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Abstract

This thesis investigates the use of artificial neural networks for classifying Raman spectra of partially
degraded cellulose samples by fungal species. A multilayer perceptron configuration of 4 hidden
layers and 128 hidden nodes was able to classify a set of 60 samples with an overall prediction
accuracy of 0.55.

Results show that data resolution is an important factor when optimizing classifier performance,
and that a resolution of 1.0 cm~! gave the highest performance.

We found that choosing suitable parameters for the asymmetric least squares smoothing (ALSS)
correction is of relevance when attempting to optimize classifier performance, and that an ALSS
smoothness value of A = 10° gave the highest performance.

Results also indicate that some fungal species and control treatments have stronger signatures
in certain spectral regions. Gloeophyllum sp., Coprinellus angulatus and NaOH treatments had the
most accurate probability distribution and may therefore be considered to cause the most unique
cellulose modification.

This thesis shows promising results for artificial neural networks to be utilized for classifying
Raman spectra of partially degraded cellulose samples.



Popular science description

We are surrounded by fungi. They are in the soil, on our skin and even in the air we breathe. There
are millions of different fungal species on Earth, but what do they do? In nature, some fungi play
an important role as decomposers, replenishing their environment with nutrients by breaking down
organic matter. These "saprotrophic fungi” are capable of obtaining nutrients and energy from
organic matter, such as leaves, seeds, stems, logs, roots, etc. and each of these species may even
have their own unique set of mechanisms for doing this. Studies have shown that brown-rot and
white-rot fungi do indeed differ in their methods of breaking down cellulose, but are these methods
unique enough to tell them apart from other fungi? Is it possible that every fungal species has its
own signature? We don’t know.

Figure 1: White rot in a birch tree. Sten Porse, license: CC-BY 3.0.

Raman spectroscopy, a technique commonly used for analysing and identifying materials, can
provide spectral representations of cellulose samples which have been partially broken down by
fungi. Such representations, which are associated with the molecular properties of the degraded
samples, could potentially be viewed as “fungal fingerprints”. However, Raman spectroscopy can
produce large amounts of data which may be too complex, or too time consuming, for humans to
analyse meticulously. In such situations, artificial neural networks can be utilized.

Artificial neural networks can be described as computational models, vaguely inspired by the
human brain, capable of acquiring and maintaining information. These networks can easily be
provided the spectral data of the cellulose samples which they will learn to associate with their
corresponding species, all by themselves. If training is successful, a network will be able to correctly
identify a sample it has never seen before. Artificial neural networks may therefore provide a
tool powerful enough to further help us understand the similarities and differences between fungal
species, as well as their mechanisms.
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1 Introduction

1.1 Cellulose and saprotrophic fungi

Cellulose is the most abundant organic polymer on earth and is widely recognized for its industrial
use. While chemically simple, cellulose is intermolecularly complex [1] and a deeper understanding
of the crystalline structure within the plant cell wall could be beneficial for several industrial
applications. In nature, saprotrophic fungi play a significant role as decomposers of organic matter,
but the mechanisms they employ to decompose cellulose are not well-understood. By improving
our understanding of the fungal decay of cellulose, we can learn new methods of breaking down
cellulose for biofuel production [2] as well as develop new ways to prevent rot and decay in wood
(3].

Two related types of saprotrophic fungi capable of decaying wood are the species belonging to
white-rot and brown-rot fungi. Studies have shown that they differ in their mechanisms of breaking
down cellulose, yet we still know very little about the strategies they employ, especially those of
brown-rot fungi [1]. We know even less about litter-decomposing fungi, which are harder to examine
due to their heterogeneous environment, even though they seem to share physiological traits with
white-rot fungi [1].

Spectral analysis of partially decomposed cellulose from fungi of different decay types could
provide additional information about these fungal mechanisms and help us further understand the
structure of cellulose, as well as the evolution of nutritional strategies used by fungi.

1.2 Raman spectroscopy

Raman spectroscopy is a technique commonly used for analysing and identifying materials. It relies
on the energy shifts of photons as they interact with the molecular vibrations of a sample material
and scatter inelastically. The frequencies of these vibrations depend on the mass, arrangement and
bond strength of the atoms in the molecule. Raman spectroscopy can therefore provide a spectral
representation of the molecular structure of a material [4].

Raman spectra are typically represented as the intensity of the inelastically scattered light with
respect to its frequency (wavenumber).

