utilizes the fact that any subset of a frequent itemset must
also be a frequent itemset thus reducing the computation cost. The generated candidate list
is used to derive association rules X ⇒ Y satisfying the minimum confidence (Agrawal
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2. Theory

et al., 1994). In this thesis, we use unsupervised association rule mining in an attempt to
impute missing data.

con f (X ⇒ Y ) =
supp(X ⇒ Y )

supp(X)
(2.4)

2.1.4 Missing values and imputation
In statistics, an absence or malformation of a data point in an input vector instance is com-
monly referred to as a missing value. To minimize information loss caused by incomplete
input data, missing values can be imputed. There are several different imputation tech-
niques but no ’best practise’ as the suitability of each method highly depends on the nature
of used datasets and their features (Musil et al., 2002). Differences in tagging consistency
i.e. the frequency and consequence with which a feature is used in different elements result
in a lot of missing values. In this thesis, we impute missing values in OSM entities using
both common techniques and machine learning.

Mean substitution Impute the value using the mean of values available in complete
instances. Works only for numeric values.

Hot-deck Sort the dataset and impute the value from a neighbouring
instance.

Random draw Impute by selecting a random value among other complete
instances.

Most common Impute with the most common value for the given feature.
Regression Predict the value using regression based on complete instances.

2.2 Accuracy evaluation
2.2.1 Training, test, and validation
For evaluation purposes, the main dataset is divided into a training set and a test set. The
classifier is provided with the training set as input data. The evaluation is done by running
the test set and comparing the predicted output with actual values.

2.2.2 Percentage split
Percentage split randomly selects Straining% of the data for training and 100− Straining% for
testing. Observations used for testing are therefore omitted during the training phase thus
making the technique unsuitable for small datasets.

2.2.3 Cross-validation
Cross-validation can be used to minimize information loss during the training and evalu-
ation phase. k-fold cross-validation partitions the data into k folds. Each fold is used as a
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2.2 Accuracy evaluation

test set while all other folds serve as training data, repeated k times. Themain disadvantage
of cross-validation is the resource consuming process of training the model k times.

2.2.4 Validation
When performing extensive training and testing, too much specific information about the
test set might be included in the model causing an overfit. To ensure that the model is
general enough to handle unseen data, a third partition of the dataset can be used for vali-
dation.

2.2.5 F-measure
A simple performancemeasure for any classificationmodel is the accuracy e.g. the number
of correctly classified instances compared to the total number of instances. Although this
method provides a viable value, it is highly dependent on the test data and does not reveal
the overall performance of the model. An accuracy of 98% in a test set where 97% of all
instances yield the same output is not a valid measure of the models performance as the
model may be skewed towards favouring the output present in the majority of the data.
To obtain a complete evaluation of a models performance, following statistical measures
must be accounted for, see table 2.2.

Table 2.2: Measures

Measure Description
True positives (TP) Instances classified as y with actual value y
False positives (FP) Instances classified as y with actual value other
True negatives (TN) Instances classified as other with actual value other
False negatives (FN) Instances classified as other with actual value y

The fraction of relevant retrieved instances among all retrieved instances is called pre-
cision. The fraction of relevant retrieved instances among all relevant instances is called
recall.

Precision = TP
TP+FP Recall = TP

TP+FN

The F-measure is the harmonic mean of precision and recall for each attribute value.
The weighted average F-measure for all attribute values yields a more accurate evaluation
of the entire model (Witten et al., 2016).

F-measure = 2 ∗
Precision ∗ Recall
Precision + Recall

(2.5)

To get an average F-measure for several class values, the F-measure for each value is
weighted with the fraction of its occurrence over the total number of class instances.

Weighted average F-measure =
∑

(F − measurek ∗ nk)
N

(2.6)
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2. Theory

Where nk is the number of k values, F −measurek for attribute k and N is the total number
of values. The average weighted F - measure is used as a primary evaluation metric in this
thesis.

2.3 CRISP-DM
Cross Industry Standard Process for Data Mining (CRISP-DM) is a data mining process
model developed by IBM. From an analysts perspective, CRISP-DM acts as a common
process model providing guidance throughout the process, most importantly in terms of
documentation and result evaluation. The model breaks the process into six phases: busi-
ness understanding, data understanding, data preparation, modeling, evaluation and de-
ployment (Wirth and Hipp, 2000). This thesis was conducted in sprints with each sprint
incorporating the CRISP-DM model.
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Chapter 3
Approach

3.1 Utilities
Together with our supervisors, we decided to utilize any datamining tool and/or code avail-
able and suitable for this thesis in order to find the best possible answers to our research
questions rather then devote our time to rewrite existing code ourselves.

3.1.1 Waikato Environment for Knowledge Analysis
Weka is a collection of machine learning algorithms for data mining tasks. Written in Java,
Weka offers the possibility to apply machine learning algorithms to datasets via a GUI or
directly in code. Weka contains tools for data pre-processing, classification, regression,
clustering, association rules, and visualization but can also be used to develop newmachine
learning schemes (Frank et al., 2016).

3.1.2 Osmosis
Osmosis is an command line Java tool for processing OSMdata. It allows chaining compo-
nents to perform larger operations (OpenStreetMapWiki, 2017b). We use this tool mainly
to pre-process large datasets and remove all unnecessary data in order to minimize the
processing power required to run data mining/machine learning algorithms.

