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Abstract
Measurements of heart rate without contact can be of much importance

when the possibilities of skin contact for different reasons are limited, or
for monitoring at distance over time. This is an emerging area in our time,
and the idea to construct a working system to demonstrate the technique
was therefore born. The work has been performed at the Department of
Biomedical Engineering at LTH.
The main question to answer during the project was whether or not it was
possible to construct a real-time working system to perform contact-less
measurements of heart rate using a camera. The specifications held on the
hardware as well as the developed software and surroundings of the possible
measurements have been examined.
Limitations have been made that the subject being under measurement can
not move his or her head faced away from the camera. An invariant light
intensity in the room has also been assumed, which limits the environments
and circumstances under which measurements may be performed.
The results showed the significance of light conditions in the room when
performing measurements, as well as of adequate signal processing algorithms
to reduce noise and verify the correct heart rate. After tests performed
on 9 different subjects in varying environments a mean deviation from the
reference of approximately half a beat per minute was obtained. Further
tests must be performed in order to conclude what causes this deviation and
how it may be solved.
The presented results show that with further testing of different algorithms
and environmental factors the proposed technique may be of great importance
in measurements of heart rate in the future.
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1 Introduction
Measurements of blood volume pulses in microvascular tissues can be achieved
using an optical technique called photoplethysmography (PPG). From the PPG
signal heart rate (HR) can be extracted. In the past two decades the possibility of
measuring PPG without body contact has been developed using cameras. This
method is known as remote PPG (rPPG), video PPG (vPPG) or imaging PPG
(IPPG), in this report it is referred to as IPPG.
When using IPPG, measurements of HR can be easier accessed since the needed
devices are more widely-spread than the traditional contact measurements, such
as conventional PPG or electrocardiography (ECG). According to Sun and Takor
[1], contact forces from for example fingerprobes or handheld probes used in con-
ventional PPG have been found to deform the arterial wall and thus impacted
the results of measurements with contact methods. Contact measurements might
also cause nervousness or uncomfortableness which would also impact the results.
These problems are avoided or reduced when using measurements that do not
require contact with the patient. Other advantages of non-contact measurements
of HR are that they can monitor several spots at the patients in the same time
without compromising the mobility of the patient, that the patient does not have
to be aware of when the monitoring starts in situations like police interrogation
and that evaluation of skin healing processes may be performed.
This report aims to present a method of developing an IPPG system with investi-
gations into the state of the art of this area. Different algorithms that may be used
are presented, and the basic requirements of the system, including requirements
of the camera and illumination source, have been presented. Many of the studies
today are based on off line video recordings. With this study, we aim to accomplish
a system that can be used for real time monitoring of heart rate. The aim is to
develop a robust system that is not easily disrupted by noise of different kinds.
One camera is to be used, thus the presented method is not expected to present
results if the patient would leave the field of view of the camera or turn the face
away from the camera. The system is intended to be able to work as a demo for
displaying the IPPG technique. For this reason, the system should be constructed
to be as simple and ready-to-use as possible, without having to change much in
order to adapt it to different conditions.

4



2 Background
2.1 Heartbeat
Heart rate (HR) is the number of heart beats within a certain time interval, usually
one minute. The pulse refers to the number of expansions and contractions of the
arteries within one minute, and is thus a measurement of the heart rate. Heart
rate variability (HRV) is the variation in the time intervals between two following
heart beats, [2]. HRV is typically measured between the R-peaks of an ECG signal
and reflects conditions of the patients automatic nervous system [3]. HRV is often
used to give information about cardiac conditions as well as a patient’s mental
stress [4].

According to Tominaga, [5], the light reflected from the skin consists of light
directly reflected by the epidermal layer as well as diffuse backscattered light. The
directly reflected light is independent of the pulsations, but the backscattered light
contains information from the dermal and subcutaneous layers, including pulsatile
information.

2.2 PPG
Since IPPG is based on the technology of PPG, some background information on
PPG will here be given in order to better understand the development of IPPG.
PPG was first proposed in 1938 by Hertzman [6]. PPG is a non-invasive technique
used to measure changes of blood volume during the cardiac cycle. PPG basically
consists of a light source and a photo detector. The light source illuminates
the studied tissue, most commonly using a light emitting diode (LED). Usually
wavelenghts in the red or near infraread spectrum are used (around 800-1000 nm)
since this causes a minimal absorption of the light in blood, but recent studies
have showed that green light can enhance the pulsatile information and reduce
movement artifacts [7].
The photo detector is sensitive for changes in intensity of the detected light. If the
photo detector is placed on the opposite side of the tissue compared to the source
it detects the variations in intensity of the transmitted light, and the PPG can thus
be called to be in transmission mode. If the photo detector is placed right next to
the source it is said to be in reflection mode, and thus detects intensity variations of
the reflected light, see Fig. 1. Different tissue components are differently sensitive
to different optical wavelengths, and this property is taken advantage of in PPG.
The content of a PPG signal can be divided into two subparts: the very slowly
varying baseline ("DC") caused by for example respiration and venous flow, and the
pulsatile waveform ("AC") which is caused by changes in the blood volume with
each heartbeat, see Fig. 2. According to Sun and Takor [1], the AC-component of
the signal only measures about 1 percent of the total intensity of the signal.
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Figure 1: Transmission and reflection mode of a PPG measurement of a finger,
proceeded from figure in [8].

Figure 2: AC and DC components in the PPG signal, proceeded from figure in [1].

During a cardiac cycle the heart pumps blood to the lungs and body, and this
results in a raise of blood volume in the capillaries of the skin surface. When a
light is emitted to the skin it will be more attenuated as a result of the larger
blood volume in the capillaries, and it will then be less attenuated when the blood
returns to the heart [1]. This pulsing motion will be seen as the AC component of
the PPG waveform.
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3 Theory
In similar ways as in conventional PPG systems, a camera can detect reflected
light variations that origin from changes in blood volume in micro vascular tissue.
This non-invasive optical technique for detecting PPG signals has been proved to
work efficiently for measurements of pulse rate [9], respiration rate [10], pulse rate
variability [10] and blood oxygenation [11].

There are other non-contact techniques of HRV measurements, such as laser
doppler and microwave doppler, but compared to them IPPG is a cheaper method
that does not require as advanced equipment.

3.1 Camera
The cameras used in IPPG-systems can be divided into three types: cellphone
cameras, simple digital cameras, and high definition (HD) cameras [1]. The systems
using cameras inducted in cellphones commonly uses the flash light, composed
of white light emitting diode (LED), as light source. The user is then supposed
to cover both the LED and camera with his/her finger in order for the system
to obtain measurements of HR. According to a study composed by Jonathan
and Leathy [12] these systems works well for HR-assessment, and they have been
developed to several commercial products, amongst which for example "What’s
my Heart Rate" and "Cardio Buddy".
The remaining two systems uses non-contact measurements methods, and are thus
more relevant for the matter of this report. The simple digital cameras are based
on a consumer close level which also includes webcams. The illumination source of
these systems is simply ambient light. The advantages of these systems are that
they are cheaper and easier to access than more advanced camera systems, but to
the best of our knowledge it has not been performed enough studies to make sure
that variations of ambient light does not effect the system in any way. Sun et al [13]
could draw the conclusion that variations in the intensity of the ambient light had
no interference with either systems capacity of obtaining accurate measurements,
but in order to verify the result more studies on the subject would have to be done.
Verkruysse et al. [14] showed that video recordings of the face taken with a simple
digital camera using ambient light contains informative PPG signals. They may
be used for different purposes in medical care, for example remote measurement
of vital signs such as HR and respiration rate (RR), and for characterization of
vascular skin lesions. The study also showed that the green channel contains the
strongest plethysmographic signal, which can be explained by the fact that (oxy-)
hemoglobin absorbs green light better and penetrates the skin to a sufficient level
for reaching the vasculature. It was thus stated that the red and blue channels
can contain complementary information.
The HD-camera-based systems were used in the early development of IPPG and
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traditionally used red light and near infrared (IR) light [1]. Many of these systems
work only in still condition and the reduction of motion is thus not ideal. Today
the HD cameras have a high sampling rate and compared to more simple cameras
have higher sensitivity and have better capacity of collecting several physiological
parameters such as blood oxygen saturation [13].
Sun et. al. [13] performed a comparison between a high sensitivity complementary
metal oxide semiconductor (CMOS) camera and a cheap and simple web cam using
ambient light in both cases. Interestingly enough the study showed no significant
difference in the ability to obtain HR in patients having undergone different amount
of exercise. As mentioned above, the more advanced CMOS camera traditionally
uses a customary light source and have then given results with better sensitivity
than a web cam typically has.
Another matter to take into consideration is how many frequency bands that should
be used. The most commonly used camera contains three channels; red, green and
blue (RGB). A study performed by McDuff et. al. [15] showed advantages of using
a five channel camera, more about this in section 3.5.
As previously mentioned, the AC component only stands for a small part of the
total intensity of the signal. Therefor it is of great importance that the camera has
a high sensitivity over the spectral range of the used illumination source. Since
different frequencies and exposure times may be of value to different applications,
the user must also be able to vary those parameters.