1.3 Neural networks

Artificial neural networks can be described as computational models, vaguely inspired by the hu-
man brain, capable of acquiring and maintaining information. They are used in several areas of
application such as function approximation, pattern recognition and prediction [5].

The artificial neuron can be seen as the processing unit of the neural network and operates
by collecting incoming signals x1, x3, ..., T, and multiplying them by their corresponding synaptic
weights w1, wa, ..., wy,. The sum of the weighted signals is passed through an activation function f,
resulting in an output signal y which is forwarded to the next layer of neurons [5]. A model of the
artificial neuron is shown in Fig. 2. It is also common that the neuron contains an activation bias,
which acts as a threshold for the weighted sum before being passed through the activation function
[5]. Such a bias is not used during this project. Throughout this paper, the terms “neuron” and
"node” are used interchangeably.
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Figure 2: Model of an artificial neuron. Incoming signals z1, s, ..., Z, are multiplied by their
corresponding synaptic weight wq,ws, ..., w, and summed together. The weighted sum is then
passed through an activation function f, resulting in an output signal y.

The following two expressions describe the mathematical operation of the artificial neuron [5].

n
u= Zwi T (1)
i=1

y=f(u) (2)

The most basic neural network model is the single-layer perceptron, and some of its most relevant
components, including those already mentioned, are listed below.

e Synaptic weights controlling the significance of forwarded signals.

Neural layers making up the network structure (input, output and hidden layers).

e Neurons or nodes collecting the incoming weighted signals.

Activation functions modulating the incoming signals within the nodes and adding non-
linearity.

e FError function calculating the error between produced output and desired output.

Optimization algorithm adjusting synaptic weights to minimize the error.

While the single-layer perceptron consists only of one neural layer, one can construct a more complex
network model, capable of mapping any nonlinear continuous function [6], by adding more layers.
The multilayer perceptron, as shown in Fig. 3, is considered one of the most versatile network
models function [6] and is the model we used during this project.
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Figure 3: General model of a feed-forward neural network. Neurons (circles) are connected between
layers via synaptic weights (arrows).

The synaptic weights within the multilayer perceptron are adjusted by the process of supervised
training, which requires every data input to have a desired output [6]. During this type of training,
the weights are updated by an optimization algorithm in order to minimize the error between the
produced output and the desired output.

Optimization algorithms used for multilayer perceptrons are often variations of the backpropaga-
tion algorithm. This algorithm calculates the gradient of the output error, with respect to the
weights within the network, and adjusts the weights in the opposite direction of the gradient. This
process, when repeated, results in a gradual error reduction until a desired error value has been
reached or until a selected number of iterations, or epochs, have been completed [6].

Variations of the backpropagation algorithm are often implemented to prevent the output error
from converging to a local minima.

When minimizing the output error, there is a risk of allowing the network to become too closely
fitted to the training data. This condition is called overfitting and makes it difficult for the net-
work to generalize and make predictions for new data. Overfitting can be prevented by different
regularization techniques [6].



1.4 Cellulose samples

Experiments by our collaborator Dr. Dimitrios Floudas at the Department of Biology at Lund
University have produced spatially resolved Raman spectra of isolated cellulose that has been
partially decomposed by different species of fungi and several control treatments, see Fig. 4. The
data consist of 60 separate files from measurements of 16 different cellulose samples within the
wavenumber region 1200-1550 cm~!, with a resolution of approximately 2 measurements per cm™?!.
Most samples were measured three times at different regions within the sample, with 66 spectra
included in every file. However, some samples were measured seven times at different regions with
18 spectra included in every file. Each data file represents a complete measurement at a unique
cellulose sample region. Out of the samples, nine represent fungal species while the rest are control

samples, as shown in Table 1.

Figure 4: Images of cellulose, partially degraded by Phanerochaete laevis (top) and Gloeophyllum
sp. (bottom), after 40 days of incubation. Images show before (left) and after (right) a majority of
the surface fungal mycelium has been removed.



