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Abstract

In this thesis model predictive control (MPC) is used to dynam-
ically optimize a portfolio where the data is sampled every 5 min-
utes. Previous research has shown how MPC optimization applied to
daily sampled financial data can generate a portfolio that exceeds the
value of standard portfolio strategies such as Strategic asset alloca-
tion. MPC has been found to have a computational advantage when
return forecasts are updated every time a new observation becomes
available. A two-state Hidden Markov Model with time varying pa-
rameters is used to forecast the financial return of a market index.
The portfolio optimization is performed using both single period and
multi-period forecasts where the only other asset is a zero interest
rate cash account. Transaction costs are included to better reflect
market conditions and to address estimation errors in the forecasts.
The MPC portfolios are found to outperform a buy and hold strategy
in the market index, displaying both higher returns and lower risk.
The multi-period portfolios display lower returns and similar risk to
the single period portfolio while having a smaller turnover. This led
to the conclusion that the two-state Gaussian HMM provides sub par
multi-period forecasts on the 5 minute sampled market index. The
forecasting method is found to be very sensitive to the manual choice
of hyperparameters.
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Nomenclature

• SAA - Strategic asset allocation

• DAA - Dynamic asset allocation

• HMM - Hidden Markov Model

• MPC - Model predictive control

• SPO - Single period optimization

• MPO - Multi-period optimization

• LL - log-likelihood

• iid - Independent and identically distributed

• B&H - Buy and Hold

• BP - Basis point
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1 Introduction

1.1 Background

In the world of finance, investors aim to maximize returns on investments,
often while also considering the investments risk profile. Almost every in-
vestor has a different opinion on what this relationship of risk versus return
should be. Modern investors are faced with a myriad of financial assets that
they can buy and sell, all with different risk profiles. This makes the choice
of selecting the optimal combination of assets very difficult. The collection
of assets an investor holds is called a portfolio. Many different frameworks
and strategies have been developed to optimally solve this portfolio choice
problem. Markowitz (1952) introduced such a framework called Modern
Portfolio Theory, or mean-variance analysis, where the expected returns for
a collection of assets are maximized for any given risk.

Investor are not only faced with the choice of what to buy, but also when
and how often they need to reevaluate these choices. Many investors apply
a single period strategic asset allocation (SAA) strategy, where portfolio
weights are determined by investor’s risk appetite according to variations
of the mean-variance framework, and then periodically re-balanced. The
period in between re-balancing is based on a balance between the investment
horizon and adaptivity to market conditions. Pension funds, for example,
have a long investment horizon of 10 years or longer, however the portfolios
are often re-balanced monthly or quarterly. The challenge with SAA is that
the market behaviour can shift between periods, and these new behaviours
tend to persist for several periods after a shift (Ang & Timmermann 2012).
These different periods of market behavior are called regimes and the shifts
between regimes correspond to changes in economic policy, regulation or
other economic factors that affect asset prices. The flawed aspect of the
SAA is apparent in the case of a large downturn of the market between the
re-balancing periods. Even when the value of the portfolio drops, no action is
taken to improve the situation until the next re-balancing period. When the
re-balancing period arrives, the portfolio is adjusted back to the determined
static weights. It is apparent that in a world where the future of the market
is uncertain, SAA might not be the optimal strategy.

An alternative to the static strategy is to instead use a dynamic strategy.
The dynamic strategy enables portfolio weights to continuously be adjusted
as new information arises from the market. This creates the opportunity to
take advantage of beneficial market regimes and reduce the impact of adverse
regimes. When the market shifts between different regimes, a dynamic asset
allocation (DAA) strategy is shown to be a more beneficial strategy than
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the traditional SAA (Sheikh & Sun 2012). The strength of the dynamic
strategy relies on using an appropriate model to predict the new information
of the market. Regime switching models, such as the Hidden Markov Model
(HMM), have been shown to be able to capture the tendency of the financial
market to abruptly change its behaviour. They are also shown to capture
many of the stylized facts of financial time series, such as heteroscedasticity,
skewness and leptokurticity (Ang & Timmermann 2012). In many studies,
DAA strategies based on regime switching models have been shown to be
a successful approach to portfolio management (Bulla et al. 2011, Nystrup
et al. 2018, 2017).

When investors trade, they need to consider much more than just returns
and risks when making decisions. Trading is not a free venture, investors
incur transaction costs when they buy and sell assets. Even the large insti-
tutional trades have costs associated with trading. It is intuitive to reflect
this when optimizing portfolio weights. This can be done by including cer-
tain constraints, such as holding and trading costs. Not only does this better
reflect the real world of trading, adding costs to trades can reduce the er-
rors of forecasted returns by punishing sub-optimal trades. Model predictive
control (MPC) was proposed as an approach to solve the stochastic portfolio
optimization problem that includes these kind of constraints (Boyd et al.
2017, Herzog et al. 2007). Herzog et al. (2007) concluded that MPC is a sub-
optimal control strategy for stochastic systems that uses new information
advantageously as it is more computationally efficient than the more com-
monly used stochastic programming models. This makes it an advantageous
method when combined with an online forecasting method.

Boyd et al. (2017) developed an open source Python package that can
perform portfolio optimization with MPC both over a single period (single
period optimization, SPO) and over multiple periods (multi-period optimiza-
tion, MPO). For the multi-period case, the convex optimization is performed
over several periods simultaneously, but only the trade of the current period
is performed. This means when trading costs are included, the result of the
multi-period case will differ from the single period. This is because the MPO
does not only take into consideration the trades in this period, but also how
that trade will affect any futures trades over a time horizon. For example,
while the SPO might suggest that it is optimal to go long an asset, the MPO
looks ahead in time to see if it is still optimal or if the position has to be
unwound while taking into account the costs to unwind the position.

