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Abstract

The demands on signal processing in digital AESA(Active Electonically Scanned
Array)-systems is rising rapidly due to an increase in both digitization and
number of antenna elements. The computational performance and data through-
put requirements for the next generations signal processing in digital AESA-
systems will be massive. Additionally it must be possible to handle the high
complexity of new advanced applications. It is not only tough demands on
performance, but also on how to improve the engineering efficiency. There is
thus a need for a high-performance signal processing architecture with a stable
and engineering efficient API.

Stream processing is a decades old computing paradigm that is just now be-
ginning to mature. Big data, autonomous driving and machine learning are
all driving the development of low-latency, high-throughput stream process-
ing frameworks that work in real time. Data and computations are abstracted
to streams that flow from node to node where operations are performed.

This project aims to explore the possibility of utilizing this emerging com-
putational trend to meet the signal processing demands of the future. It will
examine several stream processing frameworks, among them Apache’s Flink,
the open source C++ template library RaftLib and Google’s TensorFlow.

The two main candidates, Flink and RaftLib are used to implement several use
cases to test certain requirements. The results show that both frameworks par-
allelize tasks well, with RaftLib performing parallel matrix multiplication op-
erations nearly as fast as a custom written thread-pool style benchmark. Flink
is faster still, beating the benchmark in execution time. Flink also performs
well compared to RaftLib when stream latency is examined. Furthermore,
both frameworks contribute towards engineering efficiency, Flink having a
richer API, as well as a larger organization and more active community than
RaftLib.

Keywords: Signal processing, stream processing, high-complexity, high-throughput,
low-latency, Flink, RaftLib, TensorFlow
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Division of work

This master thesis was conducted at Saab Surveillance, Airborn, together with Henrik
Möller from Chalmers University of Technology. Due to being from different universities,
two separate reports have been written to fulfill each schools requirements for a master
degree. Since a common report was written at Saab, that thesis have been rewritten. This
report is written to not overlap Henrik’s report more than 40% of the content. However,
since the original report was written together similarities of the reports’ structure and con-
tent will arise. During the thesis, both have striven to divide all work, including report
writing, equally.

Division of work - report writing
All images, except for Figure 1.1, in the report have been created by Alexander. All tables,
except Table 4.1, have been created by Henrik. Though both have been part of criticism
and feedback in both images and tables.

The abstract was mostly written by Henrik, with modifications from Alexander.

The first part of the Introduction has been rewritten in both reports, to be as unique and
personal as possible. The subsection covering Background & contribution is mostly writ-
ten by Alexander and the Stream processing subsection is written by Henrik. The AESA
signal processing subsection is written by Alexander.

The Related work section is completely written by Alexander.

The Approach section was developed quite evenly. The subsections written fully or mod-
ified by Alexander are: the "introduction" area of the Approach, Section 3.2, Section 3.3
& Section 3.5.2. In Section 3.6 the parts describing how the use cases was implemented
in the benchmark, RaftLib and Flink is written by Alexander. The subsections that have
been written by Henrik and not modified are: Section 3.1, Section 3.6.1 & Section 3.6.1.
The rest subsections of the Approach have been written and modified by both.
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In the Stream processing frameworks section, Henrik havewritten the section about RaftLib
and the first paragraph on TensorFlow. Alexander have written the Flink section and the
section covering rejected frameworks, (apart from the first paragraph covering Tensor-
Flow).

The Results section is mostly written by Henrik part from the subsection concerning stabil-
ity, which is written by Alexander. TheDiscussion, Conclusions and Future work sections
have been rewritten in this report to more reflect the conclusions of Alexander.

Division of work - development and imple-
mentation
Most of the work has been discussed and completed together, with some exceptions. The
installation of RaftLib and Flink was done by Henrik. The installation and testing of Wal-
laroo was done by Alexander, and the installation and testing of TensorFlow was done
together, but with more focus from Henrik’s side. The testing of RaftLib and Flink was
done together.

The metrics were produced together in the start of the project, but updated during the
project. The use cases and requirements were also developed together andmodified through
out the project. The implementation of the benchmark was mostly done by Alexander, and
the implementation of all the use cases was done together or split evenly among us. In
the beginning of the project both searched for different ways to handle signal processing
chains, and together a decision was made to look more into complete frameworks within
stream processing.
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Chapter 1
Introduction

The complexity for the next generation of AESA (Active Electronically Scanned Array)
sensor systems is increasing rapidly, together with the demand for high throughput and
low latency. The future AESA sensor systems will have thousands of individual antenna
elements, signals from each element can by, interference patterns, be directed in different
angles and frequencies. Clusters of these antenna elements can be joined together, result-
ing in several separate radar arrays creating multiple parallel signal processing chains.

Digital signal processing algorithms requires lots of mathematical computations to be per-
formed quickly and repeatedly over multiple samples of data. If the latency and throughput
are not good enough, the information gathered will be obsolete. For example the computa-
tional complexity of the STAP (Space-TimeAdaptive Processing) algorithm is provisioned
to the number of antenna elements cubed.

Input data received from the AESA-radar arrives in real time and needs to be processed
and parallelized as soon as possible among the available cores in a computer cluster. There
are several approaches to deal with the parallelization process among cores, e.g. by im-
plementing everything manually using POSIX threads or by using OpenMP. This thesis
examines complete frameworks within a computer paradigm called stream processing.
These frameworks aid with the parallelization and strafe towards increasing engineering
efficiency.

Stream processing is a computer programming paradigm developed to simplify parallel
computing [4]. This is done by reducing programmers’ direct interaction with allocation,
synchronization and communication between the units in a computer cluster and make it
more automatic. Stream processing is a very old procedure that has grown in popularity
in the last years. A key feature of stream processing is that it does not wait for input to be
"complete". As soon as it can do something with the data it starts processing it [2].

9



1. Introduction

The focus for this thesis is how complete frameworks within stream processing can con-
tribute towards both performance and engineering efficiency when processing digital sig-
nal processing chains.

The sections in Chapter 1 describes stream processing, AESA signal processing as well as
the frameworks that were chosen to proceed with testing and evaluation, it also mentions
the frameworks that did not meet set requirements for continued studies. Related work is
presented in Chapter 2 while the approach of this study is explained in Chapter 3. Chapter
4 and Chapter 5 presents the results and discussion, respectively, of the tested frameworks.
A conclusion of the study and ideas for possible future work are presented in Chapter 6
and Chapter 7.

1.1 Background & contribution
At first, the objective was to study different combinations of signal processing architec-
tures. I.e. test and evaluate different setups of parallel hardware, programming languages,
resource and communication models, etc., to see what different setups in architecture
would be more optimal in processing digital signal processing chains, also to get a better
perception on the next step within digital signal processing. The different combinations
and choices of setup would be decided by doing an extensive literature study of viable
options.

This objective was too broad, which resulted in narrowing the scope to focus more on
complete frameworks which could be used to realize signal processing chains. These
frameworks have several automated steps for the parallelization which should ease the
workload and increase engineering efficiency. The frameworks under consideration are
part of a computer paradigm called stream processing.

The scientific assignment became to see how stream processing frameworks could han-
dle the typical signal processing chains of the AESA-radar: the high-complexity, high-
throughput and low-latency. As well as to see how well the frameworks contribute to-
wards engineering efficiency, e.g. how they simplify the parallelization and load balanc-
ing process over available cores. Are the streaming frameworks more engineer efficient
than traditional solutions? Meaning, is it easier to use and develop applications within the
frameworks than in a traditional language such as C++. Also, how well do the streaming
frameworks support the ”x-abilities” for engineering efficiency, i.e. scalability, usability,
sustainability and portability.

The best path forward will be defined not only in terms of current research but also taking
future platform development and research efforts into account. This is a necessity since
the lifespan of a typical radar application is 15-20 years, compared with the lifespan of
technology where 15-20 years translates to several generations [1].

This thesis will investigate how complete frameworks within stream processing can con-
tribute towards both performance and engineering efficiency requirements within the next-
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1.2 Stream processing

generation signal processing development for digital AESA-radars.

1.2 Stream processing
Stream processing is a computing paradigm that has been developed since at least 1974
[13], then under then name data flow procedure language. It has since been known as
dataflow programming and event stream processing. In stream processing an application
is seen as compute kernels, or operations, connected by streams of data. The streams are
links between kernels, and are implemented as first-in-first-out (FIFO) queues [6]. Data is
processed in compute kernels as soon as it is made available over any incoming streams.
Figure 1.1 shows a simple multiplication application that multiplies pairs of numbers from
two incoming streams to produce a stream of resulting products.

Figure 1.1: Simple streaming multiplication application.

A prominent feature of stream processing is the lack of kept state between streams[6].
In other words compute kernels compartmentalize states.

1.2.1 Moving data
With the speed of modern CPUs, the most costly part of most applications is not computa-
tion, but moving data [6]. This is a problem when parallelizing any task and using stream
processing does not inherently solve this problem. The application in Figure 1 would most
likely incur a heavy overhead since it is moving many small data units between a relatively
large number of compute kernels, i.e. for this specific example it would probably better to
merge the last two kernels together for increased performance. Decomposing the stream-
ing graph and increasing the size of transmitted data often decrease the execution time of
streaming applications [6].

The problem of moving data means that efficient queues are of outmost importance for
any streaming framework. An important factor of any queue is size; if too small bot-
tlenecks are created, then to big system resources are wasted. Furthermore the demand
placed on individual queues can vary over the lifetime of an application. Therefore dy-
namic optimization of queues is important aspects of modern streaming frameworks [6].
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1. Introduction

1.2.2 Hybrid computing
A feature of stream processing is the ability to support so called hybrid computing. Hy-
brid computing, or heterogeneous computing, means that the capabilities of different com-
putational units, such as CPUs, GPUs, FPGAs etc., can be leveraged within the same
framework, with minimal effort from the developer [6]. GPUs and FPGAs two types of
accelerators, special purpose processors designed to increase the performance and speed
up compute-intensive sections of applications. The FPGAs are highly customizable and
GPUs provide massive parallel execution resources and high memory brandwidth [12].

If a framework is aware of the available hardware, and a compute kernel implementation
is created that is able to run on a specific computational unit, the framework can schedule
the implementation to execute on that unit, increasing performance drastically.

1.3 AESA signal processing
An AESA-radar consist of several "antenna elements" or "cells", which can work as their
own identical radar but can also be grouped together into a cluster of several cells. These
can be directed in different directions to keep track of several orientations in parallel. Every
antenna element produces input as streams of complex samples to the signal processing
step at regular intervals, normally 10-20 ms in a so called integration interval (INTI) [14].
The input data are organized as "cubes", taking three dimensions in consideration, i.e. the
AESA antenna element, pulse and range bin. A pulse is being sent every Pulse Repetition
Interval (PRI) to get an echo from a reflected object, and the range bin is representing the
range between the radar and reflective object [14]. This indata is processed in a number
of steps:

• Digital Beam Forming (DBF)

• Doppler Filter Bank (DFB)

• Pulse Compression including an envelope detection (PC)

• Constant False Alarm Ratio (CFAR)

• Integrator (INT)

An illustration of a simplified radar signal processing chain can be viewed in Figure 1.2.

Several receiver beams are created simultaneously from the DBF step. The main oper-
ation type for this step is vector by matrix multiplication [14]. The next step, DFB, gives
an estimation of the target’s speed relative to the radar, as well as giving improved signal-
to-noise ratio due to coherent integration of indata. The pulse bins in the data set are
transformed into Doppler channels. The main operation type here is Fast Fourier Trans-
form (FFT) [14]. The goal of the pulse compression is to collect all received energy from
one target into a single range bin. This received echo is first digitally passed through a FIR
filter, to then calculate the absolute values of the digital samples. The data is real after this
step. The main operation type for this step is FIR filtering, all steps before have handled
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1.4 Stream processing frameworks

complex data, after PC the data is real. The CFAR processing is done to minimize the
number of false targets while also maintaining a best possible sensitivity. The main oper-
ation type is multiplications and additions of real data. The last step, the integrator, is an
n-tap unsigned integrator that integrates channel orientated video. Each Doppler channel,
range bin and antenna element shall be integrated over a number of pulses [14].

Figure 1.2: A simplified radar signal processing chain used to
illustrate the calculations of interest.