Cellulose samples

Fungal species Abbreviation Spectra
Agrocybe pediades (LD) AGP 3 x 66
Tricholomella constricta (LD) CAC 3 x 66
Coprinellus angulatus (LD) C 3 x 66
Gymnopus confluens (LD) GYM 3 x 66
Gloeophyllum sp. (BR) G 3 x 66
Leucoagaricus leucothites (LD) LEPSP 3 x 66
Phanerochaete laevis (WR) PHALA 3 x 66
Psilocybe cf. subviscida (LD) PSS 3 x 66
Tetrapyrgos nigripes (LD) TEN 3 x 66
Control

Autoclaved paper AUP 3 x 66
Non-inoculated paper autoclaved at 20°C ~ CON20 3 x 66
Non-inoculated paper autoclaved at 25°C ~ CON25 3 x 66

24 hour enzyme treatment (CellicCTec2)  EnzC2.24h3 7 x 18
48 hour enzyme treatment (CellicCTec2)  EnzC2.48h2 7x 18
3 hour NaOH3(3 M) treatment NaOH3M 7x18
Non-inoculated and non-autoclaved paper OP 3 x 66

Table 1: Table of cellulose samples, abbreviations and number of spectra. Fungal decay type is also
denoted: litter decomposers (LD), brown-rot (BR) and white-rot (WR).

2 Methods

All of the code was written in Python 3 and is included in the Appendix.

2.1 Data processing

The available Raman data suffered from irregular spacing between data points as well as inconsistent
wavenumber values between spectra. In order to extract equivalent data points from every spectrum,
the data was approximated in Python using quadratic polynomial interpolation, which also allowed
us to adjust the resolution of the data provided to the neural network. However, a resolution of
0.67 cm~! was used initially. We inspected the interpolation by plotting the interpolated data on
top of the raw Raman data, as shown in Fig. 5.

The approximated data was also corrected in Python using asymmetric least squares smoothing
(ALSS) [7] to account for baseline variations among spectra. The ALSS algorithm has two paramet-
ers, asymmetry p and smoothness A\, which both have to be tuned for the data at hand. The asym-
metry parameter, which affects the distribution of the differences between spectrum and baseline,
was set to p = 1073, since this value has been shown to work well for correcting Raman spectra
with positive peaks [7]. The smoothness parameter, which affects the intensity relation between
approximated spectral peaks and baseline as seen in Fig. 6, generally works well for 102 < A < 10°
when correcting spectra with positive peaks [7]. Initially, we set this value to A = 10* with the
intention of tuning the parameter after the neural network had been constructed. Fig. 7 shows a
comparison between raw and ALSS corrected Raman spectra.
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Figure 5: Example of first ten Raman spectra of Gloeophyllum sp. with interpolated data (green)
on top of raw data (red).

As seen in Fig. 5, the first spectra generally have the highest baseline intensity, which then decreases
for the following spectra during the measurement.
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Figure 6: Comparison between Raman data corrected with different values for the ALSS smoothness
parameter. The graphs show the first spectrum of Gloeophyllum sp. with ALSS asymmetry p =
1073, The input data resolution is 0.67 cm™!.
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Figure 7: Comparison between raw (left) and ALSS corrected (right) Raman data. The graphs
show the first ten spectra of Gloeophyllum sp. (red) and Tetrapyrgos nigripes (green) with ALSS

asymmetry p = 1072 and ALSS smoothness A = 10*. The input data resolution is 0.67 cm™!.

2.2 Constructing neural networks

The artificial neural networks applied in this project were constructed in Python using the deep
learning library Keras [8], since this library enables fast implementation and experimentation.
Our goal was to find a network configuration based on the multilayer perceptron model, capable
of multi-class classification with high performance and with moderate computational cost. The
different types of fungal species and control treatments will, from now on, be referred to as classes.

2.2.1 Model selection and hyperparameters

Initially, the number of nodes within the input and output layer were adjusted for data compatibility
and for giving an output matrix of 16-dimensional vectors, with each dimension representing a
specific class.

The ReLU function (rectified linear unit) was applied as the activation function for all hidden
layers, including the input layer, since this function has been shown to work well for classification
purposes [9]. The ReLU function is defined as f(z) = maz(0, ).

The softmax function was applied as the activation function for the output layer in order to give

a probabilistic output distribution. The softmax function is defined as f(y;) = Ze_y;yj .
J

Adam (adaptive moment estimation) [10] was applied as the optimization algorithm with a
learning rate of 10~* and the categorical cross entropy function was applied as error function. The
categorical cross entropy function is defined as f(p,q) = —>_, log(q(z)).

The number of epochs was set to 100.

