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Abstract

In this Master Thesis we aim to evaluate the Robust Header Compression protocol in cel-
lular IoT. The initial results show that RoHC may decrease the energy consumption signif-
icantly due to its reduction of the header size. The reduction in the header size decreases
the required transmission window which in turn decreases the energy consumption. The
result also show that Robust Header Compression is suitable for hardware acceleration
but we are unsure if the hardware acceleration may be suitable for an IoT device since it
would increase the required chip area.
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Popular Science Summary

Robust header compression is a well known protocol. It has been standardized
for more than a decade, is used in almost all standard cellular communication stan-
dards yet not implemented in the smallest of devices. Companies are always trying
to give their products an edge and one area to improve in is always battery time.

Today almost everything and everyone
are connected to the internet. There exists a
great amount of connected devices and to-
gether they transmit a massive amount of
data every day. As the number of Internet
of Things (IoT) devices is expected to in-
crease exponentially in the coming years,
the competition on the market is increas-
ing. IoT devices are expected to last years
without supervision or maintenance while
still being able to continuously transmit
small amounts of data during their lifetime.
These devices are a suitable match for ap-
plying RoHC.

RoHC exploits the redundancy in
header fields. Some header fields like
the destination and source address may be
stored in the network vertexes. Most of the
header fields do not change and are redun-
dant if transmitted repeatedly. The receiver
saves these variables and the transmitter
only transmit header fields that change ev-
ery transmission. That way, the receiver
can put together a full Internet Protocol (IP)
packet and send it to its final destination
while the transmitter only sends a small part
of the header.

The transmitter can reduce the header
from 28 bytes to only 2 bytes. This means

RoHC can reduce the data transmitted by
up to 92%. This could potentially reduce
the transmission windows as well as reduce
the risk of residual bit-errors and retrans-
missions. The Worst-case scenario still
point towards a reduction of a couple per-
cent.

Originally the protocol was meant to
reduce network congestion. At the time,
network congestion was a problem while
power existed in abundance. Today the re-
verse situation has occurred. The networks
are robust and the IoT devices are restricted
in battery life.

An IoT device uses the most energy
while transmitting data. Thus, if less data is
transmitted less power is used. On the other
hand, the receiver has to do more compu-
tational work. Usually a receiver is a base
station, a fixed installation with superfluous
amounts of power.

This study show that a device may ex-
tend its battery time with up to a year by
just implementing RoHC. Does this im-
ply that RoHC will provide the edge that
IoT hardware companies are looking for or
are IoT devices already living longer than
needed?
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Chapter 1
Introduction

As of today IoT is in its cradle. IoT applications usually send a very limited amount of
data, rarely more than 10-20 bytes payload each transmission. This results in a relatively
large overhead due to the size of the protocol headers in relation to the payload of the
package. Header compression algorithms can be applied to reduce the overhead caused
by the package headers.

1.1 Problem motivation
Robust header compression is not a new protocol. It has been used during the last 15
years and is standardized in cellular networks. It removes overhead and helps lower the
traffic in the network. It was originally developed to not congest networks but has today
been presented with a possible new use, cellular IoT. The demand of IoT devices has
skyrocketed and companies today hope to optimize their products in order to keep the
edge on the market. Can RoHC be a viable route to improve IoT products?

One motivation for this thesis is to further understand RoHC, its limitations and its
strengths. It serves several different purposes. First, it might reduce congestion in cellular
network, even though IoT devices rarely contributes to congestion. The cellular networks
are robust and IoT devices do not transmit large amounts of data. More importantly there
is a hope that RoHC can reduce power usage in IoT devices. This would in turn provide
either more computations within the same battery life cycle or increase life time. Since
users often are very fastidious, especially in regard to battery time, a longer battery time
can increase return on a certain product. Thus, RoHC can serve a multipurpose function
if it is found to improve IoT devices significantly.

1.2 Aim
This project aims to understand RoHC in order to give an accurate answer to our research
question. RoHC shows a great potential to help improve IoT devices via pure study of
the protocol. Our goal is to implement Robust header compression, analyse different as-
pects as described in the Section Research Questions1.3 and be able to reach a conclusion
regarding the usefulness of RoHC in a cellular IoT device.
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2 Introduction

1.3 Research Questions
RoHC has been standardized since year 2001 and is a part of the Long-Term Evolution
(LTE) radio stack. After the exponential increase in bandwidth and transmission rate the
need for RoHC decreased.

Today as the development of IoT devices is increasing and the main difference be-
tween IoT suppliers is the energy consumption and chip area. To research the impact of
RoHC when applied on IoT devices we aim to answer the following questions.

• What is the compression rate of RoHC?

• Would an IoT device benefit from using hardware accelerated RoHC?

• Can RoHC significantly increase the battery life of an IoT device?

1.4 Related Work
In the beginning of the 21-century internet bandwidth and transmission rate increased
exponentially, which led the congestion rate to decrease substantially. This decrease has
rendered RoHC less significant in a network setting [9].

When RoHC was created a possible usage was Voice over IP (VoIP) . Since VoIP
sends small data packages where the header size is a large part of the package. In Per-
formance evaluation of RoHC Reliable and Optimistic Mode for Voice over LTE by An-
dreas Maeder and Arne Felber one can read on how different RoHC modes affects the
voice quality. In the study the authors concludes that there is no significant difference
between Optimistic and Reliable mode when it comes to the voice quality over the 3G
network. However their results show that the feedback overhead for Reliable and Opti-
mistic mode is significantly different while the compression rate is marginally different
due to the small amount of feedback messages sent in Optimistic mode [10].

A master thesis conducted by Amen Hussain from the Norwegian University of Sci-
ence and Technology shows that a low powered IoT device energy consumption is largely
based on the transmission time[8].

This lead us to question what is the best possible compression rate of RoHC and how
it might affect the battery length of an IoT device and if the time spent implementing
RoHC into an RoHC device can be motivated by the increase in battery life.

The thesis, Hardware acceleration of the robust header compression (RoHC) algo-
rithm ( [11]), presents measurements of the increase in performance when implementing
the RoHC algorithm in hardware and software. They found a mix between hardware and
software implementation was the best match, however they didn’t measure the amount
chip area this would use. Since the size and battery length of an IoT device are the most
competitive aspects between the hardware a small increase in the chip area may decrease
the IoT hardwares ability to compete on the market.

1.5 Project Disposition
This thesis is meant to give a good understanding of how RoHC works and how it can
be applied. Below is a short description of the different chapters of the report, what they
contribute and contain.
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Chapter 2 briefly describes important information in order to be able to comprehend
different parts of the thesis. Background only reiterates known facts and does not add any
technological advances.

The next chapter, Chapter 3, describes RoHC. It contains the most important infor-
mation regarding RoHC; its key features, error handling and robustness. It is designed to
give a good overview of our scope and our take of the protocol.

Chapter 4 introduces our implementations structure, design choices and frameworks.
It also describes how we conducted our experiments and describes certain limitations.

Chapter 5 contains our findings in metrics, complete with graphs, Tables and descrip-
tive texts.

The penultimate chapter 6 presents a discussion regarding the results, what conclu-
sions we have drawn and how this might impact future IoT products. Firstly, the results
are discussed, each to their own, and then connected in a conclusion. Secondly, certain
sources of errors are brought up and discussed.

Lastly, chapter 7 provides an introduction to the next possible steps.
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Chapter 2
Background

2.1 Network Communication
The Internet is a communications network that spans across the globe and enables a quick
means of communication between endpoints. Information that travels over the Internet
does so via a variety of languages known as protocols. All endpoints share the same
set of protocols to communicate their payload, or data, across the Internet. This is more
commonly known as the TCP/IP suite since Transmission Control Protocol (TCP) and IP
are the foundational protocols in the Internet communication suite [16].

The IP-stack describes how the different protocols cooperate to deliver the payload
between different endpoints. Communication protocols encapsulate one another, where
each layer have its own responsibility as can be seen in Figure 2.1. The layers are repre-
sented in the Open Systems Interconnection Model (OSI-Model) as can be seen in Figure
2.2.

• Application Layer - is the top layer. It is mainly concerned with human interaction
and the implementation of software applications and related protocols.

• Transport Layer - Provide application-to-application communication services.

• Internet Layer - Provides information on how to relay network packages across
network boundaries, also known as routing.

• Link Layer - Provides a communications protocol between physically connected
devices in a local network.

The IP and Internet Protocol (UDP) are two of the fundamental Internet protocols.
The IP handles how data packages are transported between Wide Area Network (WAN)
boundaries. A network boundary is often described as a communication vertex between
local networks, commonly known as routing. Local networks interconnect to wide area
networks and Wide Area Networks interconnects to become "the Internet". The Internet
refers to an arbitrary number of connected WAN, where multiple actors operate. This
means that the IP is responsible for the transport between networks. There are two main
versions of IP: IPv4 and IPv6. IPv4 is the legacy protocol that is by far the most used
today while IPv6 is the protocol that is bound to replace it in the future due to lack of
address space in IPv4 [16]. UDP is responsible for data integrity and port delivery. It does
not guarantee the correct package order or data correctness. UDP utilises checksum just
as IPv4 to determine if the data has been corrupted. Note: checksum can say whether a

5



6 Background

Figure 2.1: The TCP/IP Stack

package is corrupted but cannot guarantee correctness. The difference between corruption
and correctness lies in the nature of the error checking method. Checksum is an error
detection method that finds errors based on a 16-bit complement sum calculated over the
data and IP headers (excluding the checksum). The checksum is expected to detect errors
at a rate proportional to 1− 1

216 . It is worth noticing that the checksum also has one major
limitation: the sum of a set of 16-bit values is the same, regardless of the order [16].

2.1.1 The Internet Protocol
The IP is responsible for addressing hosts, encapsulating data into datagrams and routing
them from a source host to its destination across one or more network boundaries. Each
package consists of a header and a payload, the header consists of a minimum of 20 bytes
of data that specifies how the payload should be routed between network boundaries. The
Internet package has two versions of headers that is in use today, IPv4 and IPv6. As seen
in Figure 2.3 and Figure 2.4 the difference between the two protocols are many and the
most prominent difference is the size of the source and destination addresses. The main
reason for the creation of the IPv6 header was to deal with the problem of IPv4 address
exhaustion. IPv6 does this by increasing the Source and Destination address fields from 4
to 16 bytes. It is an increase of possible address-space by a factor 296. The IPv6 protocol
are not backward compatible because of the fundamental differences in address space in
the IPv4 and IPv6 header structures [16]. The IPv4 header can be seen in Figure 2.3 and
the IPv6 header in Figure 2.4.