The MPC is reliant on the choice of an appropriate model to forecast the
returns and risks of the different assets in the portfolio. The Hidden Markov
Model (HMM) is an example of a regime switching model that is able to
replicate many of the stylistic facts of financial time series (Ang & Tim-
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mermann 2012, Rydén et al. 1998, Nystrup et al. 2015). In the HMM, the
probability distribution of an observation depends only on the states of an
unobserved Markov Chain. The states in the underlying chain can be viewed
as representing the different economic regimes that display different market
behaviours. Because asset price dynamics are time varying, it is intuitive
to choose an adaptive model. The adaptive model will have time varying
parameters that allow the properties of the model to change over time and
adapt to new market behavior. The forecasts using an HMM will be mean-
reverting, changing mainly based on when the regime probabilities change.
This means that anticipating the direction of regime change matters more
than perfectly estimating the parameters of the model (Sheikh & Sun 2012).
The portfolio allocation in the MPC will thus be decided depending on the
probability of a certain underlying regime in the HMM and re-balanced when
the probability of reaching a different regime in the model is high enough.
Therefore, it is of great importance to choose an appropriate parameter es-
timation method that can correctly estimate the regime probabilities in the
HMM.

1.2 Aim

Empirical studies on regime based dynamic asset allocation have mainly been
focused on daily or monthly asset returns. Nystrup et al. (2018, 2017) suc-
cessfully implemented applying HMM forecasts to MPC portfolio optimiza-
tion using daily asset returns. The sampling interval of the data often reflects
the investors investment horizon. DAA however, provides the opportunity
to react to changes in the market and rebalance the portfolio if needed. This
opportunity may be taken advantage of by using a shorter data sampling
interval.

The aim of this thesis is to explore the potential application of MPC to
optimize a portfolio using intra-day asset prices. The asset price dynamics
are modeled with a two state HMM with Gaussian components.

The results are evaluated by comparing the performance of different MPC
implementations to a standard buy and hold strategy.

2 Theory

2.1 Hidden Markov Model

The model used to forecast asset returns and infer the hidden regimes of the
market is a Hidden Markov Model (HMM) with Gaussian components. We
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let {Ot}Tt=1 be a stochastic process and {ot, t = 1, .., T} its realization. In
a HMM, the probability distribution of Ot depends only on the states of a
hidden first order Markov chain St. While the realizations ot and the process
Ot are directly observable the underlying chain St is not.

A sequence of discrete random variables {St}∞t=0 is said to be a first order
Markov chain if for all t ≥ 0 it satisfies

Pr(St+1 |St, ..., S1) = Pr(St+1 |St) (2.1)

The conditional probabilities

Pr(St+1 = j |St = i) = γij (2.2)

are called transition probabilities. The transition probability matrix Γ is
the matrix with elements (i, j) = γij. The distribution of the initial states
is denoted P (S1 = i) = δi. The chain has a stationary distribution π, if
π = πΓ and π1 = 1. The process {Yt}Tt=1 is called an m-state HMM if
the chain St has m states. A two state Markov chain will have a transition
probability matrix of the form

Γ =

[
γ11 1− γ11

1− γ22 γ22

]
(2.3)

The HMM can be summarized as{
Pr(Ot |Ot−1, ..., O1, St, ..., S1)

Pr(St |St−1, ..., S1)
=

{
Pr(Ot |St)
Pr(St |St−1)

(2.4)

It is worth emphasizing that the hidden states form a first order Markov
chain. Given that the current state is known, the observed process is indepen-
dent of the previous historical observations. Figure (1) illustrates the concept
of the HMM with hidden underlying states and an observable process.

S0 S1
... St−1 St

O0 O1 Ot−1 Ot

Figure 1: Figure illustrating the concept of a Hidden Markov Model. S rep-
resents the hidden underlying states and O represents the observable process
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The observed process in the HMM will be the log-returns of the asset,
which are assumed to follow a Gaussian conditional distribution

ot|St ∼ N(µSt , σSt) (2.5)

2.2 Parameter estimation

Because the underlying process of the asset prices are assumed not to be
constant, an adaptive parameter estimation method is preferred. A com-
mon approach to estimating the parameters in the HMM is the maximum
likelihood method. The parameters are estimated online by maximizing the
weighted log likelihood (LL) function

θ̂T = argmax
θ

T∑
t=1

wt log Pr(Ot|Ot−1, ..., O1, θ) = argmax
θ

l̃T (θ) (2.6)

Where θ = {µ1, µ2, σ1, σ2, γ11, γ22} are the different parameters to be esti-
mated in the model. When wt = 1 equal weight is put on all previous obser-
vations in the calculation of the LL, corresponding to traditional maximum
likelihood. The estimator can be made adaptive by changing the weights
or the ”importance” that older observations will have on the LL. One ap-
proach to weighting the observations is to use exponential weights wt = fT−t.
f ∈ (0, 1) is called the forgetting factor, and is determined by the effective
memory length

Neff =
1

1− f
(2.7)

The choice of the efficient memory length will impact how adaptive the es-
timation method is. Too small and the parameter estimations will be noisy,
too large and the estimations will not be adaptive enough.