3.2 Geographical data extraction
Overpass Turbo (OpenStreetMapWiki contributors, 2017)was used to extract small amounts
of data at the initial stage of this thesis as it does not require additional software to be in-
stalled. Overpass Turbo runs any Overpass API (OpenStreetMap Wiki, 2017c) query and
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3. Approach

serves custom selected parts of the OSM map data up to ~300 MB. This theoretical limit
has proven to fluctuate significantly between different browsers, machines and query pa-
rameters. For larger sets, we used binary .pbf data downloaded fromGeofabric (Geofabrik
GmbH, 2017) due to its superiority over OSM XML and JSON formats being smaller and
faster to process. The data was later processed using Osmosis (OpenStreetMap Wiki,
2017b) providing tools to filter the data before generating an OSM XML file thus further
reducing the amount of processing power necessary to compute the desired output.

3.3 Data analysis
Although all OSM elements follow the same scheme in terms of architecture, there are
big differences in associated features and feature patterns. Elements can be categorized
by introducing abstract classes through selection of most significant key/value pairs. An
example of such category are elements associated with one of eight principal highway tag
values for the road network, commonly called roads.

Such an organization makes it possible to expect elements containing the most signifi-
cant feature with a certain value also to contain a set of key/value pairs necessary to give a
complete description of the element. A majority of main road elements such as motorways
will, apart from the highway tag, contain attributes such as maxspeed, lanes, or ref.

To minimize the diversity of both attribute keys and values, we chose to begin with the
primary road network in Sweden. We chose Sweden in order to take advantage of our prior
knowledge about the Swedish infrastructure, laws, and regulations. The dataset contains
a relatively (to other categories) small number of different key values thus decreasing the
number of missing values and minimizing the need of data imputation. Additionally, the
elements associated with the highway tag key provide the basis for routing services making
their accuracy of significant importance. The raw dataset consisting of all road elements
in Sweden constitutes the starting point of our work and is referred to as D0.

3.3.1 Data preparation
We began the data preparation process with developing generic parsers allowing us to
select desired data from OSM XML files and generate an ARFF file necessary to process
the data in Weka. We calculated the frequency distribution of each tag key among the
599,568 entities and removed all tag keys with a total appearance of less then 4%, see
Figure 3.1. The 4% threshold was set arbitrary in order to reduce the computational power
needed to compute a prediction model.

The preparation process was done manually by removing all super-attributes and at-
tributes with long string values as statistical data analysis algorithms only accept nominal
and numeric values. The process may seem trivial but there is more to it than first meets
the eye. The most obvious way to identify a super-attribute or a long string is to look at
the two following things:

• The number of different values for the attribute compared to the number of attribute
occurrences (DV/O).

• The character length of the attribute value.
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3.3 Data analysis

Figure 3.1: Tag key distribution. The highway and id are the only tag keys are present in
all instances.
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If the attribute has unique values for each instance, as in the case of ids, theDV/O ratio
is 1. To remove all unwanted attributes, a maximal threshold can be set for both DV/O
ratio and the total number of characters. The difficult part here is setting proper thresholds
and even if one manages to find optimal values for the two, the method will still remove
some attributes that may otherwise prove useful. The attribute length has a DV/O ratio of
0.304. For comparison, attributes ref andmaxspeed haveDV/O ratios of 0.142 and 0.0002
respectively. By setting a threshold of 0.1, the otherwise valuable attribute length would
be removed.

In addition, there are three more kinds of unwanted attributes:

• Temporary attributes

• Weak attributes

• Malformed/wrong/misplaced attributes

The notes attribute is a prime example of a temporary attribute. It is used to supply
extra information to other OSM users about roadwork, uncertainties and trivia. Weak
attributes are attributes holding no relevant information about the instance itself in terms
of classification. These can be names, notes, created_by tags etc. The value of a weak
tag (or the tag itself) can be changed/removed at any moment with very little to no effect
on other instance properties. Finally there are tags that do not apply within the guidelines
of OSM. highway_1, note_2, Lillvägen are examples of such attributes being a result of
mistakes and lack of knowledge. We manually removed all attributes matching the above
criteria obtaining the dataset referred in this paper as D1.
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3.4 Data modeling
To be able to detect aberrations in the dataset, we chose to solve the problem by con-
structing prediction models and comparing the obtained results with values present in the
dataset. By constructing a prediction model for a certain type of road, we use all the other
attributes to classify the type of the road. If the predicted road type differs from the actual
road type specified in the given instance, the aberration can be highlighted as an potential
error. The substantial amount of missing data in the OSM dataset proved to be the biggest
issue in classifier construction. During our initial experiments with the raw dataset, we
concluded that all tested classification algorithms perform similarly, see Table 3.1. In or-
der to grant ourselves the best preconditions for feature engineering, we chose decision
trees as our primary classifier due to its natural model representation.

Table 3.1: Raw data performance - D1. Train on 66% and test on 34% of the dataset.

Algorithm Hyperparameters Classifier Accuracy W.a. F-M
J48 C-0.25 M-2 Decision tree 38.5% 0.259
Naive Bayes batch_size = 100 Naive Bayes 40.7% 0.298
JRip folds = 3, min_w = 2.0 Rule induction 39.7% 0.277
IBk n_neighbours = 10 k-nearest neighbour 43.5% 0.344

3.4.1 OSM incompleteness
Although most algorithms are able to handle missing values to some extent, the output
quality improves as the number of missing values decreases. In Section 2.1.4, we discuss
different generic data imputation techniques. The methodology works under the assump-
tion that missing values cannot be computed in any other reliable way and that the missing
value itself is a lack of information. This however, is not always the case with OSM data.
The absence of the maxspeed tag rarely indicates unregulated speed limits. The informa-
tion can be obtained by looking at the position of the studied element and its relation to
other elements. A residential road in Sweden without any maxspeed tag can (in practise)
inherit the value from several sources:

• Local regulations – Communities in Sweden are free to introduce their own traffic
regulations. These are often displayed at every entrance point to the community/area
(Transportstyrelsen, 2017).

