
Migration & Evaluation of Automatic
Query Hint Generation Method in
Persistent Systems

Erik Jonasson

MASTER’S THESIS | LUND UNIVERSITY 2018

Department of Computer Science
Faculty of Engineering LTH

ISSN 1650-2884
LU-CS-EX 2018-44

Migration & Evaluation of Automatic
Query Hint Generation Method in

Persistent Systems

Erik Jonasson
dat12ejo@student.lu.se

December 6, 2018

Master’s thesis work carried out at itestra GmbH.

Supervisors: Per Andersson, per.andersson@cs.lth.se
Arnaud Fietzke, fietzke@itestra.de

Examiner: Flavius Gruian, flavius.gruian@cs.lth.se

mailto:dat12ejo@student.lu.se
mailto:per.andersson@cs.lth.se
mailto:fietzke@itestra.de
mailto:flavius.gruian@cs.lth.se

Abstract

Object-relational-mapping tools are widely used in software development
to translate between object oriented programming languages and relational
databases. They serve as an abstraction layer between the business logic and
the underlying data layer. However, if these tools are misconfigured in terms
of fetch strategy, they can cause performance losses in the shape of the N + 1
problem, which means that every association of an object gets loaded with a
separate query. In systems where network latency exist, more executed queries
will negatively impact performance. In this report a method to automate the
configuration of fetch strategies has been evaluated. The obtained results from
this study shows that the method can simplify the configuration for the devel-
oper. Moreover, the automated configuration ended up eliminating 11.3% of
the queries, theoretically improving performance in systems with network de-
lay. With the simplicity of use, the tool offers increased performance in terms
of total execution time and amount of executed queries, without spending the
time that manual tuning would require. However, the manually configured
version performs better compared to the version with automated prefetching.
In its current state, the tool would benefit from continued development and
official support from the Hibernate team.

Keywords: Persistence, Relational database, Fetch strategies, Lazy loading, Aut-
ofetch

2

Acknowledgements

I wish to thank itestra GmbH and specifically Arnaud Fietzke for hosting my master thesis
and for all the help that has been provided to me. Special thanks is also carried out to Per
Andersson and Flavius Gruian for supervising and examinating this thesis respectively.
Secondly I would like to thank Vlad Mihalcea for assisting with his expertise in the Hiber-
nate platform, and to Adriano Machado for all the assistance regarding the implementation
and migration of the tool.

3

4

Contents

1 Introduction 7
1.1 Background . 7

1.1.1 ORM-tools . 9
1.1.2 N + 1 Problem . 12
1.1.3 ORM Optimization Difficulties 14
1.1.4 Autofetch - the solution to manual prefetching 15

1.2 Motivation . 15
1.3 Related Work . 16
1.4 Contributions . 18
1.5 Disposition . 18

2 Approach 21
2.1 Original Tool . 21

2.1.1 Overview . 21
2.1.2 Models . 23
2.1.3 Implementation . 26

2.2 Migration of Autofetch . 31
2.2.1 Implementational Differences 31

2.3 Method of Evaluation . 38
2.3.1 Target Project . 39
2.3.2 Evaluation Tools . 39

3 Evaluation 43
3.1 Results . 43

3.1.1 Integration and Configuration 43
3.1.2 Performance . 45

3.2 Discussion . 49

4 Conclusions 51
4.1 Implementation . 51

5

CONTENTS

4.1.1 Integration and Configuration 51
4.1.2 Performance . 51

4.2 Limitations . 52
4.3 Lessons Learned . 53
4.4 Future Improvements . 54
4.5 Future Work . 55
4.6 Summary . 56

6

Chapter 1
Introduction

1.1 Background
Companies today use IT infrastructures that are often large and complex with the capacity
handling enormous amounts of data. Commonly, these systems use a so called Distributed
Client-Server Architecture, implying that the different system components are separated
in different locations. These systems usually rely on object persistence, meaning that the
objects created within the application have a lifespan longer than the execution of the
program and are stored in some way using some type of database, enabling save and restore
data operations in the system. Orthogonal Persistence takes the concept one step further,
implying that the retrieval and save operations are automatic within the application without
user interaction[1, 2].

With extensive processing of data in these type of systems, it is crucial that the pro-
cesses run as efficiently as possible. However, the task of optimizing the data flow is
challenging and can be approached from different angles. Historically, most of the tun-
ing regarding this topic has been done through various optimizations of queries. These
types of manual query optimizations are still an efficient way to tune the performance of
a system, but tend to be error prone[3].

In large scale client-server systems, one of the more expensive operations is to fetch
data from the databases. Depending on what type of database that is used, the level of
complexity of the task can vary. In the case of object-relational and object databases, the
data is already stored as objects and can therefore be fetched easily. However, in the case of
relational databases, the challenges are bigger since the data is simply stored as sets of data.
The difference in the underlying paradigms of these two systems is often called the object-
relational impedance mismatch, a complex phenomenon consisting of numerous problem
aspects that does not have any clear solutions due to the problem’s many-sided nature[5, 6].
In Ireland & Bowers (2015) they present some arguments why the impedance mismatch
is a wicked problem, meaning that the problem does not have a definitive formulation and

7

1. Introduction

proposed solutions to the problems end up creating other problems.
There are methods to work around this however, the most common one being Object-

Relational-mapping software, from now on referred to as ORM-software. This software
translates between the object oriented model and the relational model, making the transi-
tion between these two models transparent, normally called transparent persistence.

The performance concern in these systems is not only related to what type of database
that should be used, but also how data should be stored and how to configure the system
correctly based on the characteristics of said system. A configuration adapted to the spe-
cific environment of the system could lead to noticeable performance improvements[7].
An operation that is usually subject to optimization in these types of systems is making
fetching from the database more efficient, namely by adjusting when and how something
should be fetched. This type of optimization requires knowledge and is time-consuming[9].

Depending on the scenario, factors such as network delay and fetching patterns can
have a significant impact on system performance[10]. A common pitfall for bigger systems
that will cause considerable performance drops, is the execution of numerous round trips
in the database with single entry select queries. This problem is generally known as the N
+ 1 problem due to the amount of generated queries when iterating over an uninitialized
collection in ORM software. The N + 1 problem is a phenomenon which the evaluated
method of this report strives to minimize. The cause of this problem is that for each loaded
association of an entity from the database, a select query will be executed[11]. In systems
with noticeable latency, this will cause lower performance than a method that would merge
all these queries into a batch of queries or simply one query containing joins between
associations. The situation that occurs in a system with network latency can be seen in
Figure 1.1, where a query is being sent over a connection, is being executed by the database,
and then finally the results being returned over the connection. Potential network delay will
affect performance for each query being sent over the network. The higher the network
delay, the worse the performance. Since this will affect all executed queries, we want to
minimize the number of executed queries as much as possible.

Application
DB

Query

Application
DB

Application
DB

return result

1.

2.

3.

DB Executing query...

Total execution time: 2 * Network delay + Query execution time

Figure 1.1: Illustration of how each executed query will affect
performance of a system

8

1.1 Background

1.1.1 ORM-tools
In the Software development industry, the most common type of database is the relational
database[15]. With theoretical foundation in set theory and with its long time on market, it
has become a common option for many big enterprise systems. As a result of the relational
database’s popularity, the object-relational impedance mismatch is a present concern for
most developers. To tackle the problem, it is common to pair the relational database with
an ORM-tool, such as EclipseLink and Hibernate[16, 17]. In the case of Java applications,
which are the focus of this report, the ORM-concept has been formalized in the form of
the JPA-interface, abbreviation for Java Persistence API, which strives to unify all Java
based ORM-tools under one API[18].

Figure 1.2: Basic ORM architecture

A commonly mentioned benefit of ORM-tools is that the extra data layer makes the
data insertion and retrieval more portable and abstract, completely separating data access
logic from business logic in applications[24]. The extra layer added by ORM-software
can be observed in Figure 1.2. This extra layer implies that the developers do not have
to think about writing data access logic in the business logic. All those operations are
carried out in the background when the user for example loads an object. Compared to
the other commonly used way of interacting with the database level in Java, JDBC for
example, it requires less code to accomplish the same operation[30]. In JDBC, the user
has to manually handle connection handling and caching among other things.

Furthermore, since developers do not have to write queries themselves the system can
be easier to maintain[24]. In figure 1.3, sample code from Hibernate is presented, showing
the simplicity of persistence in ORMs compared to JDBC seen in Figure 1.4.

9

1. Introduction

1 sess = openSession();
2 tx = sess.beginTransaction();
3 Employee root = new Employee("Arnaud", null, null, new Address("Teststrasse 1",

"Munich", "Germany"));↪→
4 Employee e0 = new Employee("Erik", root, null, new Address("Backvagen 21",

"Boras", "Sweden"));↪→
5 root.addSubordinate(e0);
6 sess.save(root);
7 tx.commit();
8 sess.close();

Figure 1.3: ORM sample code, saving an object to the database
with an association

1 try {
2 conn = DriverManager.getConnection(DB_URL, USER, PASS);
3 stmt = conn.createStatement();
4 String sql = "
5 insert into Employee (Munich, Germany, Teststrasse 1, null, Arnaud, null, 1);
6 insert into Employee (Boras, Sweden, Backvagen 21, null, Erik, 1, 2);
7 update Employee set supervisor_id = 1 where employee_id = 2";
8 ResultSet rs = stmt.executeQuery(sql);
9 rs.close();

10 } catch(SQLException se){
11 se.printStackTrace();
12 }

Figure 1.4: JDBC sample code, saving an object with an associ-
ation

There are disadvantages however. Firstly, due to the abstraction, ORM-tools can po-
tentially make developers less aware of the underlying database model and therefore what
queries that are being carried out. Secondly, with ORM-software there will be extra over-
head and therefore it might not fit all types of applications. Additionally, without knowl-
edge and prior experience, these types of software can be difficult to set up properly to
achieve desired performance, since the default behaviour of the different platforms may
not be optimal for one specific use case[7]. Furthermore, maintaining ORM-code can be
difficult due to the tendency of the API:s changing frequently, ultimately leading to main-
tainability issues. The lack of return type checking at compilation time causes the errors
to be difficult to spot. Lastly, static code analysers are often not developed to detect faults
in ORM-code, adding to the problems with using an ORM[8].

1.1.1.1 Hibernate
As previously mentioned, today there are numerous ORM-tools on the market, each with
its different edge and features. ORM-tools are widely spread in most object oriented
programming languages such as C++, .NET, C# and Java, with examples being ODB,
NHibernate and Ebean respectively[12, 13, 14]. In the Java scene, the two most promi-
nent are EclipseLink and Hibernate. In this study we have chosen to focus on Hibernate.

Hibernate is an open-source ORM-tool developed since 2001 containing a complete
framework for persisting so called POJOs, Plain Old Java Objects. Similarly to other

10

1.1 Background

ORM-tools, it maps object oriented domain model to the relational model used in relational
databases. One of its main features is that it includes its own native API, meanwhile being
an implementation of the standardized JPA specification, allowing for high flexibility in
regard to portability and maintenance. Hibernate can be used with both JPA annotations
and xml-files to map classes to tables in SQL. Furthermore, Hibernate uses its own type
of query language called Hibernate Query Language, enabling users to query hibernate
data objects in a SQL-like fashion[17]. Being an implementation of JPA 2.1 since version
4.3, it uses default settings according to the JPA-specification, such as prefetch directives
for mappings. Hibernate and its extensions mostly use the GNU Lesser General Public
License 2.1 license[19].

1.1.1.2 Proxies
When an user loads an entity in Hibernate and other ORM-softwares, the standard be-
haviour is to load a so called proxy, which is an object which is basically a copy of the
loaded object, but with all fields set to null except for the ID. The reason why this is done
is because we don’t want to query the database for information that is not needed, but in-
stead load specific fields for the entity when these are needed. This way, we can ensure
that no unnecessary fields are loaded from the database, which could potentially harm the
performance of the application. Proxies specifically plays an important role when we set
the fetch type to lazy, which is something we will discuss more in detail later in the report.

1.1.1.3 Performance Tuning
ORM-tools have become widely popular due to the fact that they eliminate data access
code in the application code. With high popularity, it is of great importance to find ways
to overcome the issues and performance hogs that might exist in various ORM-software
by default, usually called Antipatterns[7]. Performance optimizations with configurations
in ORMs are usually carried out manually. The tweaking options in ORM:s are usually
quite extensive but the amount of options differs depending on implementation. A few
common techniques to tune performance are[20]:

• Customizing fetch type for associations
• Write native queries in complex situations
• Execute similar operations in batches instead of individual queries
• Use caching to minimize queries to the database

Whilst all of these are feasible options, the topic of investigation for this report will be
focused around the first of the items in the list, customizing fetch mode for associations.

1.1.1.4 Fetch Modes
When an user loads an object, called a root object from here on, it will depend on the
predefined fetch mode of that object and its associations what will initially load. In the
case of Hibernate, the fetch mode for each association will have a default value depending
on the cardinality of the relationship between associations, as of JPA standards. If the

11

1. Introduction

user wants to override the default fetch mode for an association, this is possible through
annotations in connection to the mapping of the association, as seen in Figure 1.5 where
fetch mode lazy is being set for the association customer. It is also possible to prefetch on
query level through the Criteria-interface in Hibernate.

1 @Entity
2 public class Employee {
3
4 @Id
5 @Column(name = "employee_id")
6 @GeneratedValue(strategy = GenerationType.AUTO)
7 private Long id;
8
9 @Column(name = "name")

10 private String name;
11
12 @JoinColumn(name = "supervisor_id")
13 @ManyToOne(cascade = { CascadeType.ALL })
14 private Employee supervisor;
15
16 @JoinColumn(name = "supervisor_id")
17 @OneToMany(cascade = { CascadeType.ALL }, fetch = FetchType.LAZY)
18 private Set<Customer> customers;

Figure 1.5: Mapping class in Hibernate with fetch mode set to
lazy for an association

The two fetch modes for associations in ORM-softwares are:

• Lazy Fetch mode
• Eager Fetch mode

The lazy fetch strategy implies that you only load an object association, such as the address
for an employee in the figure 1.3 example, when the user specifically uses that association
in the code. Due to the fact that when using lazy loading we only load what is needed in
the application, lazy fetch is usually the default option for association mappings in most
ORM-softwares.