1.4 Stream processing frameworks
1.4.1 RaftLib
RaftLib is a stream processing framework written as a C++ template library [10]. This
means it can natively interface with legacy C++ code and fully utilize the C++ language.
Everything that can be done in C++ can be done in RaftLib. What RaftLib aims to intro-
duce is the stream processing paradigm, with automatic parallelization and dynamic queue
optimization through low overhead real-time monitoring.

RaftLib was first presented in 2015 by Beard, Li and Chamberlain at the Washington Uni-
versity in St. Louis [10]. Since then, Beard has been the primary developer.

RaftLib and stream processing
RaftLib builds stream processing graphs by linking compute kernelswith ports [10]. RaftLib
compute kernels are C++ classes that extend the raft::kernel class, and ports (input and/or
output) are defined in the constructor of each kernel class. Each such kernel also imple-
ments a run-timemethodwhere stream operations are performed. The graph is constructed
in the main method, where declared kernels are linked by connecting ports using link oper-
ators [9]. These operators describe how two or more ports are connected, i.e. dynamically,
static pipeline, static split/join, and so on. Table 1.1 lists these operators.

A RaftLib stream (output-input port pair) is implemented as a first in-first out (FIFO)
queue [10]. That is to say, data sent over a single stream is guaranteed to arrive in order.
No such guarantees are made for data sent over several streams.

The size of the FIFO queues can have drastic effect on performance. Performance drops
drastically when they are smaller than 80 kB [10]. For sizes larger than 8MB performance
also slowly decreases.
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1. Introduction

Each compute kernel keeps state internally, but state cannot be kept between kernels. This
is a prominent feature of stream processing and enables much simplified parallelization
[10].

Name Symbol Description

Basic Link Operator a >> b

Links two compute kernels. a and b
are assumed to have a single output
and input port respectively, and the
ports are of the same type.

Chain Link Operator a >> b >> c Extension of basic link operator.
Can be extended N times.

Named Port
Link Operator

a["out"]
>>b["in"]

Used when kernels have more than
one input and output port. Explic-
itly links two ports of the same type.

Dual Named Link
Operator Chain

a["out"] >>
b["in"]["out"] >>
c["in"]

Two sets of brackets can also be
used to explicitly link specific ports
in a larger chain.

Static Split-
Join Operator a <= b >= c

The split operator <= maps N
output ports of a to N duplicates of
b. Conversely, the join operator >=
maps N input ports of c to the N
duplicates of b.

Static Split-Join
to Kernel Set

a<=
raft::kset(b,c)
>= d

If the port types are not the same, a
kernel set can be used to statically
split and join kernels.

Out-of-Order
Stream Modifier

a >>
raft::order::out
>> b

Informs the run-time that the
order of data on the link is
unimportant. The run-time is
then free to duplicate a and b.

Table 1.1: Kernel link modifiers in RaftLib

Moving data
In RaftLib there are many options for moving data between compute kernels. The process
involves two steps: writing data on output ports and reading data on input ports. Once a
kernel writes data, it is gone and released to the downstream kernel.

There are two basic types of send/receive methods in RaftLib: zero copy methods and
non-zero copy methods [7]. Zero copy means that data is not moved from the kernel con-
text into the application context[37]. This eliminates unnecessary context switching and
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1.4 Stream processing frameworks

shuffling of data from buffers controlled by the kernel to buffers controlled by the appli-
cation. However, this is not always preferable since the number of instructions required
might be higher [7]. For smaller transfers, such as simple types or data that fits within a
single cache line, the RaftLib copy methods can be faster.

The zero copy methods are allocate() and allocate_s() [7]. allocate() returns a reference to
a writeable position at the tail of the FIFO. allocate() can also be called on an object type,
in which case the function will call the constructor and initialize any internal data types
and structures. Once something is written a call to send() must be made to release it to the
FIFO. A deallocate() function exists if a user needs to deallocate the memory. allocate_s()
returns an object instead of a reference. The user must dereference the object to access the
memory. There is no need to call send() since the object is released to the FIFO as it exits
its scope.

The copy methods are push() and insert() [7]. push() makes a copy of any object it is
called on using the object constructor, and passes it to the FIFO along with a signal that is
guaranteed to arrive at the same time as the object. To transfer a C++ container, insert()
can be used to transfer the range of contained items downstream. It uses C++ iterator se-
mantics and takes an iterator to the start of the range and an iterator to the end of the range
as parameters. If the range is greater than the available space in the FIFO it will block and
add items as space is made available.

On the other end there are also copy and zero copy methods to retrieve data from the
stream [7]. The zero copy methods are peek() and peek_range(). peek() returns a refer-
ence to the head of the queue. Since the stream automatically optimizes itself a subsequent
call to unpeek() can be made to inform the run-time that the reference is no longer used,
and to keep the memory in a valid state. This means that RaftLib does not release the
memory location. Thus any subsequent call to peek will return a reference to the same
object. This can be used to keep state within a kernel. When data on the input port has
been peeked, recycle() can be called to free memory on the queue. It can also be used
before calling peek() in order skip items altogether. peek_range() is equivalent to peek()
but used to access a range of items from the stream. This range is often termed window in
stream processing.

The copy return methods are pop() and pop_range() [7]. Once pop() is called the memory
at the head of the queue belongs to the user and no further steps are required. Analo-
gous to peek_range(), pop_range() pops a range of items and places them in a std::vector,
passed by the user as a parameter. The fifo must be pre-allocated to the correct size. As in
std::vector x( size ).

Adaptability
RaftLib claims to be an “online auto-tuned streaming system”, utilizing an array of tech-
niques to adaptively optimize itself during run-time [6]. When optimizing queues it uses
models that suit certain environments, and it utilizes the machine learning mechanisms
Support Vector Machine (SVM) and Artificial Neural Networks (ANN) to detect patterns
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1. Introduction

in usage environment and pick the correct model cite [6]. It also has low-overhead instru-
mentation that dynamically monitors queue occupancy, non-blocking service rate, utiliza-
tion etc.

Moreover, RaftLib can also automatically parallelize streams set by the user as “out-of-
order” streams [6]. The framework will analyze the graph, detect these streams and insert
split and reduce link operators where needed. Round-robin and least-utilized strategies
are used to direct data to suitable kernels.

Hybrid computing
RaftLib uses the Portable Hardware Locality (hwloc) library to create a hierarchical topol-
ogy abstraction of the host system [3, 33]. This includes other system attributes such as
layout of memory, I/O devices and sockets. Depending on the implementation specifics of
the compute kernels, RaftLib claims to be able to schedule threads on appropriate compu-
tational units.

Example application
A simple example application can be found in Appendix B. In this example there are three
compute kernel classes: a producer, processor and consumer. The producer reads pre-
generated integer matrices from memory and sends it to the processor compute kernel.
The processor performs a matrix multiplication on this matrix. The processor then sends
the result to the consumer.

The producer and consumer are implemented as parallel_k kernels, meaning the num-
ber of output or input ports can be set by parameters (nr_ports in this example). These
ports are declared in the class constructor, and are connected to data to be received or sent
in the kernels run-time methods, named run(). The processor kernel consist of two con-
structors, one class constructor declaring one of each ports(input/output ports), as well as
a copy constructor. The processor kernel uses the CLONE() macro, which makes it possi-
ble for the run-time to create as many processor kernels as there are input and output ports
on the connected producer and consumer kernels. The CLONE() macro inserts C++ code
within each compilation unit so the kernel can be cloned by the run-time without knowing
specifically what the original arguments were, or even have a specific type information
about it [8].

In the main method the matrices are pre-generated and stored in file, to be identical each
repetitive run. The three classes are then declared, and the graph is declared and added to
a raft::map container function. The graph is constructed using the link operators listed in
Table 1.1, specifically the static split and static join operators. The producer is connected
to the processor using static split. Conversely, the producer is connected to the consumer
using static join. When the container function is executed by running m.exe() in the exam-
ple, the graph is created, the compute kernels are instantiated and their run-time functions
are executed.
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1.4 Stream processing frameworks

1.4.2 Flink
General
Apache Flink, created by the Apache Software Foundation[20], is an open-source stream
processing framework using Java & Scala as development languages and run in JVM (Java
Virtual Machine). It is used for distributed and high-performing data streaming applica-
tions. Flink is quite massive and builds on the philosophy that many types of data process-
ing applications, e.g. real-time analytics, continuous data pipelines, historic data process-
ing (batch), and iterative algorithms (machine learning, graph analysis) can be expressed
and executed as pipelined fault-tolerant dataflows [11].

At basic level, a program in Flink is made up of three steps: a data source, a transfor-
mation step and a data sink. An image on the simple pipeline can be seen in Figure 1.3.

Figure 1.3: Image describing a basic stream program in Flink,
where the arrows are the intermediate streams and the blocks are
the operators.

System architecture
Flink is divided into three levels, each level is focused on a certain development area, i.e.
streaming/batch applications [18].

The first being a lower level of abstraction that offers stateful streaming. This lower
level abstraction is usually not needed by most applications since these applications would
mostly program against the Core API’s, i.e. the DataStreamAPI and the DataSet API [18].
The Datastream API handles bounded/unbounded streams while the DataSet API handles
bounded data sets. These API’s offers the building blocks for data processing, i.e. various
forms of user-specified transformations, joins, aggregations etc.

One level above the Core API’s is the Table API [18], not as expressive as the Core
APIs even though it’s extensible by user-defined functions. The Table API is a declarative
DSL(Domain Specific Language) centered on tables, and follows the extended relational
model. Tables have a schema attached which is similar to tables in relational databases
and that API consists of similar operations.

According to [18] it’s easy for programs to mix tables and the DataStreams/DataSets and
convert back and forth.
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The top level of abstraction in Flink is SQL. It represents programs as SQL query ex-
pressions, which is similar to the Table API both in semantics and expressiveness [18].
SQL queries can be executed over tables defined in the Table API. The focused API in this
thesis is the DataStream API.

The process model in Flink comprises three types of processes: the client, the JobManager
and at least one TaskManager [11]. The transformation from program code to the actual
dataflow graph is done by the client. This dataflow graph is submitted to the JobManager.
Under this transformation phase, the data types (schema) of the data exchanged between
operators is examined and creates serializers and other type/schema specific code. DataSet
programs do an additional cost-based query optimization phase.

The JobManager coordinates the distributed execution of the dataflow, while the actual
data processing takes place in the TaskManages. A TaskManager executes one or more
operators that create streams, and keeps the JobManager updated on their status [11].

Streaming dataflows
All programs in Flink, regardless of API the program is written in [11], compile down to a
dataflow graph representation. The dataflow graph is executed by Flink’s run-time engine,
the common layer under the DataSet- and DataStream APIs.

The core abstraction for data-exchange between operators is done by intermediate data
streams. They represent a logical handle to the data that is produced by an operator and
consumed by at least another operator downstream. The intermediate streams are logi-
cal in the sense that the data they point to may or may not be materialized on disk [11].
The pipelined intermediate data streams transports data between simultaneously running
producers and consumers resulting in pipelined execution. It’s in order to avoid materi-
alization that Flink uses pipelined streams for continuous streaming programs [11]. The
transformations in Flink can be represented by nodes and the streams by edges in a graph.
A stream is an infinite flow of some recorded data. A transformation takes one or more
streams as input, modifies or does something with it and produces one or more output
streams. An overview of a streaming dataflow can be seen in Figure 1.3.

When running distributed execution, Flink chains operator subtasks together into tasks
[19]. Each task is processed by one thread. Chaining the subtasks together into tasks
reduces the overhead of thread-to-thread handover and buffering, overall throughput in-
creases as well as decreasing latency, a useful optimization.

Programs are inherently parallel and distributed within Flink. A stream can be paral-
lelized by having more than one stream partition during run-time, and each operator by
having more than one operator subtask [18]. Each operator subtask are independent of one
another and will execute in different threads or on different machines. So the parallelism
of a particular operator is the number of operator subtasks. The parallelism of a stream
is always that of its producing operator. In a program, the level of parallelism of different
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operators can vary.

There are two ways for streams to transport data between two operators, either in one-
to-one pattern or in a redistributing pattern [18]. The one-to-one streams maintain the
partitioning and the order of the elements, i.e. the receiving operator gets the elements in
the same order as the sending operator. The redistributing streams partitions the data over
several target operator subtasks but the parallelism introduces non-deterministic ordering
in which the results for different subtasks of an operator arrive.