3.2 Lighting conditions
Fletcher et. al. [16] has published an article comparing different types of lighting
(natural sunlight, compact fluorescent, and halogen incandescent) and varying
brightness using two different smart phone cameras. Results showed that the
optimum lighting types of the three compared ones were compact fluorescent and
natural sunlight, with no statistically significant difference between the two. The
optimum brightness was within 1000 lux to 4000 lux, and the reason for growing
numbers of error above 4000 lux might be color saturation.

3.3 Detection and traction of region of interest
In order to be able to find and follow a face in straight vertical and horizontal
movements (no turning of the head) the first step is to identify the face and choose
a certain region of interest (ROI). There are many different methods for this, and
they can be divided into manual or automatic detection. A manual selection takes
time and is usually not able to track a moving face [1]. One commonly used method
for automatic face detection has been presented by Viola and Jones [17]. The Viola
and Jones (VJ) algorithm is based on a principle of so called Haar-like features,
see Fig. 3. The intensity is compared between different regions in the face, and by
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different premises such as that the eye region is darker than the cheeks and nose,
the features of the face can be localized. For a two-rectangle feature, containing
one white side and one black side of the same size, the value of the feature is
calculated as the sum of the pixels at the white part subtracted from the sum of
the pixels at the black part of the rectangle. An example of a two-sided feature
can be seen as the middle part of Fig. 3. A three-rectangle feature, as can be seen
in the right-most part of Fig. 3, contains of the rectangles of the same size. The
feature is then calculated as the sum of the two outlying rectangles subtracted
from the center rectangle.
The rectangle features are computed using an intermediate representation of the
image called Integral Image. Together with a combination of complex classifiers in
a cascade that sorts out background regions and focus the work on more interesting
areas, the VJ algorithm proved to be comparably accurate and much faster than
the previous face detection systems. The VJ algorithm is mainly developed using
frontal face position, which might cause problems when the face turns away from
the camera.

Figure 3: The first feature (marking the difference in intensity between the eyes
and cheeks) and second feature (marking the difference in intensity between the
eye region and the bridge of the nose), inspired by [17].

Feng et al. proposed another automatic detection method [18], where ROI
selection on the subject’s cheeks, using the VJ face detector, was combined with a
speeded-up robust features point tracking. Their method obtained significantly
higher accuracy in the PPG signal compared to other existing methods.
If the face would be treated as a rigid body with no restrictions of motion, it would
have six degrees of freedom (DOF). The motions could then be divided into six
types, as shown in Fig. 4: yawing, pitching, rolling, heaving, swaying and surging.
According to [18] noise that originates from different types of face movements
(yawing, pitching, rolling and surging) can be removed when a good ROI tracking
mechanism is applied. One method that compensates for some of these types of
movements, yawing and rolling, is the Dlib-ml face detection [19]. Dlib-ml face
detector is also able to detect faces with glasses and bangs. Wu et al. [20] used
the Dlib-ml face detector and combined it with acquirements of the center points
of the eyes and mouth as well as a rotation of the detected facial rectangle that
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followed the straight line between the center of the eyes in order to compensate for
rolling of the head. The method also contained other algorithms such as template
matching method. Wu et al. finally achieved a robust face detection and traction
that was resistant to all types of head movements.

Figure 4: 6 DOF, where swaying is represented by movement along the right-left
axis, heaving by movement along up-down axis and surging by movement along
forward-back axis.

Once the face has been correctly detected there are different methods to follow
and track the localization of the face. One of the most common algorithms for
continuous tracking is the Kanade-Lucas-Tomasi (KLT) algorithm [21]. KLT
algoritms calculates the displacement of detected features from the first frame to
the proceeding frames.

Figure 5: Translation movement of frames, with inspiration from [21]

If one corner point in Fig. 5 holds the coordinates (x,y) in the first frame, and
is displaced by a variable vector [a1, a2], the corresponding corner point in the next
frame is the sum of the initial point and the displaced vector. The coordinates of
the displaced corner point (x’,y’) will then be as presented in (1).
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x′ = x+ a1

y′ = y + a2
(1)

A warp function is then used to calculate the displacement with respect to each
coordinate. The warp function contains coordinates and a displacement parameter
p, and is denoted as W (x; p) = (x+ a1;x+ a2). Using the coordinates of feature
points in the first frame as a reference, the next tracking points in proceeding
frames are found by taking the difference between displacement and the previous
point.

3.4 Spatial averaging
Wang et al. proposed two alternative methods to use the spatially pruned IPPG
sensors [22]. The first alternative is to average the inliers. This method is often
called spatial averaging and is the most common method despite the fact that it
compromises the spatial resolution [1]. It was first introduced by Verkruysse et al.
[14] and has proven to significantly improve the signal-to-noise ratio (SNR) when
there are small motion artifacts involved [1].

I(n) =

∑
x,yεΩ

Ix,y(n)

NΩ
(2)

Equation (2) shows calculations of the spatial average of all pixels belonging to
the subset Ω, where Ix,y(n) is the intensity of the n:th pixel, and NΩ is the number
of pixels in the subset, defined by the ROI.

The second method proposed by Wang et al. is Spatial concatenation [22]. This
method intends to first extract independent pulse signal from the pixels within
the ROI. The pulse signals are then to be ranked after their distance to the mean
and those that have similar ranking are concatenated. The signal-traces at the top
should then be the most reliable ones. Finally after additional post processing the
multiple pulse traces are combined to one robust pulse signal.

3.5 Color channel selection
Poh et al. [9] used a red, green, blue (RGB) camera from a short distance to esti-
mate HRV features. They found that the resulting signal was limited by frequency
band resolution. McDuff et al. [15] proposed a method using a 5 channel camera
that included cyan (C) and orange (O) with the RGB bands. The RGBCO turned
out to have better accuracy compared to an RGB camera, and more specifically
the most accurate combination was with the GCO channels. The green channel
contains less noise and has a stronger pulse amplitude than red and blue, but
as previously mentioned some complementary information might be lost if only
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investigating the green channel.
The different channels can be combined by varying methods. Poh et al. proposed
using independent component analysis (ICA) in order to linearly transforms the
channels to components that are maximally independent of each other [10]. The
resulting components of this method would then represent different artifacts as
well as the pulse signal, separately.
Lewandowska et al. proposed a different solution using principal component
analysis (PCA) for defining three independent linear combinations of the three
color channels channels [23]. They could draw the conclusion that PCA was less
computationally complex and took less time for calculations compared to ICA. For
pulse rate measurements PCA showed similar accuracy as ICA. The conclusion
was therefor drawn that PCA might be an appropriate method for real-time appli-
cations.
Alghoul et al. compared two new methods for HRV extraction, whereas one was
based on ICA and the other on Eulerian Video Magnification (EVM) [2]. They
were pioneers in using EVM technique for extraction of physiological parameters
from PPG signals, and they tested it on 12 subjects with varying skin color and
ethnicities. Their findings showed that the EVM technique had very good result in
time domain parameters, but high frequency noise could not be eliminated. The
ICA based method did not have the same problem with high frequency noise, since
the noise was separated from the pulse signal into independent components. The
EVM technique used spatial pooling which combines adjacent pixels, and the high
frequency noise could not be separated from the PPG signal. The conclusion was
drawn that their proposed ICA method was most convenient and gave the most
clean PPG signal with good results in both time and frequency domain.
With blind source separation (BSS) techniques such as ICA and PCA it would
however take additional investigations to identify the component containing the
pulse signal. Usually, it is assumed that the signal showing strongest periodicity
is the pulse signal [24]. However, this assumption will be problematic during
periodic motion, such as in fitness setting. It also requires a longer observation
interval in order to have good enough resolution in frequency domain, which makes
adaption to quickly altering statistics impossible [24]. The BSS techniques can
only present as many independent components as there are observations [1]. This
means that using a RGB camera would result in three different components but
with a five color channel camera, two additional components can be extracted.
This would allow for more different sources of artifacts to be extracted, thus a
higher probability of resulting in a more pure pulse signal.
In 2013 de Haan et al. proposed an alternative method to avoid the risky component
selection heuristic that might fail with periodic motion [24]. It is based om elimi-
nating the specular reflection component by using color difference (chrominance)
signals under the assumption of standardized skin-tone. The chrominance-based
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IPPG method considers the pulse as a linear combination of three color channels.
This method has proved to be superior to the BSS methods in adapting to chang-
ing conditions and performing with short latency as well as it shows the highest
accuracy.