The eager fetch strategy on the other hand implies that all the associations will get
loaded once the root object is loaded, meaning that the returned object will have all the
fields instantiated immediately when loading. This is a more expensive fetch strategy,
since more fields will be loaded. Hence, it is recommended to use this strategy only in
certain situations where the user knows that all the fields will be used[21].

1.1.2 N + 1 Problem
In the earlier subsection we explained briefly how fetch strategies can be set up for in-
dividual associations, in order to load only the necessary information. The problem is
to determine what and when something is necessary, since that might change throughout
program execution. Fortunately, there is the possibility to modify prefetch strategies on
individual queries with the criteria interface in Hibernate. However, the amount of modifi-
cation can become cumbersome for the developer. Generally, it is advised that the default

12

1.1 Background

fetch strategy should be lazy, and then modify to eager in places where the developer are
sure that all the information from that specific association will be used[21]. In spite of
that, developers have to be cautious with lazy loading, since it implies that the database
will be queried for each of the lazily accessed fields in a program. Let’s set up an example:

In Figure 1.6, we have a relationship the same as the one in Figure 1.5. The first part
shows the iteration over the collection association customers in Java-code, and the second
part shows the generated SQL-queries.

1 Set<Customer> customers = emp.getCustomers();
2 for (Customer customer : subordinates) {
3 String name = customer.getName();
4 }

1 SELECT * FROM Employee WHERE ...
2 SELECT * FROM Customer WHERE customer_id = 1
3 SELECT * FROM Customer WHERE customer_id = 2
4 ...

Figure 1.6: Iterating over an uninitialized collection, resulting in
the N + 1 problem

Notice that the first query is fetching the collection of uninstantiated Customers from
the Employee table, and then we generate extra queries fetching the name for every element
in the collection, resulting in N + 1 executed queries in total. In a situation where we have
network delay, each of the queries will spend network delay + execution time. This can
heavily affect performance, especially in systems where the network delay is noticable[10].
Therefore, we want to monitor the occurrences of this problem in order to be able to resolve
these issues. Fortunately, there are a few different strategies to handle this performance
antipattern, and we will present some of the more common options here.

The first option is to set the fetch strategy of the association to eager, which implies that
the whole collection of customers would get loaded together with the specific employee
currently handled. In cases where this is not desired, another option is to batch queries,
meaning that we would load multiple uninitialized proxies if one proxy is being accessed.
This would reduce the number queries executed depending on how big the batch size would
be set to. In figure 1.7 we set it to 25, and if the collection size is 50, Hibernate would
generate two queries.

1 @JoinColumn(name = "supervisor_id")
2 @OneToMany(cascade = { CascadeType.ALL }, fetch = FetchType.LAZY)
3 @BatchSize(size=25)
4 private Set<Customer> customers;

Figure 1.7: Setting batch size for an association

It is also possible to use the Hibernate Query Language and the Hibernate Criteria-
interface to define that specific associations should be loaded altogether. The Criteria-
interface overrides the normal fetch strategy set for the association and sets it to the strategy
provided in the criteria statement. An example of this can be seen in figure 1.8, where we

13

1. Introduction

first use the JOIN FETCH directive to fetch and instantiate the collection association, and
then in the second part we accomplish the same result by using the Criteria interface to
override the default fetch type.

1 "from Employee employee join fetch employee.customers Employee"

1 Criteria criteria = session.createCriteria(Employee.class);
2 criteria.setFetchMode("customers", FetchMode.EAGER);

Figure 1.8: Solving the N + 1 problem with HQL and Criteria-
API in Hibernate

There are also other options in JPA 2.1, including the definition of NamedEntityGraphs
and DynamicEntityGraphs. They let the user define graphs for entities that should be
loaded from the database in certain scenarios. The user can define hints for each of the
entity of this graph. An example of this technique can be seen in figure 1.9 where we add
customers to the entity graph in line 2, and then use this graph when we load the employee
in line 7 to also fetch the customers in the same query.

1 EntityGraph<Employee> graph =
entityManager.createEntityGraph(Employee.class);↪→

2 graph.addAttributeNodes("customers");
3
4 Map <String, Object> hints = new HashMap<String, Object>();
5 hints.put("javax.persistence.loadgraph", graph);
6
7 Employee employee = entityManager.find(Employee.class, 1L, hints);

Figure 1.9: Using a DynamicEntityGraph to fetch customers with
the loaded Employee

1.1.3 ORM Optimization Difficulties
As shown in the earlier sections, there are numerous ways to improve the performance
of systems using ORM-tools. However, these optimizations that are available all have
to be carried out manually, which can be demanding from a technical aspect. The pro-
cess of finding and maintaining the optimal configuration for software architectures using
ORM-software is time-consuming and will require some in depth analysis of the system,
in combination of wide knowledge of the different optimization techniques available in the
ORM-tool. Not only that, but the fact that these settings only will affect performance make
it more difficult from an implementation standpoint. When changes happen that might af-
fect the viability of the current settings, the tuning has to be redone again. In conclusion,
maintainability of the system will suffer.

Additionally, these optimizations tend to be error-prone, and when errors occur in these
situations they can be the cause of critical performance losses[25]. Moreover, the loss of
performance when making errors can be of a larger magnitude than if one were to leave
the default configuration untouched, meaning that the optimization requires deep technical

14

1.2 Motivation

understanding and needs to be tested thoroughly in order to grant better performance. To
conclude, manual tuning of mappings in ORM-tools is complicated and simplification,
or even elimination, of this process would lead to immense software engineering benefits,
similar to the simplification of development that automatic memory management had when
it was introduced.

In many companies that work with ORM-software, the problems mentioned above can
compose time-consuming and error prone challenges. itestra GmbH, which is the host
company for this research, is a software consulting company working with ORM-tools to
a wide extent. Within their projects these issues have become apparent, and they now wish
to come up with a solution.

1.1.4 Autofetch - the solution to manual prefetching
In the year of 2006, Ali Ibrahim and William Cook of the University of Texas developed a
method to automate prefetching, based on earlier access statistics of associations catego-
rized by program state[25]. According to their study, the technique performed identically
to a hand tuned configuration and could eliminate up to 99.8% of the queries in the OO7-
benchmark[22]. The technique has been implemented in two ORM-tools so far:

• Hibernate 3.1, stand-alone plug-in
• Ebean (from version 0.9.7 onwards), included in the software by default

However, this study was performed in 2006 and since then there has not been any
significant research or follow up development on this topic. Neither has the Hibernate
implementation been updated since the initial release. Thus, we have decided to migrate
the old Autofetch-tool to the same version of Hibernate that a project of itestra GmbH
uses. Moreover, we will also migrate the tool to the latest release of Hibernate1 to have
the possibility to test the tool on new projects in the future.

1.2 Motivation
With the absence of up to date versions and research of the Autofetch methodology, com-
bined with itestra’s experiences with prefetching in their enterprise-sized projects, the
topic was chosen for this thesis with the goal to simplify the future endeavours to improve
the performance of projects using ORMs. Not only will it save time for developers and
potentially improve performance, but also make the system more maintainable since data
mapping changes does not require reconfiguring of the prefetching modes with Autofetch
enabled. According to itestra employees, the process of manual tuning within ORM:s are
difficult to execute properly and the effects of each prefetching setting can be laborious to
track. With potential performance improvements and these software engineering benefits
in mind, the topic seemed promising.

Additionally, Autofetch was initially tested against benchmarks and other ”dummy”
projects. While this gives some indication of the performance of the methodology, it leaves
some questions unanswered. Primarily, it does not answer how good of a fit Autofetch

1Hibernate 5.3.0.Final

15

1. Introduction

is with Enterprise systems, such as systems based on JavaEE. In this study, we hope to
answer some questions that Autofetch left unanswered in the original study, by evaluating
the migrated tool against a web-based JavaEE-system.

In order to investigate the true characteristics of this methodology in a real world sce-
nario, we have set up some questions that we want to answer with the research. The main
questions to answer are presented in Table 1.1 and lay the foundation for the Contributions
chapter.

Number Question
1 Can Autofetch be migrated to the latest release of Hibernate?
2 How does Autofetch affect performance in a JavaEE application?
3 Does Autofetch simplify the process of optimizing ORM-configurations?

Table 1.1: The research questions that we strive to answer in this
report

When answering these questions, we hope to give an approximation of what to expect
from the technology itself, but also the capabilities and faults of the developed implemen-
tation.

1.3 Related Work
Autofetch and Hibernate are based on the concept of persistence. In the topic of persistence
in Java, there has been numerous studies. Moss, J. Eliot B., and Antony L. Hosking[34]
propose ideas to integrate persistence mechanisms in Java, and discuss the problems relat-
ing persisting more than just code, but also the virtual machine specification and libraries,
creating a situation far more complex than earlier attempts with other programming lan-
guages. Jordan, Mick J., and Malcolm P. Atkinson[2] establish that in order for Orthog-
onal Persistence to be possible, it needs to be applied to the entire Java-platform. They
also discuss the problems with the Orthogonal Persistence approach and what needs to be
done in order for it to be viable on a larger scale, including support for threads, and make
it scale the same way as standard Java environments.

Persistence object oriented programming languages lead us up to the topic of the
impedance mismatch problem which Ambler, Scott W. explains from a more practical
standpoint[4]. This study focuses on providing solutions for implementation of object-
relational mapping, laying a foundation for many implementations of the Object-Relational
Mapping concept, including Hibernate. Ireland, Christopher, and David Bowers on the
other hand, focuses solely on the theoretical aspects of the impedence mismatch problem,
providing arguments for why this problem is a wicked one, meaning that the problem is
not solvable due to its many-sided nature[5]. Each attempt of solving the problem will
cause a different problem to arise.

The concept of ORM has been a topic of massive debate and has led to numerous ef-
fort trying to evaluate the method’s viability. The opinions on this matter change from
time to time depending on the current trends and the wide range of opinions on the matter
tend to influence the research. Joshi, Aditya, and Sanjeev Kukreti[24] for example com-
pare ORM-tools to traditional database access techniques in terms of performance, code

16

1.3 Related Work

readability and maintenance. They reach the conclusion that in most cases, ORM-tools are
worth considering despite the performance overhead, due to the numerous benefits in terms
of readability and maintainability that it offers. Lascano, Jorge Edison[30] reach similar
conclusions in a paper where JDBC is compared with JPA-implementations, referring to
the scalability that ORM-tools offer. Ghandeharizadeh, Shahram, and Ankit Mutha[11]
conduct similar research but in a social network setting, and reaches the conclusion that the
JDBC-implementation offers better performance, however only because the instance of N
+ 1 problem that appears in the Hibernate equivalent. Eliminating this instance results in
identical performance between the two platforms. Alvarez-Eraso, Danny Alejandro, and
Fernando Arango-Isaza perform a performance study in a web-application environment
where Hibernate is used together with the popular framework Spring. The results show
that the performance of ORMs is similar to the performance of non-optimized handwritten
queries, showing a weakness in performance with ORMs in complex situations.

Others are more critical of the concept of ORM-tools, for example Neward, Tom[29]
who dedicates an entire article to criticize the development of ORM-tools, with the ar-
gument that meanwhile ORM-tools have good intentions, it only creates a more complex
problem as time passes. He proposes solutions, for example the abandonment of objects,
change from relational storage, integration of relational concepts in programming lan-
guages etc.

The wide usage of ORM-tools has led up to studies on the consequences of using
ORM-tools and the correct usage of these to reach optimal performance and maintainabil-
ity. Chen, Tse-Hsun, et al. investigate how ORM-tools and its code can be maintained
within an application[8]. Surprisingly, the results show that ORM-code tend to change
more frequently compared to other code and the changes are usually more scattered and
complex. This indicates that the usage of ORM-tools can make maintainability suffer in
systems. The same authors, Chen, Tse-Hsun, et al[7] also create a method for finding so
called Antipatterns in ORM-code. This includes the detection of instances of the N + 1-
problem, unnecessary Eager loading to mention a few examples. This is a slightly different
approach from that of Autofetch, due to both detection and resolving is carried out manu-
ally, compared to Autofetch where all these antipatterns are resolved automatically. Aoki,
Yasuhiro, and Sigeru Chiba[37] implemented an aspect oriented programming-based ap-
proach which lets developers add dynamic contexts for prefetching to improve the perfor-
mance of a system.

In the topic of prefetching in persistent architectures, there has been some earlier re-
search. Ramachandra, Karthik, and S. Sudarshan[36] come up with an approach to holis-
tically optimize prefetching. However, the approach is different from the method found
in this report in the way that it automatically rewrites application code in order to accom-
plish efficient prefetching, compared to Autofetch that uses the earlier execution statistics
on associations to concatenate prefetch directives to queries. The performance gain using
this method is according to the authors approximately 50% compared to a non optimized
configuration. There are also studies about a more specific problem when deciding what
to prefetch, for example answering the question how to determine Access patterns in per-
sistent systems? Touma, Rizkallah, et al[40] come up with a technique to predict access
patterns before program execution using static code analysis. This means that the tech-
nique does not add any overhead to the execution of the program, which is an advantage
compared to methods such as Autofetch. Garbatov, Stoyan[39] present methods for data

17

1. Introduction

access patterns through the use of three powerful tools Bayesian Inference, Importance
Analysis and Markov Chains. All three models result in high precision, however with
noticeable overhead (5-9%).

Ibrahim, Ali, and William R. Cook[25] laid the foundation for this research by present-
ing the theory and implementing a tool. The original article covers more of the theoretical
aspects of Autofetch, whereas this study more focus on the practical side of Autofetch in
a real world scenario, together with the details of migration of the old tool. Most of the
theoretical models and implementation details remain the same as in the original article.