Windows
Since aggregating events is not the same in batch and stream processing Flink uses so
called windows when processing unbounded and infinite data sets [18]. Windows scope
up a set of incoming data and processes it with a given function, e.g. counts, sums, etc.
A window scope can be set in different ways, for example by using time, i.e. gather all
data every fifth second, or by element count, i.e. every tenth element [38]. There are
different types of windows, tumbling windows, sliding windows, session windows and
global windows.

State backends
Flink provides different ways of memory management depending on the core API used
[30]. The memory management for the DataSet API is based on a research project which
had the goal to combine the best technologies of MapReduce-based systems and parallel
database systems. A good description for this can be found at [39]. Since this thesis is
more about the streaming environment the states used in the streaming API will be pre-
sented.

The DataStream API uses different so called state backends instead of the memory man-
agement for batch processing. There are different state backends which decide how data
is being stored in a program [19, 22]. States in the DataStream API can be hold in vari-
ous forms; windows gather or aggregates until they are triggered, transformation functions
may use a key/value state interface and may also implement a CheckpointedFunction inter-
face to make their local variables fault-tolerant. When "checkpointing", state are persisted
upon checkpoints to guard against data loss and recover consistently. It is the different
state backends that decide how the state is represented internally, and how and where it is
persisted upon checkpoints.

The default state backend is the MemoryStateBackend, which is used if nothing else is
configured. The other state backends are FsStateBackend andRocksDBStateBackend [22].

The MemoryStateBackend stores data internally on the Java heap [22]. Key/value state
and window operators hold hash tables that store the different values, triggers, etc. Ac-
cording to the documentation on state backends of Flink, it is encouraged to use the Mem-
oryStateBackend on local development and debugging, and on jobs that hold little state,
e.g. jobs that consist only of record-at-a-time functions (Map, FlatMap, Filter, etc.) [22].
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The FsStateBackend holds in-flight-data in the TaskManager’s memory, and is configured
with a file system URL (type, address and path) [22]. Upon checkpointing it writes the
state-snapshots to files in the configured filesystem and directory. The JobManager stores
minimal metadata in its memory. The FsStateBackend is encouraged for jobs with larger
state, long windows and large key/value states, as well as all high-availability setups [22].

The RocksDBStateBackend is configured with the same file system URL as the FsState-
Backend [22]. It holds in-flight-data in a RocksDB database [34] that is (per default) stored
in the data directories of the TaskManager. The whole RocksDB database will be check-
pointed into the configured file system and directory upon checkpointing, with minimal
metadata stored in the memory of the JobManager. This state backend is encouraged for
jobs with a very large state, long windows and large key/value states, and all high-available
setups [22]. The maximum throughput of this state backend will be lower than the others.
However, since the amount of state that can be kept is only limited to the available disk
space, allows storing very large states compared to the FsStateBackend which stores them
in memory.

Dynamic Scaling
From Flink 1.2.0, Flink supports dynamic scaling to some extent [29]. It supports chang-
ing the parallelism of a streaming job by using savpoints. This is done by rebooting and
then restoring the job from a savepoint with a different parallelism than the original. In the
StreamExecutionEnvironment users can set a new per-job configuration parameter called
"max parallelism". It determines the upper limit for the parallelism.

In Flink 1.5 release announcement [25], it is mentioned that improvements have been
done which support dynamic resource allocation and dynamic releases on YARN [15] and
Mesos [21] schedulers for better resource utilization, failure recovery, and also dynamic
scaling.

Example program
An example program in Flink can be seen in Appendix C, which is a simple matrix mul-
tiplication performed over a streaming environment. It contains a main-method that starts
with getting the StreamExecutionEnvironment, the context in which the program is exe-
cuted. It provides methods to control the job execution, such as deciding parallelism. The
second thing that is initiated is a DataStream that receives matrices from a user-defined
source, multiplies the matrices with themselves using the Map function provided by the
Flink API. Then sends the matrices downstream to a sink, which prints out the result based
on theMatrix object’s toString() function. A parallelism of four is set on the stream in this
case, meaning four "matrixStreams" will be processing matrices in parallel.

The source is constructed by implementing Flink’s SourceFunction overriding a run() and
a cancel() method. In this case the run-method first reads matrices from a file and then
stores them in an ArrayList. After this, it iterates over the ArrayList containing the ma-
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trices and sends them downstream and automatically stops when the end of the array is
reached. The cancel-method is not used in this example.

1.4.3 Rejected candidates
Several interesting frameworks have been inspected to see which might suit for processing
signal processing chains. Due to time limitations some frameworks have been studied in a
hastier manner to get an overview of the functionality to evaluate, whether to keep testing
it or not. Others have been tested more thoroughly to later be discarded due to missing key
functionality.

TensorFlow
Of special interest is the Google machine learning framework TensorFlow [23]. It cre-
ates a dataflow graph and maps computations onto different hardware in a heterogeneous
manner. These operations are often in the form of linear algebra computations on matrix
generalizations called tensors. Tensors are typed matrix generalizations that can express
matrices of arbitrary dimensions. TensorFlow operations are abstractions of different com-
putations such as matrix multiply, or add. They can be made polymorphic over different
tensor element types through the use of operator attributes, which must be provided or
inferred as the graph is constructed. In TensorFlow, kernels are implementations of op-
erations that run on specific types of computational units. In other words, kernels give
TensorFlow heterogenous computing capabilities.

TensorFlow as a framework differs from RaftLib and Flink in the way that it is not orig-
inally a framework for stream processing, but for machine learning. The feeling we got
from TensorFlow when it came to the "automatic" parallelization was that it does not sup-
port it, i.e. it had to be implemented in a more manual way. Even though it seemed that
TensorFlow could support streams to some extent it was discarded as a candidate frame-
work.

WallarooLabs’ Wallaroo
Wallaroo is a framework developed by WallarooLabs Inc. [26] and uses Python or Go as
development languages. This framework seemed interesting for many reasons. By imple-
menting in a very high-level language like Python it could increase engineering efficiency,
and according to the description of Wallaroo it is possible to scale without adding extra or
changing code. The perception received from testing and running simple programs was
that this scaling was handled by issuing terminal commands.

We decided to leave Wallaroo, and move on with Flink and RaftLib for mainly three rea-
sons. First of we thought that how the construction of the topology was a little to complex
and not so smooth. Secondly, the terminal commands were very long, and a little confus-
ing at first glance, and lastly, a lack of time. We would not have the time to test more than
two frameworks, and we thought of RaftLib and Flink as better test candidates.
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Wallaroo can however be an interesting framework to look more into in the future.

Apache Storm & Spark
These frameworks would be interesting to test but were discarded as test candidates due to
two reasons. One being that Flink the latest stream processing framework from Apache, is
based on both Spark [16] and Storm [17]. Flink is also backwards compatible with Storm
[35]. Another reason was that in [28] they compare all three against each other, showing
that Flink outperforms both of the other two.

TrillDSP
TrillDSP is a framework based on Microsofts Trill which is developed to handle digital
signal processing chains. Due to only finding an article [31] and a paper [32] of the frame-
work, and not a Github repository or guidelines on how to run it, it was discarded as a test
candidate.
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Chapter 2
Related work

2.1 Engineer efficient framework solutions
A previous study on how to improve engineering efficiency, and lower the development
cost when working with advanced applications within parallel signal processing, was done
by Anders Åhlander et al. in [1]. It is also discussed how the “x-abilities” like sustain-
ability and usability is of importance to the development tool. I.e. the application used
for development must have a lifetime of several years while also being flexible, to be able
to handle various application implementations, testing and deployment. It is also said that
the development application should accommodate several technology cycles, preferably
be hardware independent.

In [1] they also mention that by using more engineer efficient development tools, plat-
forms in this paper, results in several benefitting qualities, being:

• The possibility to take advantage of the rapid technology development due to short-
ening the development time of the application.

• The availability of multiple implementation options for any given application.

• Scalability in terms of problem size as well as technology development.
Here a platform called GEPARD is described and used to illustrate a good, engineering
efficient solution for advanced signal processing. The platform is tested by running two
different types of signal processing applications, one compute-intensive STAP and one
data-intensive SAR, (synthetic-aperture radar).

Comparison of stream processing frameworks
A study which compares Big Data Stream Processing frameworks has been done by Ziya
Karakaya et al. in [28]. The frameworks they compare are the three latest Apache stream
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processing frameworks; Spark, Storm and Flink.

They compare the performance of frameworks as well as their scalability and resource
usage towards varying number of cluster sizes. The comparison involved optimizing all
the frameworks to their ideal performance using Yahoo Streaming Benchmark.

Summarized, Flink outperforms both Spark and Storm under equal constraints. Spark
could however be optimized to provide a higher throughput than Flink with the cost of
higher latency. The results from this comparison had an compelling impact when choos-
ing candidate frameworks in Section 1.4.

2.2 Programmable stream processors and
stream processing languages

To be able to achieve the required computation rates of tens to hundreds of billions compu-
tations per second in e.g. signal processing, current media processors use special-purpose
architectures tailored to one specific application. These processors requires a significant
design effort and are hard to change when algorithms and applications evolve. A pa-
per about programmable stream processors and stream architecture is mentioned and de-
scribed in [27] by William J. Dally et al. This is a very interesting field within the stream
processing paradigm which can be another option to frameworks on how to increase per-
formance and flexibility within signal processing.

According to [27] there is a demand for flexibility within media processing, which there-
fore motivates the use of programmable processors. There are however very large-scale
integration constraints which limit the performance of traditional programmable architec-
tures. Within modern VLSI technology, it is not the computations that are expensive, but
the delivery of instructions and data to the ALUs that is the bigger cost. Special purposed
media processors are successful because media applications have abundant parallelism.
This in turn, enables thousands of computations to be performed in parallel, requiring
minimal global communication and storage enabling data to pass directly from one ALU
to the next. A stream architecture exploits this locality and concurrency by dividing the
communication and storage structures into three parts to be able to support many ALUs
efficiently.

• Operands for arithmetic operations are stored in local register files (LRFs), near the
ALU.

• Streams of data capture coarse-grained locality and stored in a stream register file
(SRF), which efficiently transfer data to and from the LRFs between major compu-
tations.

• Global data is stored off-chip only when it is necessary.

These three explicit levels of storage form a data bandwidth hierarchy with the LRFs grant-
ing an order of magnitude more bandwidth than the SRF, and the SRF itself provide an

24



2.2 Programmable stream processors and stream processing languages

order of magnitude more bandwidth than off-chip storage.

As mentioned in [27], by exploiting the locality inherent in media-processing applica-
tions, the hierarchy above stores the data at the appropriate level, enabling hundreds of
ALUs to operate close to their peak rate. Stream architecture can support, in a power
efficient manner, large number of ALUs. The modern high-performance processors and
digital signal processors rely on global storage and communication structures to deliver
data to the ALUs. These structures consume both more power and take up more space per
ALU than a stream processor.

Another interesting field related to stream processing is that to implement stream process-
ing applications on FPGAs. ADSL, (domain-specific language) suited for implementation
of stream processing applications on FPGAs is introduced by Jocelyn Sérot et al. in [36].
The language is called CAPH and relies upon the actor/dataflow model of computation.
In the paper they describe the implementation of a preliminary version of the compiler of
a simple real-time motion detection application on a FPGA-based smart camera platform.

As mentioned in earlier sections, stream processing applications, i.e. acting on the fly,
requires high computing power. This is especially true when it comes to real-time image
processing. The computing power is in the range of billions of operations per second.
Which is often still beyond the capacity of GPPs, (general purpose processors). What is
good with these applications is that most demanding tasks exhibit parallelism, and this
makes them good candidates for FPGAs. A negative aspect of FPGAs is that program-
ming FPGAs is mostly a hardware-orientated activity, relying on dedicated HDLs (Hard-
ware Description Languages). These languages are designed for hardware designers, and
are thereby unfamiliar to the programmers outside this field.

In [36] they believe that a DSL can provide pragmatic solution to the big gap between
the programming model (as viewed by the programmer) and the execution model (as im-
plemented on the target hardware) and thereby obtaining an acceptable trade-off between
abstraction and efficiency requirements.