3.6 Filtering
In order to eliminate as much noise as possible, different types of filters can be
applied to the IPPG signal. A normal pulse rate for a healthy person is within
40-240 beats per minute (bpm). Frequencies outside of this range can be removed.
One example of a filter that have been successfully applied to reduce noise in IPPG
signal is a simple band-pass filter. Verkruysse et al. [14] presented a method that
used a band-pass filter with 4th order Butterworth coefficients in a phase neutral
filter, and it resulted in robust and clear PPG signals. Wang et al. took advantage
of the fact that in each moment the instant pulse frequency should be concentrated
to a yet smaller range, such as 70-80 bpm [22]. Therefor an adaptive band-pass
filter was applied by using real-time pulse rate information which could limit the
band-pass filter range even further. Other filters that have shown good results
in the field of IPPG noise reduction are average filters, used for example by [10],
Kalman filter, as used by [20], and wavelet denoising, as presented in [25].

3.7 Extraction of pulse signal
According to Sun et al., the extraction of physiological signals from the processed
PPG signal can be divided into two methods; heuristic and learning based methods
[1]. One heuristic method that is commonly used is transferring the signal to
frequency domain, and simply detecting the highest peak withing the range 40-240
bpm. In order to be able to get more information about the temporal localization
of a signal’s spectral components a joint time-frequency analysis can be used.
Hulsbusch and Blazek, [26], performed a study where they reverted to joint time-
frequency analysis by using a Wavelet Transform. This transfers the time signal into
3D time-frequency space which makes it possible to study different characteristics
of the signal.
Another heuristic to extract pulse signal is by detecting local maximum in a moving
window. This has been done by among others McDuff et al. [15]. One negative
aspect of this is the fact that it is more sensitive to motion induced noise.
Hsu et al. [27] proposed a novel learning based method for pulse rate detection.
They argue that by choosing only the frequency with highest amplitude in the
frequency domain, valuable information about heart beats and noise might be lost.
Instead they propose support vector regression over the prior low and mid-level
features as well as multiple feature fusion strategies. Comparing with heuristic
methods the detection error was significantly reduced using this method.
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3.8 Welch’s method of spectral estimation
For a signal with finite samples, the power spectrum can not be optimally estimated
as the spectrum of the true signal. Using the periodogram as power spectrum
is connected with a variance that is proportional to the square of the value of
the spectrum. This means that with an increasing number of N data points the
variance does not decrease. A method suggested by Welch, proposes splitting the
data into smaller segments of length L, with the starting points of these segments
D points apart, [28]. For reference see Fig. 6. If K number of segments are
covering for the whole signal, then N = L + D(K − 1). The overlap degree is
defined as OF = D

L .

Figure 6: Illustration of segmentation in Welch’s method, inspired by [28].

Assuming a signal X(j), j = 0, ..., N − 1, that is a sample from a stationary,
stochastic, second-order sequence. Dividing X(j) into sequences, starting with
X1(j), j = 0, ..., L− 1, then implies

X1(j) = X(j) for j = 0, ..., L− 1, (3)
and

X2(j) = X(j +D) for j = 0, ..., L− 1. (4)
In the same way,

XK(j) = X(j +D(K − 1)) for j = 0, ..., L− 1. (5)
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For each segment a modified periodogram is calculated applying a selected
data window. This step often implies a loss of information since the windowing
functions in many cases takes more influence of the data in the center pieces of
the set than of the outer parts. This effect is however reduced by the overlaps
since the windowing effect is spread out over several segments. A discrete Fourier
transform is applied and the squared magnitude of the results are then calculated,
thus obtaining the periodogram of every segment. Finally, each periodogram is
averaged in order to reduce the variance of the individual power measurements.

3.9 Resolution of frequency spectrum
The resolution of the frequency spectrum obtained using FFT can be divided
into two separate parts. The first aspect is the minimum distance between two
frequencies that can be resolved. Referring to this aspect as frequency resolution.
Rf , it can be defined by 6.

∆Rf = 1
T
, (6)

where T is the time length of the data signal. The second aspect of resolution
of the frequency spectrum is hereon referred to as spectral resolution, R. This is
defined as the number of points in the spectrum, as can be seen in 7.

∆R = fs
Nfft

, (7)

where fs is the sampling frequency and Nfft the number of FFT points.
Welch’s method yields estimates that are spatially placed 1/L units apart. In order
to improve the spectral resolution zeros may be added to the windowed sequences
before taking the Fourier transform [28]. This method is called zero-padding.
Adding L′ zeros to the end yields sequences of length M = L+ L′. The estimates
will then be spatially placed at 1/M units apart instead. Note that zero-padding
only affects the spectral resolution. The frequency resolution is not improved.
When time-domain data is zero-padded with a fitting amount of zeroes, the
waveform gets a power-of-two number of samples. For a waveform with a power-of-
two length, radix-2 FFT algorithms may be used. This type of algorithm are very
efficient and significantly decreases the processing time.

3.10 Statistical analysis
According to Blom et al., [29] one statistical model which is applicable to this
setup is samples in pair. It can be used to determine the mean difference between
two sets of observations using different methods.
The setup for this model can be seen in Table 1. (8) shows the mean value of the
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difference between the reference and estimated pulse. It can be seen as the mean
value of a set of observations from a larger data set which is normal distributed with
the distribution parameters as displayed in (9). The standard deviation for this
model can be estimated using (10). The deviation of the larger dataset is unknown.
For this reason, Student’s T distribution function may be used to estimate the
deviations in a conservative way. The model for calculation the confidence interval
is described in (11). [29]

Object i 1 2 . . . n obs. of
xi x1 x2 ... xn Xi ∈ N(µi, σx)
yi y1 y2 ... yn Yi ∈ N(µi + ∆, σy)

zi=yi-xi z1 z2 ... zn Zi ∈ N(∆, σ)

Table 1: Statistical model of samples in pair

∆∗ = z, (8)

where ∆∗ is the approximation of the mean difference between the two methods.

∆∗ ∈ N(∆, σ√
n

), (9)

where σ represents the standard deviation and n is the number of samples.

σ∗ =

√√√√ 1
n− 1

n∑
i=1

(zi − z)2 (10)

Iδ = ∆∗ ± tα
2

(n− 1) σ
∗
√
n
, (11)

where tα
2
denotes the two sided t-distribution for the significance α.
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4 Method
Below follows a review of the process of the designed program. All tests of
the program were performed using simultaneous recordings of 3 lead ECG. The
computed pulse rates of our program were then compared to the heart rate measured
by ECG.
In Fig. 7 and Fig. 8 an overview of the steps in the developed program can be
seen.

Figure 7: Overview of the process

4.1 Camera and settings
In this project, an HD camera from Logitech has been used, model C920 HD Pro
Webcam. MatLab Support Package for USB Webcams has been used in order
to get the video transferred to MatLab [30]. Since the aim of this project is to
construct a simple and easy-to-use system this camera was found to be satisfying
our needs. For the same reason, a simple system with as few components as
possible was desired. Therefore, the system has not been limited to any specific
lighting conditions, but works adaptive to the surrounding light.
All tests presented were conducted at resolution 640x480 pixels and at an uncapped
frame rate. The camera thus goes under the definition of simple digital cameras,
as described in section 3.1. If a camera with higher possible frequency were to be
used the vectors would contain more values.
The used camera holds automatic functions for optimizing white balance and
focal length. However, if these functions were to be used during the collection of
data in our program, there is a big risk that the varying camera settings would
interfere with the program. On that account, the camera modes for auto-focus
and automatic white balance were used during the first sample. The optimized
values for focal length and white balance were then preserved throughout the rest
of the program since the light was assumed to be invariant during the time of the
recordings.
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Figure 8: Flow of data in the process
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4.2 Face detection and traction
A commonly used method for automatic face detection as presented by Viola and
Jones, [17], and described in section 3.3, has been applied to the frames collected
from the webcam. The reason that this algorithm was chosen is that it was easy
to understand and apply to our project and works good enough for the intentions.
When a possible face has been found - the program is paused and a picture is
shown to the user asking if the correct face is displayed within the frame. If not,
the face detection is restarted and the user gets the same prompt once more. Once
the correct face has been detected, the KLT algorithm, as described in section
3.3, has been used to track the face between the frames. This has been done to
ensure that the acquired signal contains the same region regardless of any movement.