1.4 Contributions
Ibrahim & Cook developed Autofetch for Hibernate in 2008 and they claim to have reduced
the number of queries in their test applications by up to 99.8%. They tested the tool on
benchmarks such as TORPEDO[45] and OO7[22]. Since their article, there has not been
any follow up research on this specific topic.

In this work we will migrate the developed Hibernate tool and investigate how the
tool works in practice and how it affects the performance of a JavaEE application. With
the presence of the N + 1 problems in ORM-software and its effect on performance in
systems, we are investigating whether Autofetch can be applied to a JavaEE project to
eliminate queries to the same extent as a manually optimized configuration of the same
project, but we are also investigating if Autofetch improves performance compared to a
non optimized version of the project. The contributions of this work are the following:

• Migrate Autofetch from Hibernate 3.1 to Hibernate 4.3

• Evaluate Autofetch in terms of practicality and gained performance on a JavaEE
application

1.5 Disposition
In this section we will present a brief overview of the different sections of the report.

• Chapter 1 Introduction: Introduction to the specific field of research, together with
the problems that we want to answer in our research. It presents a thorough back-
ground to give the reader insight why Automatic prefetching is a concept that can
relieve the developers of the mundane task of adding manual prefetch hints.

• Chapter 2 Approach: Explains the general theory and implementation of Autofetch,
based on the original article by Ibrahim & Cook, together with the implementational
changes with the migrated versions. Finally, the method of evaluation is presented.

• Chapter 3 Evaluation: Presents the findings of the tests carried out in the project.
Covers the performance of the tool in a JavaEE-application and a discussion about
the findings.

18

1.5 Disposition

• Chapter 4 Conclusion: Answers the research questions and proposes future work
together with faults of this research. Finally, the questions in table 1.1 will be an-
swered.

19

1. Introduction

20

Chapter 2
Approach

In this section, we will present the theoretical foundation that the implementation is based
on together with the implementation details. Furthermore, the method of evaluation will
be presented. The first section 2.1 is solely constitutes a summary of the original tool of
Ibrahim & Cook and does not contain any contributions from this author. Instead, the
contributions of this work start at section 2.2 and continues until the end of the report.

2.1 Original Tool
The initial problem of the study, in which Autofetch was developed, was addressed by the
original authors of the tool, Ali Ibrahim and William R. Cook. The models of profiling
traversals, query classifications and predicting traversals presented in this report are identi-
cal to the models in the original report by Ibrahim and Cook[25]. Additionally, the internal
implementation structure remain mostly the same, with a few exceptions. Therefore, it is
important to note that this work mostly consist of the migration to the new versions of the
platform of Hibernate together with a evaluation of the tool and the methodology itself.
Additionally, we will evaluate whether Autofetch is applicable to a JavaEE system in terms
of ease of usage and gained performance. We will now present the main structure of the
old tool, the migrated tool and the design choices made in the new implementation.

2.1.1 Overview
In this subsection we will summarize the most important aspects of Autofetch. The sum-
mary is based on the third section in the original Autofetch report[25]. Before going into
detail about this topic, it is important to introduce the main models of Autofetch. There
are three aspects of the Autofetch that are of particular importance, since they propose so-
lutions to three thoroughly researched topics. The three main models answer the questions
found in Table 2.1.

21

2. Approach

Number Question
1 How do we do profiling to get user statistics?
2 How do we classify queries?
3 How do we traverse associations?

Table 2.1: The questions leading up to the models

As mentioned earlier, Autofetch strives to eliminate the cumbersome process of manu-
ally adding prefetch directives to the mapping file of an ORM-software. Instead, the usage
of an association of objects in a certain program state should be tracked, so that in fu-
ture iterations of that program state the statistics of earlier iterations indicate whether the
association is necessary to prefetch in that specific program state or not.

The authors of the original Autofetch article defined two concepts; The type graph and
the object graph. The type graph defines the relations between the different object types,
similar to a Entity Relationship Diagram. The object graph on the other hand represents
the objects of a type defined in the type graph. The two graphs are shown in Figure 2.1 and
Figure 2.2 respectively. In Figure 2.2 we see the root object Company A and its associations
Employee A and Employee B. The fraction seen above the associations is the probability

used
potential

, meaning the probability that we load this association. With these two concepts
defined, we can describe the method with further detail.

Company Employee
1 * *

1

Friends

Figure 2.1: Simple type graph describing the relationship be-
tween entity types

Company A Employee A Employee B

Root 1/2 1/1

Figure 2.2: Object graph with root object and fetch probability
marked

Traversals are the accessed object and associations used from the result of a query.
These traversals are then merged to Traversal Profiles, which include the statistics about
the associations rate of access. Furthermore, the queries are also classified into Query
Classes, which is a classification of queries that are likely to have similar traversal profiles.

22

2.1 Original Tool

For each of these query classifications, query prefetch directive will be added to the
queries of these classes based on the traversal profile statistics. This results in automated
prefetching. The chain of events constituting the Autofetch methodology can be seen in
Figure 2.3, where we start from the point where the user loads an entity from the database
in Hibernate. Before the entity is being loaded, we check if the entity has any existing
prefetch paths associated with it. If we have that, we prefetch each of the prefetch paths that
has a probability of being loaded above a certain threshold, in this case set to 0.50. When
we load the entity, we add trackers to the entity that will increment statistics accordingly, so
that we can check the fetch probability for this entity in future executions of the program.

Has prefetch paths?

Yes

No

Load normally

Load with JOIN
FETCH directive for
each prefetch path

Load entity call

Add tracker to collect
statistics: Increment

statistics

Add tracker to collect
statistics: Increment

statistics

Add to Traversal map
if not already there

Add to Traversal map
if not already there

For each potential
path: Has Traversal
Path with probability

> 0.5?

Figure 2.3: Program flow graph when a user loads an entity using
Autofetch

2.1.2 Models
In the earlier section, the general methodology was explained. However, there are models
that constitute the foundation for Autofetch’s mechanisms that will need to be defined
in order resolve the questions in table 2.1. Each of the questions in 2.1 refers to each
subsection in this section, for example question one refers to subsection 2.1.2.1. This
subsection will act as a summary for the models presented by Ibrahim and Cook in the
original Autofetch article[25].

2.1.2.1 Profiling Traversals
Profiling is used in Autofetch to determine what parts of the database that are used in
certain operations. In Autofetch, five sub models were defined; Type, objects, queries,
traversals and traversal profiles.

Type Graph: Let T be the finite set of type names and F be the finite set of field
names. A type graph is a directed graph GT = (T,A)

• T is a set of types.
• A is a partial function T × F −→ T × {single, collection} representing a set of

associations between types. Given types t and t′ and field f if A(t, f) = (t′,m) then
there is an association from t to t′ with name f and cardinality m where m indicates
whether the association is a single- or multivalued association.

23

2. Approach

Object Graph: Let O be the finite set of object names. An object graph is a directed
graph GO = (O,E,GT = (T,A), T ype). GT is a type graph and Type is a unary function
that maps objects to types. The following constraints must be satisfied in the object graph
GO:

• O represents a set of objects.
• Type : O −→ T . The type of each object in the object graph must exist in the type

graph.
• E : O× F −→ powerset(O), the edges in the graph are a partial function from an

object and field to a set of target objects.
• ∀o, f : E(o, f) = S

A(Type(o), f) = (T ′,m)

∀o′ ∈ S, Type(o′) = T ′.
if m = single, then |S| = 1.

The edges in the object graph corresponds to the edges in the type graph. Single asso-
ciations will have one target object, and multivalued associations will have an empty or
non-empty collection as target object. The reason that empty collections are represented
in the object graph is that the ORM have to query the database in order to know whether
a collection is empty or not i.e. it does not know anything about the cardinality of the col-
lection. This is not the case with single value associations, due to a special representation
of null value targets.

Queries: A query is defined as a function that returns a subgraph of the whole database
graph. There are two properties that Ibrahim and Cook call extent type and criteria. Extent
type is defined as the type of root object that is returned by the query, and criteria is
conditions that need to be fulfilled in order to return that specific extent type. The only
preconditions regarding the query language is that it have to have a object-oriented view
of persistent data. Additionally, it must be possible to add prefetch directives based on
the extent type. Noteworthy about queries is its first-class value nature, similarly to how
functions work in functional programming languages[25].

Traversals: The query returns an object graph that is a subgraph of the database, and
the question is how this subgraph should be traversed. Ibrahim and Cook define traversals
with the following model:

A traversal is represented as a forest where each tree’s root is a root object in the result
of a query and each tree is a sub graph of the entire object graph. Let R denote a single
tree from the traversal on the object graph GO = (O,E).

R = O × (F −→ {R}) where (o, (f, r)) ∈ R implies |E(o, f)| = |r| The only
associations that are being put into a traversal are the ones that will lead to a database
load. There are three cases in which a navigation of an association does not lead to a
select query:

• Null value single association
• Association was already cached earlier in the program
• There already exist a path to that association with smaller distance

24

2.1 Original Tool

If an empty collection association is being traversed, it will be queried and be put in
the traversal.

Traversal Profiles: A traversal profile is an aggregation of the traversals a group of
queries. Combining these in a specific manner creates a pattern of traversal for a category
of queries.

P = T ×N ×N × (F −→ P) such that for all (t, used, potential, (f, p)) ∈ P :

1. A(t, f) is defined

2. used ≤ potential.

The nodes contain information on how many times the node has been loaded from the
database, which is refered to as used from here on, and how many times the node has had
the chance to be loaded, referred to as potential from here on. To clarify, potential can
be defined as how many times the program has had a direct reference to this node without
loading it.

2.1.2.2 Query Classification
In the earlier chapter we introduced that Autofetch somehow groups certain queries to-
gether in the traversal profile stage of the method. The hypothesis the authors of the orig-
inal Autofetch article had was that using a combination of the line number and stack trace
to classify queries would lead to an accurate mapping. The reasoning behind this was that
the stacktrace shows the flow of the application. Other options such as using the query
string to classify queries was discarded due to the imprecision that would lead to. This is
due to the fact that the same query can be used in completely different scenarios, and in
these different scenarios different associations might be relevant[25].

2.1.2.3 Predicting Traversals
The last of the models presented by the authors of the original Autofetch article is regarding
how to properly predict how the program will traverse in the future. Having built the earlier
models with profiling makes this model straight forward. The goal is to have the traversal
only traverse the resulting query object graph, so that no additional select query has to
be executed. In this way, we can minimize the amount of round trips to the database.
Autofetch uses a user defined threshold which is used the comparison with the used

potential

fraction to determine whether to prefetch the node. However, the node should only be
prefetched if the parent node is prefetched. Hence the formula will be the following:

• f(n) = (used(n)/potential(n)) ∗ f(p(n))

– where f(root) = 1

– f(n) ≤ f(p(n))

The calculation of probabilities is done through a depth first traversal. This ensures
that the calculation is carried out once per node.

25

2. Approach

2.1.3 Implementation
In this section, we will summarize the implementation by the authors of the original Aut-
ofetch article. Autofetch was originally developed for Hibernate 3.0 by Ibrahim and Cook
and then migrated to 3.1. In the first version, the functionality of multiple collection
prefetching was not implemented which reduced the potential performance improvements.
It was when the 3.1 version was released the potential of the tool increased due to the in-
clusion of multiple collection prefetching[25]. This version had a codebase size of 7288
lines of code.

Autofetch’s implementation partly replaced existing classes in the Hibernate library
and wrapped it or replaced it with classes with modified behaviour. Consequently, there is
a lot of duplicated code in the old version of Autofetch simply due to the reason that they
could not build the design however they wanted, but instead had to adapt to the static design
of the Hibernate version of the time. In general, we think the implementation suffered
from readability and maintainability issues due to the workarounds needed to implement
it initially.

2.1.3.1 Configuration and Integration
Integrating the first version of Autofetch was done through manual download of a Autofetch-
zipfile, containing the code and an Ant-script to create the two necessary JAR-files. These
two JAR-files were then added to the class-path. With these two JAR-files added to the
project, the specific instance of AutofetchConfiguration could be instantiated, allowing the
user to enable automatic tuning. In normal Hibernate, the user would instantiate Configu-
ration instead.

Hibernate uses event listeners in order to track and intercept events. For example,
there are certain types of listeners for when the user loads entities using the load-method
in Hibernate. These had to be replaced with custom versions in order to inject the modified
load mechanism used in Autofetch, which was shown in Figure 2.3.

2.1.3.2 Added/Modified classes
In order to add the Autofetch-functionality, the authors of the first Autofetch implemen-
tation had to add new and extended classes of the Hibernate framework in order to get
Autofetch to function as intended. In Table 2.2 we display all the wrapper classes that was
needed in order to make Autofetch run on Hibernate. Moreover, in Table 2.3 we display
the entirely new classes added by the authors of the old tool.

26

2.1 Original Tool

Class Class name
1 AutofetchConfiguration
2 AutofetchProxyFactory
3 AutofetchInterceptor
4 AutofetchInstantiator
5 AutofetchHbmBinder
6 Collection Wrapper classes
7 AutofetchCriteria

Table 2.2: Custom Autofetch wrappers of default Hibernate
classes in Hibernate 3.1

Class Class name
1 Extentmanager
2 Path
3 ProgramStack
4 Property
5 TrackableEntity
6 Trackable
7 TraversalProfile
8 Statistics

Table 2.3: Custom classes of Autofetch in Hibernate 3.1

2.1.3.3 Bootstrapping
In order to add Autofetch functionality to Hibernate, we need to be able to track the various
entities of the database. Therefore, we need to somehow mark the fetched objects with
some type of marker that keeps track of when the entity is being accessible and when the
entity is actually being accessed by the root object of the query so that we can collect the
necessary statistics. This can be done in Hibernate by altering the bootstrapping process,
which is what the authors of the first tool did.