2.1.2 The User Datagram Protocol
The UDP is another of the core members of the Internet protocol suite. UDP is a connec-
tionless transport protocol. It is a minimalistic protocol that transports payload without
guarantee of delivery, ordering or duplication protection [16]. Seen in Figure 2.5 is the
structure of an UDP header. UDP is commonly used with other protocols such as Real-
Time Transport Protocol (RTP) .
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Figure 2.2: OSI-model
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Figure 2.3: The Header of a IPv4 package

2.1.3 Data encapsulation
Data encapsulation is key in network communication. In the OSI-Model, the higher layers
attach their specific header and sends it further down. A package transmitted to a lower
level consists of that layers header and the payload that is encapsulated by the header.

A Protocol Data Unit (PDU) is a collective name of a single unit of information that
is transmitted. Different kinds of PDUs are, but not limited to, UDP Datagram, TCP
Segment or IP Packet [13]. A Service Data Unit (SDU) is the information carried by a
PDU. An example is an IP-package as can be seen in Figure 2.6. The entire package is
a PDU and the data inside the PDU, the payload, is referred to as a SDU. From a layers
point of view, any data that comes to your level to be encapsulated will be denoted SDU
and what is sent further down will be your PDU. This process continues all the way until
reaching the physical layer, where the PDU is transmitted instead of encapsulated.
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Figure 2.4: The Header of a IPv6 package

Figure 2.5: The Header of a UDP package
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Figure 2.6: Overview of PDU and SDU

2.2 Radio stack
The Radio Protocol Stack as seen in Figure 2.7, also known as E-Utran Stack, LTE Pro-
tocol Stack or LTE Stack, is a stack to communicate over the cellular network. The LTE
stack provides Link Layer capabilities similar to Ethernet. Ethernet is a standardized
method for sending data over cables while LTE provides methods for communication in
the cellular network. Both protocols have the capability to send IP-packets (with payloads
such as UDP/TCP/RTP). Even though, they both enable communication but over different
links. The LTE stack can provide different services than Ethernet, such as RoHC. This is
because how cellular connections are established and how other methods, rather than IP,
are used to identify a cellular user; context identification numbers. This implies, the LTE
stack have other possibilities to alter and facilitate different overlaying protocols and still
maintaining functionality within the cellular network. If the packet are to be sent to an
end-user outside the cellular network, standard protocols are to be used.

2.2.1 Layer 3

Layer 3 consists of two different kind of packages, IP or Non Access Stratum (NAS) and
Radio Resource Control (RRC). These are two different routes with a simple difference.
If the packet is user made, i.e. an application, IP will be used. If the packet is made from
user equipment e.g. call control management or identity management, NAS / RRC will
be used.

NAS together with RRC is the backbone in mobile communication. The main usage
is to establishing and maintaining connections with base stations, listen after area updates
and paging updates. Simplified, paging is a notification such that the RRC must open
a downlink to the base station because of an incoming package. If you are starting up
your phone and want to send a data package, the RRC will set up connection such that
there is an uplink ready to use. RRC handles these requests, modifies the user equipments
behaviors after current status and maintaining connections with the base stations.

The IP/UDP protocols in the LTE Stack is identical to its normal use together with
another link layer protocol. As previously mentioned, there is a difference in how IP
packets work within cellular networks. This means that IP and subsequent protocols in
layers above does not need to be changed in any way to be used with the LTE stack.

Layer 3 have responsibility to establish, maintain and close connections while keep-
ing user equipment on a reasonable activity level. The other half consists of IP, meant to
transfer and receive information needed by certain applications.
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Figure 2.7: The Radio Protocol Stack
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2.2.2 Layer 2
Radio Link Control Protocol - RLC
Radio Link Control Protocol (RLC) is a Control protocol with three different states, Trans-
parent Mode (TM), Acknowledge Mode (AM) and Unacknowledged Mode (UM). De-
pending on RLC state, this will enable or disable certain functions in the Packet Data
Convergence Protocol (PDCP) layer, such as segmentation and RoHC.

RLC’s main responsibilities can be viewed in the list below.

• Transfer of upper layer Protocol Data Units in one of the three modes.

• Re-segmentation of RLC data PDUs (AM)

• Reordering of RLC data PDUs (UM and AM);

• Duplicate detection (UM and AM);

• RLC SDU discard (UM and AM)

• RLC re-establishment

• Protocol error detection and recovery

• Error correction (only for AM data transfer)

• Concatenation, segmentation and reassembly of RLC SDUs (UM and AM)

RLC is at the same level as the logical link control (LLC) in the OSI-Model and thus
have very similar uses.

Packet Data Convergence Protocol
PDCP is a support protocol in the LTE stack, tasked with header compression, integrity
protection and ciphering. It is the only protocol to link with the IP stack and provides RRC
with key functions. It is a versatile protocol, able to provide many support functions.
While glancing over it, much of PDCP’s functionality seems simplistic. But, as seen in
this thesis with RoHC, much of the functionality PDCP uses can be extremely complex.
It keeps track of more or less the entire communication, including specific packages,
package data and certain timestamps. PDCP provides ciphering and deciphering of data,
packet discards based on a timer, duplication or malformation, fragmentation and data
transfers to other layers.

As aforementioned PDCP does contain the RoHC scheme and is responsible to pro-
vide certain data to the scheme. It passes on which header compression profiles are able
to be used, max context identifier values and, segmentation information. The latter are
not applicable in the NB-IoT standard provided by 3GPP. Since RoHC resides within
PDCP, PDCP is responsible to provide RoHC with data to be compressed/decompressed
and handle the output.

Medium Access Control
The Medium Access Control (MAC) layer is the first protocol in the LTE-stack and re-
ceives bytes from Layer 1. It is responsible for mapping between logical and transport
channels and provides some error correction.
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2.2.3 Layer 1
Layer 1 is tasked with the actual sending of data, it converts bits from previous layers
into analog waves for sending and the other way around when receiving. Since layer 1
transfers bits via a physical medium, this is also where bit errors are introduced. There is
no single channel today that is error free and there will most likely never exist a channel
that can guarantee correctness. This is important, since it is not error free, bit errors are
introduced. The robustness of the protocols are designed to detect errors, but in the cases
where a protocol is not robust enough, the entire infrastructure of the stack is threatened.
Errors must be detected and corrected (either by resending packet or correcting corrupt
bits), else unexpected behaviours are introduced. Although some errors can be detected,
and corrected, in Layer 1, most of the high level error detection is made further up in the
stack. The normal procedure is to detect/correct errors in L1, detect errors in L2 and have
further detection and retransmission in L4.

2.3 Internet of Things
IoT is an umbrella term for small embedded devices that are connected to the internet.
IoT devices are increasingly applied in industrial applications to increase efficiency and
reduce waste. IoT devices are fairly simple, with low complexity in its data collection.

An IoT device is generally supposed to be able to sustain itself for a period of 5-10
years without maintenance. The lifetime limitations of an IoT device is mostly dependent
on the battery and the operational time is solely based on the energy efficiency of the
device. The most battery consuming part of the IoT device is the radio module. It has a
relatively large energy consumption compared to the IoT devices other processes [8]. To
minimize the energy consumption of the IoT device the time the radio module is turned
on should be as small as possible. One way to optimize this would be to minimize the
transmission payload the radio module needs to transmit and thereby minimize the energy
consumption of the radio module.

2.3.1 Narrowband IoT - NB-IoT
NB-IoT is a Low Powered Wide Area Network (LPWAN) technology standard devel-
oped by 3GPP. These NB-IoT devices operate in the medium frequency band, 300 kHz
to 3MHz. The NB-IoT standard is now considered "completely developed", meaning
no additional functionality may be added, mainly since 3GPP froze the project in June
2016 [15]. This means that only minor corrections and essential backwards compati-
bility changes will be allowed. The project was frozen with the specifications of Release
13 (LTE Advanced Pro), which in turn allows NB-IoT to implement and use technologies
up until 5G, but does not include 5G. Although NB-IoT may use a couple of technolo-
gies used in Pre-5G, the data is still sent on medium frequency bands. This ensures two
major factors, communication can be long-range and uses less power compared to a high
frequency band. NB-IoT is thus better suited for the task of self sustainability for a long
period of time as well as frequent long-range data transfers.
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Figure 2.8: The NB-IoT energy cycle

2.3.2 Communication cycle
The LTE stack uses different methods for communication than regular internet does. Since
devices are not connected via a physical static link, power has to be devoted to find an-
tennas, set up a connection before data can be sent or received. Depending on what kind
of device, set-up may take a couple of milliseconds up to minutes. This is under the as-
sumption that an antenna is within reach, else set-up time will have an infinite limit.

A device can, simplified, be in three different states; sleep, Receive (RX) and Trans-
mit (TX). In sleep, no communication is used. This does not imply the device is powered
down or is not in use, it only states that there are no need for communication at that time.
A device can remain in this state for years and will try to be in this state whenever trans-
mission or receiving of data is not needed. In RX, the device is set to listen. Parts of the
device are woken up and more power is devoted to receive packages. In TX the device
transmits data to the antenna. This part uses the most amount of power. The device will
always try to be in the lowest possible state. This does mean that it will only be in TX
when it is sending. If it is not finished with the transmission but can’t transmit instanta-
neously, it will revert to the RX state and save energy [8].

Figure 2.8 shows a typical communication cycle. The device wakes up from sleep
mode, set up the connection, asks if it is able to transmit. When it receives the go ahead it
will send its data. After it has sent the data, it may continue to stay in RX mode ready to
receive data or return to deep sleep as seen in the Figure 2.8. After a timeout the device
will go back to sleep mode. This does mean that there is only one part that can be affected
by RoHC, the second TX part.

2.4 Header Compression
Header compression of protocol headers is made possible due to redundancy of infor-
mation in the header fields, both within the same package and in consecutive packages
belonging to the same data stream. Header compression assumes the redundant data
fields are recovered at the decompressor or endpoint of the link and stored in a con-
text. The compressor and the decompressor update their respective contexts upon certain,
not necessarily synchronized, events. Disruptive events may lead to inconsistencies in the
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decompressor known as context damage, which in turn may cause incorrect decompres-
sion. A successful Robust Header Compression scheme needs mechanisms to minimize
the possibility of context damage in combination with mechanisms for context repair if a
failure were to arise [3].