• Municipal regulations – Municipalities are free to introduce their own traffic regu-
lations, displayed at city entrance points.

• Traffic laws – In absence of any additional regulations, attribute values such as speed
limit can be derived from traffic laws.

This property of the data makes the results of imputation using common techniques uncer-
tain as it is hard to verify if the absent value should indeed be considered missing or can
be derived by looking at additional information. Although the sources mentioned above
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3.4 Data modeling

are publicly available, the information requires manual imports where OSM lacks a con-
nection between different levels of geographical entities. A randomly chosen node cannot
be traced back to being a part of a larger entity unless it is a part of the boundary polygon
defining the borders of the area. Connecting a way to a municipality therefore requires
checking if the way is located within the borders of the municipality.

3.4.2 Implications
To address the ambiguity of missing data points, we first examine the correlation between
different sets of attributes. The absence of a tag does not always imply incompleteness in
an element description. On the contrary, OSM data is built on implications. The presence
of one tag implies other tags pairs without the need of attachment.

key=highway value=any =⇒ key=access value=yes

As illustrated above, the presence of the highway tag, regardless of its value, implies the
public accessibility of the road without the need of adding the tag access = yes. This is
especially problematic as the implied tags are not present in the dataset and thus cannot
be accounted for when performing classification. Implication rules are stated in the OSM
Wiki and we did not manage to find any summarized dataset suitable for our purposes. As
is often the case with implications, they seem obvious to humans but are hard to trans-
late into Boolean rules unless there are clear patterns within the data itself. With no time
to develop a Wiki parser, we made the assumption that all essential implications can be
derived from patterns in the data.

3.4.3 Imputation using association rules
In our endeavour to decrease the number of missing values, we tried to use mean sub-
stitution and distribution based imputation mentioned in Section 2.1.4. Both techniques
were very resource heavy and not tenable for future use. In the search for a more suitable
solution, we tried association rule based imputation. Using the Apriori algorithm we de-
rived association rules with a minimum support of 0.1. All rules with con f idence below
1 were discarded. The antecedent half of the remaining rules appeared in the consequent
half in all derived instances thus confirming the rule to be true in all observations. An
example of a obtained rule is shown in Table 3.2. Despite our attempts to combat missing

Table 3.2: Association rule example.

Rule conf lift lev conv
{maxspeed = 110 , highway = motorway} ⇒ {oneway = yes} 1.0 1.01 0 2.02

values, all techniques applied to this point resulted in heavy biases and no performance
improvements, for more see Section 4.1.
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3.4.4 Presence labelling
To overcome the biases introduced upon imputation, we had to redefine the definition of
incomplete data. Missing data points were given a default value ofmissing thus exploiting
the possibility that the absence of a point could itself hold relevant information about the
instance.

To evaluate how well the sheer existence of an attribute key describes an instance, the
original dataset D0 was transformed into a pure Boolean dataset D2. All tag values i.e.
the labels were replaced with values present or missing. The new dataset did not contain
any missing values thus eliminating the need of imputation entirely. Eliminating the re-
source consuming process of imputation, we were able to utilize the entire dataset and all
the attributes despite low value frequencies. The lack of attribute values made it possible
to construct a model built on correlation between different tag keys by their co-existence
with other keys.

3.4.5 Missing value labelling
To construct a model both capable of predicting tags keys and their values, we improved
the solution used for D2. All missing values in the new dataset D3 were replaced with the
valuemissingwhile all present values were kept unaffected. This allowed us to derivemore
complex patterns based on both actual attribute values and the synthetic value missing for
absent data points.

3.5 Feature engineering
After exploiting the most suitable modelling method, we proceeded to feature engineering
with the goal of further improving the classifier performance. Feature engineering is a
fundamental process in machine learning as it makes algorithms more accurate, efficient
and effective. It is also one of the most difficult tasks as it requires extensive knowledge not
only about the utilized algorithms but also the domain itself. To compose a set of viable
features we:

• Investigated the domain and analyzed possible feature candidates.

• Identified how each candidate can be represented as a feature.

• Introduced one feature at a time into the data.

• Evaluated the effects of a introduced feature.

• Kept or discarded the feature depending on the impact.

3.5.1 Synthetic attributes
As explained in Section 1.2.1, each element contains more information encapsulated in
each node. Using each element’s metadata such as geographical properties, we introduced
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3.5 Feature engineering

a number of synthetic attributes. The final dataset D4 is an extension of D3 with all syn-
thetic attributes described below.

Figure 3.2: A simplified road element with nodes Ni
and distances di between them.

Node count
The node count attribute is the sum of nodes Ni contained in each element, see Figure 3.2.

Element length
The length attribute is the sum of distances di between each consecutive node in an element
expressed in meters, see Figure 3.2. It is calculated using the Haversine formula as the
road elements in Sweden range between 0 ≤ l ≤ 90,000 m with a mean of 507 m and are
sufficiently distant from the earth’s poles.

Curvature difference
The curvature difference is the fraction of an elements total length d1−dn over the distance
between the first and the last node d0, see Figure 3.2. The curvature distance is used to
express a roads curvature in order to help the classifier to distinguish between e.g. a straight
road and a roundabout. Once again, theHaversine formula is used to calculate all distances.

curvatureDi f f =
∑n

i=1 di

d0
(3.1)
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Mean distance
The mean distance attribute is the mean distance µ(d) between all nodes in an element.

Mean density
The mean density attribute is used to determine if elements are located in a densely pop-
ulated area. The density of an element is the mean value of all densities for each node in
the element. The node density is measured by counting all nodes within a 1000 m x 1000
m square as illustrated in Figure 3.3.