They explain issues raised by FPGA-programming and give a brief survey over some ex-
isting solutions and describe why these are not satisfactory. They also describe why the
general dataflow/actor orientated model of computation can be a possible solution to these
mentioned issues.

The paper show that efficient implementations of rather complex applications can be ob-
tainedwith a languagewhose abstraction level is significantly higher than that of traditional
HDL languages. Similar to this project, which studies complete frameworks to make the
development phase easier, this paper works towards increasing efficiency by using higher
level languages.

Similar with previous, Hendarmawan et al. in [24] mentions the high development costs
of FPGAs. They try to simplify hardware accelerator development and how it can be im-
plemented with low cost while still having a high performance, this can be compared with
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our project on how to increase engineer efficiency with frameworks and thereby reduce
development costs. An efficient way to accelerate regular expression matching on FPGAs
for streaming processing is shown in the paper.

The approach taken was combined with a heterogeneous Computing Orientated Devel-
opment Environment (hCODE) Framework for easy Hardware and Software Integration.
This framework is from their previous work [40]. The experimental results show that the
implemented hardware accelerator is faster than software implementation of regular ex-
pression for different sizes of data stream at low cost.
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Approach

Once we decided to focus on complete stream processing frameworks our original idea
was first to perform a literature study over different frameworks, to see which ones seemed
suitable for continued examination. After the literature study, we would follow up with an
implementation, testing and result measuring phase. However, this strategy was discarded
quite quickly since it proved difficult and time consuming for us to grasp their potential
just by reading. We used a more iterative approach instead, where both reading about the
frameworks’ functionality and implementing simple test cases was performed to give a
better understanding of their capabilities.

Every second week, we had a meeting with a reference group assigned by Saab, con-
sisting of signal processing and computing experts. These meetings helped keeping the
project on the correct course, aided us in the development with suitable requirements and
use cases for the frameworks.

To be able to get relevant results, requirements on the frameworks were decided by us,
with the help from our supervisors from Saab and the universities. These requirements,
see Section 3.4, set the base for metrics, see Section 3.5, which would be used to evaluate
and compare the final framework candidates. The requirements consider performance, en-
gineering efficiency as well as a prediction of the frameworks’ future. Also, to be able the
get these results, different test use cases, see Section 3.6, were developed. E.g. use cases
measuring performance were decided early in the project and other were developed dur-
ing the project. We developed a benchmark, see Section 3.3, implemented in C++ using
POSIX threads to show how the frameworks related to a more traditional solution. This
benchmark was only used in the use case comparing performance. There are two major
types of input data used in the use cases, see Section 3.2.
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3.1 Testing environment
In the beginning of the project, development and testing was conducted on a laptop with
two cores with hyper threading, resulting in a total of four virtual cores. Later, around
half-time, all measurements and results was taken from a server with 16 cores. Custom
BIOS settings and a table showing the setup from the lscpu command in Linux can be
viewed in Appendix A.

3.2 Input data
To test the frameworks limits, and to simulate a pipeline similar to a signal processing
system in a radar, we set up several use cases, see Section 3.6. The input data that was
chosen in the use cases are of two types: two dimensional vectors, matrices, and three
dimensional vectors, cubes, both containing integers.

Initially the plan was to start with an easier operation that was similar to an operation
in a signal processing system, e.g. a matrix multiplication. Then during the project, de-
velop the input data and operations as the pipeline grew. I.e. instead of using integers,
switch to using complex numbers and add a Fast Fourier Transform (FFT) operation and
iterate over data cubes.

As the project went on, original ideas had to be adjusted to meet the most important cri-
teria. This resulted in minimizing the pipeline which was to represent a signal processing
system, as well as continuing using integers and not move forward with implementing FFT.

To ensure fair comparisons, for each use case data was generated and saved to disk. The
frameworks and benchmark then read data from these identical sources into memory be-
fore starting the measurements.

3.3 Benchmark
To be able to measure and compare the frameworks with regard to their throughput we
implemented a benchmark. This benchmark is set up to see how big the frameworks’
slowdown (see Section 3.5.1) is compared with a more traditional implementation.

The benchmark is implemented in C++ using POSIX threads, and uses worker threads
in a thread pool to perform a operations over some input data stored in memory. The
workers take the first item in the buffer, perform the operation and move on to the next
available data. When all input data is computed, the program terminates. The code can be
found in Appendix D. This program is translated over to the frameworks and is described
more in the use case in Section 3.6.1.
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3.4 Requirements
To be able to evaluate the frameworks, we set up requirements by discussing with our su-
pervisors from Saab and the universities, on what the frameworks should be able to fulfill.
These requirements was based on important factors from Saab, i.e. the development pro-
cess and the processing of signal processing chains.

These are the requirements that a suitable framework for digital signal processing should
be able to meet:

• Performance: The frameworks should not have a significant “slowdown” compared
with the benchmark in terms of execution time.

• Scalability: The framework should support scaling. When adding additional cores
or increasing the cluster, the system’s performance should increase. It should also
utilize the the available cores effectively.

• Data granularity: The framework should be effective at sending data of different
sizes.

• Streaming: The frameworks can handle infinite data sets during a longer time.

• Load balancing: The frameworks distribute the computational load across available
cores.

• Stability: Equal operations on data of equal size should have equivalent latency. I.e.
the latency should not fluctuate, it should advocate towards an even pace.

• Sustainability: The framework should have continued development for the foresee-
able future. This is measured by our perception which is based on the developers,
community and experience within stream processing.

• Elasticity: The framework should dynamically distribute resources at run-time. E.g.
a program consisting of different compute intensive steps, should be able to dis-
tribute the available cores so that an even flow of data is met through the program.

• Engineer efficient: It should be easy to implement and modify functionality, i.e. the
framework should promote engineering efficiency.

3.5 Metrics
Metrics in performance and engineering efficiency were created to be able to measure and
evaluate the requirements.
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3.5.1 Performance metrics
• Average execution time: Time measured in seconds for how long it takes to execute
a specific use case program. Used to evaluate the performance, scaling and data
granularity requirements in Section 3.4.

• Slowdown: The performance cost of the automatic parallelization of the frame-
works, as compared to the benchmark. Measured as a percentage of increase in
execution time, i.e. SD = RF

RB
. Where SD being slowdown, RF being run-time

for the framework, RB being the run-time for the benchmark. Used to evaluate the
frameworks’ performance as per the requirement in Section 3.4.

• Scaling speedup: S = T1
TN

where N is the number of cores, T1 is execution time
for one core and TN being the execution time for N cores. Used to evaluate the
frameworks scalability as per the requirement in Section 3.4.

• Scaling efficiency: E = T1
N ·TN

. Used to evaluate the frameworks scalability as per the
requirement in Section 3.4.

• Throughput: Number of data cubes arriving at the sink per ten seconds. Used to
evaluate how the frameworks handle streaming, i.e. infinite data sets, as per require-
ment in Section 3.4.

• Load balancing: Percentage of time spent in idle for all cores, measured by Linux
sysstat. Used to measure how well the frameworks distribute the computational load
over available cores, as per requirement in Section 3.4.

• Latency: The time it takes for an object to traverse the pipeline. Used to evaluate
the frameworks stability as per requirement in Section 3.4.

3.5.2 Engineering efficiency metrics
Since engineering efficiency is a metric hard to measure, a plan was to create a question-
naire for developers at Saab. The questionnaire would cover functionality from the studied
frameworks and thoughts by the developers on what they thought would improve their ef-
ficiency. Due to time limitations this questionnaire was never created.

Instead the engineering efficiency was measured by our own thoughts of the frameworks,
and how we experienced them to solve the “x-abilities”, doing our best to be impartial.
The result is based on the following questions and used to evaluate the requirement set in
Section 3.4:

• Learnability: How easy was it to learn what needed to be learned to implement the
use cases?

• Usability: How easy and efficient was it to implement new use cases?

• Understandability: How easy is it to successfully explain a written program to a
person with equal understanding of the framework?
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• Lines of code

The result is presented in a table consisting of the questions above, as well as a row rating
sustainability and the setup process. These questions are rated on a scale of 1 to 10, where
10 is the best. Lines of code will be compared between the frameworks and the benchmark,
using the performance use case for comparison.

3.6 Use cases
This section describes the use cases of the project, and the structure of the data. These
use cases are implemented with the frameworks and are used to evaluate them. For all use
cases, unless explicitly stated, input data is read from the same file in both frameworks
and the benchmark. An average run-time over 100 runs is used unless explicitly stated
to get a more stable perception of the performance. These use cases test the behaviour
of the frameworks, to see if they are suitable for further testing with more realistic signal
processing chains for radar applications.

When compiling C++ code for the benchmark and RaftLib, the O3 flag was set to ensure
good optimization.

3.6.1 Performance
To measure how the frameworks performances compare to each other, and how big their
slowdown is, a performance use case was constructed.

The performance use case performed matrix multiplications in parallel and measured the
time it took to perform 40,000 matrix multiplications in the frameworks and the bench-
mark. The matrices were of dimension 100x100. Before starting the measurement, a fixed
set of pre-generated matrices were read from file and stored in memory. After this, a start-
ing time was recorded and the matrices were distributed over the available worker threads
in the pipeline. The second step was a matrix multiplication, which multiplied the matri-
ces with themselves. When all matrices were multiplied a stop time was recorded and the
execution time was calculated according to the metric in Section 3.5.1. The variance over
all 100 runs was also calculated. An image on the implementation of the performance use
case can be viewed in Figure 3.1.

The benchmark implemented this by pre-generating all the matrices and store them in
a vector. The number of worker threads that were started depended on an input parame-
ter. Once all worker threads were started, they iteratively pulled a matrix from the vector
and performed the matrix multiplication operation until all matrices were computed. The
index variable for the vector is controlled by a mutex-lock to control the read operation
of the matrices in the vector. This to prevent a matrix being read and processed multiple
times in the use case.

In RaftLib this was implemented with two kernels, linking them together by the a <= b
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command, meaning that the processor kernel (b) creates as many clones of itself as the
amount of output ports created by the producer kernel (a). For the processor to be able to
create clones of itself, the producer kernel needs to implement the raft::parallel_k. The
processor is a normal raft::kernel using the CLONE() macro. The producer takes the ma-
trices from the pre-generated vector iteratively and sends them downstream to each output
port. Each individual processor kernel receive the sent matrix on their input port and per-
form the matrix multiplication on it.

The Flink implementation of the use case consists of two classes, one main class for the
actual use case, and one source-class handling the pre-generation of matrices. The source-
class distributes and sends the matrices downstream to the created streams. For this use
case one DataStream is created, the parallelism for the stream is decided by an input pa-
rameter. The created stream uses FlinkMap function to perform the matrix multiplication.

Figure 3.1: Illustration of the performance use case.

Auto scaling
The scaling use case tested how well additional computational resources add to the perfor-
mance of a simple parallel application. This was achieved by running the performance use
case with 1 to 16 worker threads, a maximum of 16 cores was used to hardware limitations.
The scaling use case was evaluated in both frameworks and the benchmark. Both the scal-
ing speedup and scaling efficiency is calculated for each framework and the benchmark
according to the metric in Section 3.5.1.

Resource saturation
The resource saturation use case tested how the frameworks’ performance is affected when
the degree of parallelism reaches the number of available cores by the hardware. This use
case have the same implementation as the performance use case, with a modification to the
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cores available. E.g. in the first run a parallelism of 8 is used with only 8 cores available by
the hardware, resulting in the set parallelism reaching the "roof". Then the second run all
16 cores are available by the hardware but the set parallelism is still 8. I.e. in the first case,
half of the cores were turned off in BIOS, while in the second all cores were active. This
use case uses the average execution time metric in Section 3.5.1 to measure the difference
in execution time between the two runs.

3.6.2 Data granularity
A use case to study the frameworks’ granularity while sending data was set up to find
the frameworks’ break point in size of data packets being sent. This was constructed by
looking on how much extra overhead was added in throughput by sending sets of two-
dimensional matrices of different dimension sizes, but with the same total amount data,
the matrices were also filled with only ones to make them identical. The total number of
integers sent was always 220 = 1, 048, 576, but they were sent at differing data granularities
as shown in Table 3.1. I.e. the first iteration sends only sixteen matrices with a dimension
of 256x256, next iteration sends sixty-four matrices but with a dimension of 128x128. An
illustration of the use case can be viewed in Figure 3.2. An average was taken from 100
runs, and 16 parallel streams were used.