They modified the bootstrapping process of Autofetch, so that we instantiate entities
using proxies so that all the accesses to these objects can be tracked. Also, the internal
proxy factory is set to be the AutofetchProxyFactory, which adds the TrackableEntity in-
terface to each created proxy, which can be seen in line 6 of Figure 2.4 This allows the
proxy to be tracked.

27

2. Approach

1 public static Class getProxyFactory(Class persistentClass,
2 String idMethodName) {
3 if (!entityFactoryMap.containsKey(persistentClass)) {
4 Enhancer e = new Enhancer();
5 e.setSuperclass(persistentClass);
6 e.setInterfaces(new Class[] { TrackableEntity.class });
7 e.setCallbackTypes(new Class[] { MethodInterceptor.class,S
8 NoOp.class, });
9 e.setCallbackFilter(new EntityCallbackFilter(idMethodName));

10 e.setUseFactory(false);
11 e.setInterceptDuringConstruction(false);
12 entityFactoryMap.put(persistentClass, e.createClass());
13 }
14
15 return entityFactoryMap.get(persistentClass);
16 }

Figure 2.4: Adding the interface to the entities in EntityProxy-
Factory during bootstrap

2.1.3.4 Entity Mapping
In Hibernate 3, the Configuration-class only handled entity mappings in Hbm-format,
which is a specific xml-file used for entity mapping. At this time, annotation based map-
ping, which means that entities are mapped in the code, was not supported. In order to use
annotation based mapping, the AnnotationConfiguration had to be used. The problem was
that this type of configuration was not supported by Autofetch, leaving the user without
options when it comes to entity mapping.

The central class in the mapping handling was AutofetchHbmBinder, which parsed
the mapping-files to create the configuration time metamodel. This class also handled the
wrapping of the native collection types in Hibernate to enable tracking of operations made
on the collections. An example of the custom collection wrappers that the HbmBinder
wrapped collections with can be seen in Figure 2.5, where we in line 6 increment the used
statistic when calling the size-method.

1 public class AutofetchSet extends PersistentSet implements Trackable {
2
3 @Override
4 public int size() {
5 int ret = super.size();
6 this.accessed();
7 return ret;
8 }

Figure 2.5: An example collection wrapper used to be able to
track accesses to the persistent collections

2.1.3.5 Proxy Creation
Since Autofetch is dependent on using custom proxies in order to inject its statistics mech-
anism when loading objects, this had to be altered by the authors of the old tool.

28

2.1 Original Tool

The general structure of the creation of proxies is according to the Proxy pattern, sim-
ilar to the one used natively by Hibernate. In Autofetch, the pattern is extended by a class
EntityProxyFactory which uses a custom method interceptor called EntityProxyCallBack.
EntityProxyFactory functions as a proxy provider for each persistent entity, holding a map
with each entity and its respective factory. The EntityProxyCallback intercepts the calls to
the proxy to enable/disable tracking and various methods for handling the entity statistics.

2.1.3.6 Listeners
During runtime of an application using Autofetch, the AutofetchLoadListener or Initial-
izeCollectionListeners will be called, intercepting the normal method calls with the custom
operations of Autofetch when the user does certain operations such as loading or initializ-
ing a collection. It does this in order to check for prefetch directives for this entity generated
by earlier iteration of Autofetch and to update the tracking. We can see this in Figure 2.6,
where we in the loadFromDatasource-method check for prefetch paths for this entity, and
then modify the result depending on the statistics of the prefetch paths seen between line
11 and 18 in Figure 2.7.

1 @Override
2 protected Object loadFromDatasource(LoadEvent event,
3 EntityPersister entityPersister, EntityKey entityKey,
4 LoadType loadType) throws HibernateException {
5
6 String classname = entityPersister.getEntityName();
7 if (log.isDebugEnabled()) {
8 log.debug("Entity id: " + event.getEntityId());
9 }

10 List<Path> prefetchPaths = extentManager.getPrefetchPaths(classname);
11 Object result = null;
12 if (!prefetchPaths.isEmpty()) {
13 result = getResult(prefetchPaths, classname, event.getEntityId(),
14 event.getLockMode(), event.getSession());
15 if (result instanceof HibernateProxy) {
16 HibernateProxy proxy = (HibernateProxy) result;
17 if (proxy.getHibernateLazyInitializer().isUninitialized()) {
18 throw new IllegalStateException("proxy uninitialized");
19 }
20 result = proxy.getHibernateLazyInitializer()
21 .getImplementation();
22 }
23 } else {
24 result = super.loadFromDatasource(event, entityPersister,
25 entityKey, loadType);
26 }
27 extentManager.markAsRoot(result, classname);
28 return result;
29 }

Figure 2.6: The overidden loadFromDatasource-method used in
AutofetchLoadListener

2.1.3.7 Modification of Select Queries
One of the advantages of using a persistence layer like Hibernate is that the user can use
normal Java-syntax and let the used framework handle the database calls. With Autofetch,

29

2. Approach

the loaded root-object and its associations will be loaded using the overriden loadFromDatasouce-
method in Figure 2.6. Depending on if this entity has prefetch paths associated with it, a
method called getResult will be called instead of the normal loadFromDatasource-method.
In this method, seen in Figure 2.7, we will append the specific prefetch path for this entity
if the probability that that entity will be traversed is higher than the set threshold.

Here the JPQL specific JOIN FETCH directive is used to tell Hibernate to load and
initialize the appended element. In this way, we do not have to load the association sepa-
rately with an independent query, and therefore we can decrease the amount of executed
queries. In many cases, lower amount of executed queries means better performance of the
application, especially when network delay is a factor. This is the last mechanism in the
chain of events of the Autofetch tool and is ultimately the mechanism that makes Autofetch
tune the queries generated by the underlying application.

1 public static Object getResult(List<Path> prefetchPaths, String classname,
2 Serializable id, LockMode lm, Session sess) {
3 StringBuilder queryStr = new StringBuilder();
4 queryStr.append("from ").append(classname).append(" entity");
5 Map<Path, String> pathAliases = new HashMap<>();
6 int aliasCnt = 0;
7 pathAliases.put(new Path(), "entity");
8
9 // Assumes prefetchPaths is ordered such larger paths appear after smaller

ones.↪→
10 // Also assumes all prefixes of a path are present except the empty prefix.
11 for (Path p : prefetchPaths) {
12 String oldAlias = pathAliases.get(p.removeLastTraversal());
13 String newAlias = "af" + (aliasCnt++);
14 String lastField = p.traversals().get(p.size() - 1);
15 pathAliases.put(p, newAlias);
16 queryStr.append(" left outer join fetch ");
17 queryStr.append(oldAlias).append(".").append(lastField).append("

").append(newAlias);↪→
18 }
19 queryStr.append(" where entity.id = :id");
20
21 if (log.isDebugEnabled()) {
22 log.debug("Autofetched Query: " + queryStr);
23 }
24
25 Query q = sess.createQuery(queryStr.toString());
26 q.setLockMode("entity", lm);
27 q.setFlushMode(FlushMode.MANUAL);
28 q.setParameter("id", id);
29
30 long startTimeMillis = System.currentTimeMillis();
31 Object o = q.uniqueResult();
32 if (log.isDebugEnabled()) {
33 log.debug("Query execution time: " +
34 (System.currentTimeMillis() - startTimeMillis));
35 }
36 return o;
37 }
38 }

Figure 2.7: The getResult-method in AutofetchLoadListener
which appends the JOIN FETCH directive to the select query

30

2.2 Migration of Autofetch

2.2 Migration of Autofetch
Autofetch was released in 2008 for Hibernate 3.1, and since then the methodology has
not been updated. By the time of this report, the latest release of Hibernate is 5.3.0.Final.
Between these releases, there has been a lot of changes to the framework, such as the
change from JPA 2.0 to JPA 2.1, introducing many new features. The Hibernate core has
been thoroughly refactored and concepts such as Services has been introduced. Therefore,
the tool needed to be adjusted to these changes and new features in order to function on
newer version of the framework. Additionally, since the target project of this evaluation
uses Hibernate 4.3, we also needed to migrate a version to this release.

In order to achieve faster development pace, the migrated versions was decided to be
open source based, meaning that anyone could work on the migration. This was necessary
due to the big amount of changes needed to be done in order to get the tool to a working
state. The project was hosted on Github1 in order to increase visibility to the project. This
allowed other developers to contribute to the effort. Furthermore, since Hibernate itself
and the original tool was under LGPL 2.1, it was decided that the continuation of the tool’s
development should be under the same license. With the Hibernate documentation being
incomplete and the framework itself being under constant development, receiving tips and
implementation help was needed.

We initially planned to perform the migration through incremental upgrades of the
Hibernate core to find the incompatibilities, in an effort to gradually perform changes to
tool. However, this proved to not be an efficient method of migration, since an architec-
tural change in one version not necessarily remained in the next version which lead to that
many time-consuming changes ended up not being used. Luckily, we realized this mis-
take quickly, and therefore not a lot of time ended up being wasted. Instead, the target
version was used immediately and the changes could be applied to the original code until
it reached a state where it was executable again, but for the new version. During the migra-
tion process, the architecture of the tool had to undergo some changes in order for the tool
to work. In the next section, the major changes will be presented. Smaller miscellaneous
fixes have been omitted from the report for relevance reasons.

2.2.1 Implementational Differences
Hibernate as a framework has been changed immensely from version 3 to version 5. Some
classes and patterns from Hibernate 3 was changed or deleted completely in the newer
versions. This forced some changes to be implemented in order for the tool to function.
Here we will present some architectural changes made. In general, the changes mostly
affect the classes in table 2.3, which goes in line with the general scope of migrating and
evaluating the existing tool, rather than creating a completely new implementation. We
did most of the work regarding the migration with the help of the migration guides on
the Hibernate website[31]. The total size of the new project ended up being 5189 lines of
code, compared to 7288 lines of code in the original tool. This effort was evenly distributed
between the author and one other contributor on Github. The whole migration effort lasted
around four months of time.

1https://github.com/ErikJonasson/Autofetch

31

2. Approach

2.2.1.1 Configuration and Integration
The original tool was packaged as an Ant-script that created two JARs which the user
added to the classpath of the desired project. This comes with one disadvantage, namely
that the user has to manage the dependencies. In the migration we wanted to streamline
this process, so we decided to utilize Maven for handling the dependency management.
It also adds the simplicity for users to integrate the tool by simply adding the Autofetch
dependency to the pom.xml-file. Lastly, it adds the option to easily add new plugins to
the configuration, such as Bytecode Enhancement, which we will explain more in detail in
section 2.2.1.6.

With the evolution of Hibernate, the ways of integration of user modifications have
changed throughout the releases. Hibernate uses so called tuplizers to manage the rep-
resentation of data depending on what type of entity type that entity has. Hibernate also
lets users create their own custom tuplizers in order to modify the various behaviours of
Hibernate. With Hibernate 3, in order to add a custom tuplizer, you had to either add it
manually in the mapping Hbm.xml-file or as in the case of the original Autofetch version,
go into the core classes of Hibernate, make a custom copy of this class, add the tuplizer
programmatically, and then find a way to inject this modified class. The custom tuplizer
is needed for Autofetch due to the fact that we need to toggle the tracking on and off in
different scenarios.

The problem with the first approach regarding adding custom tuplizers is that the user
of the tool has to go through a longer configuration process in order for the tool to function,
which we want to keep to a minimum in order to increase usability for the user. The latter
approach creates a duplicated code problem with maintainability issues. In the next version
the functions may change, and then the current version of the tool will not work. These
two approaches can be observed in Figure 2.8 and 2.9 respectively.

1 <hibernate-mapping>
2 <class entity-name="Employee">
3
4 <tuplizer entity-mode="POJO"
5 class="AutofetchTuplizer"/>
6
7 <id name="id" type="long" column="ID">
8 <generator class="sequence"/>
9 </id>

10
11 <!-- other properties -->
12 ...
13 </class>
14 </hibernate-mapping>

Figure 2.8: Adding a custom tuplizer manually for an entity in
Hibernate 3

32

2.2 Migration of Autofetch

1 private static void bindPojoRepresentation(Element node,
2 PersistentClass entity, Mappings mappings, java.util.Map metaTags) {
3
4 String className = getClassName(node.attribute("name"), mappings);
5 String proxyName = getClassName(node.attribute("proxy"), mappings);
6
7 entity.setClassName(className);
8
9 if (proxyName != null) {

10 entity.setProxyInterfaceName(proxyName);
11 entity.setLazy(true);
12 } else if (entity.isLazy()) {
13 entity.setProxyInterfaceName(className);
14 }

15
...

16 // Element tuplizer = locateTuplizerDefinition(node, EntityMode.POJO);
17 // AHI: inject our tuplizer class here.
18 entity.addTuplizer(EntityMode.POJO,
19 "org.autofetch.hibernate.AutofetchTuplizer");
20 }

Figure 2.9: Adding the AutofetchTuplizer programmatically in
the modified HbmBinder-class

In Hibernate 4, the concept of Services was introduced. This allowed for user ma-
nipulation in an easier way, since users can extend existing services, or create their own
services which can then be injected[33]. Services made it possible to instead of ”hacking”
the hibernate core, a service could be created independently of the core, leading to a less
rigid and fragile design. This also changed the way custom listeners are added by the user,
from adding them in the configuration-class to having to inject them using a special ser-
vice during bootstrap. The change on the integration of listeners forced us to create a new
integration method for the custom listeners that are needed for Autofetch to work. This
will be described in detail in section 2.2.1.3.

In the 4.3-version of the tool, a so called Integrator is used to inject a custom ser-
vice called AutofetchService. The integrator gets injected by defining a source-file in the
META-INF\services-folder, which is then parsed during the bootstrapping process of Hi-
bernate. During the bootstrapping, all the various integrators will be integrated. The In-
tegrator of Autofetch adds an Initiator, whose implementation can be observed in Figure
2.10. It instantiates the AutofetchServiceImpl, which acts as a singleton for the Extentman-
ager, managing all the main functionality of Autofetch. The AutofetchServiceImpl-class
can be observed in Figure 2.11, with which the Extentmanager can be accessed.