4.3 Region of interest
According to a study performed by Taylor and Palmer, [31], the areas with highest
density of blood vessels are the finger tips, followed by the face (especially the
cheeks and forehead). Since the face is usually an uncovered part of the body it
is also easily available for remote video recordings. Since the regions of the eyes,
possible facial hair etcetera can be expected to not show alternations in similar
frequency range as the skin color variations, a measurement of 60 percentage of the
width of the face and the full height has been proposed. This method is later to
be referred to as ROI method 1 and is mathematically expressed in (12) and (13).
It can be seen in Fig. 9. A similar method has been used by McDuff et al. in 2017
[32]. Our proposed method has been compared to a setup measuring only on the
forehead, referred to as ROI method 2, see (14) and (15). This ROI is displayed in
Fig. 10.

Figure 9: ROI method 1
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x ∈ [x1 + (x2 − x1) ∗ 0.2, x1 + (x2 − x1) ∗ 0.8] (12)

y ∈ [y2, y1] (13)

Figure 10: ROI method 2

x ∈ [x1 + (x2 − x1) ∗ 0.2, x1 + (x2 − x1) ∗ 0.8] (14)

y ∈ [y2, y2 + (y1 − y2) ∗ 0.15] (15)

4.4 Spectrum estimation
The green color channel has been extracted for further analysis. The pixels within
the chosen ROI of green color have been spatially averaged, as described in section
3.4, and the resulting value has then been saved in a vector.

4.4.1 Sampling methods

In order to obtain as evenly sampled frames as possible two different methods have
been proposed. The first method, further on referred to as Sampling Method 1, is
based on having an certain equal time stamp between each taken image from the
live video sequence. An image is supposed to be processed every 0.05:th second,
and until this the system is on hold.
The second method, to be referred to as Sampling Method 2, uses interpola-
tion in order to avoid the problems that might occur in later stages if unevenly
sampled frames are processed. Linear interpolation is simple and does not intro-
duce any adaptations into the system, and therefor this method has been used
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in the program. To determine the appropriate numbers of interpolation points
both double and four times the number of sampled points has been tested. The
goal was to get a good spectral resolution without using too much processing power.

4.4.2 Normalization

In order to remove the DC-component, the elements of the vector were normalized,
as can be seen in 16.

Ĩ(n) = I(n)− Ī
σI

, n = 0, 1, ..., Nk. (16)

where, I(n) is the intensity of the n:th sample and the value of Nk varies
depending on the number of samples during the period. σI denotes the standard
deviation of the set, as presented in section 3.10.

4.4.3 Zero-padding

Zero-padding as described in section 3.9, has been applied to the signal with
varying numbers of zeros added. In order to send in a power of two number of
samples, different methods were tried. Zero-padding method 1 involved sending
data by adding zeros up to the closest radix, 2x. Zero-padding method 2 involved
adding zeros to the second next radix, 2x+1, which would result in at least 50
percent of the vector containing zeros. Using Zero-padding method 1 the data set
will be padded with fewer number of zeros.
The data was then segmented into M segments of equal size, ĨM (n), for varying
numbers of n, see 17. For each of these segments the power spectrum, Sx,M (f)
was calculated using a DFT algorithm. After this the mean of the results for each
frequency was calculated and the result was saved, according to Welch’s method for
calculating the power spectrum of a signal as described in section 3.8. Note that
X(j) in equation (3)-(5) is in this case the intensity Sx(f), where f = 0, ..., L− 1.
Different amounts of overlap have been tested in order to determine the optimal
value.

Sx,M (n), n = 1, 2, ...Nk/M, for 1 ≤M ≤ 4, (17)

where Nk is the total number of samples during the period.
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4.5 Robust Estimation of Heart Rate
The peaks of the power spectrum within the interval 0.67-3 Hz (40-180 bpm) were
detected, of which the highest peak was initially assumed to hold the heart rate
information. The detected peak, f(n), in Hz was translated to h(n) in bpm.

In order to as much as possible avoid faults which might occur in different parts
of the system, a few different safeguard methods have been implemented. If there
would be an unexpected delay in the acquirement of the signal, problems with the
interpolation would occur since many values in one section would be estimated
from a small set of data points. This would cause large problems further on in
the system. Therefore if the system detects a longer delay than 0.2 seconds, the
collected data up to that point is transferred to the signal processing part and the
window is emptied and reset.
First of all, the system needs to verify that the detected peak really is a single peak
and not the first high value on the downward side of a top outside of the chosen
interval. In order to avoid this problem, the intensities of points on either sides of
the assumed peak must be lower than that of the assumed peak, as described in
equation (18). If this is not true, the second highest peak within the interval will
be investigated. This phenomenon can be observed in some of the spectrums in
figure 17b. Compare the peaks at around 1-2 Hz to the height of the leftmost part
of the spectrum.

Sx(h(n− 1)) < Sx(h(n)) < Sx(h(n+ 1)) (18)

If the acquired heart rate, h(n), deviates more than 10 beats per minute from the
previously calculated heart rate, stored in a variable hr(n), the second highest
peak is instead tried in the same way, see 19.

h(n) ∈ [hr(n)− 10, hr(n) + 10] (19)

The intensity of the selected peak, Sx(h(n)) is compared to the total intensity
of the system, Sx,tot(h(n)). If the chosen peak contains less than 20 percent of
the total intensity the peak is considered not to be reliable and undergoes further
testings to determine if it is distinct enough. The intensity of the chosen peak
is then compared to the intensity of the second highest peak within the interval,
Sx(h2(n)). If the intensity of the chosen peak neither exceeds 10 percent of the
total intensity nor 120 percent of the intensity of the second highest peak, no value
is presented during this iteration, see (20).

22



h(n) =


{
h(n) ifSx(h(n)) ≥ 0.10 ∗ Sx,tot{
h(n), if Sx(h(n)) ≥ 1.20 ∗ Sx(h2(n)),
none, if Sx(h(n)) < 1.20 ∗ Sx(h2(n))

otherwise

(20)

4.6 Implementation Aspects
Two different methods for the number of collected samples to fill the vector with
have been used and compared, Window method 1 and Window method 2. Window
method 1 proposes collecting a fix number of samples before continuing to following
processing. The process of adding spatial averages to a vector continues until
the vector is filled with 800 values (thus corresponding to 800 pictures). Window
method 2 does not fill the vector with a fix number of samples, but have a varying
size. Instead, the recorded time is fixed to 30 seconds. With a frame rate of 30 Hz
the width of the window thus varies around 900 samples.

After the data processing, the values in the last part of the window were saved
and were used as the first part in the next sequence, as can be seen in Fig. 11. The
program runs L iterations until the user chooses to stop the program. Assuming
a signal X(l) for iteration l, l = 1, 2, ...L that has been split into N segments,
according to X(l) =

∑
X1(l) +X2(l) + ...+XN (l). The segments will then be

replaced by the following segment as defined in (21).

Figure 11: Segmentation in termination step and beginning of next cycle, with N
number of segments

X1(l + 1) = X2(l)
X2(l + 1) = X3(l)

XN (l + 1) = XN+1(l)
(21)
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According to the waveform frequency resolution, as mentioned in section 3.9, the
longer saved data stream the better the resolution. Splitting the signal into a larger
number of N sections and only changing the last part would thus both increase
the waveform frequency resolution and yield a smaller time until a HR can be
displayed. However, since this is a trade-off between resolution and processing time,
different numbers of sequences have been tested to find an appropriate number.

4.7 Evaluation
The different methods and parameter values were tested in order to chose the most
appropriate settings for the program. Two recordings each on 9 subjects of varying
ethnicities, genders and ages were taken during approximately two minutes. The
ages varied from 18-64 years, and there were 5 men and 4 women. The persons
have hereon been named person A-I.

4.7.1 Reference ECG

At the same time as the video recordings measurements with 3-leads ECG were
performed to use as reference. The ECG used for reference measurements of HR
was eMotion FAROS 360 using a sampling rate of 1000 Hz. The data from the ECG
was then imported into Matlab using an EDF reader [33]. In order to evaluate the
recorded ECG signals Pan Tomkins method has been used [34].

