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Abstract

Halide is an embedded language in C++ used for writing high-performance
image and array proccessing code. This thesis explores the possibilites and
limitations of Halide by using it for an anisotropic reconstruction of images
rendered with path tracing. By taking a Monte Carlo rendered image as an
input and using the information from the path tracing process and surrounding
pixels a new value can be calculated for the current pixel. The algorithm is first
implemented in C++ and later using Halide. The results are compared through
runtime and similarity to the ground truth. The conclusion is that Halide is not
suitable for these types of imaging pipelines. The Halide implementation takes
8% longer to produce the final images.
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Chapter 1
Introduction

1.1 Image processing
Image processing is an important application in todays world. It is used in many differ-
ent fields such as computer graphics, medicine and computer vision. Most commonly the
limiting factor for pushing it even further is time and hardware constraints. That makes it
important to have efficient and well optimized algorithms. Optimization is especially nec-
essary in many modern devices, such as cell phones where the hardware is more limited.
Two common methods for rendering realistic images are ray tracing and path tracing. A
common theme for image rendering, and especially for methods such as ray tracing and
path tracing, is that the more time you can spend on rendering an image the better the
result will be. By optimizing the rendering pipeline a higher quality can be achieved in
a similar time frame. One of the companies that work with this is Disney. They use a
renderer called Hyperion, which is a path traced based renderer, for rendering scenes in
their animated movies. A single frame of their productions can take 68 minutes to ren-
der. [1] Another application is real-time ray tracing. Traditionally ray tracing and path
tracing has been pre-rendered, which means that it is not rendered in real time. That is
why trailers for games often look a lot better compared to playing the game itself. Modern
advancements has made it possible to produce ray traced images in real-time. The newest
Battlefield game, Battlefield V, has support for real-time ray tracing. [2] This is currently
only available onNvidias newest RTX 2000 series, which are top of the line graphics cards.

1.2 Halide
Halide is a language that is designed to make it easier to write high-performance image and
array processing code. [3] Halide is not a standalone language but is instead embedded
in C++. Halide provides tools to make it easier to take advantage of various optimization
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1. Introduction

aspects, such as memory locality and vectorized computations. The primary benefit of
Halide is that it separates the implementation of the algorithm from the optimization of the
algorithm. This means that you can implement the algorithm in one step, and afterwards
modify the way that data is processed without changing how the algorithm functions. To
illustrate the differences consider the examples below. Listing 1.1 is an example of how
Halide separates the algorithm from the order of computation.

Listing 1.1: Algorithm and schedule
/ / De f i n e a l g o r i t h m − what i s computed
Func a , b ;
Var x , y ;
b ( x , y ) = x+y ;
a ( x , y ) = ( b ( x , y−1) + b ( x , y ) + b ( x , y +1) ) / 3 ;

/ / De f i n e s c h e d u l e − where and when i t i s computed

b . compu te_a t ( a , x ) ;

/ / compu te_a t computes t h e v a l u e s o f b as soon
/ / as t h e y are needed f o r t h e compu ta t i on o f a

The algorithm is separated from deciding how the data is processed. Our schedule will
only define the order that data is processed, and will not change the functionality of the
algorithm. Listing 1.2 is the same algorithm and order of processing but in C++.

Listing 1.2: C++
/ / De f i n e A l go r i t hm and Schedu l e
i n t a [ h e i g h t ] [ wid th ] ;
f o r ( i n t y = 0 ; y < h e i g h t ; y++) {

f o r ( i n t x = 0 ; x < wid th ; x++) {
i n t b [ 3 ] ;
b [ 0 ] = x+y−1;
b [ 1 ] = x+y ;
b [ 2 ] = x+y +1;
a [ y ] [ x ] = ( b [ 0 ]+ b [1 ]+ b [ 2 ] ) / 3 ;

}
}
}

The modifications to the order in which data is processed is made "inside" the algorithm.
This has the drawbacks that the code is harder to read and understand, but making mistakes
can also lead to compilation errors or computing the wrong values and change the meaning
of the algorithm. Comparing the twoHalide clearly states what is being computed and then
defines how it is done. In C++ just understanding what is being computed and the order it
is done is harder, because it is hidden in the middle of the code even for a simple example.
Optimizations are more easily implemented with the Halide framework because of the
scheduling aspect. [4] You can try different schedules without making modifications to
the actual algorithm. Halide also provides tools that makes it easier to take advantage of
parallelism, through things such as Single Instruction Multiple Data (SIMD). Changing
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1.3 Purpose

the order that data is processed can have a significant benefit to the runtime of an algorithm.
As a comparison an optimized version of a 3x3 box filter, where each pixel in the output
has a value equal to the average value of the surrounding pixels in the input, can be 11x
faster than a naive implementation in C++. [4]

1.3 Purpose
This thesis will explore the Halide language and the opportunities for efficient program-
ming by applying it to an algorithm for de-noising images rendered using a path tracing
algorithm. De-noising takes advantage of information generated during the path tracing
process and combines it with neighbouring pixels to compute a new value for the current
pixel. The focus lies in investigating the Halide language and attempting to speed up the
de-noising algorithm in terms of run time by using Halide.