Furthermore, the Integrator is responsible to add the Collection wrappers for the per-
sistent collection types of Hibernate, such as the PersistentSet and PersistentBag. Lastly,
it adds the custom listeners of Autofetch to allow tracking of entities.

We implemented the integration of Autofetch in the 5.3-version similarly to the imple-
mentation in the 4.3-version, but instead of adding the service through the Integrator, it is
injected through the new ServiceContributor-interface.

33

2. Approach

1 final class AutofetchServiceInitiator implements
StandardServiceInitiator<AutofetchService> {↪→

2
3 static final AutofetchServiceInitiator INSTANCE = new

AutofetchServiceInitiator();↪→
4
5 @Override
6 public AutofetchService initiateService(Map configurationValues,

ServiceRegistryImplementor registry) {↪→
7 return new AutofetchServiceImpl();
8 }
9

10 @Override
11 public Class<AutofetchService> getServiceInitiated() {
12 return AutofetchService.class;
13 }
14 }

Figure 2.10: The AutofetchServiceInitiator added by the Integra-
tor

1 final class AutofetchServiceImpl implements AutofetchService {
2
3 private final ExtentManager extentManager;
4
5 AutofetchServiceImpl() {
6 this.extentManager = new ExtentManager();
7 }
8
9 @Override

10 public ExtentManager getExtentManager() {
11 return extentManager;
12 }
13 }

Figure 2.11: The custom service managing the ExtentManager

2.2.1.2 Collection Wrapping
In order for Autofetch to be able to do its tracking, the custom collection classes need to be
used. The original tool integrated the wrappers of Autofetch in the custom class called Aut-
ofetchHbmBinder, which is a class that has been completely removed from Autofetch in
the 4.3 version due to Hbm-mapping being deprecated in newer Hibernate releases. Instead
the wrappers are integrated into Hibernate with the use of the Integrator, which during the
bootstrap process iterates over the available properties and sets the property to the equiv-
alent AutofetchCollection-type. The method handling the replacement of the collections
can be observed in Figure 2.12. We implemented this to ensure automatic wrapping of
collections without any user specification while keeping a maintainable design and elim-
inating the duplicated code that was used in the earlier AutofetchHbmBinder-class. The
integration of the AutofetchTuplizer for each entity is done analogously. Furthermore, the
AutofetchCollectionTypes now implement the UserCollectionType instead of extending
CollectionType due to incompatibility between the CollectionType and the new imple-
mentation.

34

2.2 Migration of Autofetch

1 private static void replaceCollection(org.hibernate.mapping.Property
collectionProperty, PersistentClass owner) {↪→

2 if (!(collectionProperty.getValue() instanceof
org.hibernate.mapping.Collection)) {↪→

3 return;
4 }
5 org.hibernate.mapping.Collection value = (org.hibernate.mapping.Collection)

collectionProperty.getValue();↪→
6
7 if (value instanceof org.hibernate.mapping.Bag) {
8 value.setTypeName(AutofetchBagType.class.getName());
9 } else if (value instanceof org.hibernate.mapping.IdentifierBag) {

10 value.setTypeName(AutofetchIdBagType.class.getName());
11 } else if (value instanceof org.hibernate.mapping.List) {
12 value.setTypeName(AutofetchListType.class.getName());
13 } else if (value instanceof org.hibernate.mapping.Set) {
14 value.setTypeName(AutofetchSetType.class.getName());
15 } else {
16 throw new UnsupportedOperationException("Collection type not supported:

" + value.getClass());↪→
17 }
18 }

Figure 2.12: Wrapping the default CollectionTypes with the Aut-
ofetch equivalents

2.2.1.3 Listeners
The tracking of entities in Autofetch is based on the ability to listen to certain operations
done by the user, such as loading an object. As mentioned in section 2.1.3.6, this is done
through Listeners. Originally, custom listeners were added through the Configuration-
class. However, in the 4.0-version of Hibernate, the Hibernate team decided to create a
specific ServiceRegistry for modifying and adding listeners called the EventListenerReg-
istry. This can be accessed during the bootstrap-process to add the desired listeners.

For the migrated versions of Autofetch, we used the EventListenerRegistry to imple-
ment a method to automate the integration of the custom listeners in the AutofetchIntegrator-
class. The implementation is shown in Figure 2.13, where the custom load listener is being
added in line 5 and the initialize collection listener is added in lines 7-8.

1 private void doIntegrate(ServiceRegistry serviceRegistry) {
2 final ExtentManager extentManager =

serviceRegistry.getService(AutofetchService.class).getExtentManager();↪→
3
4 EventListenerRegistry eventListenerRegistry =

serviceRegistry.getService(EventListenerRegistry.class);↪→
5 eventListenerRegistry.setListeners(EventType.LOAD, new

AutofetchLoadListener(extentManager));↪→
6
7 eventListenerRegistry.setListeners(EventType.INIT_COLLECTION,
8 new AutofetchInitializeCollectionListener(extentManager));
9 }

Figure 2.13: Adding the custom listeners in AutofetchIntegrator

35

2. Approach

2.2.1.4 Proxy Handling
Proxies in Hibernate is an essential part of the lazy loading mechanism. As we mentioned
earlier, a proxy is generated by Hibernate dynamically to represent the actual object, but
without having to gather the information of its fields with queries. Hibernate has switched
between different proxy generation frameworks the last decade. The original tool used
CGLIB[42], but stagnant development led to the switch to Javassist[43] in the release of
Hibernate 3.3. Then in Hibernate 5, Byte Buddy[44] became the default bytecode provider
but with support for Javassist. As a consequence, the proxy we implemented in Autofetch
4.3 is an implementation based on the Javassist proxy from Hibernate. In the 5.3 version of
Autofetch we still use Javassist, but with plans to migrate to Byte Buddy in the upcoming
releases. The two implementations take heavy inspiration from the JavassistLazyInitial-
izer. The implementation of the invoke-method can be seen in Figure 2.14, where we
intercept calls to the proxy, and before we return the actual value of the underlying object,
we add trackers to the proxy in order to collect statistics, as seen in line 18.

1 @Override
2 public Object invoke(final Object proxy, final Method thisMethod, final Method

proceed, final Object[] args) throws Throwable {↪→
3 result = this.invoke(thisMethod, args, proxy);
4 if (result == INVOKE_IMPLEMENTATION) {
5 returnValue = thisMethod.invoke(target, args);
6 if (returnValue == target) {
7 if (returnValue.getClass().isInstance(proxy)) {
8 return proxy;
9 } else {

10 LOG.narrowingProxy(returnValue.getClass());
11 }
12 }
13
14 return returnValue;
15 } finally {
16 if (!entityTrackersSet && target instanceof Trackable) {
17 entityTrackersSet = true;
18 Trackable entity = (Trackable) target;
19 entity.addTrackers(entityTracker.getTrackers());
20 if (entityTracker.isTracking()) {
21 entity.enableTracking();
22 } else {
23 entity.disableTracking();
24 }
25 }
26 } else {
27 return result;
28 }
29 } else {
30 if (thisMethod.getName().equals("getHibernateLazyInitializer")) {
31 return this;
32 } else {
33 return proceed.invoke(proxy, args);
34 }
35 }

Figure 2.14: The invoke-method of the AutofetchLazyInitializer-
class

36

2.2 Migration of Autofetch

2.2.1.5 Serialization of Proxies
There are situations where one might be interested in serializing proxies, such as when you
have need to send proxy details from the backend to the frontend and frontend framework
does not support Java-classes. In the original tool, one of the disadvantages was that seri-
alization of proxies was not supported. However, in the migrated versions of Autofetch a
class AutofetchSerializableProxy we have implemented this feature, enabling users to seri-
alize proxies when needed. This results in the tool being applicable in more scenarios. The
AutofetchSerializableProxy-class is analogous to the SerializableProxy-class provided na-
tively by Hibernate.

2.2.1.6 Bytecode Enhancement
Hibernate 3.1, the version that Autofetch was originally developed for, used lazy loading
as its default fetching strategy. Specifically, it used lazy select fetching for collections and
lazy proxy fetching for single value associations. This is optimal for Autofetch since we
want to lazy load all associations in order to gather statistics, and then based on these statis-
tics decide what needs to be prefetched. However, the default fetching strategy changed
for versions 4.x, and this change is still in effect to this day. The current default strat-
egy depends on the cardinality of the association. The default strategy follows the JPA
standard:

• OneToMany: Lazy

• ManyToOne: Eager

• ManyToMany: Lazy

• OneToOne: Eager

This change implies some problems for the methodology of Autofetch. In order for Aut-
ofetch to function the way it is supposed to, it needs to load all associations lazily. The
two options for setting the fetch strategy are either to set the associations manually in the
mappings file or to use a so called Bytecode Enhancement-plugin. The first option is not
viable in the case of Hibernate, since the OneToOne associations will always be loaded
eagerly, no matter what fetch strategy the user sets. This leaves us with the latter, adding
Bytecode Enhancement. Bytecode Enhancement is a technique to manipulate classes at
build or runtime, making it possible to ”enhance” the functionality, and in this case en-
abling LazyInitialization of all associations. Fortunately, there is a maven based tool for
this in Hibernate which can be added to the pom.xml-file of the project. The tool contains
of four main enhancement capabilities, consisting of:

• LazyInitialization

• DirtyTracking

• AssociationManagement

• ExtendedEnhancement

37

2. Approach

The capability that is of interest in this study is LazyInitializaition, which enables that
all associations are lazily instantiated. With this setting set to true, we can expect even
OneToOne-associations to be lazy loaded. We added the Bytecode Enhancement tool to
the migrated versions of Autofetch and set the capabilities in the tool like in Figure 2.15,
where line 10 is where we set the LazyInitialization property.

1 <build>
2 <pluginManagement>
3 <plugins>
4 <plugin>
5 <groupId>org.hibernate.orm.tooling</groupId>
6 <artifactId>hibernate-enhance-maven-plugin</artifactId>
7 <version>\${hibernate-orm.version}</version>
8 <configuration>
9 <failOnError>true</failOnError>

10 <enableLazyInitialization>true</enableLazyInitialization>
11 <enableDirtyTracking>true</enableDirtyTracking>
12 <enableAssocManagement>true</enableAssocManagement>
13 <enableExtendedEnhancement>false</enableExtendedEnhancement>
14 </configuration>
15 <executions>
16 <execution>
17 <id>compile</id>
18 <phase>compile</phase>
19 <goals>
20 <goal>enhance</goal>
21 </goals>
22 </execution>
23 <execution>
24 <id>test-compile</id>
25 <phase>test-compile</phase>
26 <goals>
27 <goal>enhance</goal>
28 </goals>
29 </execution>
30 </executions>
31 </plugin>
32 </plugins>
33 </pluginManagement>
34 </build>

Figure 2.15: The Bytecode Enhancer plugin used to enable
LazyInitialization

2.3 Method of Evaluation
The old tool and the original study regarding the Autofetch methodology put it through
some benchmarks, including TORPEDO[45] and 007[22], in order to evaluate the gained
performance. However, the performance of the tool has only been investigated in one type
of scenario, and we aim to extend the spectrum of tests by testing the migrated tool in a
real world JavaEE-application, meaning that we evaluate the method in a system developed
for the purpose of being used in production. In order to not cause any problems for the
customer, we are running the system with the tool integrated against a local backend, and
not in production.

Furthermore, since the migrated versions include some changes compared to the orig-
inal tool, there might be a difference in performance. The question is how well does Aut-

38

2.3 Method of Evaluation

ofetch performs in a real world scenario, and how useful does it prove to be in terms of
practicality, ease of use etc. To get a better picture of the performance gained by the tool,
we are evaluating the migrated tool on a project of itestra GmbH. With this evaluation, we
hope to cover some aspects of performance and usage that the original research did not
analyse. The results of the evaluation can then be used in order to answer the questions in
table 1.1.

2.3.1 Target Project
The project chosen for executing the evaluation is a project called TAS, a sales front end
system used to create applications for general insurances for business customers. It is
a Java 7 based system using Java Server Faces and Primefaces together with a Tomcat
7 server. The backend is a rule engine called VPMS which is developed by DXC. The
application uses Hibernate 4.3 to handle its persistence.

Based on some normal usage patterns that was provided by application’s project leader,
a small benchmark was created. The benchmark consists of some different operations
carried out in the application. Since Autofetch uses statistics from earlier executions to
generate the prefetch criteria, the operations within the application are repeated five times.
The reason why we opted for five iterations instead of a bigger number in the benchmark is
mainly because we could not find a way to programmatically do the actions in the bench-
mark without spending too much time on rewriting big parts of the code. This would
simply take too much time, and since we spent much time on the migration, we opted for
few iterations.

The test data used was an already existing test set consisting of 8 created applications,
together with 2 manually added applications, together making up a total of 10 applications.

2.3.2 Evaluation Tools
In order to evaluate the tool’s tuning capabilities, we need to a method of diagnosing the
performed queries for each execution. We are interested in lowering the amount of queries,
in order to increase the performance of JavaEE systems especially in situations where
network delay is a factor. However, network delay solely does not tell if the performance
is good or bad, but the execution time of queries is of interest as well. Therefore, the two
aspects we have chosen to focus our tests around are:

• Number of executed queries

• Total execution time of queries

The amount of executed queries and execution time during a session can be monitored
natively in Hibernate. In order to get the total amount of executed queries for test, all the
printed results of each session can be summed together. The same method can be used
for the total execution time. In order to print session statistics in Hibernate, the user has
to activate the two following settings in hibernate.properties, which can be seen in Figure
2.16, and in the settings-file of the used logging-framework, which can be seen in Figure
2.17.