4.7.2 Statistical Analysis

The statistical model used for analysis in this project is samples in pair, as described
in section 3.10. Referring to Table 1, xi then refers to the estimated pulse and
yi refers to the heart rate measured by the reference ECG. The reason that this
method has been used is that the pulse might vary much between the different
subjects, and at the same time the difference between estimated and reference
pulse is small in comparison. There is an expected correlation in the expected
value. The model allows for testing if the expected value differs significantly from
the reference pulse value versus the pulse estimated by the program.

4.7.3 Computational Time

The performance of the final program was tested in two different ways. The total
time it takes to execute the processing steps using Matlabs tic-toc feature and
how long the computation time is in the processing steps using Matlabs CPU-time
feature. These values will depend a lot on what kind of unit the program is run
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on. However the differential of these values will give an estimate on how different
parameters differs. CPU-time is supposed to take into account parallelism by
assuming that the system is using the processing cores equally.
For this trial a HP spectre laptop with a Intel I7-7500U dual core CPU with 4
threads running at 2.7 GHz on an 64-bit architecture was used, [35]. This means
that the value for CPU-time might be off because it assumes that the system is
able to use both CPU cores at most of the time. The value for computational time
should then be divided by two at every instance to give an accurate measurement.
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5 Results
The following results are obtained when using the most appropriate methods and
parameters for the developed program. In section 5.3 to 5.8 a comparison of the
different used methods and parameters is presented. In Table 2 an overview of the
test parameters used in the different sections presented in this report can be seen.

5.1 Output of the Program
Tables with output values of pulses estimated by the program and the corresponding
pulse measured by ECG can be found in Appendix, section 9. The difference
between the reference pulse and the estimated pulse is presented in Table 3. Test E2
has been left out since variations of light intensity during the recording interfered
with the measurements. The light variations were due to a window drape that was
moved aside by drafts. This also led to the subject turning his/her face towards
the window and thus away from the camera. This was outside of the limits of this
project and the results from this test has on this cause not been included in the
statistical analysis of this report.

54 56 58 60 62 64 66 68 70 72 74

Average of reference and estimated pulse [bpm]

-3

-2

-1

0

1

2

3

4

5

6

D
if
fe

re
n

c
e

 b
e

tw
e

e
n

 r
e

fe
re

n
c
e

 a
n

d
 e

s
ti
m

a
te

d
 p

u
ls

e
 [

b
p

m
]

Mean value

-1.96*Std Dev

1.96*Std Dev

Figure 12: Bland-Altman plot

In Fig. 12 it can be observed that there is no significant dependency between
deviation of estimated pulse from the reference pulse and average pulse. The
difference between reference and estimated pulse seem to be randomly distributed
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Test described ROI Window Sampling Zero-padding Welch’s
in section method method method method method

5.3 2 2 2 2 Not used
5.4 Varied 2 2 1 2 sections,

50% overlap
5.5.1 2 Varied 2 1 Not used
5.5.2 2 2 Varied Not used Not used
5.5.3 2 2 2 Varied Varied
5.5.4 Varied 2 2 Varied Varied
5.6 2 2 2 2 Not used
5.8 2 2 2 2 Not used

Table 2: Overview of test parameters

Test ∆HR ∆HR ∆HR ∆HR Average of Mean absolute
number 0-30 s 30-60 s 60-90 s 90 -120 s ∆HR deviation

A1 0.73 5.20 3.30 0.10 2.33 2.33
A2 0.63 -1.67 0.65 -0.32 -0.18 0.82
B1 2.40 -1.46 - 1.13 0.69 1.66
B2 2.40 0.40 -0.52 -1.64 0.16 1.24
C1 1.36 0.92 0.95 0.95 1.04 1.04
C2 -0.29 0.15 -0.72 -0.37 -0.31 0.38
D1 -1.12 1.12 -0.62 0.32 -0.08 0.79
D2 1.83 -0.75 1.86 0.85 0.96 1.32
E1 0.64 -0.28 -0.36 2.28 0.57 0.89
E2 23.48 1.60 -0.40 28.00 13.17 13.37
F1 0.43 -0.06 0.00 0.43 0.20 0.23
F2 1.12 1.92 0.96 1.65 1.41 1.41
G1 0.83 1.68 -1.41 -0.08 0.26 1.00
G2 0.80 0.73 1.16 1.13 0.98 0.96
H1 -1.52 1.36 0.00 -0.64 -0.20 0.88
H2 -0.88 0.08 1.64 0.72 0.39 0.83
I1 -1.10 0.32 0.35 0.90 0.12 0.67
I2 -0.07 2.80 -1.61 -0.08 0.26 1.14

Table 3: Statistics of deviations between reference and estimated HR for all
performed tests, where ∆HR = HRref −HRest
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over the averaged pulse. The dashed blue line is the calculated approximated mean
value of the data set and the dashed red lines represent limits of which 95% of the
averaged samples in the data set are expected to fall within.

5.2 Camera
Since it is of great importance that the time stamps are correct, a camera that
gave access to this information had to be used. For this reason a C920 HD Pro
Webcam from Logitech as described in section 4.1 has been used. The system was
designed to work with any camera that has access to the time data along with the
data stream. The test subjects were placed at a distance of about 1 meter from
the camera lens.

5.3 Lighting conditions
Tests performed in different environments, and with different surrounding light
sources, have shown the significance of good light from a good angle. Fig. 13a
shows the conditions and environment of one test on subject A. As can be seen
there are light sources above and right in front of the test person as well as daylight
coming in from his right side. There is also daylight coming from behind the
camera and behind the subject. This set up resulted in a very poor signal quality
with a small SNR.

After the results of test on subject A, all subjects were placed in a room with a
more limited number of light sources for their video recordings. Preferably with
windows covered or after the sun set, to avoid interfering of daylight from windows.
The locations of the continued tests can be seen in Fig. 13b and 13c. No further
FFT spectrums with much noise that made the localization of the pulse peak
difficult, were encountered.

5.4 ROI methods
A comparison between ROI method 1 and ROI method 2, as presented in section
4.3, from test performed on test person B showed the results displayed in Fig. 14a
and 14b. The methods were tested using a window with 6 segments with each
a time limit of 5 seconds, using the method described in section 4.6. The tests
were performed using Welch’s method with 2 sections and a 50 percent overlap,
and applying zero-padding with a power-of-two length. As can be seen, using ROI
method 2 gives a much more distinct peak as well as less noise throughout the
spectrum. In Fig. 14a there are peaks at about 1.6-2.2 Hz that are not as noticeable
in Fig. 14b. Comparing to the reference HR, these peaks can be concluded to
arise from something other than heart beats. If the interference from these causes
would have been slightly stronger, the output of the program could have resulted
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(a) Environment of one of the tests performed on
person A, where A was placed on a chair behind the
computer monitor

(b) Environment of test on subject D, E, G,
H, I

(c) Environment of test on subject B, C and
F

Figure 13: Environments used for recordings

in misleading HR estimation presented. It could also affect future estimations if
the future true peaks would be ignored due to the validation parameters.
Since similar results were acquired from several different recordings of varying test
persons and surroundings, ROI method 2 was chosen as priority for the developed
system. ROI method 2 has been further tested on a person with much and covering
makeup (test person H), as well as one person with glasses (test person I). The
results of these tests can be observed in Table 3. As can be seen in Table 3,
the difference between the estimated pulse and the ECG measured pulse are of
similar range as for the remaining tests, and no problems were thus observed with
either of these special cases. However, some difficulties were encountered when
only measuring on the forehead, including measuring on people with bangs or big
covering glasses. For this reason, usage of ROI method 1 remained in the program
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as an option for those cases when ROI method 2 might be found challenging.