2.4.1 History of Header compression
Before RoHC was created and implemented, more primitive solutions were in place to
help with what was then modern technologies and their limitations. Compressed TCP has
its background in the late 20th century. The internet was on the rise, personal computers
became increasingly more powerful and moved into people’s homes. This quick expan-
sion of the internet proved to be a challenge, a complex problem of the time [6]. Problems
that are hard to fathom today when our phones have more computational capacity than
all computers used at the moon landing 1969 [4] and we have connection speeds that are
rapidly increasing [7]. Compressed Transport Control Protocol (CTCP) is looking to help
keep headers of TCP down and is a predecessor to RoHC, born from an earlier protocol,
Thinwire-II [2]. Thinwire-II was a protocol that began addressing overhead issues, or
rather the problem with sending a lot of unnecessary data when updating a tiny segment.
Depending on the field of work, this can absolutely be necessary, but not in a computer
interaction setting. Thinwire-II was a protocol developed 1984, when connections often
sent characters at a time. That did not cut it when CTCP came around 1990, when bulk
data was sent more often. Personal computers left the iterative ’terminal’ and old pro-
tocols like Telnet and Thinwire-II became redundant when internet speeds increased and
new modern protocols like File Transfer Protocol (FTP) began sending bulk data. This
did however come with different, more complex problems. During this period, conges-
tion was a real threat and with increasing traffic the problems got worse. For reference,
during this period of time, network connections had a transmission rate of 300 - 19.200
bps compared to some areas today where we have 1 Gbps. Thus, every byte that did not
have to be sent was a victory.

CTCP is a protocol that can only be used for TCP/IP, a protocol suite that the internet
does rely heavily on. It is also a protocol used to provide a reliable transmission of data
over an unreliable communication line. One of CTCP’s problems are; "All error detection
is based on redundancy yet compression has squeezed out almost all the redundancy in
the TCP and IP headers. In other words, the decompresser will happily turn random line
noise into a perfectly valid TCP encapsulated IP packet." [6].

When communication ramped up, more robust solutions were needed. Robust Header
compression was thus introduced 2001 [3]. Much of its work is based on CTCP, with cer-
tain key differences; it provides a more robust error detection scheme and it can compress
UDP, RTP and many other protocols. Its task is to further remedy the same problems that
CTCP provided a solution for, with even greater efficiency. To help keep congestion in
Local Area Network (LAN)’s down by removing overhead in packages.
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Chapter 3
Theory

3.1 Overview of RoHC
RoHC is a protocol that builds on having two state machines that operates within the same
local network. The two state machines are located at the network boundary respectively at
the client. The client state machine initiates a communication context by sending an
Initialization & Refresh (IR) or Initialization & Refresh + Dynamic chain (IR_DYN).
These messages are carrying the static fields in the protocol headers, fields that will remain
the same throughout the context. This is called the static_chain. The dynamic fields are
supplied in case of a IR_DYN message and denoted the dynamic_chain. These fields may
change at spuriously throughout the communications context. When the state machine
at the network boundary has received both the static and dynamic parts of the package
stream it can recreate the original header and pass along the payload over the network
boundary.

The State machines has three operational modes:
Unidirectional Mode (U-Mode), Bidirectional Optimistic Mode (O-Mode), and Bidirec-
tional Reliable Mode (R-Mode). Each mode has its own objective, the U-Mode are
utilised where there is no feedback channel or where feedback are unwanted. O-Mode
and U-Mode are very similar in terms of operation, the key difference is that the O-Mode
receives feedback irregular to keep the state machines up to date with each other. R-Mode
on the other hand operates much like TCP and expects continuous feedback and from the
state machine at the network boundary which grantees delivery and successful decom-
pression at the network boundary. In Section 3.2 one can read a more detailed description
of the modes and their strength and weaknesses.

All modes share the same set of states: IR, First Order Compression (FO), and Second
Order Compression (SO). Each state symbolizes a level of compression. The IR state
indicates that the connection is either not initialized or that the compressor is not confident
that the decompressor has the correct static information. FO indicates that the compressor
believes that the decompressor has received the static context correctly. The compressor
then sends packages consistent of the dynamic fields of the original protocol header(s) and
payload to the decompressor. Before the dynamic and static data has been correctly parsed
by the decompressor it cannot reconstruct the original protocol header and thereby not
relay the data across the network boundary. If the compressor believes that both the static
and dynamic fields has been received and stored correctly by the decompressor it ascends
to SO. In SO the compressor sends a minimal header and data to the decompressor. The
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SO may update dynamic fields or just relay data to be passed across the network boundary.
The SO state are what separates U and O-Mode from R-Mode. In U and O-Mode the

SO packages look very similar but in R-Mode more control data needs to be transmitted to
the decompressor in order to assure delivery of the payload. A more detailed explanation
can be found in Section 3.3.

As can be seen in Figure 3.1 the compressor starts by receiving an IP package from
PDCP to relay to the decompressor at the network boundary. Based on the current mode
and state it passes a set of different phases to compress the package before sending it to
lower layers which are responsible for sending the data to the decompressor at the network
boundary.

Until now we have mostly discussed the compressor, the decompressor is much sim-
ilar to the compressor since it mostly follows the same set of operations to unpack and
verify the correctness of the package. If you compare the Figures 3.1 and 3.2 you will no-
tice the way they differ; the decompressor is clueless of what the compressor has decided
to send, so in every given instance it has to be prepared to parse any given possible pack-
age. The relationship between the compressor and decompressor is much like a dance
where the compressor leads and the decompressor follows, however the decompressor
will not follow if the move is incorrect. This may result in the compressor dancing on
its own and the decompressor is stationary until the compressor realizes its mistake and
invites its counterpart to join again.

Both the compressor and decompressor states are revisited in Section 3.3.2 and Sec-
tion 3.3.1 respectively.
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3.2 Modes of Operation
As can be viewed in Figure 3.3 RoHC implements three modes of operation.

• U-Mode

• O-Mode

• R-Mode

The modes of operation are designed with different link conditions in mind. When a

Figure 3.3: RoHC Mode of operation

connection is established between the compressor and decompressor both compressor and
decompressor are set in Unidirectional Mode and Initialization and Refresh state. From
there the decompressor may send feedback requesting a change in the operational mode
and in the progress give feedback of the decompressors current state by sending an ACK,
acknowledgment, NACK, negative acknowledgment, or static-NACK. The compressor
and decompressor may operate in different states as long as the decompressor is in the
equivalent or higher state than the compressor. This adds to the reliability of compression
protocol. This allows the compressor and decompressor operate without any feedback as
is done in Unidirectional Mode.

3.2.1 Unidirectional Mode
Unidirectional mode (U-Mode) is the most basic mode, it supports but does not require
feedback from the decompressor. U-Mode is utilised where the link does not support
feedback messages.

U-Mode utilises timeouts or package patterns to move between states since it does
not require to get frequent feedback messages from the decompressor. The timeouts and
movements are not specified by the standard and are up to the developers of the RoHC
framework. This does not provide optimal decompression between the compressor and
decompressor, the decompressor can stay in the fully compressed state through out the
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connection period but since it has no means of communicating this to the compressor
the compressor will continue in its movement pattern and therefore refreshing contexts
where it was not necessary.

To improve performance for the U-Mode over a link that have a feedback channel
the decompressor may send an acknowledgement when a decompression succeeds. This
allows the compressor to reduce or eliminate the initialization & refresh messages. The
feedback in U-Mode may be sent by the decompressor at any rate but continuously.

To use the dance analogy, the compressor and decompressor will dance accordingly
but if the decompressor fails to compress an IR, IR_DYN, or DYN message the compres-
sor is dancing on its own and the data is not relayed over the network boundary. In the
case of IP/UDP the data is lost before it has left the local network.

3.2.2 Bidirectional Optimistic Mode
O-Mode is initiated by a feedback message from the decompressor. O-Mode compared to
U-Mode uses a feedback channel. The feedback channel are used for error recovery and,
optionally, for acknowledgments of context updates from the decompressor to compres-
sor. O-Mode does not utilises periodical refreshes and will always operate at the highest
possible compression rate. O-Mode aims to maximize the compression rate and use as
few feedback messages as possible. It reduces the number of damaged headers delivered
to the upper layers due to residual errors or context damage.

Lets revert to the dance analogy again. In O-Mode the compressor and decompressor
dance more in sync. The compressor dances nervously but is reassured by the infrequent
nods or disapproving looks from the decompressor if it misses a step. The dance is there-
fore less likely to end in the compressor dancing on its own.

3.2.3 Bidirectional Reliable Mode
Just as O-Mode Bidirectional Reliable Mode, R-Mode, is initialized by a feedback mes-
sage by the decompressor. However it differs significantly from both U and O-Mode since
its intensive use of feedback messages and a stricter logic at both the compressor and
decompressor that prevents context damaged unless hit with very high residual bit error
rates. Feedback messages are sent to acknowledge all context updates, including the se-
quence number. It is said that not all messages in R-Mode updates a dynamic part in the
RFCs, however this is not true for 3GPP since it does not support segmentation.

In the dance of R-Mode the decompressor and compressor are dancing without ever
looking away from each other, each step is met with a friendly nod and each misstep is
met with a smirk in the counterparts face. All steps are executed perfectly and all the
data is guaranteed to be relayed across the networks boundary. It is important to note that
it does not guarantee the delivery to the end node only that the data is correctly relayed
across the network boundary.

3.3 States
The compressor and decompressor have three states that mirrors each other. In Image 3.4
one can observe the three different states and how the compression efficiency is increased
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in the higher states and the header size is increased in the lower states. Figure 3.4 also
shows the relationship between the states, where each state is built on the lower ones.
If a lower state fails, the higher states cannot convey data across the network boundary.
The two state machines are working along side each other and only allows packages to be

Figure 3.4: RoHC State Hierarchy

decompressed if the decompressors state machine is in an equal or higher state than the
corresponding compressors state. The compressor and decompressor do not need to have
a two way communications channel between them to operate, see 3.2.1.

The compressor and decompressor may update their state machines when they send
or receive:

• An Initialization & refresh package - IR

• An Initialization & refresh package + Dynamic - IR_DYN

• A Dynamic Initialization & refresh package - DYN

• A Feedback message

• An Acknowledgment or Negative Acknowledgment

3.3.1 decompressor States
The decompressor states can be viewed in the Figure 3.5. The images describes each
state and how each correctly received package affects the decompressors state, e.g. a
IR_DYN message if parsed correctly moves the decompressors state to Full Context. As
stated previously, the decompressor always operates in the highest possible state.