#Matrices Single dimension size #Integers
24 = 16 28 = 256 24+2∗8 = 220

26 = 64 27 = 128 26+2∗7 = 220

28 = 256 26 = 64 28+2∗6 = 220

210 = 1024 25 = 32 210+2∗5 = 220

212 = 4096 24 = 16 212+2∗4 = 220

214 = 16384 23 = 8 214+2∗3 = 220

Table 3.1: The total number of integers is always 220, but sent in
different configurations as presented here and in Figure 3.2

The data granularity use case contains two main parts. First it pulls a matrix from the
vector containing the pre-generated matrices, and send it downstream. The second step is
to perform a matrix multiplication with itself, then move on to the next available matrix
and repeat. When all matrices are computed, the run-time is printed. The data granu-
larity use case uses the average execution time metric from Section 3.5.1 to measure the
differences between all the runs.

3.6.3 Streaming throughput
This use case was created to verify that the frameworks can run on an infinite data set
and support streaming. We continuously iterate over a pre-generated data set for ten min-
utes. It runs 16 parallel streams and sends three-dimensional cubes with a dimension of
30x30x30. The throughput was recorded every ten seconds as per the metric in Section
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Figure 3.2: Illustration of the granularity use case.

3.5.1 and is presented in a graph to illustrate how it varies over time. For this use case only
one sample run is presented. An illustration of the streaming use case set up can be seen
in Figure 3.3.

The streaming use case is very similar to the performance use case setup. The differ-
ence is that the input is cubes and not matrices as well as containing a sink.

In RaftLib three kernel steps were created, a producer and a processor kernel implement-
ing the same setup as in the performance use case in Section 3.6.1, and a consumer kernel
which also is a raft::parallel_k. The consumer kernel has as many input ports as the num-
ber of processor kernels cloned. The kernels are linked together by the a <= b >= c
command. Where <= splits the stream, and >= merge it back together. The producer and
processor works in similar way to the performance use case, but instead of simply drop the
data in the processor, it is forwarded downstream to the consumer after the matrix multi-
plication. The consumer keeps track of the throughput, and every ten seconds stores the
current throughput in a string. After 10 minutes, the string is stored to file and the program
shuts down.

The Flink implementation consist of three DataStreams, a source stream distributing the
pre-generated cubes, an operation stream performing the matrix multiplication and a sink
tracking the throughput every ten seconds. Every ten seconds the current throughput is
forwarded and printed on the console. When the program terminates all the throughput
printouts are stored to file.
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Figure 3.3: Illustration of the streaming throughput use case.

3.6.4 Load balancing

To test how the frameworks dealt with load balancing over cores and how many percent
each core was idle during run-time, a stream topology of two operation blocks with cube
distribution over the cores was set up. This stream pipeline was run simultaneously with
Linux’s sysstat using the “sar” command, to present how the system’s cores was used.

The stream throughput use case without the sink was used to achieve the desired pipeline.
The operation blocks used was a producer/source for the pre-generated cubes, which kept
loop during the execution time, and a processing step doing the matrix-multiplication. The
graph parallelism was downgraded from 16 to 8, to ensure there was unused capacity in
the system. The test was run over five hours. Results was gathered from a single five-hour
run.

3.6.5 Stability

A stability use case was implemented to see how the latency fluctuates when increasing
the size of data sent over a single stream, i.e. without any parallelism. This expected fluc-
tuation is illustrated in a simple figure and can be viewed in Figure 3.4. The stability is
measured with the latency metric from Section 3.5.1.
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Figure 3.4: Expected latency fluctuation during the transitioning
of the cube size in the stability use case.

The use case was tested by first sending a set of cubes with a dimension size of 32x32x32,
then send another set of larger cubes with a dimension size of 64x64x64. Each set con-
taining 1000 cubes, i.e. a total of 2000 cubes per use case was sent. Two operations were
performed on each cube: recording a starting timestamp, and recording a receiving times-
tamp at the other end of the stream, by subtracting the latter timestamp with the first the
latency was calculated. The use case was also run an additional time with the same set up
except for the dimension, the latter time a single dimension size of 8, respectively 16 was
used. An illustration of the use case can be viewed in Figure 3.5.

In RaftLib two vectors was created, keeping track of the start and end times for each
cube. Two normal raft::kernel was used, a producer and a receiver. The producer itera-
tively pulls a cube from the pre-generated vector, and sets a start time to the corresponding
index in the start-time vector, and immidietly send the cube downstream. The cube is then
received by the receiver and a stop time is set on the corresponding index in the stop-time
vector. When all cubes are processed the latency for each cube is calculated and stored to
file by taking the end times subtracted by the start times for each index.

A similar process was performed in Flink. Flink used two DataStreams, one to set the
start time and one to set the stop time, when the stop time is set the latency is calculated
by a FlatMap function. The latencies for each cubes are then stored to file.
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Figure 3.5: An illustration of the stability use case, 1000 smaller
and 1000 larger cubes are sent, and latencies are measured for each
cube.
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Chapter 4

Results

All the results have been collected by running the use cases on the computer described in
Section 3.1. The input data used in the different use cases was identical for all frameworks
and the benchmark within the same use case. Between use cases the input data could vary,
and be more specified for a particular use case.

4.1 Performance
A graph showing the results for the average run-time at different number of worker threads,
when computing over 40000 matrices can be seen in Figure 4.1. Figure 4.2 displays the
variance of the same runs as seen in Figure 4.1 for the benchmark and each framework.
At first glance the results look promising for the frameworks, both frameworks keeps up
relatively good with the benchmark in terms of execution time and their corresponding
variances. However, Flink presents a very interesting result, it being faster then the bench-
mark. Another interesting factor is that RaftLib’s execution time and variance increase
when using more than 13 worker threads.

As seen in Figure 4.3, RaftLib’s slowdown towards the benchmark has its lowest slow-
down at 1.41% using two worker threads. This number rises slightly with each added
parallel compute kernel until kernel 13-14, where the slowdown jumps from 4.88% to
13.37%, probably due to resource saturation. Flinks best "slowdown" towards the bench-
mark was -30.12% with no parallelism, and -21.36% with a parallelism of two, and after
that increasing similar to RaftLib in a linear fashion. The term "slowdown" is based on
our expectation that neither of the frameworks would beat the benchmark in performance,
this turned to be wrong in Flink’s case.
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Figure 4.1: Execution times for performing 40000 matrix multi-
plications, at different levels of parallelism.

Figure 4.2: Variance from 100 runs of the results presented in
Figure 4.1.

Scaling

The scaling- speedup and efficiency is used to show how well the frameworks and bench-
mark perform compared with themselves when the parallelism increases. The scaling
speedup metric was 12.03 for RaftLib at max parallelism of 16, and reached a maximum
of 12.44 with thirteen parallel compute kernels. Flink had a maximum speedup of 13.82
while utilizing all 16 cores. The benchmark had a speedup of 15.71 at 16 cores. The scal-
ing efficiency at parallelism 16 was 0.98 for the benchmark, 0.75 for RaftLib and 0.86 for
Flink. This shows that even though the frameworks does not have the same speedup and
efficiency in terms of scaling as the benchmark. They still have good results when look-
ing on how the developer do not need to think too much about the parallelization process,
since this is done by the framework.
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Figure 4.3: Framework slowdowns as normalized by the bench-
mark of the results presented in Section 4.1.

Resource saturation

The benchmark performs well, as expected, as the available resources are saturated, prob-
ably since the only extra thread who is not a worker thread is the main thread, which sleeps
until all worker threads are done with their tasks. While RaftLib performs significantly
worse, probably due to, apart from having worker threads, use an extra producer thread
and supervisory threads. Flink also drops slightly in performance, but very little compared
to RaftLib. Similar to RaftLib, Flink also uses supervisory threads, but according to the
result, more effectively. The slowdown between the 8/16 and 8/8 setups are 1% for the
benchmark, 6.9% for Flink and 31.3% for RaftLib. Figure 4.4 details these results.

Figure 4.4: Histogram showing the run-time using 8/8 available
cores versus running with 8/16 available cores. I.e. performance
as the available computational resources are saturated.
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4.2 Data granularity
The granularity use case was run with different setups as seen in Table 3.1. The result for
each case’s run-time was the average of 100 runs and can be seen in Figure 4.5.

Figure 4.5: Average run-time of 100 runs when changing the ma-
trix dimension and the number of matrices sent. Result from the
data granularity use case.

As presented by Figure 4.5 above, RaftLib is way worse than Flink when handling many
small data objects, but more effective when handling larger data objects. Flink is more
consistent and performs well for most tested data sizes, but looses performance when the
size of the data becomes to big.

4.3 Streaming throughput
Figure 4.6 shows the results for the streaming throughput use case on 16 worker threads
on 16 cores. Figure 4.7 shows the same use case but only 8 worker threads running on 16
cores. The y axis shows the throughput in cubes over intervals of ten seconds. The x axis
shows time in minutes. The reason why two result graphs are presented is that the first run,
Figure 4.6, wasmeasured before the results from the resource saturation use case was done.
So therefore another run, Figure 4.7, was done considering the resource saturation results.
Surprisingly, RaftLib beat Flink in throughput in the second run. This was not expected
since Flink always performed better in earlier use cases. The reason why is explained by
the data granularity use case, and will be more addressed more in the discussion section
below.
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Figure 4.6: Result from the streaming throughput use case.
Throughput every ten seconds for a duration of ten minutes. 16
worker threads on 16 cores.

Figure 4.7: Result from the streaming throughput use case.
Throughput every ten seconds for a duration of ten minutes. 8
worker threads on 16 cores.

4.4 Load Balancing

The load balancing use case has a parallelism of 8, with 16 active cores in the test computer
to measure the load balancing over all available cores. The result for the frameworks can be
seen in Figure 4.8. The result was collected using the sysstat application in Linux. RaftLib
does not seem to have any form of load distribution over the cores, since both core 0 and
15 in Figure 4.8 are active 90% of the time while core 7 has an idleness of 97%. Flink
shows more promise, but after a five hour run, one could believe a better load distribution
would be accomplished. The largest difference between core idleness for Flink is 41.6%.
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Figure 4.8: Image displaying the load balance for each core in
Flink and RaftLib running the stream implementation, see Figure
3.3, for a duration of 5 hours.

4.5 Stability
Each cube’s latency in order, for the different frameworks is recorded and presented in
graphs below. In Figure 4.9 both RaftLib and Flink is presented, as can be seen RaftLib
have much higher latency than Flink. It is actually 60-70 times larger than Flink’s latency,
this is quite surprising, since RaftLib had better throughput than Flink when running with
larger data objects in the streaming use case.

Figure 4.9: Latencies of each cube for RaftLib and Flink in the
stability use case.

Figure 4.10 displays all values of Flink by itself. An edited version of this graph can be
viewed in Figure 4.11, the highest latency outlier has been edited out to give the graph a
more readable scale. For more part, Flink have a stable and quite low latency, but time to
time an occasional cube have an immense latency compared with the rest. This happens
more often with the larger cubes, again confirming that Flink performs better with smaller
data objects.
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Figure 4.10: Latencies of each cube for Flink in the stability use
case.

Figure 4.11: Latencies of each cube for Flink in the stability use
case with the value at position 910 edited to make the graph more
clear.

In Figure 4.12 a graph shows the interval [940, 1060] to present a more clear view of the
transition from small to larger cubes for Flink. From this its seen that Flink have a quite
fast transitioning time of ten cubes before its back to an even and stable pace.

A graph presenting RaftLib’s values by themselves can be seen in Figure 4.13, and in
Figure 4.14, a more zoomed in interval [930, 1070] is displayed. Even though RaftLib has
very high latency, it has an even pace, however, its much slower than Flink on transitioning
back to a more even pace after the increased size of the data cubes. The transitioning even
starts before it has even occurred, this should not be able to happen when processing data
in real-time. However, since the data is stored in pre-generated vectors for our use cases,
RaftLib might have been able to "cheat" and try to optimize.