39

2. Approach

1 <properties>
2 <property name="hibernate.generate_statistics" value="true" />
3 ...
4 </properties>

Figure 2.16: Setting for enabling statistics in Hibernate

1 org.hibernate.stat=DEBUG

Figure 2.17: Setting the correct logging level for displaying exe-
cution time

These two settings will print out all the executed queries together with the execution
time of each query and the total amount of executed queries. The data gathered from the
log-files generated from the configuration with the tool enabled can then be compared with
the configurations without the tool and handtuned respectively. After this comparison,
results regarding the performance can be determined.

2.3.2.1 Benchmark
Within TAS, we will run a small test suite from the graphical user interface to simulate
normal usage in the application, meaning that the benchmark is performing the most com-
monly used business cases. These usage patters and use cases were obtained by the project
leader of the project. In order to gain insights in how the tool performs in this environment,
we need to localize in what actions in the user interface that executes queries. Looking into
the source code, we figured out that the following interactions trigger database queries:

• Load an application

• Save an application

• Press save application button

• List existing applications

• Edit a mediator

We need to make sure to design the benchmark with some these points in mind in order to
gather enough statistics for the tool to be able to do the tuning. The order of the operations
is also relevant, since the tool needs a clear usage pattern in order to do the tuning optimally.
Therefore, we have designed the benchmark to execute the interactions mentioned earlier
in the following order:

1. List the existing applications

2. Load an application

3. Press save application button

40

2.3 Method of Evaluation

4. Save the application

5. Edit a mediator

We will run the same benchmark five times and observe the differences between itera-
tions. With the data gathered from each iteration of the benchmark, we can then compare
the results between different configurations. These are the three different configurations
tested:

• Configuration without Autofetch and all associations set to lazy

• Handtuned configuration without Autofetch

• Configuration with Autofetch

All of these configurations will be tested five times. Since we expect the tuning to
happen throughout the iterations of the configuration with Autofetch, we have decided to
show each iteration of this specific configuration. The other configurations will also be
run five times, but instead of showing one bar per iteration, we have decided to calculate
the average value of these iterations and represent these configurations with one bar each.
This will hopefully make the bar charts more readable.

Furthermore, there are some considerations to be made when applying to the tool to
an already existing project. For instance, this work will be executed in a real world JavaEE
application, meaning that the application was designed to be used in production, and the
design of the application was not originally intended to be used with the Autofetch frame-
work. This could lead to some errors to occur. For example, changing the fetch strategies
of the application can cause errors such as objects not being available in cases where they
are needed. There are cases where the application is not currently in a session and it tries
to load a field of a proxy which has not been instantiated. This can result in exceptions be-
ing thrown and potentially lead to application crashes. These problems could potentially
be solved with the setting of being able to lazy load outside of transactions or keeping an
open session throughout the program duration. These aspects and the consequences of
these aspects will be discussed further in the following sections of the report.

41

2. Approach

42

Chapter 3
Evaluation

In order for the tool be usable in real world scenarios, which is the main question of this
research, it is crucial that the tool simplifies the optimization process in terms of usability,
as well as improving the performance of an unoptimized project or perform similar to
a handtuned version of a project. Therefore, we will present the results received from
the study both from a usability and performance point of view. We will then discuss the
obtained results. This will cover mostly the current implementation, and then we will take
a broader perspective and discuss the methodology itself.

3.1 Results
As previously mentioned, since we are interested two key aspects in the evaluation, we
have divided the evaluation into these two different categories:

• Integration and Configuration

• Performance

This was done to be able to easier distinguish the two different aspects and keep the eval-
uation of these two aspects separated. We will start with the integration since that is the
first aspect that the user will have to handle. After that, we will cover the performance of
the tool in this specific case.

3.1.1 Integration and Configuration
Integrating Autofetch into a project is a process that can be done simply by adding the
dependency to the tool in Maven, or manually add the generated JAR-file to the project
and the rest should be automatic. If this was the case, then the code snippet from Figure
3.1 could be added to the pom.xml-file to integrate the tool.

43

3. Evaluation

1 <dependencies>
2 <dependency>
3 <groupId>org.autofetch</groupId>
4 <artifactId>autofetch</artifactId>
5 <version>0.1-SNAPSHOT</version>
6 </dependency>
7 </dependencies>

Figure 3.1: Enabling Autofetch in a Maven based application

However, since TAS is not using Maven, the integration of Autofetch into TAS was
more difficult than expected. This meant that a JAR-file containing the Autofetch-tool
had to be generated through Maven, and then imported manually to the target project,
instead of simply adding the Autofetch dependency to the pom.xml-file. Because the tar-
get project did not use Maven, the dependencies were initially inconsistent and created
ClassNotFoundExceptions and NoClassDefinitionExceptions was thrown. Handling these
inconsistencies in the classpaths manually is a cumbersome task that can take vast amount
of time, depending on the project structure complexity and size. In this case, the problem
was eventually found and could be solved, however it took two days of work for one inex-
perienced developer to figure out. If the target project had been using Maven, this whole
situation could be avoided and the integration process could have taken a few minutes in-
stead of days of work. Transforming the target project to Maven was also tried, but since
we had no earlier experience with Maven, we did not succeed in doing this.

Once the integration was done, we could use the tool without having to write a single
line of code or enable the tool in settings-files, and since we saw no reason to change
the default settings on how the fetching should be done, such as Fetch-depth and Fetch
probability threshold, we spent no time configuring the settings.

Since the application was handtuned by default, we decided to do remove any explicit
fetch strategies from the entity mapping files in order for Autofetch to function as it should.
The fetch strategies can be left as they are, however it can affect performance since the tool
expects the fetch strategy to be lazy for all associations. The problem with having to change
the fetch strategies is that in many cases, the application has been specifically developed
for certain fetch strategies for every association, and when that changes, the application
does not function correctly. In the case of TAS, this was also a problem. Therefore, we had
to enable the widely debated hibernate.enable_lazy_load_no_trans-feature in Hibernate
to let the application load lazy associations freely. This feature can be enabled by adding
the snippet from Figure 3.2 to the persistence.xml-file or the hibernate.cfg.xml-file. We
will discuss this feature and its consequences more in detail in the Discussion section.

1 <propertyname="hibernate.enable_lazy_load_no_trans" value="true"/>

Figure 3.2: Enabling lazy loading outside of transaction scope in
Hibernate

44

3.1 Results

3.1.2 Performance
In this section, the performance of the application when applying the Autofetch-tool will be
presented. Initially, the benchmark of the application was run without any fetch strategy
directives five consecutive times, in order to inspect how many queries that were being
executed and how long execution time each query used. This represents the performance
of a non-tuned version of the application.

The values obtained in the benchmark can be seen in table 3.1. In the rows we can
observe the type of interaction in the application. In the columns we see the different
configurations, which in our case are the lazy loaded version, the handtuned version, and
the different iterations of Autofetch. We display every iteration of Autofetch because we
want to see how the performance changes for every iteration. As mentioned before, the
other configurations are also executed five times, however they execute the same number
of queries in every iteration.

Interaction Type/Configuration Lazy Handtuned AF1 AF2 AF3 AF4 AF5
List all applications: 65 25 65 58 56 56 56
Load an application: 30 16 30 30 30 30 30
Press save application button: 1 1 1 1 1 1 1
Save application: 9 9 9 9 8 8 8
Save Vermittler: 10 5 10 7 7 7 7

Table 3.1: The number of executed queries for each configuration
including the five iterations of the Autofetch configuration

In order to get a visual representation of the results, we present the results in the form
of bar charts in Figures 3.3, 3.4, 3.5, 3.6, 3.7, 3.8.

45

3. Evaluation

65

25

65

58
56 56 56

0

10

20

30

40

50

60

70

Lazy Handtuned Autofetch
iteration 1

Autofetch
Iteration 2

Autofetch
iteration 3

Autofetch
iteration 4

Autofetch
iteration 5

N
U

M
B

ER
 O

F
Q

U
ER

IE
S

CONFIGURATION TYPE

List all applications

Figure 3.3: Graph displaying the number of executed queries for
the List all applications-action in TAS

30

16

30 30 30 30 30

0

5

10

15

20

25

30

35

Lazy Handtuned Autofetch
iteration 1

Autofetch
Iteration 2

Autofetch
iteration 3

Autofetch
iteration 4

Autofetch
iteration 5

N
U

M
B

ER
 O

F
Q

U
ER

IE
S

CONFIGURATION TYPE

Load an application

Figure 3.4: Graph displaying the number of executed queries for
the Load application-action in TAS

46

3.1 Results

1 1 1 1 1 1 1

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

Lazy Handtuned Autofetch
iteration 1

Autofetch
Iteration 2

Autofetch
Iteration 3

Autofetch
iteration 4

Autofetch
iteration 5

N
U

M
B

ER
 O

F
Q

U
ER

IE
S

CONFIGURATION TYPE

Press save application button

Figure 3.5: Graph displaying the number of executed queries for
the Save application-action in TAS

9 9 9 9

8 8 8

0

1

2

3

4

5

6

7

8

9

10

Lazy Handtuned Autofetch
iteration 1

Autofetch
Iteration 2

Autofetch
iteration 3

Autofetch
iteration 4

Autofetch
iteration 5

N
U

M
B

ER
 O

F
Q

U
ER

IE
S

CONFIGURATION TYPE

Save application

Figure 3.6: Graph displaying the number of executed queries for
the Save application-action in TAS

47

3. Evaluation

10

5

10

7 7 7 7

0

2

4

6

8

10

12

Lazy Handtuned Autofetch
iteration 1

Autofetch
Iteration 2

Autofetch
Iteration 3

Autofetch
iteration 4

Autofetch
iteration 5

N
U

M
B

ER
 O

F
Q

U
ER

IE
S

CONFIGURATION TYPE

Save Mediator

Figure 3.7: Graph displaying the number of executed queries for
the Save mediator-action in TAS

10327,1

4792,08

10440,3195

7298,7

0

2000

4000

6000

8000

10000

12000

Lazy Handtuned Autofetch iteration 1 Autofetch iteration 5

TI
M

E
IN

 M
IL

LI
SE

C
O

N
D

S

CONFIGURATION TYPE

Total exectution time

Figure 3.8: The total execution time of each configuration

48

3.2 Discussion

The obtained values for the tests prove that indeed the tuning takes place. However,
the tuning is not of the same magnitude as the authors of the original Autofetch article
claim in their study, which can be a result of various factors, such as the implementation
being slightly different and that the test application is different. We will discuss this matter
further in the discussion section. We can observe that the tuning only take place in the List
all applications and Save application scenarios in Figure 3.3 and Figure 3.6 respectively.
In the cases of Load an application, Press save application button and Save mediator, no
tuning is being done over the five iterations. Apparently, our tests only cover loading of
some associations and not all of them. Throughout the entire benchmark, the Autofetch
configuration executes 11.3% fewer queries than the lazy configuration. The manually
configured version performs considerably better still, with 51.3% fewer queries executed
in comparison to the lazy loaded configuration. Furthermore, the total execution time of
each configuration can be seen in Figure 3.8 and shows manually tuned configuration is the
faster overall option in terms of execution time, followed by the Autofetch configuration
after five iterations. The total execution time is correlated with the amount of queries being
executed.

3.2 Discussion
Autofetch for Hibernate is still a work in progress, and with the obtained test results it is
clear to say that the tool does not perform as well in our use case as the handtuned ver-
sion of the TAS application. With 11.3% fewer queries executed compared to the lazy
loaded variant, it did offer a slight improvement in terms of performance. The improve-
ments are small however and do not match the improvements discussed in the original
Autofetch-article, where the authors claimed to have increased the performance of various
applications with up 99.8% in terms of eliminated queries.

The exact reason for why this version of the tool does not match the claimed perfor-
mance of the old tool is still not quite certain, but comes down to a few different aspects.
We will go through these here.

First of all, Hibernate as a framework has changed considerably since version 3.1 com-
pared to 4.3.10 that we tested in this research. This might cause that the implementation
might need reconsideration.

Moreover, the test project did not contain a complex association mapping and therefore
could not use Autofetch to its full capacity. The way that TAS uses Hibernate is simple in
terms of persistence and the dependencies between different entities are minimal. There-
fore, a new test containing more test cases could lead to completely different results.

Additionally, the test benchmark is based on what we know about the project, and since
they have no deeper knowledge about the project, there could potentially be improvements
to be made to the benchmark that we used to test the tool. An additional aspect that might
have affected the obtained results is the fact that we used a small dataset. This dataset
is realistic for some users of the TAS application. However, there are users that have
up to a thousand of applications, compared to the ten tested applications we used in our
benchmark. In a more in depth evaluation of the tool, datasets of different sizes should
be used. This is something we wanted to do, however due to time restrictions and the
process of migrating the tool taking longer than expected, this could not be done. With

49

3. Evaluation

more extensive datasets we could have performed the benchmark in an environment more
similar to a production environment. With think that with more data for the tool to analyse,
the tool would have more statistics to base the tuning on, and therefore it could tune more
precisely.

Furthermore, in order to get the application to run with Autofetch, we needed to en-
able the setting hibernate.enable-lazy-load-no-trans, which lets Hibernate lazy load freely,
without having an active session. Not only does this open up sessions without the user
knowing about it and therefore negatively impacting performance of the application, but
this setting also has a famous reputation of inducing the N + 1 problem when activated[47].
Autofetch should handle the issue regarding the N + 1 problem with this setting, however
the heavy increase of created sessions in the application will affect the general performance
of the application. This constitutes yet another source of error.

Additionally, similar to the topic discussed in the first point in this section, the changes
to Hibernate does not only cover what has been done to the framework itself, but the un-
derlying framework of JPA has also changed drastically. In earlier versions of Hibernate,
JPA has changed the standard fetching strategies for some association types. For exam-
ple, ManyToOne and OneToOne associations are fetched eagerly by default, and for the
parent side OneToOne-mapping, the fetch strategy can not be changed unless a Bytecode
Enhancer is used. As already mentioned, the 4.3.10 version of Hibernate does not have a
working Bytecode Enhancer. These changes make the tested version of the tool to poten-
tially function differently from the original tool.