No context - NC
Before the decompressor is initialized it is said to be in the No context state. When the
decompressor receives an IR or IR_DYN message it is then moved to either Static context
state or full context state. The decompressor may be in the NC-state during two cases, if
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the Context Identifier (CID) is not in use or if the decompressor has repeatedly failed to
decompress the incoming packages from the compressor. It then sends a Static-Nack if a
feedback channel is available and waits for a IR/IR_DYN message to refresh the context,
all subsequent packages that are not refreshing the context are discarded.

Static context- SC
The decompressor moves to SC state when the decompressor is confident the static vari-
ables are correct and the dynamic variables either hasn’t been initialized or the decompres-
sor has failed to decompress or send packages across the network boundary repeatedly.
When the decompressor is in the static context state it requires a full DYN or IR_DYN
message from the compressor to move up to a full context.

Full Context - FC
Full Context is when the decompressor is confident that the static and the dynamic fields
are correct and it has successfully decompressed packages.

This is the highest decompressor state, the decompressor and compressor do not nec-
essarily need to be in the corresponding state as long as the compressor is in a lower or
equal state as the decompressor, the decompressor will be able to decompress the pack-
ages. If a mismatch between the compressor and decompressor or the decompressor has
repeatedly failed to decompress messages the context is considered damaged. Context
damage is going to be further described in 3.7.

NC SC FC

IR_DYN

IR

CRC failure

DYN

success

Context damage

Figure 3.5: decompressors State transition mechanism

3.3.2 Compressor States
The compressor states are a bit different than the decompressors states. The compres-
sor does not have to work at the highest compression rate and it is not defined how the
compressor changes its state. The compressor may change its state according to negative
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acknowledgment or acknowledgment from the decompressor if both compressor and de-
compressor has negotiated to operate in O/R-mode. If it operates in U-Mode it may work
according to a timeout routine or a predefined package movement pattern. It is up to the
developers of the compressor to decide what best suites the compressors use-case. In the
Figure 3.6 one can see how and why the compressor may change its state.

In U-Mode it is the compressor that dictates the pace and the compression rate while
the decompressor decides if the data should relay across the network boundary. Whilst in
O- or R-Mode the decompressor dictates both the compression rate and the correctness of
the context.

Initialization & Refresh

Initialization and refresh, IR, is a state which initiates a communication channel between
the compressor and decompressor. The package sent to Initialize the channel may be a
IR_DYN or a pure IR package. A pure IR package only contains the contexts static_chain,
see 3.4.1, wheres the IR_DYN contains both the contexts static and dynamic_chain, see
3.4.2. The static_chain is the static variables of a package stream. The static variables
are protocol specific and are specified according to each individual protocol. The dy-
namic_chain contains variables that may at random change during the package stream,
these variables are also protocol specific.

The IR message starts or resets a package stream. It delivers redundant information
to the decompressor which will later use this to produce a package that can be routed
between network boundaries.

First Order

The First order compression, FO, is a package that consists of only the type indication,
dynamic_chain, and the payload. It will assume the decompressor have the static chain
in its context. This will allow the decompressor to create correct packages that may be
routed between network boundaries. We have chosen to refer this type of package as the
DYN package, this to separate the IR and IR with the dynamic part (IR_DYN) packages
to make it easier to distinguish the difference between states and its movement patterns.

The compressor moves to the FO state whenever the headers of the package stream
changes its dynamic parts. It stays in FO until it is confident that the decompressor has
received and updated the new dynamic variables.

Second Order

The second order compression, SO, indicates that the compressor assumes that the de-
compressor has correct static and dynamic information. It will then send the minimal
required information to the decompressor and thereby achieve the highest possible com-
pression rate for the packages it is carrying.

When the compressor is in SO it has a set of packages it may send to the decompressor
depending on the current state of the package stream as a whole. The packages sent
are based on the current mode and the options in the static and dynamic_chain. The sent
packages contains at least the CID and a Sequence Number, SN. A variety of packages
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may be sent in the SO state and the variables that may be sent are depending on the
protocol in use.

Figure 3.6: The possible movement patterns by the compressor

3.4 Package structures
A RoHC package may contain a variable amount of segments. A RoHC package has to
contain at least a header segment or a feedback segment. Figure 3.7 tries to show the
RoHC segment structure. As seen in Figure 3.7 a package may start with zero or more
padding octets, it is followed by zero or more feedback segments. The feedback seg-
ment(s) and the package header are semi optional, each RoHC package needs to contain
at least a feedback segment or a package header.

RoHC uses numerous packages to update its context, convey data to the counterpart,
or initialize a context. The packages available can be placed in one of the following
groups:

• Initialization & Refresh, see 3.4.1

• First Order, see 3.4.2

• Second Order, see 3.4.3

• Feedback, see 3.8

The vast majority of package headers are found in the Second Order compression.
The headers found in Initialization & Refresh and First Order are packages that updates
or initializes the whole static and, or dynamic chain. While the packages in the second
order is more specialized to maintain the maximum compression rate. The Second Order
package headers may update parts of the dynamic context by using specialized packages.
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Figure 3.7: A visualization of the RoHC package segments

Feedback headers are a bit different from the other, they allow for extensions. The feed-
back extensions aims to convey the state of the decompressor to the compressor. Detailed
information regarding feedback can be found in Section 3.8.

The most basic packages consists of CID, type indication, and body. A CID where
0 <CID < 16 is called a small-CID. The header field that carries the CID information in
a context that uses small-CID is called ADD-CID. The ADD-CID field can be viewed in
the Figure 3.8, the first byte represents the ADD-CID octet. If CID > 15 then the CID
is placed independently in one or two bytes after the type indication byte and the CID in
the ADD-CID octet is set to 0. The ADD-CID octet with the CID set to zero is called the
default padding.

3.4.1 Initialization & Refresh
Initialization and refresh, IR, is a package displayed in the Figure 3.9, which updates
or initializes a context between the compressor and decompressor. The IR messages is
responsible for updating or initializing the static fields in the current context e.g. the
source and destination address in anIP package.

The IR-package can also update the dynamic parts of an context, this is indicated
when the type indication field is set to IR and ends with a high (1) bit. This indicates that
the IR messages contains the static fields followed by the dynamic fields. If there is more
data left of the message the rest is considered payload. The static and dynamic fields are
profile specific for the protocol(s) the RoHC is compressing.

Static chain

The static_chain is profile specific information that contains the static fields of a package
stream. The static fields do not change through out the package stream. Figure 3.10 shows
the static_chain for the UDP/IP profile (0x02).
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Figure 3.8: A pseudo package with a small CID

3.4.2 First-Order compression
FO is the state where the dynamic parts of the context is initialized or updated. Figure 3.11
displays the DYN messages composition. The compressor assumes that the static parts
already have been saved in the decompressors context which lets the compressor remove
the static part from the message header. The name First-Order compression comes from
the fact that it is the stage where information may be left out from the package header. If
you compare the Figures 3.9 and 3.11 you will notice that the static_chain is no longer part
of the message header. A quick disclaimer: the IR message does not include the dynamic
chain but the IR message on its own is not able to convey data over a network boundary, a
IR_DYN consists of both static and dynamic context and has the ability to transport data
across the network boundary. If the decompressor successfully decompresses the DYN
package the decompressor is said to be in FC (Full context).

Dynamic chain

The dynamic_chain contains the dynamic fields of the profile specific headers. The dy-
namic fields are frequently changing in the original header and may change spuriously
throughout the communication context. In the Figure 3.12 one can see the profile specific
data for IP/UDP (0x02) that is stored in the dynamic_chain. The dynamic_chain may be
updated at any time which has led the RoHC framework to allow second order packages
to update dynamic variables to maximize the compression rate.
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3.4.3 Second-Order compression
Second-order compression, SO, is the highest compression state and will assume that the
decompressor context has all the necessary information to send the package payload to its
indented destination. Package headers may be specific for the mode or can be used cross
modes.

Some of the package headers may indicate a high(1) bit which signals the presence
of an extension to the current header which updates some of the contexts dynamic infor-
mation.

Type 0-package
The type 0-package can be viewed in Figure 3.13. The UO-0 package is used to achieve
maximum compression. The package streams have converged to a pattern which makes,
assuming the decompressor has the correct static and dynamic chains, all dynamic and
static fields redundant.

Type 1&2-packages
The type 1&2-packages are used to update some of the contexts dynamic parts if the
package stream diverges from its previous state. In the Figure 3.14 the UO-1 package
structure is shown. These packages supply the decompressor with the dynamic fields
which have diverged from the dynamic chain. If the dynamic fields have diverged too
much from the current package stream the compressor will have to send a full DYN_MSG
to update the decompressors dynamic context.
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Figure 3.9: An IR message
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Figure 3.10: The static_chain for UDP/IP (profile 0x02)
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Figure 3.11: An DYN message
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Figure 3.12: The dynamic chain for IP/UDP (profile 0x02)
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Figure 3.13: A UO-0 header

Figure 3.14: A UO-1 header
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3.5 RoHC Operation Assumptions
RoHC operates under a set of assumptions:

• Context identifier - Each package stream has to be associated with an context iden-
tifier. The context identifier maps the static and dynamic fields between the com-
pressor and decompressor. This allows for more than one package stream per unit.

• No package reordering - Packages may not be reordered since that would disrupt
the state-machines in the compressor and decompressor which in turn would lead
to high error rates and the compression factor to be lost.

• The packet type is provided in the compressed header.

• No package duplication - Package duplication would just as package reordering
cause a failure in the state-machines.

• The package length is provided by the link layer - To achieve maximum decom-
pression between compressor and decompressor RoHC expects the link layer to
declare the package size.

• The compression negotiation is provided by the link layer - The configuration vari-
ables negotiated between the compressor and decompressor have to be negotiated
by the link layer and provided to the RoHC framework.

• The link layer must also provide package framing that makes it possible to distin-
guish frame boundaries and individual packages.

Since it is only the sender and receiver on the communication channel, each packet
stream has to be linked to a context identifier, CID, the channel between compressor and
decompressor has to maintain the packet ordering. RoHC needs a link-layer protocol to
negotiate a set of configuration variables. In the case of NB-IoT it is the PDCP protocol
that provides the configuration variables. RoHC operates as a sub-protocol to PDCP since
it is the PDCP protocol that is responsible for header compression in the LTE stack.

3.6 Configuration parameters
To configure RoHC the lower layers needs to provide some data to the RoHC frame-
work. These variables can be seen in 3.15. The two variables of interest in NB-IoT are

• Supported profiles

• MAX_CID - Defaults to 15 but can be as high as 216 −1.

• Maximum Reconstructed Reception Unit (MRRU)

• FEEDBACK_FOR

Figure 3.15: Configuration variables



36 Theory

the MAX_CID and the set of supported profiles, MRRU and FEEDBACK_FOR are not
applicable in NB-IoT [1].