Figure 3.3: Node density calculation for node Ni.

3.5.2 Attributes based on neighbouring elements
To evaluate the consistency within consecutive elements, each element is compared to all
elements connected to it i.e. sharing one or more nodes. Each tag associated with the
evaluated element is compared to the same tag in neighbouring elements as seen in Figure
3.4. Absent tag keys and different values are treated equally – as an inconsistency.

3.5.3 Attribute selection
The main dataset used to train all classifiers contains a vast amount of features, many of
which holding no relevant information. C4.5 prunes the tree by comparing the upper bound
of the error rate confidence interval before and after removal of a node. This post-pruning
approach computes the perfect tree and compares the pruning results for every leaf node
parent in the tree from bottom to top. The process is very resource consuming as all data
is used while constructing the initial tree and iterating it node by node. Furthermore, the
large amount of features proved the pruning process alone insufficient as the obtained trees
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3.6 Model evaluation

Figure 3.4: Simplified illustration of a neighbour data consistency evaluation. The
maxspeed_neighbour_con tag in E2 is given the value 0.5 as the maxspeed tag in E1 and
E3 equals the value of E2 in one of two connected elements.

still contained huge amounts of nodes due to the noisy nature of our data. To combat these
issues, we introduced filters to the original dataset, one for each classifier. By computing
the information gain for each attribute, we were able to significantly reduce the size of
datasets (and thus the trees) used for training with no negative impact on the performance.

A filter for an attribute classifier is created by computing the information gain for all other
attributes and saving only those with a satisfactory gain. The threshold was set to 0.001
meaning that all attributes even slightly decreasing the entropy after a split are kept while
the rest is discarded. The filters are saved together with the classification models and ap-
plied to the main dataset upon usage.

3.6 Model evaluation
In order to measure the performance of all 600+ models we introduce custom weights to
the arithmetic mean of F-measure for all models. Although the obtained value itself is
not a direct representation of the F-measure for the entire system, it proved useful when
comparing results upon changes in datasets, features, parameters, etc.

Weighted Average F − measureall =

∑n
i=1(tot_insi − missingi) ∗ F − measurei∑n

i=1 tot_insi − missingi
(3.2)

Attributes oftenmissing a value are assigned lower weights as the information provided
by these attributes is less reliable as compared to attributes more commonly found in the
dataset.
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3.7 Model construction and classification
The classification models are constructed as shown in Algorithm 1. Building a classifier
with sufficient accuracy around certain attributes may prove both impossible and mean-
ingless. An example of such attributes are user annotations and temporal notes. The lack
of patterns leading up to specific values of these attributes will result in poor performance.
All models with a F-measure below fM_thresh are therefore discarded.

The classification of each attribute is done as shown in Algorithm 2. The provided
input is a vector of all attributes in the element.

Data: Dataset D.
Result: A classification model for each attribute with weighted average F-measure

≥ 0.7.
iG_thresh← 0.001
f M_thresh← 0.7
Remove attributes id, re f & name from D
forall attributes att ∈ D do

temporary dataset tD ← D
forall attributes a ∈ D do

if a 6= att then
InformationGain iG for attribute a
if iG < iG_thresh then

tD ← tD − a
end

end
end
Training set trS ← 0.44 ∗ tD
Test set tS ← tD − trS
trS.classAttribute← a
tS.classAttribute← a
m← Classification model trained using J48 for attribute att on trS
f M ←Weighted average F-measure for m using tS as test set
if f M ≥ f M_thresh then

Save model m
end

end
Algorithm 1: Attribute classifier construction

3.8 User interface
Oftentimes when constructing and reviewing ML models, it is hard to assimilate the re-
sults and demonstrate real life applications of the developed software. We felt it important
to visualize and embody the results of our findings in a simple use case scenario. For this
purpose, we developed a basic API enabling us to make prediction requests for single at-
tribute values. The API takes an instance vector as input and returns an array of predicted

26



3.8 User interface

Data: Instance I .
Result: suggestionList with suggestions containing predicted value v and

probability p.
forall attributes att ∈ I do

load model m for att
double[] probabilityForEachValue = m.distributionForInstance(I);
int index ← index of max value in probabilityForEachValue
if index 6= att.index then

suggestion.v ← I .value(index);
suggestion.p← probabilityForEachValue[index];
suggestionList.add(suggestion);

end
end

Algorithm 2: Using classifier for suggestions

values for the class attribute together with a certainty percentage.

The demo application is a web application map editor, connected to OSM via an over-
pass turbo iframe. The editor stages a scenario in which the user is editing or inserting
new map data. By selecting an element, the interface fetches all present attributes for the
instance and requests value predictions for each attribute as described in Algorithm 2. If
the predicted value differs from the actual attribute value, the web editor suggest a change.
In cases where a single input vector returns several possible values, the most probable val-
ues are presented first, see Figure 3.5.

The editor is run on a local NodeJS server and the interface is a combination of React
Redux and Bootstrap. The API requires all models to be pre-built and stored locally as it
is deployed locally as a Java web server.
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Figure 3.5: The editor demo user interface. The input data supplied to the API is displayed
above the suggested values. The suggestions are whatever is returned by the model given
the input vector. As the input changes upon edition, a new query is passed to the model in
order to get updated predictions. The match value tells the user how reliable the prediction
is according to the model, ranging from 0 to 1 where 1 implies the highest degree of
certainty.
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Chapter 4
Results

4.1 Imputation
Table 4.1 shows the confusion matrix for the D0 dataset after removing all instances with
missing values. This approach is of course not applicable for the main dataset as such
filtering would remove all instances in the dataset. No instance in the unfiltered data con-
tains a non-missing value for every possible attribute. The results in Table 4.1 are shown
for the sole purpose of illustrating the effects of imputation.