The lack of documentation about the original tool also adds a layer of uncertainty to
how the tool is supposed to function, and in what scenarios it optimizes optimally. In our
case, we had to thoroughly analyse the source code in order to make assumptions about
what settings to use in Hibernate in order to achieve the biggest optimizations. These
assumptions might not be entirely correct, and could therefore be a source of error.

In terms of usability, the tool has been simplified and integrates itself once the JAR
is in the buildpath or when the snippet has been added to the pom.xml-file. Using a tool
that will handle the prefetching by just having it added to the project is a promising feature
and with future enhancement of the tools tuning capabilities the methodology could truly
bring big improvements to the Software Engineering aspects of JavaEE-projects.

50

Chapter 4
Conclusions

In this chapter, we will present the findings of the report including shortcomings of the
current tool and the study as a whole, possible improvements, lessons learned from the
research together with a section about relevant topics of research in this field.

4.1 Implementation
4.1.1 Integration and Configuration
Compared to the first version of Autofetch, the way of integration has changed drastically.
Executing an Ant-script, adding JAR-files manually to the classpath of the project can be a
daunting task. With the new integration mechanism introduced in the migrated version of
Autofetch, the procedure has been simplified and less error prone; add the Autofetch de-
pendency to the pom.xml-file, and the integration of Autofetch into Hibernate is automatic.
Even though the improved usability due to automatic integration when using Maven could
not be used in this specific case, we would argue that this simplified the use of the tool
significantly and that in order to make the tool user-friendly, an integration mechanism
like the one we developed will make the experience with the tool better.

Regarding the configuration, there was not many changes done from the old tool. For
example, setting the depth of the object graph and turning on and off tuning, remained
unchanged. In order to make the tool easier to integrate, a future improvement could be
that Hibernate includes Autofetch by default.

4.1.2 Performance
Autofetch lowered the amount of queries executed in comparison to a completely lazy
loaded configuration with 11.3%. However, the handtuned version performed better and

51

4. Conclusions

lowered the amount of queries executed with 51.3%. The general rule of thumb regarding
the total execution time of the different configurations seemed to be proportional to the
amount of queries being executed, resulting in an average execution time for each query
in each of the configurations to be similar.

4.2 Limitations
When migrating the tool, the goal was to create minimal viable product with just the core
functionality of automatically adding prefetch directives. This was done due to time-
constraints, and if the Hibernate community wants to continue to develop the tool it is
easy to do so due to the open source nature of the project. Due to the time-constraints,
there are also some unhandled faults to the implementations of the tool.

The most apparent issue is that Hibernate uses the default JPA fetch strategies for as-
sociation, meaning that there are certain fetch strategies for association types that are not
overridable. The result is that these associations always will be eagerly fetched, no matter
what the developer defines for the association. This means that it has to be done some
other way, with for example the use of the Bytecode enhancement-plugin to enforce lazy
loading for all associations. However, in the 4.3-version of Hibernate, the bytecode en-
hancement maven plugin is not supported. A developer of the tool cover this in an article
where he explains that the functionality of the tool is not correct until the 5.x-version of
Hibernate[41]. This is a technique that is not documented well and therefore we had prob-
lems implementing it correctly. With some continued development of the tool, this could
be resolved either by just supporting Hibernate 5.0 and onwards, or by submitting a pull
request with a fix to the repository of the Maven Bytecode enhancer tool. In terms of
practicality, the easiest way to ensure a working Autofetch-tool would be to simply limit
the compatibility to newer versions, since there is no continued development of the older
versions of the framework.

It should be noted however, that the fact that this implementation heavily relies on
the old 3.1-version of Hibernate, which was an implementation that did not have official
support from the Hibernate team. This resulted in that the developers could not make the
necessary adjustments to the Hibernate core in order to implement tool in an optimal way.
This still stands today, and during the development and migration of the tool we constantly
ran into situations where we needed to make a change for methods of the core, but since
we did not have control of these parts of the code, we could not carry out the necessary
changes, and we had to opt for a change that was not optimal. In some cases, the new
versions of Hibernate even made certain methods private, disabling us from extending the
necessary functionality. An example of this can be seen in Figure 4.1, where we see the
change to the method in which the foundation of the added loading mechanism behaviour
is placed, suddenly its access modifier changed to private, hence making overriding this
method impossible. The before the change version is shown on line 2-4 and the version
after the change is shown on lines 5-7.

52

4.3 Lessons Learned

1 @Override
2 - protected Object loadFromDatasource(LoadEvent event,
3 EntityPersister entityPersister, EntityKey entityKey,
4 LoadType loadType) throws HibernateException {
5 + private Object loadFromDatasource(LoadEvent event,
6 EntityPersister entityPersister, EntityKey entityKey,
7 LoadType loadType) throws HibernateException {
8
9 String classname = entityPersister.getEntityName();

10 if (log.isDebugEnabled()) {
11 log.debug("Entity id: " + event.getEntityId());
12 }
13 // Autofetch logic
14 result = super.loadFromDatasource(event, entityPersister, entityKey,

loadType);↪→
15 }
16 extentManager.markAsRoot(result, classname);
17 return result;
18 }

Figure 4.1: The method loadFromDatasource being changed
from protected to private

This leads us to the conclusion that the only viable option for continued development
would be if the Hibernate developers themselves integrated a custom implementation of
Autofetch, or at least that the developers of the tool had close contact with the Hibernate
developers in order to discuss necessary changes. We will discuss this more in detail in
the section Future Improvements.

Regarding the evaluation of the tool and the target project TAS, there were also some
shortcomings. For example, the dataset is basically too small to draw any definitive con-
clusions whether Autofetch is a good match for JavaEE applications or not. We used a data
set of ten so called applications, which are the entities of TAS. While this covers some of
the normal use cases of this application, we should have covered more use cases by alter-
ing the benchmark and increasing the amount of entities from 10 to a larger number which
covers all the use cases of the application. It would also be interesting to see Autofetch in
other applications other than TAS.

4.3 Lessons Learned
In this attempt to evaluate the methodology of Autofetch there were a few shortcomings
that made it difficult to draw any definitive conclusions. Initially, the idea was to have the
research more focused on evaluating Autofetch in a real world scenario, rather than the
migration of the old tool. In addition, the idea was to apply the tool on different projects
in itestra GmbH in order to have a bigger data pool to draw conclusion from. However,
since the migration of the tool did not go as seamless as expected, the focus had to be
slightly adjusted. Instead, this work in the end focuses more on the migration and only
analyses the test results from one project instead of the three projects, which was the orig-
inal intention. These three test systems would be of different sizes in terms of the usage
of Hibernate, and potentially systems of different domains, such as insurance, banking
and manufacturing. If the projects used a similar Hibernate-version, it would be easier to
apply the tool. However, in reality the version differs heavily between these projects and

53

4. Conclusions

therefore it would be needed to make individual migrations for each version, making it too
cumbersome and time-consuming for one person to develop.

There were also other factors that made the evaluation more difficult than anticipated.
For example, the test system chosen for evaluation proved to be difficult to work with. Not
only is the system using an older version (4.3), making it difficult to find proper support
and help in the forum for this specific version, but also since it is based on user interaction,
which makes it difficult to do extensive testing without spending massive amounts of time.
If we could have done the benchmark in the form of unit tests, we could have done far more
iterations of the tests. We tried implementing unit tests, however we found it difficult to do
similar actions to what a user does using unit tests, since we do not have prior experience
with TAS.

Another challenge with the target project is that it does not use Maven, meaning that the
integration with Autofetch is not as seamless as it could have been. Without Maven, JARs
have to be generated and then manually added to the project, which seems easy in theory
but can be burdensome in cases with complex project structure, such as Web-applications.
Changing the build path was a very error-prone process which ended up taking a lot of time
from the actual research. Choosing a project that used Maven could save countless hours
which could be invested in developing the tool and analysing the results. If the research
were to be repeated, a more suitable target system should be chosen, meaning that the
system should be Maven based and using a version 5.x of Hibernate. This would ensure
easier integration with Autofetch, but also make it easier to attract more contributors to
the open source project, since most people do not want to develop for a legacy version of
Hibernate.

For future reference, if similar research was initiated today, we would have chosen
to focus primarily on one topic. In the case of this research, the main objective was to
evaluate the method. However, since the old tool was in a legacy state and had to go
through the migration, we could not do a thorough evaluation due to time concerns. In
hindsight, focusing solely on the migration while highlighting some improvements of the
new implementation could have been a more realistic scope.

4.4 Future Improvements
During the research and development of the tool, there were a few improvements that
became apparent. In this segment of the report, we will list these potential improvements.
The current versions of Autofetch only contain the most core aspects of the methodology.
Some functionality was meant to be in the tool, but was omitted due to time constraints.

• Saving statistics between executions

• Feature enabling overriding of fetch strategy

• Add support for more data structures than Set, List, Bag and IdBag

In the current implementation of the tool, we only gather statistics from the current
execution of the program. This might not be a problem in production for JavaEE-systems,
since the execution time for these type of systems lasts for a long duration of time. How-
ever, for smaller type of systems this might be a problem, and especially if execution stops

54

4.5 Future Work

frequently. This would mean that the gathered statistics would be lost, and for the next ex-
ecution all the statistics would have to be gathered again, leading to lowered performance
initially.

In the Ebean implementation, this has been solved by saving the context information
together with the statistics in a xml-file, allowing the statistics of earlier executions to be
used in prefetching decisions by Autofetch in future executions. This can be seen in Figure
4.2, where the extent information is stored in a xml-file that can be used in later executions
of the program. A similar extension to the Hibernate-tool would increase the usability and
is something that should be prioritized in future development.

1 <autotune xmlns="http://ebean-orm.github.io/xml/ns/autotune">
2 <origin key="wpbnw.BQejAr.Bzpaqe" beanType="org.example.domain.Order"
3 detail="select (orderDate,shipDate,status) fetch details (id,orderQty)"
4 original="select ">
5 <callStack>org.example.domain.finder.OrderFinder.byStatus(OrderFinder.java:38)
6 org.example.domain.finder.OrderFinderTest.test(OrderFinderTest.java:20)
7 sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
8 sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl. ⌋

java:62)↪→
9 sun.reflect.DelegatingMethodAccessorImpl. ⌋

invoke(DelegatingMethodAccessorImpl.java:43)↪→
10 </callStack>
11 </origin>
12 </autotune>

Figure 4.2: A snippet from the file that stores the extent informa-
tion in Ebean

In general, the methodology would greatly benefit from getting official support and
integration from the Hibernate software group. Today, due to integration difficulties with
the Hibernate core, the possible benefits of the tool are more limited in terms of function-
ality. If the Hibernate group was to continue the development of the Autofetch-tool and
make changes to the Hibernate library so that the implementation could be more seam-
less, we could see a lot of potential use cases and users. The Ebean-implementation is a
good example of that, where it is natively included in the framework and the activation of
Autofetch is just a flag in the ebean-autotune.xml-file.

Lastly, in the current version of the tool, not all the commonly used data structures
have an Autofetch counterpart. This means that applications using certain data structures
can not use the tool. This is a change that would be easy implement since the collections
wrappers does not hardly contain any logic but simply does what the original data structure
does but tracks the usage. The additional wrappers would be analogous to the other custom
collection types in Autofetch. This was left out due to time restrictions.

4.5 Future Work
This research barely scratches the surface on the topic of Automatic prefetching in persis-
tent systems. First of all, this work made an attempt to migrate the method to the latest
release of the most popular ORM-mapper on the market, Hibernate. Then we proceeded

55

4. Conclusions

to test it on a small JavaEE-web application, however not in production. In future eval-
uations, we hope that the problems of migrating the tool to the latest version should be
eliminated and that the focus can be how well Autofetch performs in an enterprise type
software of different sizes and in a production environment. This would constitute a more
valid display of the methodology’s capabilities.

There are other interesting concepts similar to this that could be investigated further.
For example, some developers do not like the idea of automatic prefetching and would
rather do it themselves. For this type of developers, similar techniques described in the
original Autofetch report could be used to advise developers about what fetch strategy
that is optimal in certain places in the source code. With this approach, developers could
have full control while still receiving useful tips about the optimal prefetch strategy in
different scenarios. This would complement the functionality of the methodology and
make it more versatile, whether the user wants it fully automatised or just wants some
useful input from the tool. To make it even more interesting, the idea could be brought into
development environments, such as Eclipse and IntelliJ. This way the developer could get
useful statistical information about the usage of associations directly in the development
environment. Using this approach, the user could achieve high performance using the
statistics, or even applying prefetching recommendations for certain associations, while
avoiding the problems of having the fetch strategies completely auto generated, such as
caching problems and not having an active session. We think that this approach would be
a viable option to auto generated prefetching.

Furthermore, there are aspects of this technique that should be considered. For exam-
ple, we do not look into how much overhead the tool adds in terms of memory and CPU
usage. In order for the methodology to be worth considering for production environments,
the tool must run efficiently. Once the methodology has an implementation that has full
support from the persistence framework provider, it would be interesting to perform more
extensive research on different projects in their production environments. This would lead
to results that would be more relevant in terms of applicability than the attempt carried out
in this research.

4.6 Summary
In the first chapter we defined some questions that we wanted to answer in this work, so
in this brief summary we will present the conclusions based on the initial problem formu-
lations formulated in table 1.1. As described in this report, Autofetch has been migrated
and can be applied to a project using Hibernate version 4.3.10Final. We have shown that
the tool can easily be integrated and configured to any project, preferably with Maven.
The tool does reduce the amount of loaded queries compared to a configuration loaded
completely lazy, and therefore improving performance. Reducing the amount of executed
queries is generally a good optimizing measure, even more so in systems where the round
trips to the database is affected by network delay. Therefore, the usage of Autofetch in
JavaEE environments could increase performance for systems.