RoHC supports a set of profiles specified in [3], however basestations are not forced to
support them all, e.g. a basesattion may only choose to support 0x01 which is theIP-UDP
compression scheme. If the basestation does not support the devices supported profiles
header compression between PDCP has to bypass the header compression state and send
full headers to the basestation.

The MAX_CID defines the maximum active channels on the connection between
the compressor and decompressor, it defaults to 15. A MAX_CID of 15(0xF) enables
15 concurrent communication channels between the compressor and decompressor since
CID: 0 may not be used as a identifier [3].

3.7 Context Damage
Context damage arises when the compressor is in a higher state than the decompressor or
if the decompressor has repeatedly failed to decompress messages from the compressor.
The context may be repaired by an IR, IR_DYN or, DYN message depending on the
severity of the damage.

When a context damage arises the decompressor may send a feedback message, if
feedback is possible, and request a IR or DYN message to refresh the session. If the
decompressor decides that the full session is damaged it may send a static_Nack which
request a reinitialisation of the current context.

If feedback is not possible the decompressor will discard all packages until its context
has been deemed repaired by the decompressor.

3.8 Feedback
A RoHC feedback element is the first segment in a RoHC message. The feedback element
begins with a feedback type octet. The feedback octet is built by 4 static bits signaling that
the following segment is a feedback element, followed by a 3 bit field that declares the
size of the following feedback data in bytes. If the size segment is 0 the following byte
describes the size of the feedback data. The feedback data is profile-specific and includes
CID information.

The feedback data starts with the declaration of the CID; if small CID is used an
Add-CID octet or if large CID is used a large CID field of 1-2 bytes starts the package.
The following data is a feedback, it may be one of two feedback packages. If the size of
the feedback data is < 2 the feedback data is of type 1. Type 1 feedback data includes
only one byte with the sequence number. This is an ACK, in order to send a NACK or
static-NACK the type 2 package must be used.

If the feedback data size is greater than 1 it is a type 2 package. The type 2 package
starts with a 2 bit field which stores an Acktype. The Acktype is a value 0 ≤ x ≤ 2, if the
Acktype is 3 the package must be discarded. It is followed by a 2 bit mode field which
indicates the decompressors current mode and the mode field is followed by a sequence
number.
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Figure 3.16: Transition from U to O-Mode

3.9 Mode transition
RoHC is always initialized in U-Mode. The decompressor may at any moment decide
to initiate a mode transition between the state machines. A mode transition is initiated
by a feedback message or segment from the decompressor carrying a feedback type-2
feedback header. The feedback type-2 segment has to include a CRC to be eligible to
initiate a change in mode.

As can be seen in the Figure 3.3 all modes are reachable from any given mode. The
transition mechanisms differers between modes which can be viewed in 3.16. The com-
pressor only needs to decompress a single feedback segment to transition from U-Mode
to O-Mode. The feedback segment has its mode set to O mode. If the feedback segments
checksum is correct the decompressor will update the context to O-Mode. If the segments
checksum is incorrect the package is discarded and the compressor will stay in U-Mode.
The decompressor will continue to work in O-Mode since U- and O-Mode share the same
package structure. The device will update its mode to O-Mode when it successfully de-
compresses a Feedback element from the decompressor.

In all other mode-transfers the compressor and decompressor makes a three way
handshake. The three-way handshake can be viewed in Figure 3.17. It is initiated by
a feedback segment from the decompressor. The compressor then continues to send
IR/IR_DYN/DYN or UOR-2 packages until the decompressor has successfully decom-
pressed a package. The decompressor then follows with an ACK with the successfully
decompressed packages sequence number. When the compressor verifies the ACK sent
from the decompressor it updates its mode to the new mode. When the decompressor yet
again successfully parses a package both compressor and decompressor has updated its
mode to the negotiated mode.
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Figure 3.17: The generic three-way handshake

3.10 Robustness

3.10.1 Definition

Robustness is a relative term. Oxford dictionary defines robustness as "The ability to
withstand or overcome adverse conditions or rigorous testing". In turn, this definition
does translate to robustness within computer science as well but does not explain the
term.

In computer science robustness is the ability for an executable or system to cope
with errors during runtime. These errors include, but are not limited to, erroneous input,
transmission error or external forces (e.g. power cuts). As Robustness is an umbrella term
for robust systems within all subcategories, robustness within computer science merely
adds another explanatory level. There exists robust networks, robust hardware, robust
programming and of course robust header compression. The original definition does not
change between different levels, but each level adds their own abstraction and explains
it a bit differently. Robust programming much refers to user/programmer interaction,
paranoia and dangerous implementations while robust networking refers to structures,
unexpected situations such as a node disappearing or a huge load of incoming traffic.

Even though the further down you go the more "rules" are applied, each layer has the
same fundamental idea; handle unexpected errors and events in such a way that it is easy
to recover or simply continue without being affected.
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3.10.2 Robustness in RoHC
In the RoHC scheme, robustness implies two things; provide a high compression rate with
either improved or at least the same error detection as the uncompressed protocols does
and provide a method to recover should errors occur.

Generally, RoHC does comply with the definition of Robustness. Is uses CRC as a
method of error detection, regardless of mode. The main difference between modes lies
in error recovery. Since not all modes utilises feedback, retransmission is used based on
count/timeout rather than on request.

Error detection
As stated, RoHC uses CRC as the main error detection scheme. Even though checksum is
more commonly used in higher layers, CRC seem to provide a better error detection rate
in certain cases vs checksum. [12] In RoHC, CRC is used to detect two types of errors;
transmission errors and context damage. Firstly, CRC is computed over the static part and
the dynamic part separately. This increases CPU efficiency in RoHC by not recalculating
CRC over bits that never change. Note, the static and dynamic parts are calculated in the
order they appear in the header and the CRC is calculated over the complete uncompressed
header. Given an IR package, the CRC can be used to detect transmission errors in the
header. Usually there are more bits in other layers that also provides some error detection
of transmissions, but since memory and buffer errors can occur, further error detection
is highly recommended. When compressed packages start to arrive, the decompressor
can recreate the original header, verify its integrity with the CRC and detect any context
damage. Depending on mode and specific rule set, certain number of package must fail
the context check before the decompressor reacts.

RoHC uses three different CRC, 3-bit, 7-bit and 8-bit. Each have their own use and
all depend on what state, mode and package is being sent. Depending on what profile is
being used (TCP, UDP or RTP) and in what state, RoHC can accept to also transmit that
protocols checksum increasing error detection but decreasing the compression rate. As
an example, in theIP/UDP scheme, an IR_DYN does include a CRC and checksum from
theIP header.

Recovery methods
Recovery methods differ heavily between different modes. One can state that the robust-
ness differ largely depending on mode. U-Mode does provide a recovery method but is
also the mode that can cause immense package drops. O-Mode and R-mode utilise feed-
back and may limit how many packages are dropped.

U-Modes recovery method can hardly be called a recovery method. Mainly since it
does not recognize that an error has occurred and only follows a pre-specified pattern.
Such a pattern might be sending ten IR_DYN packages, followed by one FO package
and one SO package on repeat. The compressor does not know if the decompressor have
context damage, but since it is retransmitting the initialisation package so often, there
is a high probability of recovery without loosing a large amount of packages. If this
pattern would consists of only one IR_DYN followed by ten FO and 200 SO, the first
package must arrive without damage else it is guaranteed that a high amount of packages
will be lost before any attempt at recovery is made. Thus, balancing compression rate
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and recovery packages is highly important to not lose packages or waste compression.
Note, 210 packages depending on context can do immense damage in some cases where
1 package is transmitted each day compared to VoIP where a huge amount of packages
can be transmitted every second.

On the other hand, O-Mode and R-Mode both uses feedback which in turn means that
the compressor can react to what the decompressor needs. R-Mode is a very strict mode
and at the first hint of error, the decompressor will ask the compressor to resend context.
This does increase robustness a lot. O-Mode is somewhere in between, meaning it does
provide feedback but does not require the same robustness as R-Mode. This does mean it
can maintain a higher compression rate while risking some package drops.

All modes does have some error recovery method, although very varied. Depending
on the requirements, not all modes are optimal. While robustness is important, other
aspects may indeed be more important. Thus, RoHC can live up to its name fully with
R-Mode and really be a robust protocol while on the other hand RoHC can maintain some
robustness and help decrease network congestion.
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Method

To evaluate the RoHC frameworks potential for IoT devices, the experiments are con-
ducted with an implementation of RoHC transporting IP/UDP (RoHC profile 0x02).

The Section will continue with a brief description of the frameworks implementation
and continue to describe the tests that were performed and what data to be examined.

4.1 Design Choices
The RoHC implementation is based on two parts. A client-server architecture that encap-
sulates the RoHC framework and the RoHC framework itself. Both are written in C. The
framework were implemented in C since it gives a clearer result of the experiments and
its memory efficiency. C does not have a memory overhead and source files will be com-
piled into an executable file where the size is clearly defined.

The main design pattern in the framework is the strategy pattern since the implemen-
tation only supports a single profile at the same time. The implementation has 3 sets of
compressors and decompressors that are responsible for decompressing/compressing data
according to one of the three states. When a mode transition is completed a pointer to
the compressor/decompressor functions is changed in the RoHC context struct. In a way
the implementation is object oriented with an object at both the compressor and decom-
pressor. The choice of the object oriented approach came of the implementation of the
RoHC state machines and the option of using several parallel data streams, each stream
has its own context and requirements. Note that C is not a object oriented language but a
procedure oriented language and the wording of "object oriented approach" is figurative.

4.1.1 Framework
The RoHC framework was implemented with a strict modularity in mind. The architec-
ture consists of two main components.

• Generic RoHC mechanisms

• Profile specific code

There is a RoHC main program which exposes the compressor and decompressor to the
encapsulating program. The RoHC module needs to be initiated by an encapsulating
protocol or program. It requires a set of variables:
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• A pointer to a function/device-driver that is responsible for the data after it has
been compressed.

• A pointer to a function/device-driver that is responsible for the data after it has
been decompressed.

• The largest CID that may be used. (MAX_CID)

The program only supports one profile at a time, this is done during compile time to
minimize the executable file size. In our case this would be the UDP_IP(0x02) profile in
RoHC.