Table 4.1: Confusion matrix for the highway tag J48 classification using dataset D0. All
instances with missing values removed. Bold highlight on most frequent prediction.

a b c d e f g h <– classified as
0 27 8 0 79 0 0 14 | a = unclassified
1 160 17 0 65 0 0 3 | b = residential
1 55 37 0 535 0 0 82 | c = tertiary
0 3 0 898 78 0 0 317 | d = motorway
0 44 13 9 1095 0 0 241 | e = secondary
0 13 0 0 6 29 0 0 | f = service
0 2 4 20 257 0 0 509 | g = primary
0 0 13 300 413 0 0 1764 | h = trunk

The results of the default distribution based imputation used in J48 are seen in Table
4.3. As seen in Table 4.2 instances with class labels unclassified, residential and service
account for over 83% of all data. These elements also have the lowest average number of
associated tags meaning most attributes in these instances have no (and should not have
any) value. By predicting almost all attributes to be missing, the classifier introduces a
bias towards labels having no or very few attributes other than the class attribute.
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Table 4.2: highway class distribution in all datasets together with average number of non-
missing tags associated with each label.

Class label Count Fraction Average number of tags
unclassified 114537 0.191 0.779
residential 180933 0.302 0.770
tertiary 51985 0.087 1.673
motorway 4211 0.007 5.200
secondary 25053 0.042 2.434
service 203476 0.339 0.779
primary 8405 0.014 2.492
trunk 10968 0.018 4.374

Table 4.3: Confusion matrix for the highway tag J48 classification using dataset D0. Bold
highlight on most frequent prediction.

a b c d e f g h <– classified as
0 895 0 0 0 38002 0 0 | a = unclassified
0 9712 0 0 0 51832 0 0 | b = residential
0 608 0 0 0 17045 0 0 | c = tertiary
0 1 0 0 0 1491 0 0 | d = motorway
0 134 0 0 0 8449 0 0 | e = secondary
0 376 0 0 0 68768 0 0 | f = service
0 14 0 0 0 2794 0 0 | g = primary
0 13 0 0 0 3719 0 0 | h = trunk

Association rule imputation reduced the amount of missing data significantly as seen
in Table 4.4. Despite this, the imputation method had a negative impact on the classifier
performance, see Table 4.11. The strong bias introduced in distribution based imputation
was weakened by association rule imputation as seen in Table 4.5. The classifier makes
predictions for more than just the most frequent labels but the bias is still tangible where
most predictions result in labels unclassified, residential or service.

Table 4.4: Missing value fractions before and after imputation using association rules.

D0 (raw) D1 (Apriori imputed)
lanes 0.96 0.28
maxspeed 0.81 0.48
oneway 0.90 0.28
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Table 4.5: Confusion matrix for the highway tag J48 classification using dataset D1. Bold
highlight on most frequent prediction.

a b c d e f g h <– classified as
792 2305 42 0 9 35747 0 2 | a = unclassified
146 6424 20 0 4 54950 0 0 | b = residential

1422 4581 166 0 52 11419 0 13 | c = tertiary
50 409 0 972 14 37 0 10 | d = motorway
867 4288 168 6 224 2966 0 64 | e = secondary
167 1080 4 0 0 67893 0 0 | f = service
356 1617 14 25 39 513 0 244 | g = primary
376 1805 29 289 51 290 0 892 | h = trunk

Both standard imputation techniques and Apriori introduced a bias favoring instances
with present data and applying the incorrect derivations to instances regarded as incom-
plete. Given the OSM dataset it was proven that missing values had to be accounted for
without the assumption that absent data points had to be given a value present in the rest
of the data.

4.2 Presence labelling
Substituting all attribute values with Boolean present andmissing in D2 outperformed both
D0 and D1 as seen in Table 4.11. The main drawback of this approach is the inability to
predict actual tag values. The important finding at this step was that sheer co-existence of
attribute keys had a major impact on classification results. Furthermore, the approach al-
lows classification training to be performed with minimal amounts of computational power
as there is no need of imputation. Compared to D0 and D1, the classifier built around D2
was able to form a pattern of correct classifications as seen in Table 4.6.

The inability to train the classifier on different tag values poses an issue clearly visible in
classification results performed on similar instances with different class labels. Elements
with class labels trunk and motorway are almost identical to each other in terms assigned
key values. The main difference between the two lies in tag values where a motorway
typically has higher speed limits and more lanes. Distinguishing between these elements
is therefore impossible based on pure tag key presence and requires more information to
be supplied in the training phase.
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Table 4.6: Confusion matrix for the highway tag J48 classification using dataset D2. Bold
highlight on most frequent prediction.

a b c d e f g h <– classified as
9481 7983 217 0 100 21115 1 0 | a = unclassified
1870 45333 277 0 78 13985 0 1 | b = residential
223 3633 11690 2 1603 270 193 39 | c = tertiary

3 6 7 720 101 1 81 573 | d = motorway
84 1041 3352 26 3550 55 425 50 | e = secondary

2968 2329 19 0 7 63819 1 1 | f = service
19 10 576 16 1046 5 1077 59 | g = primary
3 6 141 313 327 5 437 2500 | h = trunk

4.3 Missing value labelling
Substituting missing data with amissing label improved the classifier performance as seen
in Table 4.11. More importantly, it also allowed to make value predictions together with
predictions for existence. The latter is especially important as it makes the classifier output
consistent with the OSM scheme. Considering all possible attributes in the dataset, only a
small fraction is set in each element. The possibility to both predict a value of an attribute
or its existence (whether the element should at all be associated with the attribute) gives
predictions that follow the pattern found in the actual dataset. Issues with similar element
structures in motorways and trunk roads mentioned in section 4.2 are resolved at this stage,
see Table 4.7.