By maximizing the second order Taylor expansion of l̃t(θ) a recursive
estimator for the parameters is obtained.

θ̂t = θ̂t−1 −
[
∇θθ l̃t

(
θ̂t−1

)]−1
∇θ l̃t

(
θ̂t−1

)
(2.8)

where Ht = ∇θθ l̃t(θ̂t) is the Hessian and ∇θ l̃t(θ̂t) is the score function. To
progress with the parameter estimation, a good online estimator is needed
for the score function and the Hessian.

Lystig & Hughes (2002) introduced an algorithm that exactly computed
the score vector and the log likelihood in one pass. The algorithm is derived
from the forward backward algorithm. The method to calculate the score
function uses an algorithm to compute the log likelihood.
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We let pi(ot) = Pr(Ot = ot|St = i, θt) be the probabilities of an observa-
tion given that the state is known. In this case, the Gaussian density. The
algorithm of Lystig-Hughes is initialized by calculating the joint distribution
of the first time point Pr(O1, S1 = j)

λ1(j) = Pr(O1, S1 = j) = pj(o1)δj (2.9)

where δj is the initial distribution of the hidden states as defined above. It
then proceeds by calculating the scaled forward probabilities λt(j)

λt(j) = Pr(Ot, St = j|Ot−1, .., O1) =
s∑
i=1

[λt−1(i) pj(ot) γij]×(Λt−1)
−1 (2.10)

where Λt = Pr(Ot|Ot−1, ..., O1) =
∑s

j=1 λt(j). This leads to the log likelihood
lT (θ) being able to be expressed as

lT =
T∑
t=1

log(Λt) (2.11)

The derived expressions for the log likelihood are now used in an algorithm
to compute the score function. The algorithm is initialized with the first
component of the score recursion

ψ1(j, θ) =
∂

∂θ
Pr(O1 = o1, S1 = j) =

[
∂

∂θ
pj(o1)

]
δj + pj(o1)

[
∂

∂θ
δj

]
(2.12)

The partial derivatives ∂
∂θ
pj(ot) of the Gaussian density can be explicitly

computed as

∂

∂µj
pj(ot) =

∂

∂µj
φ(µj, σ

2
j ) =

ot − µj
σ2
j

φ(µj, σ
2
j ) (2.13)

∂

∂σj
pj(ot) =

∂

∂σ
φ(µj, σ

2
j ) =

(
(ot − µj)2

σ3
j

− 1

σj

)
φ(µj, σ

2
j ) (2.14)

The algorithm proceeds with calculating the scaled derivatives of the joint
distribution

ψt(j, θ) =
∂
∂θ

Pr(Ot, ..., O1, St = j)

Pr(Ot−1, ..., O1)

=
s∑
i=1

(
ψt−1(i, θ)pj(ot)γij + λt−1(i)

[
∂

∂θ
pj(ot)

]
γij

+ λt−1(i)pj(ot)

[
∂

∂θ
γij

])
× (Λt−1)

−1

(2.15)
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The scaled derivatives ψt(j, θ) can then be used to express the score func-
tion as

∂

∂θ
l̃T =

s∑
j=1

∂
∂θ

Pr(OT , ..., O1, ST = j)

Pr(OT−1, ..., O1)
× 1

Pr(OT |OT−1, ..., O1)

=

∑s
j=1 ψT (j, θ)

ΛT

=
ΨT (θ)

ΛT

(2.16)

For the adaptive estimation method, the expression of the score vector is
adapted to the weighted form

∂

∂θ
l̃T,H = wT−H+1

ΨT−H+1(θ)

ΛT−H+1

+
T∑

t=T−H+1

wt

(
Ψt(θ)

Λt

− Ψt−1(θ)

Λt−1

)
(2.17)

To estimate the inverse Hessian we use the recursive estimation

Ht = λHt−1 + hth
T
t (2.18)

where
ht = ∇θ l̃t(θt−1) (2.19)

The recursive estimation for the inverse is acquired by applying the Sherman-
Morrison matrix inversion lemma

(A+BCD)−1 = A−1 − A−1B(C−1 +DA−1B)−1DA−1 (2.20)

The inverse Hessian is then directly recursively estimated by

H−1t =
1

λ

(
H−1t−1 −

H−1t−1hth
T
t H

−1
t−1

λ+ hTt H
−1
t−1ht

)
(2.21)

The approximations for the Hessian and the score function are then in-
serted into the adaptive recursive estimator

θ̂t ≈ θ̂t−1 + a ·H−1∇θ l̃t(θ̂t) (2.22)

where a is a tuning constant selected to optimize the rate of convergence.
The filter probabilities αt|t(j) = P (St = j|Ot, ..., O1) of being in a certain

state can be expressed as

αt|t(j) = Pr(St = j|Ot, ..., O1) =
Pr(Ot, St = j|Ot−1, .., O1)

Pr(Ot|Ot−1, ..., O1)
=
λt(i)

Λt

(2.23)

Finally, the k-step forward probabilities αt+k|t(j) = P (St+k = j|Ot, ..., O1)
are obtained by applying the Chapman-Kolmogorov equation

αT
t+k|t = αT

t|tΓ
k
t (2.24)
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2.3 Transforms

To ensure convergence of the recursive estimator in equation 2.8, transforms
are applied on constrained parameters. A logarithmic transform is applied to
variances and the logistic transform is applied to the transition probabilities.
The logarithmic transform is

f(x) = log(x) ∈ R x ∈ [0,∞]

f−1(y) = ey f−1
′
(y) = f−1(y)