0.5 1 1.5 2 2.5 3

Frequency, f(n) [Hz]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

In
te

n
s
it
y
, 

S
x

Single-Sided Amplitude Spectrum of the signal, ROI 1

(a) ROI method 1

0.5 1 1.5 2 2.5 3

Frequency, f(n) [Hz]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

In
te

n
s
it
y
, 

S
x

Single-Sided Amplitude Spectrum of the signal, ROI 2

(b) ROI method 2

Figure 14: Spectrum from tests on test person B using ROI method 1 and ROI
method 2
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Method used Length ∆Rf
Window method 1 75 0.067 Hz
Window method 1 150 0.033 Hz
Window method 1 225 0.023 Hz
Window method 1 300 0.017 Hz
Window method 2 2.5 s 0.066 Hz
Window method 2 5 s 0.033 Hz
Window method 2 7.5 0.022 Hz
Window method 2 10 s 0.017 Hz
Window method 2 12.5 s 0.014 Hz
Window method 2 15 s 0.011 Hz

Table 4: Comparison of frequency resolution, ∆Rf as presented in section 3.9,
between Window method 1 and Window method 2

5.5 Signal processing
5.5.1 Window methods

The results from using the different window methods is entirely dependent of the
length of the samples and the number of sections used. If a too small window size
is selected, a smaller data set will be examined at the latter stages of the program
which will lead to lower spectral resolution. However a larger data set will force
more data to be processed and potentially slow down the system.
No significant difference in estimation of HR has been noted when using Window
method 1 or Window method 2, as presented in section 4.6. On some computers
where there may be a start up delay, Window method 2 initially gives better results
since it does not wait until it has enough samples. Window method 2 was selected
for the developed program.
The data in Table 4 has been collected using 6 Sections, without the use of Welch’s
method, from a set of recorded signals, sampled at 60 frames per second. It implies
that the longer period per section, the better the resolution. At the same time,
however, the user has to wait a longer time until the first pulse value is presented,
which also implies that the possibilities to fast track changes in HR. In this trade-of,
for the following computations, sections of 5 seconds length have been used since it
can maximally give an estimated pulse that deviates 1 bpm from the true computed
value.

5.5.2 Sampling methods

Using Sampling Method 1, as defined in section 4.4, did not give as evenly sampled
frames as intended. As can be seen in figure 15, the time between two processed
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images was not exactly 0.05 s, but turned out to deviate around this number. Since
it is of much value for following processing that the signal was evenly sampled,
Sampling Method 1 has not been used for succeeding computations. Instead,
Sampling Method 2, using interpolation as presented in section 4.4, had been
chosen for the purpose of our program.
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Figure 15: Time stamps of taken frames, compared to a linear plot showing the
inherent time difference

Using linear interpolation, according to Sampling Method 2 has given the results
shown in Fig. 16a. It it clear to see in Fig. 16b that the interpolated point appear
within the interval of the sampled signal and does not make any extra oscillations.

5.5.3 Zero-padding

In table 5 the results of the two different zero-padding methods can be observed.
During this test the settings of the program were such that the total length of
values where about 1810. In the case where Welch’s method was not used the
closest radix using Zero-padding method 1 was thus 11, which is 2048 (211). In
this case only 238 zeros were added to the vector, according to equation 22. If
Zero-padding method 2 was used it resulted in 2286 zeros (212).
In the case where Welch’s method with 2 sections was used the closest radix was
10, which results in 119 zeros being added to the vector of 905 values, according to
Zero-padding method 1. If radix 11 instead is used, following Zero-padding method
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Figure 16: Comparison between in signal data and linearly interpolated data

2, there is 1143 zeros being added to the vector which again gives a significant
increased vector length.
In the case of Welch’s method using 4 sections the closest radix is 9, 60 zeros is
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thus added to the vector. If a radix of 10 is used 572 zeros are added to the vector.

2x − Length of vector
Number of sections = Number of zeros being added (22)

5.5.4 Resolution of frequency spectrum

In Fig. 18a-19b spectrum of a test using different parameters of Welch’s method
are presented. The test was performed using ROI method 2, 6 sections with a time
limit of 5 seconds and zero-padding.

Using Welch’s method affects the spectral resolution as described in section 3.9.
Denoted in Table 5 are the number of units apart different combinations of methods
can dissolve. As can be seen, there is no big difference between using and not
using Zero-padding method 1 when it comes to the same Welch’s method. However,
when Zero-padding method 2 instead is used, there is a significant amelioration of
the spectral resolution. For this reason, Zero-padding method 1 was left aside in
the developed program in advance for Zero-padding method 2.
As mentioned in section 5.3 Welch’s method has advantages for use on signals with
much noise. It does however impair the spectral resolution, and on this cause the
developed system originally will run without Welch’s method. If the signal is found
to be very noise Welch’s method can be manually applied. One case where Welch’s
method was required was the case with test subject A as described in section 5.3.
The first few runs of tests were processed without use of Welch’s method. This
gave a spectrum with much noise and no distinct peak at all, as can be seen in Fig.
17a. Applying Welch’s method using 2 segments with 50 percent overlap resulted
in the spectrum shown in Fig. 17b. It can be seen comparing the spectrums with
and without Welch’s method applied that the noise levels are reduced with Welch’s
method, but there is still no distinct peak at the frequency that corresponded to
the pulse measured by ECG.

5.6 Estimated Heart Rate
As presented in Fig. 20a, the first value was in some cases incorrect. In these cases,
it was a clear difference between the first and second presented pulse estimation.
Despite this the first value was not eliminated in order to not loose valuable
information in the cases where it was not deviating much from following values. In
order to not affect the succeeding estimation though, 19 was not applied to the
first and second estimations, but starts after second presented value.
In Fig. 20b it can be seen that there is a delay between the first and second frame.
This was a problem that occurred from time to time, not in all recordings but in
many of them, and it has a clear connection to the incorrect first values.
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Figure 17: FFT of signal from test person A, using ROI method 1, 6 sections with
a time limit of 5 seconds and zero padding.
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Zero-padding Method ∆R
2x No Welch 0.029 Hz
2x Welch 2 sections 0.058 Hz
2x Welch 4 sections 0.117 Hz

2x+1 No Welch 0.015 Hz
2x+1 Welch 2 sections 0.03 Hz
2x+1 Welch 4 sections 0.059 Hz
No No Welch 0.033 Hz
No Welch 2 sections 0.066 Hz
No Welch 4 sections 0.133 Hz

Table 5: Spectral resolution, ∆R, as presented in section 3.9, using varying
combinations of methods

5.7 Segmentation parameters
Since the spectral resolution should be maintained, the main difference of a larger
window size and a smaller number of segments would be that the user would have
to wait longer for the results. In the final code, 6 segments were chosen, since it
allows the system to update once about every 5:th second. This allows for fast
readouts, after the initial segments have been filled.

5.8 Performance of the developed program
From table 6 it can be observed that the computational part of the code takes
about 0.1 seconds. The data is presented as the mean and standard deviation of
19 test for each of the parameter sets. The calculations are presented in section
3.10. No distinct differences can be noted between the varying methods, since the
small variations can also be due to other processes running at the same time in
the computer. This means that 3 frames would be lost at every processing cycle if
the camera captures with a frame rate of 30 fps and no parallelism is occurring.

5.8.1 Tracking changes in HR

During one of the tests, the subject had a fast rising pulse followed by a fast
lowering again. This is demonstrated in Fig. 21. It can be seen that between
55 seconds an 60 seconds in to the recording, the subject’s pulse varied from
66.5 bpm to 72.1 bpm. 5 seconds later, the peak corresponding to 72.1 bpm was
again reduced to an amplitude lower than the amplitude of the peak at 66.5 bpm.
Demonstrated by this example, is that the developed system is able to detect these
fast changes.
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Figure 18: Comparison between not using Welch’s method and using it with 2
sections with 50% overlap
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Figure 19: Comparing usage of Welch’s method with 4 sections and varying amounts
of overlap
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Figure 20: Start up problems arising from recording
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Zero- Method Elapsed time [s] Comp time [s]
padding Mean ± std dev Mean ± std dev

2x No Welch 0.1021 ±0.0158 0.1059 ±0.0212
2x Welch 2 sections 0.1021 ±0.0152 0.1103 ±0.0199
2x Welch 2 sections 0.1023 ±0.0135 0.1051 ±0.0181

50 Percent overlap
2x Welch 4 sections 0.1002 ±0.0132 0.1016 ±0.0162

2x+1 No Welch 0.0978 ±0.0108 0.0990 ±0.0113
2x+1 Welch 2 sections 0.0998 ±0.0118 0.1025 ±0.0162
2x+1 Welch 2 sections 0.1002 ±0.0116 0.1042 ±0.0175

50 Percent overlap
2x+1 Welch 4 sections 0.0994 ±0.0131 0.1016 ±0.0145
No No Welch 0.0979 ±0.0104 0.1016 ±0.0136
No Welch 2 sections 0.0998 ±0.0116 0.0990 ±0.0143
No Welch 2 sections 0.0998 ±0.0113 0.1068 ±0.0170

50 Percent overlap
No Welch 4 sections 0.0993 ±0.0119 0.0990 ±0.0143

Table 6: Mean value and standard deviations of timing data calculated from 19
tests using different methods

5.8.2 Statistical Analysis

Estimations of the difference between the reference and estimated pulse are pre-
sented in Table 3. The equations used for calculations are presented in section
3.10.