Table 4.7: Confusion matrix for the highway tag J48 classification using dataset D3. Bold
highlight on most frequent prediction.

a b c d e f g h <– classified as
31522 23869 2206 1 537 10594 81 23 | a = unclassified
9147 78067 1868 0 492 18762 25 0 | b = residential
5654 6599 14322 4 2694 1563 275 74 | c = tertiary

1 0 6 2284 60 6 52 194 | d = motorway
1054 1877 3535 25 7208 453 782 196 | e = secondary
6407 27205 650 0 157 87632 18 5 | f = service
322 373 611 63 1214 83 1974 402 | g = primary
36 57 139 351 430 9 572 4909 | h = trunk

4.4 Synthetic attributes
D4 is an extension of D3 with custom features derived from metadata as described in Sec-
tion 3.5.1. The introduction of custom features increased the weighted average F-Measure
for the highway classifier by 0.145 as seen in Table 4.11. The biggest improvement how-
ever, is seen in Table 4.9. Despite the overall performance boost, the classifier at this
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stage is also capable of classifying less frequent values. The importance of all synthetic
attributes is presented in Table 4.8. On average, every custom feature appears in the top
10 to 20 most significant attributes based on reduced entropy difference – the informa-
tion gain. This of course is an expected result as the features were introduced in order to
minimize the entropy with each split. Nevertheless, the results prove the suitability of our
approach.

Table 4.8: Attribute information gain for class attributes highway and lanes.

Attribute Info. gain
neighbour_highway 0.74338
maxspeed 0.34341
service 0.22883
totLength 0.22373
neighbour_maxspeed 0.19461
meanDensity 0.16035
neighbour_oneway 0.13328
lanes 0.12422
oneway 0.12369
nodeCount 0.11486
...
curvatureDiff 0.09197
meanDistance 0.08896
...

Attribute Info. gain
neighbour_lanes 0.18072
highway 0.12422
maxspeed 0.11134
neighbour_oneway 0.09086
oneway 0.08141
neighbour_maxspeed 0.0669
curvatureDiff 0.01693
surface 0.01686
neighbour_surface 0.01037
meanDistance 0.00975
...
meanDensity 0.0037
totLength 0.00325
...

Table 4.9: F-Measure for different layer tag values using J48.

Tag values D2 D3 D4 Freq. distribution
Missing 0.998 0.998 0.927 0.9764
Present 0.899 - - 0.0246
1 - 0.909 0.919 0.019
-1 - 0.852 0.857 0.0031
2 - 0.000 0.319 0.0006
-2 - 0.000 0.144 < 0.0001
0 - 0.000 0.494 0.0004
5 - 0.000 0.590 0.0001
...
Weighted Avg. 0.995 0.994 0.995

4.5 Attribute selection
Computing models using all attributes resulted in long computation times and a greater
exposure to possible overfitting. As a countermeasure to these issues, we introduced at-
tribute selection. Although overfitting can be reduced by increased confidence levels and
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Table 4.10: Confusion matrix for the highway tag J48 classification using dataset D4.
Bold highlight on most frequent prediction.

a b c d e f g h <– classified as
42985 15803 1456 1 281 8288 16 3 | a = unclassified
10958 86579 1606 0 229 8991 2 6 | b = residential
3030 3342 21659 7 2471 254 409 13 | c = tertiary

3 2 5 2468 44 0 81 0 | d = motorway
389 633 5682 34 7195 3 1191 3 | e = secondary

1943 845 23 0 0 119243 0 20 | f = service
25 19 826 70 1173 0 2929 0 | g = primary
10 4 1 0 0 40 0 6448 | h = trunk

Table 4.11: F-Measure for different highway class values using J48 using all datasets
derived in this project.

D0 D1 D2 D3 D4
Unclassified 0.000 0.037 0.338 0.362 0.671
Residential 0.265 0.153 0.575 0.745 0.803
Tertiary 0.000 0.018 0.474 0.692 0.694
Motorway 0.000 0.698 0.534 0.575 0.952
Secondary 0.000 0.050 0.373 0.474 0.543
Service 0.526 0.559 0.594 0.760 0.921
Primary 0.000 0.000 0.175 0.444 0.606
Trunk 0.000 0.360 0.713 0.721 0.992
Weighted Avg. 0.259 0.258 0.516 0.655 0.800

minimal number of objects in each node, it does not have any positive impact on the com-
putation time. By introducing filters with minimal information thresholds, we were able
to maintain the same performance while reducing the amount of attributes in the training
data significantly. As an example, the highway tag classification tree had over 240,000
nodes before attribute selection and roughly 29,000 after.

4.6 Learning curve
The overall performance of all classifiers is difficult to summarize in one value. As men-
tioned in Section 3.6, we developed our own metric in order to get a reference point during
optimization. The learning curve shown in Figure 4.1 shows performance stabilization
with training on about 5% of the data. This means the data contains many entities from
which the same classification rules can be derived thus decreasing the data amount neces-
sary to compute the classification model. The graph appearance is motivated as follows:

1. y_min = 0.8 – The noise cap of the used data is ∼0.8 due to the large fraction of
missing values. By predicting the value missing on all attributes, the weighted aver-
age F-Measure will settle on the noise cap. This implies that the data overall is poor
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Figure 4.1: Weighted average F-Measure for all classifiers
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in populated features witch is consistent with our initial findings.