1.4 Research Questions
The report answers the following questions.

• How efficient is Halide for optimizing advanced image filters?

• Are there any challenges using Halide for advanced image filters?

1.5 Contributions
The end result is two implementations, one running in C++ and one running partly in
C++ and partly in Halide. The run time for the hybrid version is 8% slower than the C++
version. The main take away of this thesis is the pros and cons of Halide. In order to make
it easier to implement high performance algorithms some limitations are also present in
the language. These limitations make Halide unsuitable for ray tracing and path tracing
based algorithms due to the heavy reliance on structures such as trees and lists, which is
a data structure that Halide can not represent. Finding alternatives to these types of data
structures is a hard problem to solve. [5]

1.6 Related Work
There are existing research projects for de noising Monte Carlo renderers.

Lehtinen, Aila, Laine, and Durand describes a technique for de noising stochastically ren-
dered images, such as a path traced one. By storing information from the rendering process
and using the values of neighbouring pixels to compute a new value for the current pixel
the effective sampling rate can be increased. By applying this technique to a sparsely sam-
pled (low quality) input image an output image of higher quality can be generated. [6]
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1. Introduction

There is no related work to my knowledge of combining this type of image filters with
Halide, but it has been used for other applications.

Ragan-Kelley presents an in depth discussion of Halide from one of the designers behind
Halide. It discusses the strengths and weaknesses and compares Halide implementations
of imaging algorithms such as a blur, bilateral grid and a camera pipeline to hand-tuned
C and CUDA implementations. The results shows that the Halide implementation can be
up to four times as fast. [5]

Kelly, Adams, Paris, Levoy, and Amarasinghe discusses the strengths of separating the
algorithm from the scheduling, as Halide does. A comparison between a clean version of
C++, an optimized version of C++ and a Halide version of a blur algorithm is made. While
the optimized version of C++ is equally fast, it is far more complex and the readability is
much worse. The clean version of C++ is ten times slower than the Halide implementation.
[4]

Li, Gharbi, Adams, Durand, and Ragan-Kelley uses Halide for gradient-based optimiza-
tion. Gradient-based optimization is a common technique in image processing and has
been used for applications such as image restoration. By extending the Halide language
a user can automatically derive and optimize gradient-based code for an image process-
ing pipeline. The halide implementation of the forward and gradient computations of
the bilateral slicing layer [8] is compared to implementations in PyTorch and CUDA. The
results show that the Halide implementation is twenty and six times faster respectively. [7]

Mullapudi, Adams, Sharlet, Ragan-Kelley, and Fatahalian discusses the auto-scheduler.
Halide provides the tools for optimizing the algorithms execution, but it is still a hard task
defining a good schedule. The auto-scheduler can be used to automatically optimize the
execution of an algorithm. It is applied to a variety of applications and is competitive with
manual schedules defined by experts in certain cases. It is still a work in progress and can
not handle advanced reasoning about schedules. [9]
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Chapter 2

Background

2.1 Ray tracing

Ray tracing is a method used in order to simulate how lighting works in the real world. It
tries to recreate how light from a light source such as the sun bounces around and even-
tually makes it to the retina which is what we perceive as vision. A ray tracing algorithm
sends rays out of a virtual camera into the scene. Whenever it intersects with an object it
accounts for different properties of that object. If it is a reflective surface the ray is bounced
at an angle and if it is a transparent surface a part of the light travels through the object
to simulate refraction. At every intersection point a new ray, in addition to the reflected/-
transmitted rays, is traced towards each light source. If the ray can not find a way to a
light source without intersecting with an object, it is discarded. This type of ray tracing is
referred to as Whitted style ray tracing, after the creator Turner Whitted [10].
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2. Background

Light Source

Object

Object
Camera

Figure 2.1: Whitted style ray tracing

Figure 2.1 depicts a ray cast from the camera. When the ray intersects with an object
the ray is split. One is traced towards the light and another is reflected and travels further
on in the scene.