However, in the case of the test project used in this work, better performance could be
achieved by manual tuning of the association mappings. The results show that the lazy
loaded configuration generates 115 queries, and the Autofetch configuration executes 102

56

4.6 Summary

queries, resulting in a 11.3% less queries being executed. However, the hand tuned con-
figuration generates 56 queries, which is a decrease of 51.3% executed queries compared
to the lazy loaded configuration, meaning that in this specific case it is better to opt for a
hand tuned configuration rather than to let Autofetch handle the prefetching.

57

4. Conclusions

58

Bibliography

[1] Dearle, A., Kirby, G. NC. and Morrison, R. ”Orthogonal persistence revisited.” Inter-
national Conference on Object Databases. Springer, Berlin, Heidelberg, 2009.

[2] Jordan, M. and M.P. Atkinson. ”Orthogonal persistence for Java—A mid-term report.”
Morrison .[161] (1999): 335-352.

[3] Khan, M., and M. N. A. Khan. ”Exploring query optimization techniques in relational
databases.” International Journal of Database Theory & Application 6.3 (2013): 11-20.

[4] Ambler, Scott W. ”Mapping objects to relational databases: What you need to know
and why.” Ronin International (2000).

[5] Ireland, C., and D. Bowers. ”Exposing the myth: object-relational impedance mis-
match is a wicked problem.” DBKDA 2015, The Seventh International Conference on
Advances in Databases, Knowledge, and Data Applications. IARIA XPS Press, 2015.

[6] Ireland, C., Bowers, D., Newton, M., and Waugh, K. ”A classification of object-
relational impedance mismatch.” Advances in Databases, Knowledge, and Data Ap-
plications, 2009. DBKDA’09. First International Conference on. IEEE, 2009.

[7] Chen, T. H., Shang, W., Jiang, Z. M., Hassan, A. E., Nasser, M., & Flora, P. ”De-
tecting performance anti-patterns for applications developed using object-relational
mapping.” Proceedings of the 36th International Conference on Software Engineering.
ACM, 2014.

[8] Chen, T., Shang, W., Yang, J., Hassan, A. E. and M. W. Godfrey. ”An empirical
study on the practice of maintaining object-relational mapping code in java systems.”
Proceedings of the 13th International Conference on Mining Software Repositories.
ACM, 2016.

[9] Van Zyl, P., Kourie, D. G., and Andrew B. ”Comparing the performance of object
databases and ORM tools.” Proceedings of the 2006 annual research conference of the

59

BIBLIOGRAPHY

South African institute of computer scientists and information technologists on IT re-
search in developing countries. South African Institute for Computer Scientists and
Information Technologists, 2006.

[10] Bernstein, P. A., S. Pal, and D. Shutt. Context-based prefetch for implementing ob-
jects on relations. In Proceedings of the 25th VLDB Conference, 1999

[11] Ghandeharizadeh, S., and A. Mutha. ”An evaluation of the hibernate object-relational
mapping for processing interactive social networking actions.” Proceedings of the 16th
International Conference on Information Integration and Web-based Applications &
Services. ACM, 2014.

[12] ODB official website, https://www.codesynthesis.com/products/
odb/

[13] NHibernate official website, http://nhibernate.info/

[14] Ebean github page, http://ebean-orm.github.io/

[15] DB-Engines November 2018 database popularity rating, https://
db-engines.com/en/ranking_categories

[16] EclipseLink official website, http://www.eclipse.org/eclipselink/

[17] Hibernate official website, http://hibernate.org/orm/

[18] JPA IBM information page, https://www.ibm.com/support/
knowledgecenter/en/SSAW57_liberty/com.ibm.websphere.wlp.
nd.multiplatform.doc/ae/cwlp_jpa.html

[19] Hibernate 5.3 Documentation, http://hibernate.org/orm/
documentation/5.3/

[20] Hibernate optimization guide, https://www.thoughts-on-java.org/
tips-to-boost-your-hibernate-performance/

[21] Introduction to JPA fetchtypes, https://www.thoughts-on-java.org/
entity-mappings-introduction-jpa-fetchtypes/

[22] Carey, M. J., DeWitt, D. J., & Naughton, J. F. (1993). The 007 benchmark (Vol. 22,
No. 2, pp. 12-21). ACM.

[23] The hibernate.enable_lazy_load_no_trans Anti-Pattern, http://hibernate.
org/orm/documentation/5.3/

[24] Joshi, A. and S. Kukreti. ”Object Relational Mapping in Comparison to Traditional
Data Access Techniques.” International Journal of Scientific Engineering Research 5.6
(2014).

[25] Ibrahim, A, and W. R. Cook. ”Automatic prefetching by traversal profiling in object
persistence architectures.” European Conference on Object-Oriented Programming.
Springer, Berlin, Heidelberg, 2006.

60

https://www.codesynthesis.com/products/odb/
https://www.codesynthesis.com/products/odb/
http://nhibernate.info/
http://ebean-orm.github.io/
https://db-engines.com/en/ranking_categories
https://db-engines.com/en/ranking_categories
http://www.eclipse.org/eclipselink/
http://hibernate.org/orm/
https://www.ibm.com/support/knowledgecenter/en/SSAW57_liberty/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/cwlp_jpa.html
https://www.ibm.com/support/knowledgecenter/en/SSAW57_liberty/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/cwlp_jpa.html
https://www.ibm.com/support/knowledgecenter/en/SSAW57_liberty/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/cwlp_jpa.html
http://hibernate.org/orm/documentation/5.3/
http://hibernate.org/orm/documentation/5.3/
https://www.thoughts-on-java.org/tips-to-boost-your-hibernate-performance/
https://www.thoughts-on-java.org/tips-to-boost-your-hibernate-performance/
https://www.thoughts-on-java.org/entity-mappings-introduction-jpa-fetchtypes/
https://www.thoughts-on-java.org/entity-mappings-introduction-jpa-fetchtypes/
http://hibernate.org/orm/documentation/5.3/
http://hibernate.org/orm/documentation/5.3/

BIBLIOGRAPHY

[26] Thoughts on Java, JPA 2.1 Entity Graph : Part 1- Named entity graphs

[27] Ibrahim, A. H. Practical transparent persistence. The University of Texas at Austin,
2009.

[28] Patterson, D. A. ”Latency lags bandwith.” Communications of the ACM 47.10
(2004): 71-75.

[29] Neward, T. ”The Vietnam of Computer Science”, http://blogs.tedneward.
com/post/the-vietnam-of-computer-science/

[30] Lascano, J. E. ”JPA implementations versus pure JDBC.” http://www.espe.
edu.ec/portal/files/sitiocongreso/congreso/c_computacion/
PaperJPAversusJDBC_edisonlascano.pdf 2008.

[31] Hibernate Migration Guides, https://github.com/hibernate/
hibernate-orm/wiki/Migration-Guides

[32] Ward, A., and D. Deugo. ”Performance of Expressions in Java 8.” Proceedings of
the International Conference on Software Engineering Research and Practice (SERP).
The Steering Committee of The World Congress in Computer Science, Computer En-
gineering and Applied Computing (WorldComp), 2015.

[33] Hibernate 4.3 Developer Guide, http://docs.jboss.org/hibernate/
orm/4.3/devguide/en-US/html_single/

[34] Moss, J. E. B., and A. L. Hosking. ”Approaches to adding persistence to Java.” Pro-
ceedings of the First International Workshop on Persistence and Java. Sun Microsys-
tems, 1996.

[35] Alvarez-Eraso, D. A., and F. Arango-Isaza. ”Hibernate and spring-An analysis of
maintainability against performance.” Revista Facultad de Ingeniería Universidad de
Antioquia 80 (2016): 97-108.

[36] Ramachandra, K., and S. Sudarshan. ”Holistic optimization by prefetching query
results.” Proceedings of the 2012 ACM SIGMOD International Conference on Man-
agement of Data. ACM, 2012.

[37] Aoki, Y. and S. Chiba. ”Performance improvement for persistent systems by AOP.”
Proceedings of the 5th workshop on Software engineering properties of languages and
aspect technologies. ACM, 2007.

[38] Garbatov, S, Cachopo, J., and J. Pereira. ”Data access pattern analysis based on
bayesian updating.” Proc. of the Simpósio de Informática (INFORUM)(Lisbon, Por-
tugal (2009).

[39] Garbatov, S. ”Data access pattern analysis and prediction for object-oriented appli-
cations.” INFOCOMP 10.4 (2011): 1-14.

[40] Touma, R., Queralt, A., Cortes, T. ”Predicting Access to Persistent Objects Through
Static Code Analysis.” Advances in Databases and Information Systems. Springer,
Cham, 2017.

61

http://blogs.tedneward.com/post/the-vietnam-of-computer-science/
http://blogs.tedneward.com/post/the-vietnam-of-computer-science/
http://www.espe.edu.ec/portal/files/sitiocongreso/congreso/c_computacion/PaperJPAversusJDBC_edisonlascano.pdf
http://www.espe.edu.ec/portal/files/sitiocongreso/congreso/c_computacion/PaperJPAversusJDBC_edisonlascano.pdf
http://www.espe.edu.ec/portal/files/sitiocongreso/congreso/c_computacion/PaperJPAversusJDBC_edisonlascano.pdf
https://github.com/hibernate/hibernate-orm/wiki/Migration-Guides
https://github.com/hibernate/hibernate-orm/wiki/Migration-Guides
http://docs.jboss.org/hibernate/orm/4.3/devguide/en-US/html_single/
http://docs.jboss.org/hibernate/orm/4.3/devguide/en-US/html_single/

BIBLIOGRAPHY

[41] Mihalcea, V. (2018). How does the bytecode enhancement dirty checking mech-
anism work in Hibernate 4.3 - Vlad Mihalcea. https://vladmihalcea.com/hibernate-4-
bytecode-enhancement/ [Accessed 30 Jun. 2018].

[42] CGLIB github webpage, https://github.com/cglib/cglib/wiki

[43] Javassist official webpage, http://www.javassist.org/

[44] Byte Buddy official webpage, https://bytebuddy.net/#/

[45] Martin, B. E. (2005, April). Uncovering database access optimizations in the mid-
dle tier with TORPEDO. In Data Engineering, 2005. ICDE 2005. Proceedings. 21st
International Conference on (pp. 916-926). IEEE.

[46] Official website of VPMS, http://www.dxc.technology/life_and_
wealth/offerings/22990/58122-vp_ms

[47] Hibernate blog post about the setting enable lazy load no trans, https:
//vladmihalcea.com/the-hibernate-enable_lazy_load_no_
trans-anti-pattern/

62

https://github.com/cglib/cglib/wiki
http://www.javassist.org/
https://bytebuddy.net/#/
http://www.dxc.technology/life_and_wealth/offerings/22990/58122-vp_ms
http://www.dxc.technology/life_and_wealth/offerings/22990/58122-vp_ms
https://vladmihalcea.com/the-hibernate-enable_lazy_load_no_trans-anti-pattern/
https://vladmihalcea.com/the-hibernate-enable_lazy_load_no_trans-anti-pattern/
https://vladmihalcea.com/the-hibernate-enable_lazy_load_no_trans-anti-pattern/

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTATIONSDAG 2018-11-01

EXAMENSARBETE Migration & Evaluation of Automatic Query Hint Generation in Persistent Systems
STUDENT Erik Jonasson
HANDLEDARE Per Andersson (LTH), Arnaud Fietzke (itestra GmbH)
EXAMINATOR Flavius Gruian (LTH)

Automating Optimization Procedure for
Relational Databases

POPULÄRVETENSKAPLIG SAMMANFATTNING Erik Jonasson

Optimizing how and when data should be fetched from the database can be a difficult
and frustrating task. The bigger the application, the more difficult it becomes. Luckily,
there is a way to automate this process.

In today’s software development, it is common to
use so called Object-relational-mappers. What this
software does is that it creates an extra layer be-
tween the database and the application code. The
software will then take care of all database ma-
nipulation, translating between the two different
worlds of object oriented program code and the
relational database.
This type of software can be difficult to config-

ure accordingly. The options are many, and the
not so experienced developer can run into many
misconfigurations that will cause the system per-
formance to drop drastically.
The difficulty comes when the user has to de-

fine the fetch strategy for associations of entities
in the database. This leaves a lot of room for cus-
tomization, but also for errors. The common fetch
strategies are:

• Eager loading: When loading this object,
eagerly annotated associations to this object
will be loaded immidiatelly.

• Lazy loading: When loading this object,
lazily annotated associations will be loaded
only when used in the code.

Lazy loading can seem like a better option, since
the object will only get loaded when it is being

accessed in the code. However, this will create a
query to the database for each time when a new
object or field is accessed that is not yet in mem-
ory. If the database in on a server with latency
for example, this could lead to heavily decreased
performance. Moreover, manually handling these
settings is not optimal from a Software Engineer-
ing standpoint.
Due to these problems, we migrated and evalu-

ated an existing tool that automates the prefetch-
ing based on statistics of the objects in the
database. Since this tool was created for a legacy
version of Hibernate, we decided to migrate the old
tool to the newest version of Hibernate and then
evaluate the method on a project of the software
consulting company itestra GmbH.
The migration introduced new integration

mechanisms to make it easier to use the tool. The
tool decreases the amount of executed queries by
11% in our tests compared to the version loaded
lazily. However, the handtuned version still per-
forms considerably better. On the other hand,
with the Software engineering benefits that the
tool offers, the methodology has potential to be-
come a viable option for anyone who wants to im-
prove performance of the ORM-tool without wast-
ing valuable development time.

	Introduction
	Background
	ORM-tools
	N + 1 Problem
	ORM Optimization Difficulties
	Autofetch - the solution to manual prefetching

	Motivation
	Related Work
	Contributions
	Disposition

	Approach
	Original Tool
	Overview
	Models
	Implementation

	Migration of Autofetch
	Implementational Differences

	Method of Evaluation
	Target Project
	Evaluation Tools

	Evaluation
	Results
	Integration and Configuration
	Performance

	Discussion

	Conclusions
	Implementation
	Integration and Configuration
	Performance

	Limitations
	Lessons Learned
	Future Improvements
	Future Work
	Summary

	Tom sida
	Tom sida