∆∗ = 0.47 (23)

σ∗ = 1.30 (24)

In (24) an estimation of the standard deviation of the mean value is presented.
In (25) a 99% confidence test can be observed.

Iδ = [0.05, 0.89] (25)

Following these results, the mean value of deviation from the performed mea-
surements is approximately 0.47. Given the total performance of the developed
system, the estimated mean value is with 99% significance within the interval of
approximately 0.05 to 0.89 bpm over the reference heart rate measured by ECG.
These results shows that there is a statistical difference between the methods using
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Figure 21: Difference between estimated HR and reference HR in tracking fast
changes of HR

this dataset.

5.8.3 Outlier rejection

There is one point that distinctly deviates from the others. This result was given
during the testings in the noise-inducing localization for person A, as described
in section 5.3. If this outlier was to be rejected, the results would instead be as
shown in (26) to (28). These results shows that even if the outlier was removed
there still would be a statistical difference between the methods.

∆∗ = 0.40 (26)

σ∗ = 1.17 (27)

Iδ = [0.02, 0.78] (28)
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5.9 Graphical user interface
In order for the user to have a simple way to start the measurements an application
in MatLab has been suggested, as can be seen in Fig. 22. If the user only presses
the button Start measurement it is started with the optimized settings as presented
in this report. Since the aim was to have an easy-to-use system there are not
many possible choices to make for the user. If the user has anything covering the
forehead, he/she is encouraged to change ROI method. It is also encouraged to
apply Welch’s method if problems with a noisy signal are encountered.

Figure 22: The interface of the application as presented to the user

42



6 Discussion
The results from the statistical analysis showed that there is a statistical difference
between the pulse estimated by the developed program and the reference pulse.
The ECG reading were slightly less than half a beat higher than the output of the
system. Based on the resolution used during the testing, this kind of difference was
expected. It was however expected that about as many values would be below as
over the reference which would have made this effect cancel out. To be able to draw
a conclusion on why this effect occurs, more tests would have to be performed. One
alternative is that it would show that the system would always give an estimated
value of half a beat lower than the reference, and it might thereafter be possible
to either find the reason or add a variable which increases the value of the mean
difference to every result presented. Another option is that after performing many
more tests a relationship between deviation and subjects of a certain skin color,
ages, environmental factors etcetera could be found. Then it might be possible to
design parameters matched with the ruling circumstances to obtain a more correct
pulse estimation.
In Table 3 the deviation from the expected value is shown along with the average
deviation from the expected value for each test in the last column. From this data
it can be observed that there is a large difference in deviation between the tests.
This is likely due to the different environments in which the tests where conducted.
As explained in the section 5.3, test A1 had a high number of sources for noise.
Since the same person A was tested on in different environments without this
blurry result, it seems likely that the problem in this case was the surroundings. On
the other hand, no further testings were performed in the noise-inducing location
so there might have been other problems disturbing the signal in the recordings.
For example, it was noticed that the subject wrinkled his forehead many times.
Repeating this behaviour did thought not give any similar results, whether with the
same or other subjects. As can be seen in Table 3, when changing the location for
person A, just minutes after the first recording was done, gave much less average
of deviation.
Given the assumption that was made that the light intensity was to be constant
throughout the recordings, this meant a risk for many possible noise sources. As
mentioned in section 5.1, one test was cancelled out because it was disturbed by
light variations from a drape moving from the window which let in a little more
light. There are many possible cases that we had to watch out for in our recordings,
such as having a tablet or phone light up in front of the subject, or somebody
walking past the light source shadowing the subject. An easy solution for this
problem could be to have a white paper with a black cross on it taped on the wall
next to the subject. If the program was designed to set the light intensity due to
the intensity changes on the paper, under the assumption that the intensity at the
paper and at the subject are linearly dependent, this would make the system much
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more robust.
In Fig. 13a, 13b and 13c the different locations of performed tests can be observed.
Despite our belief that the location had a strong input on the deviation, no clear
connection can be seen between the tests performed in the same surroundings.
This is probably due to the varying amounts of light coming from the window since
the sunlight could not be completely blocked out. The tests were performed on
different times of the day as well as with different weather which made the amount
and intensity of sunlight vary much even though the locations of several tests were
the same. The system takes into account the amount of light at the beginning of
the recordings, but for example if the sun is shadowed this would cause alterations
in the light intensity through the window.
For future testings, we would suggest using a room without windows and the light
source placed in front of a fixed location from the subjects. Nevertheless, the aim of
the project was to construct a system that worked well without having to take in to
consideration all parts of lighting sources and intensities. On this basis, performing
the tests in an optimal environment allows for the system to be optimized in good
conditions first. It would then be easier to draw conclusions on how the system
is affected in different more challenging environments and thereafter construct a
more robust system. Our theory is that combining the paper taped on the wall,
with further testings in a specific test room would allow for much amelioration of
the developed system when it comes to robustness of surrounding factors.
The reason of the difference in deviation from the reference value between the
individual tests can also be altering types of movements that could not be fully
compensated for using the implemented localization and traction of face methods.
The movement would thus have to be in the frequency range of interest and of
much intensity to have affected the measurements.
As can be seen in Table 5, there is no big difference in resolution of frequency
spectrum between not using Welch’s method, and using it with 2 sections. Since
Zero-padding aims to get the closest 2x number of L samples in the sequence, it
seems likely that the same number of 2x has been chosen for the two methods.
However, when using Welch’s method with 4 sections, a bigger difference in
resolution can be noticed. This indicates that another radix was used.
Another aspect that can be observed in Table 5, is that there is a big difference
in the distance between data points in different types of zero padding. At the
same time the difference is not as big between the distance between data points
in zero padding to the closest radix compared to not using zero padding. This is
most likely due to the data being close to a radix and thus not so many values are
added to the vector. If the data would have been further apart from the radix the
difference of using zero padding compared to not using it would have been much
larger.
As this system is designed to be used with different vector configurations we believe
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that it is preferable to always increase the vector by one extra radix instead of
hoping that the length will be appropriate. Of course there could be a statement
to check if this is the case and add the radix in case the values where too close to
a radix but based on the small difference in elapsed time between the methods, as
presented in Table 6, this was not considered to be necessary.
During several of the tests, time anomalies occurred in the program. This caused
a delay between some samples. In section 5.6, our solution to this problem is
presented. Using the live version of the program, this will thus not cause any
problems. Nonetheless, in the recorded videos this delay between samples still
exists, meaning that some beats may have been lost between spaces. Given our
presented solution, it will not give misguiding pulse estimations, but gives no
output during this delay.
The time anomalies are most likely due to Microsoft Window’s processes running
in the background of the operating system and Matlab not being prioritized. This
might be solved by running the program on another operating system or setting it
as an priority.
The application connected to the program was designed in order for the user to
get easily started without having to understand the background of the system. It
was considered to be better to leave many choices out instead of risking to confuse
the user with many different alternatives, and therefor only two cases of options
are possible. The application could however benefit from further development
concerning the design to make it a more appealing and intuitive user interface.
As mentioned in section 4.5, the first value is miss guiding in many cases. The
reason for this is that there is a start up delay in the used camera. This delay
induces long times between taken frames in the beginning of the recordings, which
makes it possible that one or several heart beats are missed between frames making
the estimated pulse incorrect. Despite this, we have chosen not to remove the first
value presented since it is not always wrong, and if rejected despite a correct value,
significant data might be lost. In the cases where it is incorrect, this is clearly
visible given the difference that then occurs to the following presented pulse 5
seconds later on in the process. Therefor it is easy to disregard the first value if it
is clearly incorrect even thought it is presented to the user. This problem made us
implement a safeguard as the first result is not kept as a reference value for the
following results.
We found it very interesting that the ROI method 2 where measurements were
only performed on the forehead actually gave better results than ROI method 1
which measures on the whole face. It turned out that at the same time as the
pulse signal strength increased, so did the noise to an even larger extent. The ROI
method 2 thereby gave better results with less noise. As mentioned in section 4.3
the areas with highest density of blood vessels in the face are the cheeks and the
forehead. When increasing the region of interest to a 60 percent width of the face

45



large parts of the cheeks are included, but so are the eyes, the nose and the mouth.
These part does not contribute with as much information about the heart rate
but instead are extended areas for noise inducement, which is probably why the
signal to noise ratio is reduced. Eye movement are not accounted for in any of the
applied algorithms, and thus it can be a major fault source when the movements
are within the chosen frequency range.
Using the different equations for validating that the found peak actually corresponds
to the heart rate is essential for a good estimation. The equations and their
parameters have been developed after localization of errors during the testing.
Using the parameter values as defined in (18), (19) and (20) seems to give good
results but they can of course be a reason for certain cases of deviation from the
reference pulse.
In the beginning of the process, some problems were encountered that the program
chose values that actually not corresponded to a true peak, but were the first high
value on the down going slope of a peak that was outside of the interval. It was
therefor assumed to be part of noise. To assure that a peak was chosen, avoiding
this situation, equation (18) was introduced.
As was presented in Fig. 21, there was one case where the pulse acquired from
the system varied 8.76 bpm in only 5 seconds. This was the only observed case
detecting as fast of a change of pulse, and therefor the limit of equation 19 was set
to 10 bpm during 5 seconds. It was crucial that the true fast changes was not to
be removed by this limit, but at the same time a limit set too high would increase
the risk of detecting the wrong peak as estimated pulse.
Equation (20) were introduced to make sure that the chosen peak was significantly
higher than the rest of the signal. It is a combination of two validating test to
assure both that the estimated pulse is distinct and that good information should
not be thrown away too easily. In this trade-of between accurate estimations and
giving an output from the section in question, the limits of 10 respectively 120
percent were chosen by empirical research.