Since this use case was run with larger cubes, 32x32x32 cubes transitioning into 64x64x64
sized cubes, another runwas donewith smaller sized cubes as well. This due to both frame-
works performed better with data objects not having to big size. The results for the latter
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Figure 4.12: Latencies of cubes for Flink in an interval [940,
1060] in the stability use case.

Figure 4.13: Latencies of each cube for RaftLib in the stability
use case.

Figure 4.14: Latencies of cubes for RaftLib in an interval [930,
1070] in the stability use case.
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stability use case run, with smaller sized cubes, can be seen in Figure 4.15 for Flink and
in Figure 4.16 for RaftLib. Flink showing similar results as before, but with a bit more
abnormal cube latencies. RaftLib still having around 50-60 times higher latencies than
Flink, and being more instable than before.

Figure 4.15: Latencies of each cube for Flink in the stability use
case with small sized cubes, dimension 8x8x8 & 16x16x16.

Figure 4.16: Latencies of each cube for RaftLib in the stability
use case with small sized cubes, dimension 8x8x8 & 16x16x16.

4.6 Engineering efficiency
The engineering efficiency results were produced by evaluating the metrics described in
Section 3.5.2. These metrics were evaluated using our own experience of working with
the frameworks, and graded using a scale of 1 to 10. The results are placed in Table 4.1,
also containing the lines of code for the performance use case for all frameworks and the
benchmark.
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RaftLib Flink Benchmark
Learnability 5 6 -
Usability 5 8 -
Setup 8 5 -
Understandability 6 7 -
Sustainability 3 9 -
Lines of code 108 25 55

Table 4.1: Table rating each framework in engineering efficiency,
taking “x-abilities” into account. The ranking is 1-10, the higher
the score the better. Also showing the lines of code of the perfor-
mance use case.

The scores to the different categories were first set separately. When both of us had written
our assessment of the frameworks individually, we compared each others scores and dis-
cussed howwewould rate the frameworks based on the individual results for each category.
Both of us agreed that Flink was the most impressive of the two when it came to engineer-
ing efficiency. Once you had passed Flink’s learning curve, it was smooth and easy to
work with. RaftLib was easier in the beginning, it was very simple to learn the essentials
and to start implement basic functionality. It was however more complicated and harder
to do more complex things due to some functionality not working for the framework, at
least to our experience. E.g. when creating longer chains in the graph, we followed the
syntax described on RaftLib’s wiki, without getting it to work.

When looking at the given scores in Table 4.1, RaftLib and Flink receives an average
score of 5.4 and 7, respectively. Flink also having considerably less lines of code than
Flink, as well as the benchmark.
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Chapter 5
Discussion

5.1 Performance, scaling & resource satu-
ration

When looking at how the frameworks scale compared with the benchmark in Figure 4.1,
RaftLib follows tightly with just a bit more delay, laying around 0.6 seconds over the bench-
mark. Until RaftLib reaches a parallelism of thirteen worker kernels, it keeps decreasing
the run-time. At fourteen it starts to increase, and drops in performance. This could be
due to RaftLib creating supervisory threads, and when approaching the amount of avail-
able cores, it becomes overloaded. In this use case, RaftLib also uses a producer kernel, but
this could be compared with the main method in the benchmark and the source method in
Flink. This producer kernel should not add extra burden to the implementation for RaftLib,
since no sign for reduced performance can be seen in Flink when approaching the roof of
available cores.

When looking at the scaling speedup, RaftLib reaches its maximum speedup at thirteen
worker kernels, indicating that RaftLib does not perform as well when reaching the avail-
able core limit. To see how all the benchmark and the frameworks performed when ap-
proaching the core limit, the resource saturation use case was set up. In Figure 4.4 its
shown that the benchmark is not affected much at all, neither is Flink. Flink having a
slightly bigger performance drop than the benchmark, probably due to it also running su-
pervisory threads in the background. However, the performance drop for Flink is still not
as big as for RaftLib, which is almost a whole second worse when running with 8/8 cores.

The expectation in the beginning was that the frameworks would have worse performance
than the thread pool style benchmark, and to measure this a slowdown metric was setup.
I.e. how many percent slower were the frameworks compared with the benchmark, as can
be seen in Figure 4.3. As mentioned above, RaftLib performs as expected and achieves
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good results and stays close to the benchmark with a slight linear increase until it reaches
the available core limit. What was most surprising was that Flink had a negative "slow-
down", being faster than the benchmark at all times. Flink has a negative slowdown of
-14.44% when running with sixteen cores. The best "slowdown" of -30.12% is when run-
ning with one worker thread, i.e. no parallelism. It seems very suspicious and strange
that a framework is faster than a traditional solution using one thread iterating through a
vector. Since no resource sharing problems can occur when running with only one thread
in the benchmark, its really odd that Flink is faster. Even though Flink seems to be great
at moving data quickly, which is essential for real time stream processing, the benchmark
threads simply reads from a location in memory and should be more effective. We have
come up with two explanations which might explain why Flink is so fast. Either Flink
"cheats" by somehow preprocessing the data, or the matrix multiplication implementation
is performed faster in Java than in C++ optimized with the O3 flag. Both seem unlikely,
for the former, why have custom sources if they are not treated as "real" streams? For the
latter case, the matrix multiplication algorithm in both Java and C++ is a classic O(n3)
implementation, and is implemented as likely as possible in both languages. If any im-
plementation would be faster, our expectation was that the C++ benchmark and RaftLib
would have an advantage, but it might be that Java was better at optimizing an inefficient
algorithm like ours. External libraries would be used in real-world implementations and
would give a more reliable result than given here. Another possibility can be that Flink
parallelizes behind the scenes, but to our knowledge it does not. When we ran our use
cases we used htop, an interactive process viewer for Unix, showing which of the cores
were being used at the moment.

When looking at the scaling- speedup and efficiency metric, more expected results is pre-
sented. They describe how well the frameworks perform the parallelized tasks compared
to themselves. The benchmark has both the best speedup and the highest efficiency at a
parallelism of sixteen cores, with a speedup of 15.71, and a efficiency of 0.98. While uti-
lizing all sixteen cores RaftLib’s speedup was 12.03 and Flink’s was 13.82. The efficiency
was 0.75 for RaftLib and 0.86 for Flink. But since RaftLib got saturated at 13 cores, its
best speedup and efficiency was 12.44 and 0.96, respectively, indicating that RaftLib has
a better self-scaling than Flink, even though Flink seems to perform better execution wise.

5.2 Streaming throughput
In the first run measuring streaming throughput, 16/16 worker threads were used. The
result was quite expected after looking at the result for the performance use case in Figure
4.1. Flink was above RaftLib in thoughput per 10 seconds over a duration of 10 min-
utes. Flink also had a quite stable throughput with not that big of a difference. Meanwhile
RaftLib was not stable at all, jumped between a throughput of 11000 and 21000. This is
most likely caused by using 16 worker threads along with an additional producer and con-
sumer thread, plus the overhead threads overlooking the system. Resulting in saturation
of resources, and take its toll on the performance.

To make the use case more fair for RaftLib, we ran it again, this time with 8/16 available
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cores. To our surprise RaftLib now outperformed Flink in throughput, while also having a
throughput higher than itself when running on 16/16 cores. We then remembered that the
input used in the performance use case was 100x100 sized matrices, but in the streaming
case we used 30x30x30 sized cubes. This cube size corresponds to a size of approximately
164x164 sized matrices. I.e. 30 ∗ 30 ∗ 30 = 27000 and

√
27000 ≈ 164. This hinted that

the frameworks’ performance was somewhat dependent on what size the data had when
sent over the streams. Section 5.4 covers the results for sending different sized matrices in
the frameworks.

5.3 Load balancing
The load is not really evenly distributed in either of the frameworks, as seen in Figure
4.8. Flink has the most even distribution and might use some load balancing strategy. One
could however think that after five hours it should not be to hard to accomplish a better and
more even distribution. RaftLib does not show any big sign for a load balancing strategy
at all. The biggest difference between idleness of cores for RaftLib is 87%, when looking
at core zero and seven. This indicates that a least used strategy is not used to schedule
processes in RaftLib.

5.4 Data granularity
The results from the streaming throughput use case in Section 4.3 showed that the perfor-
mance was affected by the amount of data contained in an object. Therefore a use case
was developed to see at what point the frameworks were most effective. An assumption
that sending fewer references to objects containing more data would increase performance,
since moving data is costly. This was the case up to a certain point. As can be seen in Fig-
ure 4.5, after this point both frameworks’ performance decreased. A likely explanation
why the performance decreases after a certain size on the objects is that the stream buffer
sizes have an upper bound in size. For RaftLib this is 8 MB as mentioned in Section 1.4.1.
When the objects are sufficiently large, these buffers are filled very quickly, which nega-
tively affects performance.

Flink was faster when working with smaller object, having best performance when the
matrices had a dimension of sixteen, while RaftLib had a better curve when working with
larger objects, being at its best having a dimension of thirty-two for the matrices. Over-
all RaftLib and Flink was quite equal when sending the different object sizes. However,
RaftLib is really slow when sending really small objects, while Flink prefers it.

The results from the data granularity use case explains why RaftLib performed better at
the streaming throughput use case. As can be seen in Figure 5.1, Flink is much slower than
RaftLib when working on the object sizes used in the streaming throughput use case. This
likely affected the results gathered when sending larger cubes in the stream throughput and
stability use cases.
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Figure 5.1: Image showing the difference in matrix-dimension of
the input in the performance and streaming throughput use cases.
The green and black lines marking the approximate matrix dimen-
sions for the performance and streaming throughput use cases, re-
spectively.

5.5 Stability
As can be seen in Figure 4.9 we see that RaftLib clearly has a much bigger latency than
Flink. It has 60-70 times higher latency than Flink, both with the smaller input cubes and
the larger. A possible reason for the higher latency in RaftLib could be that the use case
was run with 16/16 worker threads, which has shown to be costly for RaftLib in the per-
formance use case in Section 5.1. Even though this is a factor, it could not be the only
reason, since the gap is so huge.

In Figure 4.13 and in Figure 4.14 it is shown more clearly that RaftLib successively in-
creases each cubes latency 60 cubes ahead of the transition and then after, successively
decreases it back before finding a new stable level of latency. In total its approximately
120 cubes before its stable again. Since RaftLib increase the latency before the transition,
we think that it must oversee all the streams. This can be another reason that the overall
latency is much higher.

Flink is much faster on finding a stable latency after the transition. However, in Figure 4.10
it seems that some occasional cubes receive a huge latency compared with their neighbors.
A possible explanation for this could be that a specific thread is blocked by the scheduler
due to another task having priority, and is not woken up for a longer duration of time.
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In Figure 4.11 a more clear view of Flink’s stability is presented (the highest latency value
on position 910 has been reduced to give the graph a better ratio). Here we see that directly
on cube number 1000 the latency jumps up, and quite fast, after ten cubes, finds its way
back to a more stable latency. Then, after additional 500 cubes it jumps up in latency again.
So even if Flink does a step-wise increase in latency, its much faster on transitioning and
finding a new stable latency than RaftLib, which has a more successive increase. While
RaftLib did the transition under e.g. 120 cubes, Flink did it in approximately 10 cubes as
seen in Figure 4.12.

With the result gained from the data granularity use case in Section 5.4, we saw that the
size of the data actually correlated with the performance of the frameworks. By knowing
this, the stability use case was run a second time, this time with smaller data to see if the
actual result matched with the expectation. The answer was yes, Flink performed even
better than RaftLib with smaller data, which according to Section 5.4 should be the case.
Flink had around 100 times faster latency than RaftLib with the smallest cubes and 60-80
times higher than the larger cubes when looking at random picked values in the graphs.
For example, looking at corresponding values of Figure 4.15 and 4.16 the following was
observed: Element 860 (smaller cubes with a dimension of 8x8x8) in Flink had a latency
of 26,113µs while in Raftlib having a latency of 2767µs, being 2767

26,113 ≈ 106 times higher.

The expected behavior of the fluctuation shown in Figure 3.4 correspond quite well with
the actual result, specially for Flink. For RaftLib the actual result was worse than the
orignal expectation.