(2.25)

The logistic transform is

f(x) = logit(x) = −log(x−1 − 1) ∈ R x ∈ [0, 1]

f−1(y) = logistic(y) =
1

1 + e−y
f−1

′
(y) = f−1(y)(1− f−1(y))

(2.26)

2.4 Forecasting

For the m-state HMM {Ot}Tt=1 defined in (2.4) the marginal distribution
of Ot can be derived when the probability of being in a state is known,
given some information and the marginal distribution of the observed process
conditioned on that state (Frühwirth-Schnatter 2006)

p(ot|F) =
m∑
i=1

P (St = i|F)P (Ot = ot|St = i) (2.27)

Given the conditional distribution p(ot|St = i) has the density p(ot|θi),
the unconditional distribution of Ot is obtained as a mixture distribution

p(ot|F) =
m∑
i=1

p(ot|θi)αi (2.28)

The first and second moments of the mixture distribution are

µ =
m∑
i=1

µiαi (2.29)

σ2 =
m∑
i=1

(µ2
i + σ2

i )αi − µ2 (2.30)

where µi, σi are respectively the forecasted first and second moments condi-
tioned on state St = i. αi is the forward state probabilities i.e. the probability
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of being in state St = i. The estimated parameters are assumed to stay con-
stant in the multi-period forecasts since no model is implemented to explain
their progression. The first and second moment of the mixture distribution
are calculated based on the log returns of the asset price. The log returns
are calculated by

ot = log(Pt)− log(Pt−1) (2.31)

where Pt is the asset price. For the purpose of optimizing the portfolio we
need the forecasted mean and variance of the returns. The returns in each
state are assumed to be iid with a log-normal distribution.

log(1 + rt) ∼ N(µ, σ2) (2.32)

where µ an σ2 are respectively the mean and variance of the log-returns.
This gives the expectation and variance for the simple returns

E[rt] = exp

(
µ+

σ2

2

)
− 1 (2.33)

V[rt] =
(
exp

(
σ2
)
− 1
)

exp
(
2µ+ σ2

)
(2.34)

Because the forecasts are based on a stationary Markov Chain, they will
be mean reverting. As the k-step forward probabilities approach the station-
ary distribution of the chain, the forecasts will approach a stationary value as
well. This means that forecasting beyond the convergence rate of the chain
will be futile as the forecasts will not change.

2.5 Portfolio selection

2.5.1 Model predictive control

In multi-period portfolio optimization the goal is to optimize the total port-
folio value over a certain planning horizon K. Given that the future total
value of the portfolio is unknown, the optimization problem is formulated
as a stochastic control problem. The formulation of the multi-period portfo-
lio optimization as a stochastic control problem follows from Nystrup et al.
(2018) version inspired by Boyd et al. (2017). The goal is to maximize the
expectation of the total value of the portfolio VT over the horizon K, subject
to cost penalties ψ(ht, ut), based on portfolio holdings ht ∈ Rn and value of
trades ut ∈ Rn

maximize
h

E

[
Vt+K −

t+K−1∑
t=τ

ψτ (hτ , uτ )

∣∣∣∣∣ Ft
]

(2.35)
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The post trade portfolio is then defined as

h+t = ht + ut t = 0, ..., T − 1 (2.36)

where (ht)i < 0 implies a short position on asset i and (ut)i > 0 means an
asset bought. Trades are assumed to be executed at the end of each holding
period. Provided that the penalty function is convex, this formulation of the
stochastic optimization problem creates a convex objective function, ensuring
that a unique solution exists. The total portfolio value VT is assumed to be
a stochastic variable subject to the returns of the assets in the portfolio.
Constraints can be included on the holdings to reflect investors preferences

hmint ≤ ht ≤ hmaxt (2.37)

where the constraint 0 ≤ ht represents a long-only portfolio. It is natural to
assume that an investor does not have access to infinite amount of cash to go
long on assets, thus an intuitive approach is to add a self-financing condition
to the portfolio

1Tut + κT |ut| ≤ 0 t = 0, .., T − 1 (2.38)

That is, that the total proceeds from purchases and sales has to be less or
equal to the total transactions cost of performing the trades. Here, κ is a
vector of transaction costs that can be taken directly from market information
or estimated. For optimization purposes the equality is replaced by a convex
relaxation. This can be seen as allowing funds to be removed from the
portfolio.

Using MPC the stochastic optimization problem is reformulated as a de-
terministic problem by expressing the unknown expected total portfolio value
in terms of weighted forecasted returns r̂τ |t, τ = t+ 1, ..., T +H.

maximize
∑t+K−1

τ=t

(
r̂Tτ |twτ − ψτ (wτ )

)
subject to 1Twτ = 1, τ = t+ 1, ..., t+K

(2.39)

where ψτ (wτ ) is the penalty function for the costs incurred trough trading
and holding.

2.5.2 Trading aversions

The general penalty cost function from (2.39) can be partitioned into differ-
ent functions to represent certain common trading aversions such as holding
costs, transaction costs and risk aversion.
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There are many different risk measures used in portfolio optimization in
literature. Any convex risk measure could be implemented in the framework
of this thesis and many are explicitly implemented in Boyd et al. (2017).