Many of the methods and algorithms presented in the theory section of this
report have not been implemented, for example applying different filters. Filters
were not found to be necessary since the signal was transferred to frequency domain
using FFT, and then only analyzing the frequencies between 40 and 240 bpm. It
would however have been interesting to compare our method to methods including
joint time-frequency analysis and heuristic methods for extraction of pulse signal.
It would also have been interesting to try different combinations of color channels,
instead of only extracting the green channel. The applied methods, however, have
been chosen with consideration taken to the time limit of this project and the
method’s capacity to work good in the developed program.
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6.1 Ethics
When looking at what the future might bring using the presented technique, there
are several ethical questions that can be raised . First of all, during the development
of this technique, tests have to be performed on many persons. Of course, it is then
the biggest priority to make sure that the participation is completely voluntarily
and that the subjects are aware of the process of the test. Beside that, if any
information about the subjects are to be presented, the subjects have to be informed
and give their approval. In this report, the subjects personal information, such as
names and ages, has been substituted by simply a letter A-I. However, a photo of
one of the subjects has been included in the report, of course with the consent of
the subject himself.
In a yet further perspective in a cradle to grave perspective is the usage of this
technique. In hospital care, we do not find many troublesome situations since
the method only adds up to other monitoring and measuring products, but for
monitoring people in their homes the case is another.
According to Johansson, [36] there are four major biomedical ethical principles
that have to be considered during the development of such technique:
- Autonomy, respecting the self-determination and allow people to make informed
choices.
- Justice, such as distributing advantages, disadvantages, risks and costs fairly.
Distributing resources, conquering needs, rights, obligations and so on.
- Beneficence, meaning that the intentions are good
- That it may not harm, which demands that the connection between cause and
harm is avoided, saving both the patient and others from harm. If the procedure
would encounter any harm it is important that it is not disproportionate compared
to the advantages of the method.
In order to fully respect the autonomy we consider it very important that the
patient may disagree to usage not only when the method is introduced but at all
times. For the sake of making an informed choice, this might for example include
that a lamp is implying if the camera is recording and that the patient has the
possibility to turn the measurements of at any time. How exactly this would be
implemented when it comes to alarming the system when it is not recording or if
the person is not of full mental health would have to be further explored.
Another question we would like to raise is if the system could be hacked, giving the
information to a third party. Before introducing this technique there would have
to be much investigations into this field to assure that the information is collected
and stored safely and may not be obtained or altered by anyone not granted access.
We do believe that usage of this technique, if correctly implemented, could give
many benefits to future patients in their homes. The integrity would have to
be investigated in each individual case, when it comes to the trade of between
recording in ones home at the same time as the possible visits from caretakers or
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going to the hospital might be reduced.
To summarize, the field would have to be further explored before introducing this
technique, but looking at other recording or monitoring devices being used in
health care, we believe that the benefits of this technique in many cases would
overcome the possible disadvantages.
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7 Conclusions
Despite the limited time, it has been possible to construct a fairly robust system.
Problems using the system have been encountered when there were several light
sources from different angles and when the light intensity was not stable. The
conclusion could thus be drawn that from where the light emerged and the variation
of the light was more important then what type of light source was used.
Tests have been performed in different environments on 9 persons of varying
ethnicities, ages and genders. Calculating a mean value for the difference between
the pulse estimated by the developed program and the reference ECG measurements,
99% of the mean difference fell within approximately 0.05 and 0.89 beats per
minute (bpm) over the reference. The mean value of the performed test were
approximately 0.5 bpm. This means that there is a statistical difference between
the pulse estimated by the program and the reference pulse.
The developed program is compatible with many different simple digital cameras
and require no specific light source. It is also easy to execute measurements for
the user. On this basis, our strong belief is that with further tests and adaptations
of the program, the method presented can be of much value in the health care of
the future.
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9 Appendix

Time vector [s] Output System [bpm], no Welch ECG reference [bpm]
30 72.2724 73
60 67.8004 73
90 65.6959 69
120 71.9041 72

Table 7: Output from system for test A1

Time vector [s] Output System [bpm], no Welch ECG reference [bpm]
30 66.3710 67
60 67.6690 66
90 69.3505 70
120 70.3186 70

Table 8: Output from system for test A2

Time vector [s] Output System [bpm], no Welch ECG reference [bpm]
30 61.6024 64
60 61.4607 60
90 - 62
120 58.8659 60

Table 9: Output from system for test B1 contains a time anomaly at 70 s and 72 s
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Time vector [s] Output System [bpm], no Welch ECG reference [bpm]
30 61.6023 64
60 61.5971 62
90 60.5153 60
120 59.6452 58

Table 10: Output from system for test person B2

Time vector [s] Output System [bpm], No Welch ECG reference [bpm]
30 55.6450 57
60 55.0785 56
90 55.0485 56
120 55.0484 56

Table 11: Output from system for test person C1

Time vector [s] Output System [bpm], no Welch ECG reference [bpm]
30 56.2875 56
60 55.85 56
90 56.72 56
120 56.3668 56

Table 12: Output from system for test person C2

Time vector [s] Output System [bpm], no Welch ECG reference [bpm]
30 69.1162 68
60 64.8821 66
90 65.6217 65
120 64.6816 65

Table 13: Output from system for test person D1
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Time vector [s] Output System [bpm], no Welch ECG reference [bpm]
30 66.1721 68
60 66.7463 66
90 64.1376 66
120 63.1464 64

Table 14: Output from system for test person D2

Time vector [s] Output System [bpm], no Welch ECG reference [bpm]
30 70.3593 71
60 71.2765 71
90 70.3593 70
120 71.2764 69

Table 15: Output from system for test person E1

Time vector [s] Output System [bpm], no Welch ECG reference [bpm]
30 47.5179 71
60 70.3966 72
90 70.3996 70
120 43.9979 72

Table 16: Output from system for test person E2

Time vector [s] Output System [bpm], no Welch ECG reference [bpm]
30 65.0477 66
60 72.0600 72
90 65.9969 66
120 65.5652 66

Table 17: Output from system for test person F1
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Time vector [s] Output System [bpm], no Welch ECG reference [bpm]
30 62.8818 64
60 61.0826 62
90 61.0375 62
120 62.3499 64

Table 18: Output from system for test person F2

Time vector [s] Output System [bpm], no Welch ECG reference [bpm]
30 57.1649 58
60 56.3172 58
90 55.4080 54
120 58.0773 58

Table 19: Output from system for test person G1

Time vector [s] Output System [bpm], no Welch ECG reference [bpm]
30 55.1969 56
60 55.2678 56
90 54.8384 56
120 54.8669 56

Table 20: Output from system for test person G2

Time vector [s] Output System [bpm], no Welch ECG reference [bpm]
30 75.5153 74
60 68.6364 70
90 65.9997 66
120 68.6372 68

Table 21: Output from system for test person H1
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Time vector [s] Output System [bpm], no Welch ECG reference [bpm]
30 72.8809 72
60 73.9166 74
90 70.3595 72
120 71.2769 72

Table 22: Output from system for test person H2

Time vector [s] Output System [bpm], no Welch ECG reference [bpm]
30 59.1036 58
60 53.6773 54
90 53.6490 54
120 57.0996 58

Table 23: Output from system for test person I1

Time vector [s] Output System [bpm], no Welch ECG reference [bpm]
30 56.0731 56
60 57.1973 60
90 59.6069 58
120 58.0773 58

Table 24: Output from system for test person I2
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