4.1.2 Data Structures
The only generic data structure is the rohc_context, our context example can be viewed
in the Figure 4.1. This is the object that represents the RoHC state machine. It holds the
specific data needed by the RoHC module to operate. The static and dynamic chains
are profile specific data structures that keeps track of the static and dynamic parts of
the profile specific header(s) which is used to reconstruct the compressed header in the
decompressor.

struct rohc_context {
uint8_t nbr_packages;
uint8_t mode_transition;
uint16_t CID;
uint16_t SN; // sequence number
uint32_t max_CID;
enum ROHC_STATE state;
enum ROHC_MODE mode;
enum ROHC_STATUS (*writeback)(uint8_t *data, uint16_t length);
enum ROHC_STATUS (*readback)(uint8_t *data, uint16_t length);
enum ROHC_STATUS (*compressor)(uint8_t *data, uint16_t length,

struct rohc_context *ctrl);
enum ROHC_STATUS (*decompressor)(uint8_t *data, uint16_t length,
struct rohc_context *ctrl);

struct static_chain s_chain;
struct dynamic_chain d_chain;
};

Figure 4.1: The RoHC_context structure

To minimize the branching factor of the RoHC module the specific compressor and
decompressor methods are used depending on the contexts current mode. This also makes
it easier to append supported profiles.

Memory Allocation Strategy

The RoHC framework operates on static arrays which makes it easy to calculate the mem-
ory requirements for the framework. The use of static memory compared to dynamic
memory allocations also increase the efficiency since dynamic memory allocation would
increase the time the CPU has to spend on searching for memory blocks large enough to
fit the requested memory space. However the static allocation does not always provide an
optimal allocation of space.
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4.1.3 Test framework
To test the RoHC framework we developed a client-server solution where the client rep-
resents a compressor and the server represents a basestation decompressor. Each scenario
starts with the compressor sending an IR/IR_DYN message to initiate the package stream.
Where the decompressor may, depending on the scenario, send feedback messages or just
sit passively and listen.

The server and client communicates over Unix domain socket, the Unix domain
socket works as a regular TCP socket with the limitation that the Unix domain socket
only operates within the same physical machine. The risk of residual bit errors in Unix
domain socket are so small that during our experiments we are not taking them into ac-
count and may therefore not test the framework in a perfect scenario.

4.2 Tests
4.2.1 Compression Efficiency
To determine the compression efficiency five possible scenarios were designed. All sce-
narios are based on data streams that consists of 200 packages.

• U-Mode with a movement pattern of (IR,FO,SO)(5,5,5)

• U-Mode with a movement pattern state of (IR,FO,SO)(2,5,10)

• U-Mode with a movement pattern of (IR,FO,SO)(1,2,20)

• O-Mode (sends feedback once each 5 package received.)

To measure the difference between compressed and uncompressed we’re going to count
the header size and full package size at the compressor and the data received at the de-
compressor. Then compare the difference between the uncompressed and compressed
data streams over time.

To be able to evaluate the compression ratio between the different states and modes
we are going to compare how each mode/state affects the compression ratio. To get a
comprehensive view of how RoHC changes the data-stream, we are going to measure:

• How does the compression rate change over time in a package stream.

• How much RoHC impact a package stream carrying 255 bytes of payload.

• The difference in total amount of transmitted data between a uncompressed data
stream and a RoHC package stream.

• How the payload size affects RoHCs impact on the transmission window.

• How different modes and states affect the compression rate

4.2.2 Effect of RoHC on Energy Consumption
In order to be able to measure the effects of RoHC on an IoT devices energy consumption
we are going to make our calculations based on the results of Amen Hussain’s Master
thesis: "Energy Consumption of Wireless IoT Nodes" [8]. In conjecture with the results
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from the Compression efficiency section we aim to see if RoHC may affect the overall
energy consumption of an IoT device.

We are interested in examining:

• Does RoHC affect the energy consumption during RX?

• Does RoHC affect the energy consumption during TX?

• Is there a significant decrease in energy consumption by using RoHC compared to
a uncompressed data stream?

4.2.3 Hardware acceleration
To get indications whether hardware acceleration may be a good suite for the RoHC
framework we are going to review and search for code that is computationally intensive
and see if it can be hardware accelerated. After making the assessment of computation-
ally heavy code we are going to cross check our results with research on the subject. In
conjecture with those results draw conclusions from the efficiency of hardware accelera-
tion in RoHC.

We are interested in answering:

• Is RoHC suitable for Hardware acceleration?

• Is a hardware accelerated implementation of RoHC suitable for an IoT device?

4.3 Assumptions and Limitations
• Since the experiments are conducted using Unix domain sockets the risk of residual

bit errors are negligible.

• Complete and correct package is sent to the RoHC module.

• Since the test environment uses Unix domain sockets to represent the lower layers
the test framework cannot reliably replicate an error prone link.
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Results

5.1 Compression Ratio
This Section presents findings regarding RoHC’s compression rate with IP/UDP pack-
ages. There are two different definitions of compression rate depending if there is a pay-
load present or not. Firstly, no payload is present which means compression rate is defined
as compressed vs uncompressed header. Secondly, a payload is present and distinguishes
how much difference header compression makes on an entire packet. The compression of
the header will give the effectiveness of the header compression scheme but when look-
ing at the compression rate of the package as a whole we will observe the impact of the
compression on the transmission time.

Figure 5.1 shows the package sizes of each header we have examined. One thing to
notice is the fact that even if a device only sends IR_DYN packages it will still outperform
regularIP/UDP packages.

Packet Relative size
IR + DYN ~103.5%
IP/UDP 100%
IR_DYN ~92.8 %
DYN ~39.2%
UO-0 ~7.1 %

Table 5.1: Header compression rate of different packages in relation
to IP/UDP
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Figure 5.1: Header sizes

In the Figure 5.2, we can see how our tests differ in the amount of header data that
has been transmitted. All RoHC data-streams originate with a full IR_DYN message
where the reference model sends full a IP/UDP header. Then all the data streams diverge
depending on the U-Modes movement pattern and the O-Mode depending on feedback
from the decompressor.

In Figure 5.2 one can see how the movement pattern affects the amount of header data
that is transmitted. The sum of header bytes in the movement pattern (IR,FO,SO)(5,5,5)
is seen to increase noticeably faster compared to the other U-Mode movement patterns.
This is due to the amount of IR and FO as well as the short package cycle. Because an IR
message contains thirteen times more header-data than a SO package and a FO package
contains five times more header-data than a SO package the sum increases rapidly. Each
change in the derivative of each data stream signals a state change in the compressor. The
DYN package contains 11 bytes of header-information and directly follows each IR_DYN
package. When the compressor state changes to SO the header size is decreased to two
bytes of payload, this is made possible by the redundancy in the static and dynamic header
fields. From the graph in Figure 5.2 shows that the UO-0 packages contribute to optimal
compression ratio.

From the data presented in Table 5.2 one can see that the header-data sent in O-Mode
is noticeably smaller than in U-Mode, this is due to the decompressor being able to give
feedback regarding the success or failure of decompression. This does however require
a feedback channel to the compressor, which U-Mode does not. Figure 5.2 presents the
tables metrics over time.

Note that the following sequence of movement pattern are not enforced by the RoHC
standard but of our own implementation, the U-Modes movement patterns are undefined
and at the developers choosing. The results however are not affected by how the com-
pressor transitions its state but the amount of packages sent in each state when looking
at the average header-payload of a state-cycle. The previous statement assumes that the
compressor starts in IR and passes through all states in its state-cycle.
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Figure 5.2: Sum of header bytes

Variant No. of bytes Size compared to reference
Reference 2800 100%
Umode 1/1/1 1280 45.7%
Umode 2/5/10 728 26.0%
Umode 1/2/20 400 14.3%
Omode 1/1/98 232 8.3%

Table 5.2: Sum of header bytes in numbers

From the graph in Figure 5.3 one can read out the effect RoHC has on the transmission
window based on the size of the payload. The effect of RoHC decreases exponentially
when the payload size increases.

This graph is the result of n-bytes payload sent with a UO-0 header compared to a
fullIP/UDP header with the same payload.

Figure 5.4 shows the compression rate of the header-payload over time. As seen pre-
viously in 5.2 O-Mode provides slightly better compression rate due to the information
exchange with the decompressor. However it is interesting to see that the graphs com-
pression rate has stabilized after 100 packages. This can be used to give an approximate
compression rate of each mode and movement pattern provided in this experiment. In the
graph we can easily distinguish when the compressor changes its state when the deriva-
tive changes drastically. Another thing to notice when looking at Figure 5.4, the shorter
the compressors state-cycle is, the worse the compressor performs.

As seen in Figure 5.3 the impact of RoHC on the transmission time is still significant.
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Figure 5.3: Space saving based on payload size

Figure 5.4: Compression rate of header data over time

The data provided in Figure 5.5 shows the effect of each Mode and movement pattern
on the total amount of transmission data during the transmission of 100 packages carrying
20 bytes of data. The difference in transmission data between the data-streams is shown
in the Table 5.3. The Table shows the impact of RoHC has on a data stream carrying 20-
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Figure 5.5: Difference in transmitted data with 20-bytes payload

bytes of payload/package. The O-Mode cuts the transmission payload to more than half
of the reference which is a significant decrease of the transmission time needed to send
the data.

Variant No. of bytes Size compared to reference
Reference 4800 100%
U-Mode 5/5/5 3320 69.2%
U-Mode 2/5/10 2728 56.8%
U-Mode 1/2/20 2400 50.0%
O-Mode 1/1/98 2232 46.5%
No header 2000 41.7%

Table 5.3: Sum of bytes in numbers, header and 20 bytes of data

5.2 Energy Efficiency
The results provided in Energy Consumption of Wireless IoT Nodes by Amen Hussain
shows the power consumption of a LoRa-WAN IoT device [8]. The results show that the
power consumption of the IoT device are closely related to the package size.

"During these experiments, we observed that the energy consumption of /.../
increases linearly with respect to packet size" [8].
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The results also show that the difference between pre- and post-radio transmission phases
are negligible when the payload is increased.

The author continues to measure the difference in energy consumption regarding the
size of the RX payload. The results were that the energy consumption during the RX
phase were not depending on the amount of bytes received. To quote the author:

"Tab. 4.6 proves that the frame size does not influence the energy consump-
tion of mDot in the process of receiving. The difference in the average
duration is around 1 ms which leads to a conclusion that after the receive
event the mDot processes the data and it might take more time to process
240 bytes as compared to 120 bytes" [8].

mDot in the quote above refers to the IoT device on which the energy measurements
were taken from.

The master thesis continues to provide data on how different scenarios affect the
energy consumption.