2. x_max = 20 – As the percentage of training data increases, the results are unaffected
thus eliminating the need of further illustration. The main purpose of the graph is
to illustrate the “knee” where the performance stabilizes.
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Chapter 5
Discussion

The initial objective of this thesis was to derive patterns from attributes (and their values)
by studying possible correlation given by occurrence and value dependency. We thought of
the solution as a semantic correlation network rather than a feature based classifier. As we
investigated the domain and previous efforts to achieve goals similar to ours, we realized
that this approach will not be able to provide a feasible solution. The attribute data itself
holds very little information and does not include the structural and positional properties
of an element. It was obvious to us that feature engineering would be necessary and that it
would have a crucial impact on our success. We began the process by identifying biggest
obstacles preventing us from using machine learning classifiers on the OSM dataset. From
there, we worked in sprints following the CRISP-DM model, gradually working our way
to a satisfactory result.

5.1 Data selection
During the initial stages of this thesis project, we wanted to develop a generic system
compatible with any OSM entity. Discovering the nature of OSM data and the diversity of
features forced us to narrow our scope. In collaboration with our supervisor, we chose to
work with roads due to their importance and suitable extent. Due to the limited time scope
of this thesis, we decided not to set up development environments on powerful computers
or remote servers. We wanted to be able to develop and continuously evaluate the per-
formance of our software on our own laptop computers. The approach forced us to keep
things light, efficient and effective as we had modest amounts of computational power. To
meet these requirements and keep the computation time at a reasonable level, we restricted
our target map area to the territory of Sweden. The motivation behind choosing Sweden
was our prior knowledge of Swedish laws and regulations. This did indeed save us some
time but was the partial reason to many preparations as Sweden does not have the best
OSM data compared to other countries. Densely populated countries tend to have better
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data meaning better prerequisites for statistical analysis. Going for a better mapped region
of Europe e.g. Germany would give us more time to focus on classifier construction rather
than data pre-processing.

5.2 Data preparation
The subject of initial feature selection is an important part of this thesis. Due to the rea-
sonably low number of different features and the issues mentioned above, we removed all
unwanted features manually. In order to make the entire process generic, especially for
large datasets, this procedure would require an automated solution.

5.3 Machine learning process

5.3.1 Data modelling
The large amount of missing values proved to be the biggest obstacle during initial clas-
sification tests. A majority of entities in the dataset share only one tag – highway. This
made classification difficult and stated the need of additional features.

5.3.2 Feature engineering
Prior to the introduction of synthetic attributes, more than 80% of the data had an average
of less than one associated tag per instance, see Table 4.2. By adding custom features
to all instances, the average increased with the number of added attributes. The machine
learning algorithm now had the possibility to learn the difference between elements even
if they were poorly tagged in the raw dataset.

Our primary goal when developing new features was to include both the physical prop-
erties of an element, its position, and relation to other elements. To transform information
about an element’s position into specific features, we started by dividing Sweden into tiles
based on geographical coordinates. The method has a big advantage as it can utilize re-
gion specific information such as divergent speed limits in different cities. Eventually, we
abandoned this approach as we ran into issues with elements overlapping several tiles and
the inability of deriving region specific information from OSM data. The mean density
attribute is a simple substitute used to describe the type of environment the element is po-
sitioned within. It is not tied to any particular region but discloses the type of surrounding
– dense regions for urban environments, sparse for countryside. This can be improved by
expanding the reference area, checking neighbours neighbours and other elements in close
proximity.

The main issue with synthetic attributes is that they need to be calculated for each element.
The computation cost grows exponentially as the amount of data increases. Calculating
the mean density for each node, being the most expensive attribute to obtain, has a time
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5.4 User interface

complexity of O(n2). Furthermore, any changes made in one element require recalculation
of values in every affected element.

5.3.3 Optimization
In our endeavour to create as resource effective system as possible, minor optimizations
were made along the entire process. Code efficiency optimization, database indexing,
volatile memory storage and multithreading are examples of measures taken to ensure
fast data pre-processing, data selection and model computation. The biggest breakthrough
however was attribute selection. It decreased the average computation time by over 8000%
by drastically decreasing the number of attributes used in the training process.

5.3.4 Model evaluation
When we started to create multiple classifiers, one for each tag key we started to eval-
uate the performance by calculating the mean value of all classifiers Weighted Average
F-Measure. The problem with this approach was that the score never averaged below 0.99
due to the fact that most of the classifiers simply guess missing on all instances. To im-
prove the evaluation of our models we needed a value accounting for the amount of missing
values. We therefore introducedWeighted Average F-measureall explained in Equation 3.2.

5.3.5 Hyperparameters
Having one classifier for each attribute made it hard to tweak and evaluate the input param-
eters for the J48 algorithm. We did try different settings but the performance improvements
were insignificant. Although we did not pursue this topic, we can recommend it for future
improvements aiming to get the last bit of performance out of the algorithm.

5.4 User interface
Aside from being helpful while explaining how the models work and to visualize a possi-
ble use case, the user interface helped us to improve the system. During the development
of the UI and its API, we repeatedly found out the models were giving unexpected pre-
dictions. Sometimes there was an error in model creation or use, sometimes the models
gave good numbers but the prediction looked wrong at the first glimpse, encouraging fur-
ther investigation. This helped us further develop the models, introducing more synthetic
attributes and the weighted model evaluation.

5.5 Alternate use cases and future work
While the use case presented by us demonstrated an editing scenario, the system can also
be used for plain error detection. By comparing the actual values in each instance with
values predicted by the models, potential aberrations/errors can be discovered.
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5. Discussion

Given the time, resources, expertise and skills available to us while conducting this
thesis, we came up with a system we argue is a suitable solution to the research questions.
Nevertheless, there are several things that can be improved, changed and further studied.
Many enhancements have been previously mentioned in this report but we summarize
these together with additional improvements below.