Given that Σt is the estimated covariance matrix of the forecasted stochas-
tic returns rt, the traditional quadratic risk measure of the portfolio is

ψriskτ (wt) = ρ · wTt Σtwt (2.40)

where ρ represents a risk aversion parameter to be tuned in the MPC. In the
case of the two asset world where one asset’s return is the risk free rate, the
covariance matrix will have zeroes in the last row and column since the risk
free rate is known. This risk measure combined with the objective function
(2.39) corresponds to adjusting the portfolio weights according to the classical
mean-variance criterion by Markowitz (1952).

Portfolio optimization based on the mean-variance criterion is known to
be sensitive to the estimation errors that occur when forecasting expectations
and variances. To compensate for these errors and create trading aversion in
the algorithm, a transaction cost is included.

ψtradeτ (wt) = κ · |wt − wt−1| (2.41)

The transaction cost in this thesis is a scalar. It could be easily replaced
by a vector with different values for each asset. This would represent the
real world of trading better. For example, trading cash incurs minimal to
no transaction costs and trading more illiquid assets might have higher costs
than commonly traded assets. Higher transaction costs for certain assets
could also represent an aversion towards trading that specific asset in the
MPC.

2.5.3 Performance metrics

Certain metrics are used to evaluate the performance of the portfolio. The
portfolio return is defined as the average return over the period

Rp =
1

T

T∑
t=0

Rt (2.42)

The portfolio risk is expressed with the standard deviation

σp =

√√√√ 1

T

T∑
t=0

(Rt −Rp)2 (2.43)
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The Sharpe ratio, or information ratio, of the portfolio is a method to evaluate
the variance-normalized returns

SR =
Rp

σp
(2.44)

The maximum drawdown is a measure of the largest drop from a peak to a
valley and an indication of downside risk. We denote the maximum up until
time T as

MT = max
t∈(0,T )

Pt (2.45)

the drawdown Dt is now defined as the difference of price compared to the
maximum

Dt =
Mt − Vt
Mt

(2.46)

Maximum drawdown is then defined as

MDDt = max
t∈(0,T )

Dt (2.47)

The portfolio turnover is a way to measure the amount and size of trades
relative to the total size of the portfolio

TO =
1

T

∑
t

|ut|
Vt

(2.48)
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3 Method

3.1 Data

The data selected for the asset part of the portfolio was the S&P500 (SPX).
The S&P500 was chosen because it reflects the general international market
movements and is very liquid. An illiquid asset might cause forecasting issues
using the HMM due to missing samples or time intervals where the asset
price doesn’t change or is not available to trade. An illiquid asset could very
well be included in an MPC portfolio, for example by either changing the
forecasting model or adjusting transactions costs to penalize trading. The
HMM, however, requires the presence of regimes to be able to provide good
forecasts. With an illiquid asset the price movements become very small,
making regime detection in the HMM very difficult. The historical price
data was retrieved from Bloomberg at five minute sampling intervals from
2017-12-12 to 2018-11-26. This consists of roughly one year of five-minute
data with n=19453 samples. The sample size was considered large enough
for the adaptive parameter estimation methods to initiate correctly and to
give an indication if the implementation was satisfactory. As seen in Figure
2, the data illustrates typical behaviour of a financial process that might be
appropriate to model with a HMM. There are general trends with periods
of increases and decreases. It also displays periods of increased- index price
volatility.

Figure 2: Price process for the S&P500 from 2017-12-12 to 2018-11-26

The data was split in two parts: an in-sample and an out-of-sample pe-
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riod. The in-sample period was used for tuning the HMM hyperparameters,
ensuring a good balance between convergence and adaptivity. The in-sample
period was the first 13000 samples from 2017-12-12 to 2018-08-02. When the
MPC is performed, the full data set was used including the out-of-sample
data. Using out-of-sample data in the final tests is beneficial to ensure sta-
bility and performance of both the forecasting method and the MPC.

3.2 Implementation

The implementation of the portfolio optimization problem was solved using
Python. The MPC was performed by using the CVXPortfolio package for
Python (Boyd et al. 2017). The advantage of using the CVXPortfolio pack-
age is that forecasting is performed completely separate from the portfolio
optimization. This allows any forecasting method of choice to be used in the
MPC. If the methods were to be implemented in a real life trading decision,
it is straightforward to combine the forecasting and MPC step in one pro-
gram. This is due to the online parameter estimation method chosen for the
forecasts.

Algorithm 1 MPC algorithm

1: Update model parameters based on the most recent observation
2: Forecast asset returns and covariances over a horizon
3: Compute the optimal sequence of trades over that horizon
4: Execute the first trade in the sequence and return to step 1.

The HMM parameter estimation method was initially applied on a sim-
ulated two-state HMM to ensure that the code and theory was correctly
implemented. The Hidden Markov Model was manually tuned in-sample by
choosing appropriate hyperparameters. The hyperparameters for the model
were: a, for tuning the adaptivity of the parameter estimates, λ, for tuning
the adaptivity of the inverse Hessian estimation, and Neff for tuning the for-
getting factor of the adaptive estimation method. The parameter estimation
method was tested on simulated data with a non-adaptive method to ensure
the parameters converged to reasonable values and the implementation was
correct. The adaptive parameter estimation was initialized with manually
tested parameters.

Different combinations of MPC hyperparameters were selected to reflect
different investment approaches and market situations. The transaction costs
were set at 1 basis point (0.0001) and 10 basis points (0.001). 1 basis point
is believed to be a realistic transaction cost for high frequency institutional
traders. Furthermore, utilizing higher transactions costs can be viewed as a
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safeguard against forecasting errors. The higher basis point costs will create
a kind of barrier that the forecasts need to cross before a trade is considered.
The different hyperparameter combinations that were tested in the MPC are
represented in Table 1.