2.2.2 Training and evaluation

Networks were trained and evaluated separately for every data file with the following procedure:
We removed a single data file from the data set with the intention of re-introducing it for classi-

fication after the network had been trained on the remaining data. The network was also provided

a matrix of unit vectors, representing the desired output of the training data. When training was
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completed, the isolated file was re-introduced for classification and the network generated a prob-
abilistic prediction distribution among the 16 classes for every spectrum within the file. A final
and normalized probability distribution was calculated from the class with the highest probability
of every spectrum within the file.

The procedure was repeated for every data file and the overall fraction of the probability distri-
butions being in the correct classes was interpreted as classifier performance, and given as a value
between 0 and 1. Fig. 12 in the appendix shows a heatmap matrix of the probability distribution for
the different classes, where the rows show the actual class and the columns show the network’s pre-
dictions. Since there are multiple data files representing the same class, the heatmap matrix show
the average probability distribution for every class. The classifier performance can be calculated
from the average value of the diagonal entries of the heatmap matrix.

2.2.3 Hidden layers and nodes

In order to find a satisfactory network model, we systematically evaluated the performance using
different network configurations. The effects on classifier performance by the number of hidden
layers and hidden nodes within the network were investigated, as shown in Fig. 8. For the main
part of the investigation, a network configuration of 4 hidden layers and 128 hidden nodes per layer
was used.

2.3 Further investigations

We wanted to see if the ALSS correction could affect the performance of the network classifier.
The network was therefore provided with multiple sets of data, corrected with different values for
the ALSS smoothness parameter, as shown in Fig. 9. Classifier performance was also evaluated for
different values of input wavenumber resolution, as shown in Fig. 10. The resolution regulates the
number of equidistant data points provided to the network.

We also investigated the classifier performance when providing the network with data from
three isolated spectral regions: 1250-1301 cm™!, 1301-1445 cm ™! and 1445-1491 cm~'. The two
outer regions have been shown to contain signatures typical for amorphous cellulose [11]. Classifier
performance for these three regions, as well as for all of them, are shown in Fig. 11 and Table 2.
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3 Results

3.1 Layers and hidden nodes

Performance
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w
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Figure 8: Mean classifier performance with respect to number of hidden layers and nodes with
standard error bars. Within every configuration, an equal number of nodes is used for every hidden
layer and the input data resolution is 0.67 cm™! for the region 1202-1549 cm~!. Each configuration

16 32 64 128 256 512
Hidden nodes per layer

is trained and evaluated five times with 100 epochs.

As seen in Fig. 8, there is a pattern in the classifier performance when adding nodes to a network
with a fixed number of layers and epochs. The peak in performance is reached at an increasingly
higher number of nodes as the number of hidden layers increases. The computational cost of adding
layers to the network increases exponentially since they are added geometrically. However, the
performance plateaus and decreases. A configuration of 4 hidden layers and 128 hidden nodes per
layer was chosen for the following investigations, since such a configuration yields a high performance

at a moderate computational cost.
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3.2 ALSS smoothness
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Figure 9: Mean classifier performance with respect to ALSS smoothness with standard error bars.
The networks are trained and evaluated five times with 4 hidden layers and 128 hidden nodes per
layer.. The input data resolution is 0.67 cm~? for the region 1202-1549 cm™?!.

As seen in Fig. 9, the classifier performance is the highest for an ALSS smoothness value of 10°.
However, a value of 10* was chosen for the following investigations, since we did not want to modify
the spectra too much.

3.3 Data resolution
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Figure 10: Mean classifier performance with respect to wavenumber resolution for the region 1202-
1549 cm~! with standard error bars. The networks are trained and evaluated five times with 4
hidden layers and 128 hidden nodes per layer.
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Interestingly, a wavenumber resolution of 1.0 cm ™!, as seen in Fig. 10, produces the highest classifier

performance with a network configuration of 4 hidden layers and 128 hidden nodes. The standard
error decreases with higher resolution.

3.4 Spectral regions
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Figure 11: Mean classifier performance for spectral regions with standard error bars. The networks
are trained and evaluated five times with 4 hidden layers and 128 hidden nodes per layer. Input

data resolution is 1.5 points per cm™?.