In chapter 6 through 8 the author presents data on the distribution of the energy con-
sumption of an IoT device with different sensors applied and different scenarios. In these
chapters the energy consumption from the TX phase is between 0% and ~28%.

In "NB-IoT System for M2M Communication" by Rapeepat Ratasuk et.al the authors
tried to calculate the battery life of an NB-IoT device given four scenarios.

Message size / message frequency Stand-alone (years) In-band (years)
50 Bytes / every other hour 2.6 2.4
200 Bytes / every other hour 1.2 1.2
50 Bytes / daily 18.0 16.8
200 Bytes / dayly 11.0 10.5

Table 5.4: Battery life of an NB-IoT device
[14]

These calculations have been made under the circumstances described in Table 5.4.
The calucaltions are based of the asumptions presented in Table 5.5

Power[mW]
Battery power during Tx (Assuming 44% PA efficiency) 543
Battery power for Rx 90
Battery power when idle but not in power save state 2.4
Battery power in power save state 0.015

Table 5.5: Power consumption assumptions used for the calculations
in Table 5.4

[14]

Based on the results in Section 5.1 the energy consumption could be reduced by
applying RoHC since the TX may have a large effect on the energy consumption. The
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energy consumption could be reduced by somewhere between 0% and 26% depending on
the payload size and the energy consumption pattern of the device itself.

5.3 Hardware Acceleration
The main components of the RoHC framework is the compressor and decompressor. The
compressor initializes the context between the compressor and decompressor and com-
presses the packages delivered by layer 3. The flowchart of the compression process can
be viewed in Figure 3.1. In the flowchart one can see the high branching factor from the
compressor, all packages have their own fields and each package sent in SO can include
an extension and there is a large number extensions that are profile specific.

The decompressor has a similar structure as the compressor and it can be viewed in
Figure 3.2. The main differences is that the decompressor decodes the encoded informa-
tion for verification or to extract dynamic data from a message header or extension.

One thing we observed during the review of the source code were the lack of com-
putational intensive functions. There are some encoding schemes such as the w-LSB and
CRC that may be counted as computational intensive. However CRC and w-LSB encod-
ing is not utilized on each package, both CRC and w-LSB encoding mechanisms are used
on some header extensions and in the base headers.

Both the compressor and decompressor has to utilize the corresponding CRC and w-
LSB functions to verify and update their dynamic context. These functions have negligi-
ble differences in computational complexity to the encoding mechanisms.

In the results of Hardware Acceleration of the Robust Header Compression (RoHC)
Algorithm [11] one can find data on the hardware requirements of a pure software, a
hardware-software, and a full hardware implementation of the RoHC framework. This
data is shown in Table 5.6. What is interesting with their result is the impressive through-
put and efficiency of the Full-Hardware implementation. The full hardware implementa-
tion is delivering a ~5100% increase in throughput for a ~230% increase in ALUT and
a ~51% increase in Flip-Flops. That is an incredible trade-off. The full hardware imple-
mentation is not surprisingly performing better in both CPU frequency and memory usage
as well as external memory usage.

Design Metrics SW HW-SW Full-HW
Throughput [Packages/second] 4716 6250 244 000
Power Consumption [Watt] - 1.5 0.9
#ALUT 2215 2578 7477
#Flip-Flops 1680 1680 2533
Frequency [MHz] 150 150 90
Memory [kB] 75 75 2
External memory bandwidth [kbps] 288 288 212.8

Table 5.6: Hardware metrics for RoHC implementation
[11]
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Chapter 6
Discussion

During the introduction we defined our research questions as follows:

• What is the compression rate of RoHC?

• Can RoHC increase the battery life of an IoT device?

• Can RoHC efficiently be implemented using hardware acceleration?

6.1 Compression Efficiency
Our initial results show that the compression rate of RoHC is largely based on how the
states are traversed, which mode is applied and, payload size.

Given the data shown in Figure 5.1 and Table 5.1 we can conclude that the RoHC
state greatly affect the compression rate, since IR-*, DYN and, (0-*,1-*,2-*) packages
are state specific. This is due to RoHC being a lossless compression protocol. The state-
transition is decided based on mode and the mode specific implementation. This implies
that the RoHC will have a variable compression rate between ~7 and ~93%.

As can be seen in Figure 5.2 even U-Mode with a short transition cycle has a signif-
icant impact on the total amount of header bytes for a closer inspection of the results see
the Table 5.2. We think it is interesting that the short transition cycle of the (n,n,n) tran-
sitions are equal or better than the counterparts. This is interesting to us since all of the
(n,n,n) should move to the same asymptotical value but the short state cycle (1,1,1) seems
to outperform the state cycles with a larger transition cycle. We believe this to be the re-
sult of the short state cycle diverging less from the asymptote.

As seen in the Figure 5.3, there is no negative effect of applying RoHC that we have
observed. One can argue against this statement: It is possible to send the static and dy-
namic chains separately in an IR and a DYN package repeatedly. Thereby get an increase
in transmitted bytes in regards to the original header. This is of course an edge case and
requires malicious intent, because of this we have chosen to ignore the fact.

However the effect of RoHC may vary depending on the payload size as can be seen
in 5.3. This shows that the space savings of RoHC will be most noticeable on payloads
below 75 Bytes. However this does not remove the effect of RoHC on larger payloads.
Even large payload sizes can benefit from RoHC, especially since the space saving is not
linear. This does imply that even with maximum payload size, RoHC does provide a small
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portion of space saving. Even though space saving is small, it does make a significant
impact over the course of a lifetime where every byte matters. Of course, RoHC will
become more effective when used with small payloads. Based on this result we think that
RoHC is best fit to operate in scenarios where a small payload is sent.

In order to have the best transmission rate, O-Mode is the way to go. As seen in Fig-
ure 5.2, a perfect O-Mode provides a larger compression ratio than U-Mode. However,
it increases network traffic by requiring feedback data. Since a feedback message is by a
variable length but at least 4 bytes, a perfect O-Mode will only transmit 2 bytes header but
will receive 4 bytes feedback usually, making it just as good from a network perspective as
U-Mode. Congestion may certainly have been a problem when RoHC was introduced,
but is hardly a limiting factor today. The limits are rather in the IoT device, whether
it can handle feedback or not based on preferences. As also seen in 5.2, U-Mode comes
in many variants and shapes. As aforementioned, the movement pattern is defined by the
implementer and is not set in the standard. This differs from O-Mode, where movements
are made based on feedback and are thus much less predictable. Nevertheless, movement
patterns have a considerable impact on the compression ratio. It is possible, by just con-
sidering transmitted data, that U-Mode will beat O-Mode, although the reason probably
being a bad connection. This does mean that O-Mode will have more transmitted data,
but a better success rate making it still favoured over U-Mode when possible.

Further, there is a large gap between different U-Mode movement patterns. This
is to be expected but comes with a trade-off; Robustness vs. compression. O-Mode
can maintain a good robustness while maintaining a good compression rate and instead
place more load on the network. U-Mode must choose, full compression, full robustness
or somewhere in between. What state to follow is as stated chosen by the implementer,
but is suitably chosen based on the reliability of the connection. As seen in Figure 5.3 a
U-Mode (∞,0,0) is still a viable route to go. Another viable route is (1,1,∞). As stated
in Section 3.10, the latter will have a great compression at the risk of loosing packages.
Note; consideration will have to be taking in regard to what is the risk of context damage
and how many packages can we afford to lose. If the risk of damage is low and there is a
high tolerance for errors, an aggressive movement pattern can be favourable. Preferably,
U-Mode starts of with a few IR_DYN packages to initialise the stream. After that, IR-
state does not have to be visited as often or as long, making the compression rate higher
than a regular (n,n,n) cycle.

6.2 Energy Efficiency
We initially thought that RoHC at best would have no to a small effect on the energy
efficiency of an IoT device. After reading [8] we started to suspect that RoHC might
actually have a significant impact on the battery length of an IoT device.

Due to the difference between Lora-WAN and NB-IoT these results are not equiv-
alent but they provide a ballpark Figure. The difference lies in the connection mecha-
nism between the device and a base station. Since LoraWAN and NB-IoT have different
connection mechanisms the setup time may vary which in turn would affect the energy
consumption. Another difference between LoraWAN and NB-IoT is the difference in the
carrier wave. NB-IoT is using a different base band than lora and operates with another
standard which uses a less energy consumption during TX.
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Since the energy consumption during the RX phase is not linear in the number of
bytes that is received, the energy consumption of the RX window is largely based on the
energy consumption of the IoT device itself. The energy consumption when sending data
is on the other hand depending on the amount of data that is transmitted, the difference in
energy consumption is due to the antenna. As we can see in the Figure 5.3 the data saving
of RoHC is correlated to the payload size, this is due to RoHC only compresses the header
data. This would make RoHC’s effect on the energy consumption vary depending on the
payload size where small payloads, around 0-75 Bytes, would prove a significant impact
on the energy consumption. Since the RX phase are largely dominated by the time it takes
the IoT-device to negotiate the connection to the base-station the energy consummation of
the RX window can be seen as a constant while the TX phase can be decreases by utilizing
RoHC.

As can be seen in Table 5.5 the power consumption of TX is roughly 6 times larger
than that of RX. Since we have not made any real experiments of the power consumption
pattern of a cellular IoT device we do not know how large portion of the energy consump-
tion the different phases are. We can only say that RoHC will affect the TX phase.

It is hard to estimate the effect of RoHC on cellular IoT-devices since the LTE-
network is using time slots to transfer data between the device and the base station.
The transmitter needs to fill the transmission window it was given by the base station.
If a message is smaller than the transmission window the device may choose to increase
the coding of the message which will increase the odds of a successful package delivery
and therefore decrease the risk of retransmission. This may also add to the decrease the
battery consumption when looking at the entire package stream while when looking at a
single package it may stay the same.

Based on the data provided in "NB-IoT System for M2M Communication" RoHC
would produce a decrease in energy consumption between ~0 and 26% depending on the
payload size, residual bit errors, transmission window etc.

If our results are verified it would be incredible news for all IoT hardware developers.
It would increase the devices lifespan and in doing so lessen the environmental footprint
of IoT in general.