Table 1: Different hyperparameter choices for the MPC. κ is the transaction
cost. ρ is a risk-averseness parameter. K is the look ahead horizon in the
multi-period case and where K=1 is the case of single period optimization.

Hyperparameters Value

κ 0.0001 , 0.001
ρ 0, 1, 5
K 1, 10, 20, 50, 100

Certain constraints are applied to the portfolio optimization. The port-
folio is assumed to be long-only and no leverage is allowed. This means that
the weights are not allowed to be negative or exceed 1 (0 ≤ w ≤ 1). This
means that shorting is not allowed, nor is borrowing money to buy an asset.
The second asset in the portfolio will be risk-free cash with zero interest rate.
This means that when equity is sold the cash asset will not increase in value.
In a real world situation, the cash asset would often be traded for a risk-free
asset with an interest rate, such as Treasuries. For this proof of concept, zero
interest is sufficient, as adding interest would simply add higher return when
no asset is held. The zero return could easily be exchanged for a risk-free
rate if desired. The MPC portfolios are compared to a buy & hold strategy
that is 100% in equity. The buy & hold strategy is simply buying a position
in the equity and holding until the trading period is over. Holding a certain
fixed amount in the risk-free asset, which would be replaced by bonds in
most traded portfolios, is a much more common trading strategy than 100%
equity. Often portfolio compositions such as a 60%/40% bonds and equity is
used. This is commonly done to reduce the risk of the portfolio, while still
keeping the potential of higher returns by holding some equity. The compar-
ison of the results of the MPC portfolios to a portfolio that is 100% equity
is to evaluate if the portfolios can outperform the market.

Due to the long computation time for backtesting 19000 datasamples in
a multiperiod setting, the different lengths of the horizon, K, for the MPO
were tested only on the first 5000 samples.
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4 Results

The results from implementating and forecasting the HMM using the adap-
tive parameter estimation methods are presented first, followed by the results
of the different MPC versions.

4.1 Hidden Markov Model

The HMM hyperparameters were tuned to a=0.004 and λ = 0.99. The effi-
cient memory length was selected to be Neff = 250. The choice of the efficient
memory length is a balance between the parameter estimates adaptivity and
stability. If the efficient memory length is too long, the estimates will con-
verge to the traditional maximum likelihood estimation, if it is too short the
estimates will have a high variance. Certain hyperparameter choices cause
the parameters estimates to not converge and quickly deteriorate to unrea-
sonable estimates. Table 2 displays the results of the HMM hyperparameter
selection.

Table 2: Results of the HMM hyperparameter selection

Hyperparameters Value

a 0.004
λ 0.99
Neff 250
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(a) Log returns for the S&P500 from 2017-12-12 to 2018-11-26

(b) The filter probability of being in state 2 as calculated with the HMM P (St = 2)

Figure 3: The log-returns and filter probability of being in state 2 (the low
return, high variance state as estimated with the HMM)

Figure 4 displays the result of the adaptive parameter estimations on the
five minute log returns of the S&P500. The results show that the parameters
start fairly stable for the first 3 months and then vary during the rest of
the year. Compared to the estimated forward probabilities in Figure 3, the
parameters start varying more when the probability of being in the second
state starts increasing. The two states consists of one with positive drift and
low variance, and one with negative drift and high variance. The probability
of remaining in the same state is rarely lower than γ11 = 0.995 for the positive
drift state, and rarely lower than γ22 = 0.95 for the second, negative drift
state. Both the drift and diffusion of the second state show large jumps and
movements during the second half of the year.
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(a) µ1 (b) µ2

(c) σ1 (d) σ2

(e) γ11 (f) γ22

Figure 4: Adaptive parameter estimates for the two state HMM
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4.2 Dynamic portfolio optimization

The results of the single period optimization is described in Table 3. The first
case (ρ = 0) represents an investor who does not take risk into consideration,
only returns. The cases of the more risk-averse investor (ρ = 1, ρ = 5),
i.e. a larger penalty for risk in the optimization, show an increasing turnover
and slightly less excess risk the higher the risk averseness parameter. The
cases of the low and no risk averseness (ρ = 0, ρ = 1) show very similar
results in terms of portfolio return and excess risk as seen the Sharpe ratios
of 0.802 and 0.804 respectively. When a higher transaction cost is introduced
(κ = 0.001) the turnover and return both drastically decrease. Figure (6)
illustrates how the high transaction costs affect the trading algorithm.

Table 3: Single period portfolio optimization results for different MPC hy-
perparameter combinations compared to the Buy and Hold (B&H) strategy.
The transaction costs are presented in basis points (BP), where 1BP corre-
sponds to κ = 0.0001

ρ=0, 1BP ρ=1, 1BP ρ=5, 1BP ρ=0, 10BP B&H

Portfolio return (%) 0.837 0.838 0.831 0.028 0.006
Excess risk (%) 1.044 1.043 1.040 0.732 1.586
Sharpe ratio 0.802 0.804 0.799 0.038 0.003
Max. drawdown 2.726 2.726 2.726 6.503 11.879
Turnover (%) 720.641 723.686 721.762 207.578 0

Table 4 displays the results of the MPC using multi-period optimization
with different forecast horizons. Turnover is reduced for all cases of the
MPO (K > 1) compared to the SPO. The results of the 20 period and 50
period horizon forecasts are very similar and display an increased Sharpe
ratio compared to the 10 period horizon. All MPO portfolios outperform the
buy & hold Strategy in all metrics. The SPO performs better than all other
tested MPO portfolios, displaying higher returns, higher Sharpe ratio and
lower drawdown. The risk of the different portfolios is similar for both the
SPO and the MPO.
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Table 4: Results of the MPO and SPO on the first 5000 samples (ρ = 0,
κ = 0.0001).