• Automatically remove unwanted attributes.

• Evaluate other classification algorithms.

• Examine the impact of hyperparameter optimization.

• Introduce more synthetic attributes.

• Import data from other sources.

• Train and evaluate models on larger datasets, for example all roads in Europe.

• Expand our method to include other types of OSM entities.

• Explore new modelling approaches upon dataset expansion – both in terms of fea-
tures and size.
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Chapter 6
Conclusions

OSM is without doubt, one of the most prominent collaborative projects. Developed by
the community for the community, it does not only give free access to a worldwide map
but also enables any interested party to contribute with their own data. While crucial for
the project itself, this open approach makes it difficult to enforce and maintain good data
quality.

In this thesis, we propose what we argue is a possible solution for semantic accuracy
improvement in OSM data using machine learning techniques. Using statistical analysis,
we construct prediction models for each attribute and compute a suggested value to either
prove or disprove the validity of the current value or suggest the value of an absent at-
tribute. It was proven that the raw data itself given its poor quality in terms of coverage
and accuracy is not sufficient to construct a reliable model. The quality was improved
by filtering out noisy or irrelevant attributes and adding custom features based on entity
properties. The derived prediction models are based on the J48 decision tree algorithm
and achieve a Weighted Average F-measureall over 90%. Furthermore, it was proven that
the quality of the derived propositions is highly dependent on data quality rather than the
used algorithm or different hyperparameters.

To illustrate a possible use case scenario in which the system can contribute to a higher
semantic accuracy in OSM data, we created an end-to-end application. The application
simulates an editing scenario in which the user is given attribute suggestions while editing
current/adding new data to the OSM dataset.

In summary, these are the most important findings discovered conducting this thesis:

• Data imputation using complete instances introduces heavy biases and weakens the
classifier.

• Accounting for missing data, instead of removing or imputing it, improves classifier
performance significantly.

41



6. Conclusions

• Despite its simplicity compared to other classification algorithms, the decision tree
algorithm proved to be suitable for this task.

• Data pre-processing, modelling and feature engineering have a remarkably bigger
impact on the results than different algorithms and hyperparameters. This particular
finding is not unique to our project as numerous researchers have reached the same
conclusion, see (Crone et al., 2006).

• Introduction of synthetic attributes is necessary to obtain satisfactory classification
results.

• High attribute occurrence yields better predictions.

• It is possible to suggest changes during editing using models trained on current data.

• Only a small fraction of all data holds valuable information upon classification of
each attribute.

• It is possible to find elements having bad or possibly wrong tags by checking if the
predicted tag value and the actual value differ.
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Över fyra miljoner bidragande användare och ett nära laglöst bidragssystem. Hur
säkerhetsställs det att riktlinjer tolkas och implementeras rätt? I detta arbete används
maskininlärning för att upplysa kartläggare om avvikelser, ofullkomligheter och direkta
fel samt föreslå fler egenskaper.

Genom att förse maskininlärningsalgoritmer med
data från över 600 000 vägar i Sverige har vi lyck-
ats ta fram ett hjälpverktyg för kartläggning och
felkontroll. Ta inmatning av ett nybyggt stycke
av E4:an som exempel. Genom att kolla på en
rad olika parametrar som liknande vägar, området
i nära anslutning och vägens uppbyggnad föres-
lår systemet vägens mest sannolika egenskaper.
Dessa skulle kunna vara en hastighetsbegränsning
på 110 km/h, enkelriktning och två filer. Vid in-
matning av orimliga egenskaper föreslår systemet
lämpliga åtgärder. Skulle kartläggaren beskriva
E4:an som ett objekt där fotgängare tillåts kom-
mer systemet säga att det med största sannolikhet
är fel.

Geografiska objekt märks i OpenStreetMap
(OSM) med så kallade taggar. Dessa innehåller
all information om objektet så som position,
förhållande till andra objekt och en rad beskri-
vande egenskaper. Hur olika objekt ska beskri-
vas finns dokumenterat på OSM’s hemsida men
OSM låter användarna själva avgöra hur ett ob-
jekt ska taggas. Denna frihet gör att systemet är
väldigt lättanvänt, särskilt för nya kartentusiaster,
men medför skillnader beroende på kartläggarens
tolkning av vad som är korrekt.
Detta brus gör det nästintill omöjligt att an-

vända datan i analytiska sammanhang då da-
torer behöver tydliga regler. För att underlätta
kartläggningsarbetet och framför allt uppmana
konsekvent beskrivningsmetodik har vi tagit fram
ett verktyg som bygger på befintliga mönster.
För att få fram dessa har vi använt mask-

ininlärningsalgoritmer där datorn, utan vår hjälp,
härleder mallar för hur olika objekt bör se ut.
Detta åstadkoms genom att analysera samband
mellan egenskaper och dess olika värden. Efter-
som systemet bygger på statistisk analys kan även
tidigare osedda objekt kategoriseras. Sambands-
mallen mellan egenskaper ger även en procent
på hur sannolikt ett befintligt värde är tillsam-
mans med andra egenskaper samt hur sannolika
eventuella förslag är.
Skulle samma problem vilja lösas utan artificiell

intelligens skulle ett enormt regelverk behöva tas
fram för hand där alla möjliga utfall täcks. Även
då skulle systemet inte vara kapabelt att jobba
med nyintroducerade objekt eftersom regelverket
då bara skulle passa den ursprungliga datan.
Under arbetets gång har det framkommit att

det enbart krävs 5% av alla vägar i Sverige för att
systemet skulle kunna hantera vilken svensk väg
som helst.
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