Out of the three single regions, overall classifier performance is the highest for region 1301-1445
cm™!, as seen in Fig. 11. However, the best performance is achieved when using all three regions

together.
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Classifier performance
Region [em™1]

Class 1250-1301 1301-1445 1445-1491 1250-1491
AGP 0.42 0.53 0.27 0.56
CAC 0.16 0.11 0.25 0.22
C 0.37 0.87 0.55 0.80
GYM 0.24 0.26 0.22 0.28
G 0.71 0.78 0.90 0.91
LEPSP 0.37 0.31 0.30 0.47
PHALA 0.16 0.34 0.058 0.47
PSS 0.48 0.025 0.32 0.023
TEN 0.56 0.47 0.20 0.50
AUP 0.52 0.85 0.59 0.85
CON20 0.063 0.077 0.18 0.34
CON25 0.38 0.59 0.30 0.73
EnzC2_24h3 0.37 0.43 0.22 0.44
EnzC2_48h2 0.26 0.40 0.28 0.25
NaOH3M 0.98 0.99 0.79 0.96
OP 0.26 0.39 0.49 0.51

Table 2: Mean classifier performance for specific fungal species and control treatments, with network
trained and evaluated five times on isolated spectral regions with 4 hidden layers and 128 hidden

nodes. Input data resolution is 0.67 points per cm~!.

As seen in Table 2, most classes have a varying classifier performance between the spectral regions
and the performance for all three regions often correspond to the single region with the highest
performance. However, some classes, such as Gloeophyllum sp. and NaOH, are easy to classify in
all regions.

4 Discussion

The general approach for finding a suitable network model was trying different values of network
hyperparameters and evaluating classifier performance. Unfortunately, hyperparameters may not
be independent of each other and changing one parameter might therefore impact the significance
of another. On the other hand, trying all combinations of hyperparameters would have taken too
long. This is the reason why some of the parameters was set to a fixed value during the entire
project, for example the number of epochs or the type of activation functions. Another approach
could have been Bayesian optimization of hyperparameters.

Quadratic polynomial interpolation seems to work well for approximating irregular Raman data.
The interpolation resolution had a significant impact on the classifier performance and the highest
performance was, interestingly, not achieved when using the highest resolution. This could be due
to the simplicity of the network and a more complex network could perhaps perform better with a
higher resolution. Another explanation could be that having multiple Raman data points within a
small interval does not add additional information about the sample, compared to having a single
data point.
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The smoothness parameter of the ALSS algorithm also had an impact on the classifier perform-
ance. Higher values for the smoothness parameter can help minimize errors and flaws from the
measurement and enhance significant spectral signatures, but it can also eliminate the bio-chemical
properties of the data, some of which could be of importance when attempting to differentiate
between fungal species with similar spectral signatures. A value of A = 10# seems suitable for this
project, but a more complex network might perform equally well with a lower value. Surprisingly,
a value of A = 102 resulted in a fairly high classifier performance. The asymmetry parameter could
potentially also affect the classifier performance, but no other value than p = 1073 was tested.

Increasing the number of layers for the network allowed for a higher classifier performance when
finding a suitable number of nodes in every layer. However, the increase in performance was not
linear with respect to the number of layers and the computational cost increased exponentially. A
network configuration of 4 hidden layers and 128 hidden nodes therefore seemed appropriate for this
project. However, with more time and greater computational resources, highly complex networks
could be tested.

Network overfitting is often prevented by using regularization techniques, such as early stopping
[6]. However, our approach for preventing overfitting was to limit the number of epochs to 100.
A limited number of epochs could potentially prevent networks from reaching maximum perform-
ance, and further investigations could therefore be done using a different number of epochs and/or
regularization techniques.

The middle spectral region gave the best performance out of the three isolated regions, when
averaging the performance over all classes. This could be explained by the fact that this region
was the widest. Another explanation could be that the middle region contains most of the spectral
signatures associated with the fungal species and the control treatments.

Class specific performance shows that G (BR) was easy to classify in all three regions, while
PHALA (WR) was easier to classify in the middle region. Other fungal species (LD) did not have
clear similarities in which region they were the easiest to classify.

The approach for separating training and validation data was to select entire data files for
training, i.e. not splitting data from the same region within the sample. Another approach could be
to merge the data from all files and then randomly separating the training data from the validation
data.

5 Conclusions

A multilayer perceptron configuration of 4 hidden layers and 128 hidden nodes was able to classify a
set of 60 cellulose samples with an overall prediction accuracy of 0.55. This value can be interpreted
as how certain the networks are that the overall classification is correct. Since 8 of the 9 fungal
species had the highest probability fraction in the correct classes, using artificial neural networks for
classifying cellulose samples degraded by fungi seems to be a promising method. Greater accuracy
can most likely be achieved by further optimization of network architecture and hyperparameters.