K=1 K=10 K=20 K=50 K= 100 B&H

Portfolio return (%) 1.071 0.699 0.705 0.703 0.701 0.183
Excess risk (%) 0.932 0.939 0.939 0.939 0.939 1.586
Sharpe ratio 1.149 0.744 0.751 0.749 0.747 0.110
Max. drawdown 2.015 3.504 3.409 3.421 3.429 11.879
Turnover (%) 665.610 552.661 561.799 562.371 561.429 0

(a) Portfolio optimization results, the single period MPC is compared to a Buy
and Hold strategy.

(b) Portfolio weights

Figure 5: Performance of MPC on the full data from from 2017-12-12 to
2018-11-26 (K=1, ρ=0, κ=0.0001).
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(a) Portfolio optimization results, the MPC is compared to a buy and hold strategy.

(b) Portfolio weights

Figure 6: Performance of MPC on the full data from from 2017-12-12 to
2018-11-26 (K=1, ρ=0, κ=0.001).
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(a) Portfolio optimization results, the MPC is compared to a buy and hold strategy.

(b) Portfolio weights

Figure 7: Portfolio optimization results for the MPO portfolio (K=20, κ =
0.0001, ρ = 0) over the first 5000 samples.
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5 Discussion

The parameter estimates demonstrate a typically expected behaviour of a
two state HMM applied to financial time series. The states appear to reflect
a period of the equity market when prices generally increase and display lower
variance and generally decrease and display higher variance. The probability
of staying in the same state does not exceed 0.999, which reflects an expected
sojourn time of 1000 periods, or 3.5 days. This indicates that it should not be
necessary to test much longer horizons than K=1000 in the MPC. A horizon
of K=1000 is very long compared to previous studies and was considered
unreasonably long when testing hyperparameters for the MPC. The long
sojourn time could indicate that the 5-minute sampling is simply to high
frequency for sake of using the forecasts in the MPC. Assuming the HMM
properties would stay the same, changing the data sample to every 30-minutes
would make the 3.5 day sojourn time be represented in about 167 periods, a
much more reasonable horizon for the MPC. The state with a positive mean
is more persistent than the state with a negative mean. In absolute terms,
the mean of the positive state is also smaller than the mean of the negative
state. This describes a longer, generally slow climb of the market which
sometimes shifts to rapid declines with high volatility. These results reflect
how financial time series and the financial market generally behaves. The
model appears to have been able to capture the economic regime shifts and
trends previously described in the introduction. In the final quarter of 2018,
the market was hit with uncertainty and large downturns as seen in Figure
2. The HMM parameters reflect this behaviour with a large decrease in the
negative state’s mean and an increase in volatility in both states.

The adaptive HMM parameters occasionally display large jumps. This
is especially visible in the volatility estimate for the second state as seen in
Figure 4d. In a two month period around September, the estimate shoots up
from 0.0025 to 0.006 to later revert. While the parameter estimates converge,
this behaviour is not optimal and is a potential issue. This could be caused by
the inverted Hessian estimates used in the estimation method. The inverted
Hessian occasionally becomes very small and close to indefinite. This leads to
the parameter estimation taking a step in an almost random direction. Other
Hessian estimation methods could be tested to investigate what is causing
the issue. Another method could be to adjust the Hessian when it is close to
indefinite, for example by adding a small number on diagonal.

The hyperparameters for the HMM were manually tested. While it
worked in the context of testing whether the model was even applicable,
it is not intuitively an optimal approach. The different hyperparameters are
dependent, this means that a small adjustment for one might mean that an-
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other needs to be calibrated as well. This causes a very iterative manual
approach whereby one parameter is slightly changed, the estimation algo-
rithm is run, and the whole process is repeated for each parameter until the
estimates converge. Manual testing is thus very time consuming and the pro-
cess ends when the parameters are arbitrarily ”good enough”. This means
that the values of the hyperparameters might not be the optimal combina-
tions for the best forecasts. A different approach to hyperparameter selection
could be to test a large number of hyperparameter combinations and opti-
mize for the best combination. However, as the price process is ever changing,
there is no guarantee that the optimized hyperparameters would be optimal
out of sample. With this in mind, manual selection is not an unreasonable
approach.

The choice of five-minute intervals presented some difficulties in the im-
plementation of a forecasting model. Several different forecasting models
were investigated before settling on the HMM. The issue was largely the
relatively small returns between the short intervals. Even when the HMM
was selected, the parameter estimation was not straightforward. Methods
such as the adaptive expectation-maximization algorithm was not able to
find distinctive regimes. The convergence of the parameter estimations were,
in the end, very sensitive to the choice of hyperparameters. Inferior hyper-
parameters would cause the algorithm to completely deteriorate and stop
functioning. This is an indication of the significant sensitivity of the fore-
casting method. If the method were to be used in a real life trading situation,
changes in market behaviour may lead to the algorithm completely failing.
Critical failure is often an unacceptable quality of a model. The method
could, for example, never be used in its current state for a nuclear power
plant. This makes it imperative to monitor the behavior of the hyperpa-
rameters in the algorithm and perhaps periodically evaluate and change the
values.