5.6 Elasticity
Elasticity was one big reason why stream processing seemed like an interesting field to
study. The possibility to have automated dynamic graph construction and resource alloca-
tion during run-time was very tempting. The instructions and documentation for RaftLib
stated that auto scaling was supported. However when we tried to implement it in RaftLib
by following the instructions we did not get it to work. Since other functionality in RaftLib
was either only half-implemented or lacking completely we assumed that this was the case
for auto scaling as well.

As mentioned in Section 1.4.2 Flink needs to restart and boot from a savepoint in order
to increase the parallelism of a streaming job, not making it optimal when applied to e.g.
a flight radar that continuously receives data blocks that need to be processed. The other
dynamic resource allocation in Flink was associated with Yarn and Mesos as mentioned
in Section 1.4.2, and was not tested due to being released towards the end of our study.

Furthermore, to test the efficiency of elasticity to any useful degree a more advanced use
case with a more complex graph would have to be developed. We had initially planned for
such a use case, but were forced to abandon the idea due to time considerations.
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5.7 Engineering efficiency
From the results presented in Table 4.1, several conclusions have been drawn.

Learnability was the first engineering efficiency metric evaluated. RaftLib was relatively
easy to start learning. With some available example programs and instructions from the
documentation, basic programs could be implemented. Also, since RaftLib is mostly C++,
the learning curve for the API was quite fast. The most problems were encountered later
on, when working with more complex graphs and functionality, like dynamic paralleliza-
tion as well as a general lack of tutorials.

With Flink this was the opposite. With an extensive API that needed to be learned, there
was a much steeper learning curve than RaftLib, making it harder to get a quick under-
standing of the framework. However, once the basics were covered, Flink offered both
more support through the community and available tutorials from their web page and the
information needed was much easier to retrieve.

Usability was the second metric covered, and one of the more important. RaftLib is very
much like working with C++ in general, with the parallelization simplified to a great ex-
tent. Whether that is a good thing depends on how good a certain developer is at C++,
but in general our experience was that RaftLib did not add very much in addition to this
simplified parallelism.

Flink has an extensive API that can be used at several levels of abstraction. We only
worked with a small subset of the Datastream API, but that proved more than expressive
enough for our purpose. It was easy to manipulate the parallelism and create different
topologies. The code was very compact and easy to follow.

The understandability for both frameworks were quite high. The understandability for
RaftLib basically depend a on the understandability of C++ itself, since the structure given
by RaftLib is quite easy to understand. Once the API in Flink is learned, the code is com-
pact, simple and clear to follow, making it easy to understand it.

There is a big gap at the moment between the two frameworks when it comes to their
sustainability. Flink is being actively developed by The Apache Software Foundation and
have several years of experience within stream and big data processing. They also have a
large and thriving community andmany large commercial users, giving them a quite secure
foreseeable future. In contrast, RaftLib is quite young, with mostly one main contributor
and creator, who seems to have taken a break from working on RaftLib. This leaves no
guarantees that the framework will have continued development over the next upcoming
years. RaftLib’s community seems to be inactive and the framework is not being used by
any companies as we know of, giving it an uncertain future. So far Flink is also supporting
backward compatibility with earlier developed frameworks, like Storm. This indicates that
Apache understand that their commercial users have need for long lived frameworks and
stable APIs.
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Looking at lines of code, Flink was drastically better in our test cases. Overall it had
about four times less code than RaftLib when it came to a simple matrix multiplication
application. Flink also had fewer rows than the benchmark, with an approximate of 25
rows of code against 55 rows. RaftLib however, due to lots of boilerplate code, was worse
than the benchmark, landing on 108 lines of code. This is probably for being a quite
small and easy example, and can probably be much more efficient in larger applications.
Jonathan Beard has written a parallel bzip2 application in RaftLib to compare lines of code
with a more traditional implementation of it [5]. The traditional implementation contains
more than 4500 lines of code, while the RaftLib implementation landed around 240 rows.
However, this was the first time we were introduced to both Flink and RaftLib, and the
implementation could probably be even more optimized.

5.8 Incorporating TensorFlow
While testing TensorFlow it became apparent that it is very good at linear algebra opera-
tions. Since it lacked the capabilities of more complete stream processing frameworks, we
instead tried to incorporate TensorFlow into our candidate frameworks. However, building
and exporting a TensorFlow library for use in other frameworks proved difficult. While
looking for solutions it became obvious that many developers are encountering the prob-
lem of importing TensorFlow functionality into their projects. Activity on programming
message boards and the TensorFlow GitHub repository indicate Google is actively work-
ing on a solution, but as of early 2018 this is not solved. Forum posts by Google employees
suggest that it is possible the situation has changed toward the end of 2018, which would
make it feasible to incorporate tensors and TensorFlow linear algebraic operations into ex-
isting stream processing frameworks with little effort. When this is the case TensorFlow
can be used to perform calculations in a SIMD (Single Instruction, Multiple Data) manner
on individual cores, using another streaming framework to exploit the MIMD (Multiple
Instructions, Multiple Data) space to spread the tensor operations to many cores. This
would likely yield good performance.
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Chapter 6
Conclusions

The initial scope was to study what could be the next generations signal processing archi-
tecture, and implement a prototype of a stable API. The API needed to be both engineer-
ing efficient as well as being able to handle the high throughput, low latency and the high
complexity requirements that modern signal processing systems requires. As mentioned
earlier, this scope was narrowed down to investigate to what extent complete stream pro-
cessing frameworks could solve these requirements. To this end, a survey was carried out
and two candidate frameworks promising qualities were chosen for further examination:
the C++ template library RaftLib, and Apache’s Flink.

RaftLib is a framework that is well suited for single-machine parallelization with good
performance in most use cases. It is simple to learn and easy to work with. When the
amount of worker kernels reaches the limit of available cores, the framework experiences
a decrease in performance due to the use of supervisory threads. This needs to be kept
in mind to get the best possible performance. The streams seem to have a relatively high
latency, which could be a disqualifying factor for latency sensitive applications such as
signal processing. Furthermore, it is a small open-source project with having both few
developers and a small community, both the developers and the community seems a bit
inactive giving the framework an uncertain future.

Flink, a well supported framework developed and updated continuously by The Apache
Software Foundation, a large corporation. The community is large, thriving and active
and is also used by commercial users. It has a rich API and it is very easy to implement
parallel applications in it once the initial learning phase is passed. It is mostly used on dis-
tributed clusters of servers, but it also has a good single-machine performance with very
low latency streams. Overall Flink seems like a suitable candidate framework for future
projects exploring the intersection of signal and stream processing.

More andmore stream processing frameworks like Flink and RaftLib are actively being ex-
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plored and developed, and stream processing in general is growing for every year. Stream
processing frameworks do seem to have potential to handle and satisfy the high demands
of an AESA-radar. However, to be able to give a solid conclusion, further and more correct
tests with more realistic data needs to be made.

58



Chapter 7
Future work

In general stream processing is an interesting and growing field with several interesting
areas. For example, see how stream processing languages applied to different kinds of
hardware, e.g. FPGAs, as presented in [36], can contribute towards increased performance
within signal processing chains. As well as if the use of stream processing architectures
with programmable stream processors can aid in increasing performance and flexibility
within signal processing, as mentioned in [27].

Continued work regarding stream processing frameworks needs to be done. For example
by implementing more realistic signal processing chains to see how the frameworks fulfill
the requirements of an AESA-radar. Also test with more realistic hardware architectures,
e.g. running with a larger cluster or by adding GPUs or FPGAs. Additional frameworks
not tested in this thesis could be tested more thoroughly, e.g. WallarooLabs Wallaroo.

At first the plan was to continuously update and add functionality to the benchmark in
parallel with the frameworks to simulate a more complex signal processing system. This
could be a good idea to do, but with the given time frame it would be too stressful. This
resulted in only using the benchmark to compare slowdown, scalability and engineering
efficiency in terms of code in one of the use cases.

Adding external libraries for e.g. linear algebra operations to the frameworks to see how
they collaborate with them. As mentioned in Section 5.8, an interesting avenue of ex-
ploration would be to incorporate Google’s TensorFlow library into a full-fledged stream
processing framework. Google is working on making it possible to export TensorFlow
functionality as a library in the near future. TensorFlow has very good linear algebraic
performance. Combining this performance with an engineering efficient and stable stream
processing framework could result in a complete, stable and efficient solution.
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Appendix A
Test environment

Custom BIOS settings:
Inter® Turbo Boost Technology: Disabled.
Enhanced Intel SpeedStep® Technology: Disabled.
ACPI C2/C3 & ACPI C3 Disabled.
Intel® Hyper-Threading Technology: Disabled.
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A. Test environment

Architecture x86_64
CPU op-mode (s) 32-bit, 6-bit
Byte Order Little Endian
CPU(s) 16
On-line CPU(s) list 0-15
Thread(s) per core 1
Core(s) per socket 8
Socket(s) 2
NUMA node(s) 2
Vendor ID GenuineIntel
CPU Familiy 6
Model 45
Model name Intel(R) Xeon(R) CPU E5-2650 0

@2.00GHz
Stepping 7
CPU max MHz 2000.0000
CPU min MHz 1200,0000
BogoMIPS 3990,48
Virtualization VT-x
L1d cache 32K
L1i cache 32K
L2 cache 256K
L3 cache 20480K
NUMA node0 CPU(s) 0-7
NUMA node1 CPU(s) 8-15
Flags fpu vme de pse tsc msr pae mce cx8 apic

sep mtrr pge mca cmov pat pse36 clflush
dts acpi mmx fxsr sse sse2 ss ht tm pbe
syscall nx pdpe1gb rdtscp lm constant_tsc
arch_perfmon pebs bts rep_good nopl
xtopology nonstop_tsc cpuid aperfmperf
pni pclmulqdq dtes64 monitor ds_cpl
vmx smx est tm2 ssse3 cx16 xtpr pdcm
pcid dca sse4_1 sse4_2 x2apic popcnt
tsc_deadline_timer aes xsave avx lahf_lm
epb pti retpoline tpr_shadow vnmi flexpri-
ority ept vpid xsaveopt dtherm arat pln pts

Table A.1: Table showing the test server specifications.
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Appendix B
RaftLib example code

#include <raft>
#include <raftio>
#include <iostream>
#include "matrix.h"

using namespace std;

int nr_ports = 4;
const int nr_matrices = 100;
Matrix data_input_stream[nr_matrices];
size_t gen_count(0);

class producer : public raft::parallel_k
{
private:
Matrix matrix;
public:

producer() : raft::parallel_k()
{

for(int i = 0; i < nr_ports; ++i)
{

addPortTo< Matrix>( output );
}

}
virtual raft::kstatus run()
{

if (gen_count < nr_matrices) {
for( auto &port : output )
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B. RaftLib example code

{
if (gen_count<nr_matrices){

matrix = data_input_stream[gen_count++];
auto out( port.template allocate_s< Matrix >() );
(*out) = std::move( matrix );

}
else { break; }

}
return( raft::proceed );

}
return( raft::stop );

};
};

class processor : public raft::kernel
{
public:

processor() : raft::kernel()
{

input.addPort< Matrix >( "in" );
output.addPort< Matrix >( "out" );

}

processor(const processor &proc)
{

input.addPort< Matrix >( "in" );
output.addPort< Matrix >( "out" );

}

virtual ~processor() = default;

virtual raft::kstatus run()
{

Matrix mat;
mat = input[ "in" ].peek< Matrix >();
Matrix result;
result.matrix_mul(mat, mat);
input[ "in" ].recycle();

auto out( output["out"].template allocate_s< Matrix >() );
(*out) = std::move( result );
return( raft::proceed );

}
CLONE();

};
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class consumer : public raft::parallel_k
{
private:

Matrix mat;
public:

consumer() : raft::parallel_k()
{

for(int i = 0; i < nr_ports; ++i)
{

addPortTo< Matrix >( input );
}

}

virtual raft::kstatus run()
{

for( auto &port : input )
{

try {
mat = port.peek< Matrix >();
mat.matrix_print();
port.recycle();

} catch(ClosedPortAccessException) { break; }
}
return( raft::proceed );

}
};

int main()
{

for(int i = 0; i < nr_matrices; ++i){
Matrix mat;
mat.generate_matrix();
data_input_stream[i] = mat;

}
producer a;
processor b;
consumer c;

raft::map m;
m += a <= b >= c;
m.exe();

return( EXIT_SUCCESS );
}

71



B. RaftLib example code

72



Appendix C
Flink example code

/**
* Stream application
*/
package org.apache.flink.quickstart.ThesisCode;

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.