However, the goal of the project was not to find a network configuration with a prediction
accuracy of 1.0, since this would have made it difficult to analyse the results for similarities or
differences between species. Additionally, some of the control samples are almost identical, for
example the non-inoculated samples or the enzyme treatments, and these samples can therefore be
expected to be difficult for the networks to classify correctly.

Species that are more easily classified correctly by the networks could be considered to cause the
most unique cellulose modification. Similarly, species that are harder for the networks to classify
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correctly could be considered to modify cellulose in ways similar to other species.

When looking at the heatmap matrix (Fig. 12 in Appendix), one can see that the networks

managed to classify most of the samples correctly, with 11 out of the 16 classes having the highest
probability fraction in the correct classes. G (BR), C (LD) and NaOH3M had the most accur-
ate probability distribution and may therefore be considered to cause the most unique cellulose
modification.

It was also found that PSS (LD) was incorrectly classified as CAC (LD) and GYM (LD). The

associations between these three classes could also be seen when the network tried to classify CAC
and GYM.
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6 Appendix
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Figure 12: Heatmap matrix showing multi-class classification results. Rows show the actual class
and columns show the neural network’s probabilistic prediction. The networks are trained and
evaluated five times with 4 hidden layers and 128 hidden nodes per layer. Input data resolution is
1.5 points per cm ™! for the region 1202 - 1549 cm~*.
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import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

from scipy.interpolate import interp1d

import os

import scipy as sp

from IPython.display import display

from ipywidgets import FloatProgress

import keras

from keras.models import Sequential

from keras.layers import Dense, Dropout, Activation
from keras.optimizers import SGD, Adam, RMSprop
from sklearn.model_selection import train_test_split
import seaborn as sns

import datetime

class Classifier:
def __init__(self, samplefolder, wavenum, smoothness, assymmetry, nruns, layers, nodes, act, Ir, opt, loss, epochs):
self.samplefolder = samplefolder
self.wavenum = wavenum
self.smoothness = smoothness
self.assymmetry = assymmetry
self.nruns = nruns
self.layers = layers
self.nodes = nodes
self.act = act
self.lr =1Ir
self.opt = opt
self.loss = loss
self.epochs = epochs
self.NSessions =[3, 3,3, 3,3,3,7,7,3, 3,3, 7, 3, 3, 3, 3] #Number of sessions per species.
self.NSpecies = len(self.NSessions) #Number of different species
NSpectra = [66, 66, 66, 66, 66, 66, 18, 18, 66, 66, 66, 18, 66, 66, 66, 66] #Number of spectra per session.
Identity = np.identity(self.NSpecies) #0ne Hot matrix with vectors for every species.
Y={]
for i in range(self.NSpecies):
for j in range(self.NSessions]i]):
Z=]
for k in range(NSpectrali]):
Z.append(list(Identity[i]))
Y.append(Z)
selfY =Y
self.SpeciesNames = ['AGP', 'AUP', 'CAC', 'CON20',
'CON25', 'C', 'EnzC2_24h3', 'EnzC2_48h2',
'GYM!, 'G', 'LEPSP', 'NaOH3M',
'OP', 'PHALA!, 'PSS', TEN] #Labels for heatmap.

def ALSS(self, y, niter=10,): #Normalization and baseline correction.
L =len(y)
D = sp.sparse.csc_matrix(np.diff(np.eye(L), 2))
w = np.ones(L)
for i in range(niter):
W = sp.sparse.spdiags(w, O, L, L)
Z =W + self.smoothness * D.dot(D.transpose())
z = sp.sparse.linalg.spsolve(Z, w * y)
w = self.assymmetry * (y > z) + (1 - self.assymmetry) * (y < z)
return z

def FitData(self, fileindex): #Interpolation fitting.
ALSSData =]
Data = pd.read_csv({}{}.format(self.samplefolder, fileindex), sep=";', header=None)
for i in range(1, len(Data.columns)):
f = interp1d(Data[0], Data[i], kind='quadratic')
y1 = f(self.wavenum)
y2 = self. ALSS(y1)
y=yl-y2
ALSSData.append(y)
return ALSSData

def ProcessData(self):

fp = FloatProgress(min=0,max=len(os.listdir(self.samplefolder)))

display(fp)

DataMatrix =[]

print('Storing data in DataMatrix...")