The results illustrate how the MPC portfolios consistently outperform
the buy and hold strategy for the S&P500 in the sampled time period. The
outperformance persists even when the transaction cost is raised up to κ =
0.001, however it is considerably smaller. The impact of the high transaction
costs is displayed in Figure 6. The MPC portfolio reacts by trading less often,
and by only holding the asset when the forecasted returns are larger than
the high transaction costs. This highlights the close relationship between
the forecasts and the decision making in the MPC, and the importance of
choosing the forecasting method and penalty functions. The performance
of the MPC portfolio is particularly interesting during the last quarter of
2018. The equities market was faced with large downturns and uncertainties
causing a period of negative return for the S&P500. As illustrated in Figure 5
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the algorithm manages to take advantage of the regime shifts and generates a
positive return during this period. This can almost be seen as a stress test for
the algorithm, given the period is out of sample, and indicates the advantages
of a dynamic trading strategy. While the multi-period results generate a
lower return than the SPO strategies, it is not unreasonable to assume that
the behaviour MPO would follow the favorable results of the SPO in this
uncertain period. Figure 7 illustrates how the MPO MPC manages a positive
return during a period of negative returns for the buy and hold strategy.

The different MPO portfolios all display worse results compare to the SPO
portfolio. They have worse returns, larger drawdowns and higher Sharpe ra-
tios. Theoretically, the MPO should outperform the SPO if the forecasts are
correct, especially if transaction costs are present. The MPO should prevent
costly, unnecessary trades and detect long periods of market downturn ear-
lier due to the multi-period forecasts. This is an indication that the HMM
model might not be correct, and that the multi-period forecasts are not good
enough. Even though the implementation of the HMM was successful in the
scope of the thesis, all the MPC portfolios outperformed the buy and hold
strategy. An additional argument could be made if it is a good model for the
chosen data. The estimated regime probabilities in Figure 3 illustrate a long
period of several months before the regime switches that does not coincide
with the results of the estimated of the transition probabilities. The transi-
tion probability of γ11 = 0.995 would imply an expected sojourn time of 200
periods, much longer than the estimated time spent in the first regime.

The results of the 20, 50 and 100 horizon MPO were very similar and
produced more favorable results in terms of a higher Sharpe ratio than the
10-period horizon MPO. The reason that the results are so similar could be
due to the persistent states of the underlying Markov Chain of the forecasts.
With persistent states, the chain’s probabilities converge very slowly towards
the stationary distribution, leading to very similar forecasting results over the
different horizons.

While all the different versions of MPC hyperparameter combinations
outperformed the buy and hold strategy, the optimal combination of param-
eters may not have been tested. Here, the same argument could be made
as with the HMM hyperparameter. Testing manually is time consuming and
not necessarily optimal. A combination of hyperparameters could be tested.
A coarse search on the risk-return plane could then be performed to find the
pareto-optimal combinations that generate the highest return for any given
risk level.

The MPC results exhibit a high annual turnover compared to previous
studies by Nystrup et al. (2018, 2017). The higher turnover could simply re-
flect that five minutes is a considerably higher sampling frequency compared
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to previous research done on daily or monthly sampling periods. For fur-
ther research it might be interesting to investigate the consequences of using
MPC for portfolio optimization on every 10 minutes to hourly data samples.
The longer sampling periods might make parameter estimation and forecast-
ing less sensitive to hyperparameters, while maintaining the advantages of
intra-day trading periods.

6 Conclusion

The results of this thesis illustrates that MPC portfolio optimization meth-
ods can be applied successfully to a five minute sampled financial asset and
outperform a buy and hold strategy. The MPC approach results in higher
returns, lower risks and lower drawdown than the standard buy and hold
strategy, even during times when the asset price is generally decreasing in
value. The multi-period MPC reduced the turnover of the portfolio while
still providing a higher return and reduced risk compared to the standard
strategy. A reduced turnover is favorable when considering the costs of exe-
cuting the trades. The worse performance of the MPO compared to the SPO
indicates that the HMM is not the optimal model for the 5-minute S&P500
samples. The success of the method relies heavily on the chosen forecasting
method and hyperparameters. For the purpose of the thesis, a two state
HMM with Gaussian components was found to be an acceptable model for
the S&P500 over the sampled period, even though the multi-period forecasts
did not perform as well as expected. While the implementation of the HMM
was successful, it was very sensitive to the manually chosen hyperparameters
used in the adaptive parameter estimation algorithm.

Too keep the scope of the thesis reasonable, the focus was on one asset and
an interest free cash account. The theory of the thesis is simple to extend to
a multi-asset portfolio if covariances between assets can be forecasted. Due
to the performance of the MPO, further models to forecast the asset prices
should be explored. While the Gaussian components provided a satisfactory
model for the purpose of this thesis, log returns are generally leptokurtic,
especially on the downside. Thus, introducing a Students-t distributed com-
ponent might provide better results due to its leptokurtic nature. A three
state HMM could also be tested, where the third state could represent a third
economic regime of stagnant, low movement price dynamics. If the two-state
Gaussian HMM model was to be used, lower frequency samples could be
tested, such as hourly or every half hour. A lower sampling frequency might
make state detection easier in the HMM due to larger movements in the re-
turns. The efficient memory length might require shorter forecast horizons,
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shortening the MPO MPC computation time. Since the manual choice of hy-
perparameters was of large importance, further research could be conducted
in simplifying or optimizing the choice of these hyperparameters. This ap-
plies both to the HMM and the MPC.
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