StreamExecutionEnvironment;

public class MatrixMulExample {
public static void main(String[] args)

throws Exception {

final StreamExecutionEnvironment env =
StreamExecutionEnvironment.

getExecutionEnvironment();

DataStream<Matrix> matrixStream =
env.addSource(new MatrixSource())

.map(new MapFunction<Matrix, Matrix>() {
@Override
public Matrix map(Matrix matrix)

throws Exception {
return matrix.matrixMul();

}
})
.setParallelism(4);
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C. Flink example code

matrixStream.print();
env.execute("Matrix Stream of Sweetness");

}
}

/**
* Stream source
*/
package org.apache.flink.quickstart.ThesisCode;

import org.apache.flink.streaming.api.functions.
source.SourceFunction;

import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.util.ArrayList;

public class SourceMatrices implements SourceFunction<Matrix> {
private volatile boolean isRunning = true;
ArrayList<Matrix> matrices = new ArrayList<>();
private static final int matrixDim = 100;
private static final int nrMatrices = 4000;
private int index = 0;
private volatile long startTime;

@Override
public void run(SourceContext<Matrix> ctx) throws Exception {

ReadFromFile("/home/exjobbarna/matrices.txt", matrices);

Matrix matrix;
MatrixMul.setStartTime(System.currentTimeMillis());

for(int i = 0; i < nrMatrices; i++) {
matrix = matrices.get(index++);
index = index % 4000;
ctx.collect(matrix);

}
}

@Override
public void cancel() {

isRunning = false;
}

}
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Appendix D
Benchmark code

#include <iostream>
#include <sys/time.h>
#include <vector>
#include <fstream>
#include <sstream>
#include <iterator>
#include "matrix.h"

/** The number of matrices computed over. **/
#define NBR_OF_MATRICES 4000
/** The number of runs done. **/
#define NBR_OF_RUNS 100
using namespace std;

/* Mutex lock of the index couter of the vector
containng the matrices. **/

pthread_mutex_t is_counter_lock;
int is_counter = 0;
Matrix data_input_stream[NBR_OF_MATRICES];

/** Wall time function returning the current time in seconds. **/
double get_wall_time(){

struct timeval time;
if (gettimeofday(&time,NULL))

return 0;
return (double)time.tv_sec + (double)time.tv_usec * .000001;

}
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/** Prints a string to file. **/
void print_results_to_file(string results, string file_name){
cout << "Printing results to file: " << file_name << endl;
ofstream myfile;
myfile.open (file_name);
myfile << results;
myfile.close();
cout << "Done with printing to file." << endl << endl;
}

/** Generates and then prints the matrices to file for future
runs with identical input. **/

void print_matrices_to_file(int nr_of_matrices, string file_name){
cout << "Printing matrices to file.." << endl;
ofstream myfile;
myfile.open (file_name);

for(int i = 0; i < nr_of_matrices; i++)
{
Matrix mat;
mat.generate_matrix();
string mat_string = mat.to_string();
myfile << mat_string;
}
myfile.close();
cout << "Done with printing to file." << endl;
}

/** Reads matrices from file and stores them in an array. **/
void read_matrices_from_file(std::string file_name) {
cout << "Saving matrices to memory.." << endl;
ifstream myfile;
string line;
myfile.open (file_name);
Matrix m;
int row = 0;
int idx = 0;
while(std::getline(myfile, line)) {
stringstream ss(line);
istream_iterator<string> begin(ss);
istream_iterator<string> end;
vector<string> vstrings(begin, end);

for (int col = 0; col < vstrings.size(); ++col)
{
int value = stoi(vstrings[col]);

76



m.set_value(row, col, value);
}
row++;
if (row == m.dim())
{
if (idx >= NBR_OF_MATRICES)
break;
data_input_stream[idx++] = m;
row = 0;
}
}
cout << "Done saving matrices." << endl << endl;
}

/** The PThreads matrix multiplication method.
Locks the counter, store the counter_index,
unlocks the counter and performs the

matrix multiplication on given index in the array. **/
void* mat_mul(void* arg)
{
while(true){
pthread_mutex_lock(&is_counter_lock);
if (is_counter < NBR_OF_MATRICES)
{
int index = is_counter++ % NBR_OF_MATRICES;
pthread_mutex_unlock(&is_counter_lock);
Matrix mat;

mat.matrix_mul(data_input_stream[index],
data_input_stream[index]);

} else {
pthread_mutex_unlock(&is_counter_lock);
break;
}
}
}

/**
The main method, starting workers based on parameters:
-Minimum worker threads
-Maximum worker threads
-increment number.
The main runs the application NBR_OF_RUNS times
for each worker thread setup.
**/
int main (int argc, char* argv[])
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{
if (argc < 4)
{

// Tell the user how to run the program
std::cerr << "Usage: " << argv[0] << " min_num_workers "

<< "max_num_workers " << "worker_increment " << std::endl;
return 1;

}
int min_nr_workers = atoi(argv[1]);
int max_nr_workers = atoi(argv[2]);
int worker_incr = atoi(argv[3]);

cout << "RUNNING: BENCHMARK PERFORMANCE - MINIMAL." << endl << endl;
//print_matrices_to_file(NBR_OF_MATRICES, "matrices.txt");
read_matrices_from_file("/home/exjobbarna/matrices.txt");
pthread_mutex_init(&is_counter_lock, NULL);
srand(time(NULL));

/** Prints **/
cout << "SIZE OF INPUT DATA STREAM: " << NBR_OF_MATRICES << endl;
cout << "NUMBER OF RUNS: " << NBR_OF_RUNS << endl;
cout << "NUMBER OF WORKERS: FROM " << min_nr_workers << " TO "

<< max_nr_workers << endl << endl;
string result_string;

/** Run the application with different worker thread setups.
Min to Max with increment. **/

for(int NUM_THREADS = min_nr_workers; NUM_THREADS
<= max_nr_workers; NUM_THREADS += worker_incr)

{
vector<double> times(NBR_OF_RUNS);
double avg_run_time = 0;

double varianceSum = 0;

/** Run the specific setup NBR_OF_RUNS times. **/
for (int i = 0; i < NBR_OF_RUNS; ++i)
{
/** Declare threads. **/
pthread_t* threads = new pthread_t [NUM_THREADS];
int rc;
/** Lock the counter so the computation
begins after the last thread is started. **/
pthread_mutex_lock(&is_counter_lock);
/** Start the threads. **/
for (int j = 0; j < NUM_THREADS; ++j)
{
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if (rc = pthread_create(&threads[j], NULL, mat_mul, NULL))
throw rc;
}
/** Unlock the counter and start the walltime. **/
pthread_mutex_unlock(&is_counter_lock);
double start_wall_time = get_wall_time();
for (int j = 0; j < NUM_THREADS; ++j)
{
int a = pthread_join(threads[j], NULL);
}
/** Stop walltime and get run-time. Then reset/delete threads. **/
double end_wall_time = get_wall_time();
delete threads;

/** Store run-times for average run-time calculation below.
Reset all parameters. **/
is_counter = 0;
times[i] = end_wall_time - start_wall_time;
cout << "Run " << i+1 << ": " << times[i] << " : " <<

NUM_THREADS << "\n";
avg_run_time += times[i];
}

/** Calculate all average run-times and variances,
save to string and print/store to file. **/
avg_run_time /= NBR_OF_RUNS;

ostringstream avg_strs, num_thread_strs, variance_ss;
string variance_s;

avg_strs << avg_run_time;
string avg_str = avg_strs.str();

num_thread_strs << NUM_THREADS;
string nr_threads = num_thread_strs.str();

for(int i = 0; i < times.size();++i)
{

double diff = times[i]-avg_run_time;
varianceSum += (diff*diff);

}
double variance = varianceSum / times.size() ;

variance_ss << variance;
variance_s = variance_ss.str();
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result_string += avg_str + " " + nr_threads + " " +
variance_s + "\n";

cout << endl << "Avg run-time: " << avg_run_time;
cout << endl << "Variance: " << variance << endl;
}
print_results_to_file(result_string,

"/home/turbin/results/results_bench_performance_min_40kmats.txt");
return 0;
}
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Appendix E
List of Changes

Since 2018/08/31
• Updated the template for the report.

• Added an additional appendix chapter, the "List of Changes".

• Moved the chapter "Candidate frameworks" before the "Approach" chapter accord-
ing to comments from the opponents.

• Removed the explanation of all different window types for Flink in Section 3.2.4
"Windows", according to comment from opponent.

Since 2018/09/6-9
• Updated language in the report according to the examiner’s notes.

• Removed some unrelated sections in Related work.

Since 2018/09/10-16
• Updated language in the report according to the examiner’s notes.

• Edited and added more relations between requirements, metrics and use cases, ac-
cording to the examiner.

• Restructured sections in the approach, result and discussion chapters to make them
follow the same pattern.

• Added changes to the results based on comments from the examiner, i.e. discussed
the individual results more.

• Did updates to the report in general based on examiner’s comment.
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E. List of Changes

Since 2018/09/18-19
• Fixed references to be IEEE alphabetically format.

• Moved Chapter "Candidate frameworks" to introduction as a section and renamed
it "Stream processing frameworks".

• Replaced a Wikipedia reference.

• Removed/changed section titles in Related work to give it a better flow, also added
more explanations on how they relate to this project.
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The demands on signal processing for digital flight-radars are rising rapidly. To solve
these demands, stream processing frameworks are evaluated. These frameworks are
an interesting and engineer efficient solution to help reduce development time, as well
as keeping a good performance.

The lifespan for a typical radar application is
around 15-20 years. This translates to several
generations when it comes to the lifespan of
technology. Therefore it is important to have a
stable and engineering efficient API, which does
not need to be updated every time the hardware
is being improved.

Apart from this, the demands for fast and
correct information in flight-radars sets high
requirements on the system. For a potential
target, e.g. another airplane, to be discovered
and evaluated by the radar, lots of computations
needs to be performed. To successfully do this
parallel hardware architectures are being used,
performing several operations concurrently.

What makes frameworks interesting when it
comes to radar applications, is that they can
scan the hardware and be able to adapt itself
accordingly. Making them a suitable choice
for long lived APIs. They also assist with the
parallelization, thereby contributing towards
engineering efficiency.

The frameworks belong to a fairly old com-
puter paradigm called stream processing. Stream

processing focuses on handling data as soon as it
arrives to the system, as well as being effective on
moving data. Complete stream processing frame-
works focusing on real-time signal processing are
evaluated, and noted to be an interesting solution
to solve the issues raised by flight-radars.

The main frameworks covered are: RaftLib
- a template library for C++ and Apache’s Flink
- a Java/Scala library. Flink is showing most
promise of the two, and RaftLib also being an
interesting candidate, but being a bit undeveloped
with an unsure future.

Other interesting areas within stream pro-
cessing are also covered and can be read in
the thesis; High-performance signal processing
for digital AESA-radar by Alexander Olsson,
dat12aol@student.lu.se - Faculty of Engineering,
LTH.


	Introduction
	Background & contribution
	Stream processing
	Moving data
	Hybrid computing

	AESA signal processing
	Stream processing frameworks
	RaftLib
	Flink
	Rejected candidates


	Related work
	Engineer efficient framework solutions
	Programmable stream processors and stream processing languages

	Approach
	Testing environment
	Input data
	Benchmark
	Requirements
	Metrics
	Performance metrics
	Engineering efficiency metrics

	Use cases
	Performance
	Data granularity
	Streaming throughput
	Load balancing
	Stability


	Results
	Performance
	Data granularity
	Streaming throughput
	Load Balancing
	Stability
	Engineering efficiency

	Discussion
	Performance, scaling & resource saturation
	Streaming throughput
	Load balancing
	Data granularity
	Stability
	Elasticity
	Engineering efficiency 
	Incorporating TensorFlow

	Conclusions
	Future work
	Bibliography
	Appendix Test environment
	Appendix RaftLib example code
	Appendix Flink example code
	Appendix Benchmark code
	Appendix List of Changes
	Tom sida
	Tom sida