for i in sorted(os.listdir(self.samplefolder)):
DataMatrix.append(self.FitData(i))
fp.value +=1

self.DataMatrix = DataMatrix

print('Data stored.")

def XTrain(self, index): #Slicing data into training and validation sets.
return np.concatenate(self.DataMatrix[:index] + self.DataMatrix[index + 1:])
def YTrain(self, index):
return np.concatenate(self.Y[:index] + self.Y[index + 1:])
def XTest(self, index):
return np.array(self.DataMatrix[index])
def YTest(self, index):
return np.array(self.Y[index])



def ANN(self, index): #Constructing ANN.

model = Sequential()
model.add(Dense(self.nodes, activation=self.act, input_dim=Ilen(self.wavenum)))
for i in range(self.layers):

model.add(Dense(self.nodes, activation=self.act))
model.add(Dense(self.NSpecies, activation='softmax'))
model.compile(loss=self.loss, optimizer=self.opt, metrics=['accuracy"])
model.fit(self.XTrain(index), self.YTrain(index), epochs=self.epochs, batch_size=128)
predict = model.predict(self. XTest(index)) #Predicts class by index for every spectra.
predictclass = np.argmax(predict, axis=1) #Takes the max prediction of every spectra.
predictcount = np.zeros(self. NSpecies) #Array of zeros.
for i in predictclass:

predictcount[i] += 1 #Every max prediction increases its species index value by 1.
return predictcount/sum(predictcount) #Normalized.

def SingleRun(self, run): #Single run of training and evaluating network.
Pred =]
for i in range(len(os.listdir(self.samplefolder))):
Pred.append(self. ANN(i))
Pred = np.array(Pred)
Now = datetime.datetime.now()
Stamp ="' {{X} {}.{-{}".format(Now.year, Now.month, Now.day, Now.hour, Now.minute, Now.second) #Time stamp.
np.savetxt((}{}'.format(self.FolderStamp, 'Pred' + Stamp), Pred) #Saving data.
Accuracy =]
for i in range(self.NSpecies):
Accuracy.append(sum(Pred[sum(self.NSessions][:i]):sum(self.NSessions[:i]) + self.NSessions]i]])/self.NSessions]i])
Accuracy = np.array(Accuracy)
AccuracyData = pd.DataFrame(Accuracy, columns=self.SpeciesNames, index=self.SpeciesNames) #Average accuracy for species.
np.savetxt('{(}{}'.format(self.FolderStamp, 'Acc {}'.format(run)), Accuracy)
plt.figure(figsize=(self.NSpecies,self.NSpecies))
sns.heatmap(AccuracyData, annot=True)
plt.savefig({}/{}".format(self.FolderStamp, 'Acc {}'.format(run) + '.png'))
Perf =[]
for i in range(self.NSpecies):
Perf.append(Accuracyli][i])
return sum(Perf)/self. NSpecies

def Run(self): #Running the single run multiple times.
Now = datetime.datetime.now()
FolderStamp = 'Run {{}} {}.{}.{}'.format(Now.year, Now.month, Now.day, Now.hour, Now.minute, Now.second) #Time stamp.
self.FolderStamp = FolderStamp
os.makedirs(self.FolderStamp)
parameters = 'WaveNumMin={}, WaveNumMax={}, WaveNumValues={}, ALSSSmoothness=(}, ALSSAssymmetry=(}, HiddenLayers={},
Nodes=(}, Activation=({}, LearningRate=(}, Optimization=(}, Loss=({}, Epochs=({}".format(min(self.wavenum), max(self.wavenum),
len(self.wavenum), self.smoothness, self.assymmetry, self.layers, self.nodes, self.act, self.Ir, self.opt, self.loss, self.epochs)
p = open(self.FolderStamp + '/Parameters.ixt', 'w+')
p.write(parameters)
p.close()
fp = FloatProgress(min=0,max=self.nruns)
display(fp)
print('Running network...")
PerfList =[]
for i in range(self.nruns):
PerfList.append(self.SingleRun(i + 1))
fp.value +=1
np.savetxt(self.FolderStamp + /Performance’, PerfList)
return PerfList

#HOW TO RUN CODE

#Pipeline = Classifier(SampleFolder, WaveNum, Smoothness, Assymmetry, NRuns, Layers, Nodes, Activation, LearningRate, Optimization, Loss,
Epochs)

#Pipeline.ProcessData()

#Pipeline.Run()