6.3 Hardware Acceleration
As stated in the results the RoHC framework has very little computationally intensive
work. The only functions that can be viewed as computationally intensive are the CRC
calculations and the W-LSB encoding. However they are of complexity O(n) where n
denotes the number of bits in the package. As seen in Table 5.6 the increase in throughput
by a partial or full hardware acceleration of the RoHC framework is between 32.5% in
the HW-SW solution and 5074% in the full-HW solution. Despite the significant increase
in throughput it might not be worth the increase in chip-area or the implementation time
when looking at it from the device perspective. This is because the chip-area may be a
selling point for a hardware manufacturer. Another reason may be the use case of the
device, if the device only sends a small amount of payload and infrequent the use of a
hardware acceleration may be negligible. A cellular-IoT device which sends bursts of
packages may have a decrease in power consumption due to the increased throughput
and operational time. However we think the difference in energy consumption due to
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hardware acceleration is marginal at best.
It is hard for us to argue one way or the other regarding the application of hardware

accelerated RoHC in cellular IoT devices since our research and experience in this area is
limited. Because of our limited experience we choose to not express general recommen-
dations due to our belief that miss information is worse than the lack of information.

6.4 Time to market
RoHC is a fairly complex protocol. It is easy to understand the basic function, to remove
overhead. But, in order to make the protocol robust while supporting many underlying
protocols, it requires different solution with many edge cases to guarantee full compres-
sion of several protocols. In turn, this make it very complex to understand and difficult to
implement. During the implementation phase we asked our-self whether or not this would
be worth the while to implement into a cellular-IoT device. Whether the results are giving
a large enough edge to motivate a large amount of man hours to implement RoHC or not.
As mentioned earlier in both compression rate and energy efficiency we believe RoHC to
almost be a holy grail of cellular-IoT. It is possible to improve lifetime enough to make a
significant impact on the market. This makes an implementation worth the time.

Of course, RoHC does add another layer of complexity to a product, providing an-
other point of possible failure. The protocol is robust and set in stone, but it still requires a
large amount of code to work. This does imply that the product has a greater risk of bugs.
To quote the book Code complete there are "about 15 - 50 errors per 1000 lines of deliv-
ered code." [5]. It is a huge number that varies depending on project, programmer and
many other factors. Our implementation of only IP/UDP consists of around 1000 lines of
code. This would imply that our code contains at least 15 errors. This only emphasizes
that there is a risk when implementing RoHC, that very well can affect the stability of the
product. Further, by implementing RoHC a company is most likely delaying the release
of their product. This may lead to loss of income, a loss greater than the gain of RoHC.
In most cases it is impossible to say which route is the best. Strategic calculations such
as a risk/reward calculation can be used to help make a well balanced decision. There are
many aspects in this report that can help make that decision.

In the aspect of time to market we would argue that a software implementation would
probably be the best solution since it has a shorter time to market, it allows for bug-fixes
and, it is flexible for updates in general.

From our standpoint and from the results we have gathered, everything points towards
that RoHC is worth implementing.

6.5 Sources of errors
In every experiment there are sources of error, this thesis is not different. It is worth to
point out that these does not skew the result or make it inadmissible, but must be taken
into consideration before a possible implementation.

Firstly, our test environment is not affected by external error sources such as residual
bit errors. This implies that we have not been able to test the robustness of our implemen-
tation. There have been no residual bit errors, unstable connections or lack of signal. It
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means that many of our results are very optimistic and in some cases equal to a theoreti-
cal best.

Secondly, we have used Linux domain sockets in our implementation, which implies
that there exists no wrongful transmissions. It also states that there is no package loss and
thus does not put a strain on the system. Since we have not used hardware to test on, we
have not been able to measure certain aspects, e.g. power usage. If we would have done
this, we would have skewed the result towards specific hardware.

Thirdly, the measured implementation only containsIP/UDP support and has limited
support for extensions. Since our baseline did not contain them and our interpretation is
such that we do not believe these will be used, support has not been implemented. There
are certain cases where these can and should be used although that would demand other
aspects of the system and would not fit the scope of a NB-IoT device.

There are certainly aspects that may alter the result in a negative way. We can not
find any sources of error that would better the result. Therefore we can conclude that our
results most likely represents a best-case scenario of RoHC. We believe the data presented
can be used as a baseline for further research.

6.6 Conclusions
From our results and discussion above, we have concluded that RoHC would make a great
addition to cellular IoT devices. This is due to the increase in battery-life.

The main drawback of RoHC is its high branching factor. The high branching factor
increases the required chip-area of an hardware implementation. This makes us believe
that a hardware accelerated version of RoHC is not the best option for a cellular-IoT
device. However a pure software implementation would increase the power usage of the
calculations while have a smaller chip-area and being more easily modified.

We believe that RoHC will make cellular-IoT devices better and prolonging their
battery-life noticeably due to RoHCs impact on the transmission window and the lower
risk of residual bit errors compared to a non compressed data package.
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Chapter 7
Future Work

We believe there is still much research to be done. Not only concerning RoHC, but IoT
in general. Although we’ve done some initial work regarding the effects of RohC, it lacks
certain aspects as mentioned in Sources of Error. We do think that our thesis, stand alone,
can get a good understanding and motivate the use of RoHC. Although, there is certain
aspects that are critical to a product before implementation.

Our research questions have been focused on providing a overview of the RoHC pro-
tocol and investigate the usefulness of RoHC in a cellular IoT device. In future research
we would suggest to investigate the following:

• How is the compression rate affected by burst of bit-errors?

• Does the error mechanisms in RoHC increase the amount of correct data to its
destination.

• How does RoHC compare to a regularIP/UDP stream in an error prone network?
Does this affect the energy consumption noticably?

Regarding our findings of RoHC’s affect on the energy consumption of an IoT device.
Since we have not conducted experiments of our own we would suggest future research
on:

• Exact measurements regarding how RoHC will affect the energy consumption of
an IoT device.

• If RoHC will provide a significant decrease in energy consumption even on error
prone links.

• How is the energy consumption affected if RoHC is hardware implemented?
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Glossary

Bidirectional Optimistic Mode is one of three modes of operation in Robust Header
Compression. It utilises irregular feedback from the decompressor to acquire a
high compression rate and robustness.. 17

Bidirectional Reliable Mode is one of three modes of operation in Robust Header Com-
pression. It utilises large amounts of feedback from the decompressor to acquire a
high compression rate and robustness.. 17

Compressed Transport Control Protocol is the first header compression protocol.. 15

Context Identifier A number between the 1 and 216 −1 that is used to map a context to
a data stream in RoHC.. 24

File Transfer Protocol is a network protocol used for the transfer of files between a
client and server.. 15

First Order Compression is one of three compressor states in RoHC. It signalizes the
that the compressor which to either update or initialize the dynamic context vari-
ables. The second order compression is the compressor state that sends DYN mes-
sages exclusively.. 17

Initialization & Refresh is one of three compressor states in RoHC. It signalizes a full
update of the static and possibly the dynamic fields in the RoHC Context. IR may
also refere to the IR package which is the package sent from the compressor with
the contexts static information.. 17

Initialization & Refresh + Dynamic chain is an IR package that contains the dynamic
chain as well as the static chain.. 17

Initialization & Refresh of the Dynamic chain is a RoHC package much similar to the
IR package, the difference is that the IR package is carrying the static chain and the
DYN message is carrying the Dynamic chain. The DYN message may also convey
data to be sent across the network boundary.. 22

Internet of Things is a umbrella term for small self-sufficient embedded devices that is
supposed to be able to run without maintenance for 10+ years.. ix
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Internet Protocol is the primary protocol used to route datagrams across network bound-
aries on the Internet.. ix

Linux is a generic term referring to the family of Unix-like computer operating systems
that use the Linux kernel. 57

Local Area Network is a computer network that is confined to a small and clearly de-
fined geographical area. A LAN may contrary to a WAN operate without routers..
15

Long-Term Evolution is a standard for high-speed wireless communication for mobile
devices.. 2

Low Powered Wide Area Network is a WAN designed to allow long range communi-
cations at a low bit rate. It was primarily developed for IoT devices.. 13

Medium Access Control is responsible for mapping between logical channels and trans-
port channels, multiplexing of SDUs from logical channels onto transport blocks
to be written to the physical layer.. 12

NB-IoT is a Low Power Wide Area Network (LPWAN) communication standard for IoT
devices that operates on cellular networks.. iii, 13, 14, 35, 36, 54, 57

Non Access Stratum is a functional layer between the core network and user equipment
in the LTE-protocol stack.This layer is used to manage the initializing of com-
munication sessions and maintaining continuous communications with the user
equipment as it changes radio provider.. 10

Open Systems Interconnection model is a conceptual model that describes communi-
cation functions. The model partitions communications systems into abstraction
layers where the goal is that each layers protocol can be replaced without affecting
the underlying layers. Each layer are responsible for verifying incoming data and
deliver the payload to the abstraction layer above. The abstraction layers can be
viewed in 2.2. The OSI-Layers are labeled 1 to 7. Layer 1 is the lowest layer(phys-
ical) in the model and layer 7 is the highest layer(application) in the model. . 5

Packet Data Convergence Protocol is a LTE radio stack protocol, the PDCP layer is
located above the RLC layer and below the IP layer (in the user plane) or the
RRC layer (in the control plane). It is mainly tasked with integrity protection and
chippering.. 12

Protocol Data Unit is a single unit of information transmitted over communications net-
work.. 8

Radio Link Control Protocol The Radio Link Control protocol connects the MAC layer
with the RRC layer on the control plane and the PDCP layer on the data plane. It
offers transparent, unacknowledged and acknowledged data transfer and supports
segmentation and reassembly.. 12
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Radio Resource Control is responsible for connection establishment and release func-
tions, broadcast of system information, radio bearer establishment, reconfiguration
and release, etc. in the LTE radio stack.. 10

Real-Time Transport Protocol RTP is designed for end-to-end, real-time, transfer of
streaming media such as video or audio.. 6

Robust Header Compression is a Internet protocol Header compression scheme.. i

Second Order Compression is one of three compressor states in RoHC. It is the highest
compression state and sends the minimum amount of information to the decom-
pressor to achieve the highest compression rate.. 17

Service Data Unit is a unit of data that has been passed down from an higher layer or
sublayer to a lower layer in the OSI-Model.. 8

Transmission Control Protocol is one of the fundamental protocols of the Internet pro-
tocol suite. It provides reliable, ordered, and error-checked delivery of application-
to-application data streams.. 5

Unidirectional Mode is one of three modes of operation in Robust Header Compres-
sion. It may operate without a feedback channel, and changes states according
to a set package movement pattern, timeout sequences, and/or feedback from the
decompressor.. 17

User Datagram Protocol is one of the primary protocol to provide end-to-end commu-
nication services for applications.. 5

Voice over IP A high-level transmission protocol to send voice data over the Internet. 2

Wide Area Network is a computer network that extends over a large geographical dis-
tances and operates through the uses of routers. The Internet may be considered a
WAN.. 5
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