
INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTATIONSDAG 2018-11-01

EXAMENSARBETE Migration & Evaluation of Automatic Query Hint Generation in Persistent Systems
STUDENT Erik Jonasson
HANDLEDARE Per Andersson (LTH), Arnaud Fietzke (itestra GmbH)
EXAMINATOR Flavius Gruian (LTH)

Automating Optimization Procedure for
Relational Databases

POPULÄRVETENSKAPLIG SAMMANFATTNING Erik Jonasson

Optimizing how and when data should be fetched from the database can be a difficult
and frustrating task. The bigger the application, the more difficult it becomes. Luckily,
there is a way to automate this process.

In today’s software development, it is common to
use so called Object-relational-mappers. What this
software does is that it creates an extra layer be-
tween the database and the application code. The
software will then take care of all database ma-
nipulation, translating between the two different
worlds of object oriented program code and the
relational database.
This type of software can be difficult to config-

ure accordingly. The options are many, and the
not so experienced developer can run into many
misconfigurations that will cause the system per-
formance to drop drastically.
The difficulty comes when the user has to de-

fine the fetch strategy for associations of entities
in the database. This leaves a lot of room for cus-
tomization, but also for errors. The common fetch
strategies are:

• Eager loading: When loading this object,
eagerly annotated associations to this object
will be loaded immidiatelly.

• Lazy loading: When loading this object,
lazily annotated associations will be loaded
only when used in the code.

Lazy loading can seem like a better option, since
the object will only get loaded when it is being

accessed in the code. However, this will create a
query to the database for each time when a new
object or field is accessed that is not yet in mem-
ory. If the database in on a server with latency
for example, this could lead to heavily decreased
performance. Moreover, manually handling these
settings is not optimal from a Software Engineer-
ing standpoint.
Due to these problems, we migrated and evalu-

ated an existing tool that automates the prefetch-
ing based on statistics of the objects in the
database. Since this tool was created for a legacy
version of Hibernate, we decided to migrate the old
tool to the newest version of Hibernate and then
evaluate the method on a project of the software
consulting company itestra GmbH.
The migration introduced new integration

mechanisms to make it easier to use the tool. The
tool decreases the amount of executed queries by
11% in our tests compared to the version loaded
lazily. However, the handtuned version still per-
forms considerably better. On the other hand,
with the Software engineering benefits that the
tool offers, the methodology has potential to be-
come a viable option for anyone who wants to im-
prove performance of the ORM-tool without wast-
ing valuable development time.