2.2 Path tracing
Path tracing is a method that is based on ray tracing. In a similar fashion rays are sent from
a virtual camera. Whenever the ray intersects with an object a random number is used
to decide whether the ray should be traced back to the light source or cast in a random
direction. By repeating this process for every intersection a path is generated for the ray,
which is why this method is called path tracing.

Light Source

Object

Object

Camera

Object

Figure 2.2: Path tracing

Figure 2.2 depicts a ray being cast from a camera. The ray is bounced around the scene
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2.2 Path tracing

in random directions generating a ray path. Everything along this path will contribute to
the final pixel value. Because the ray is not directly traced back to the light source, as in ray
tracing, this method is stronger at rendering realistic shadows. The ray path can include
parts of the scene that are in shadow. Due to the reliance on randomizers this method is
prone to noise. In order to get an image that accurately reflects the scene a large number
of ray paths must be traced, typically in the thousands per pixel in the final image. The
number of ray paths per pixel is denoted by samples per pixel (spp). This algorithm was
presented by Kajiya [11], along with a model for computing the pixel values.

L(p −→ c) =
1
π

∫
Lin(p←− ω) fr(p,w −→ wc)cosθdω (2.1)

where

• p = Hit point of a ray

• c = The camera

• Lin = The light arriving from the given direction

• L = The light for the current point

• ω = The direction of incoming light

• fr = Reflectance function

• ωc = Direction to camera

• θ = the angle between the incoming light and the surface normal

Figure 2.3 and 2.4 are examples of how the quality of a path traced image might wary
depending on the number of ray paths computed. The images were rendered using Physi-
cally Based Rendering Tool (PBRT). [12] The scene depicts a model of a monkey, called
Suzanne, with differing amounts of gloss. It is a test model available in blender.
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2. Background

Figure 2.3: Path traced image with 8spp

Figure 2.3 depicts a path traced image with 8spp. Because it was rendered with ”too
few” ray paths there are a lot of visual artifacts.

Figure 2.4: Path traced image with 512spp

Figure 2.4 depicts a path traced image with 512spp. There are still some visual arti-
facts, most easily seen in the ground in front of the purple monkey. Overall though, the
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2.3 De-noising Algorithm

image quality is very high and gives an accurate representation of shadows, caustics and
indirect lightning.

2.2.1 K-nearest neighbours
K-nearest neighbours (kNN) is an algorithm used for classifying data. The type of an
object is decided by having the k closest neighbours vote. Figure 2.5 depicts an object,
marked with a question mark, about to be classified. If k = 3, the it would be classified as
a square, because the three closest neighbours are two squares and one circle. If k = 7 it
would be classified as a circle.

?

Figure 2.5: Visualization of a kNN algorithm

2.3 De-noising Algorithm
The following section describes an algorithm for de-noising a path traced image with a
low number of spp, such as Figure 2.3, with the goal of reaching a similar quality of a path
traced image with a high amount of spp, such as Figure 2.4, but with a shorter run time.

2.3.1 Overview
The de-noising algorithm is divided into two stages. In the first stage a path tracer is used
to render a low spp image. During this process information, presented in section 2.2, is
stored. This is the input data. The intent is to reuse the data to improve the effective sam-
pling rate. This is done by calculating a spatial radius of influence for every sample, which
is a measurement of how far that sample influences its surroundings. This is described in
section 2.3.2.
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2. Background

In the second pass the image is reconstructed. Using the information stored in the first
pass reconstruction rays, described in section 2.3.3, can be sent out in similar fashion to a
path tracer, except this time the spatial radius of influence is used to upsample the image.
This means that information from surrounding samples contributes to the final pixel val-
ues. By reconstructing the image the noise levels can be reduced. The output is the r,g,b
values for the upsampled image, which is significantly less noisy.

2.3.2 First pass
Path tracing
In order to reconstruct the image we need additional information from the path tracer in
order to accomplish this. The path tracer used for this is pbrt. Since it is normally used
simply for path tracing and the additional information is not needed, a parser is used to
extract and present the information in a useful way. Below are some the values which are
stored from the path tracing process.

• x, y values of the samples pixel coordinates

• r, g, b values for the samples radiance

• 3d camera-space normal for the primary hit

• albedo value for primary hit

• origin of the secondary ray

• hit point of the secondary ray

• normal for the secondary hit

Because the image is 8 SPP there will be 8 sets of data for every data point above. An
assumption here is that the input data accurately samples the scene. Due to the random
nature of a path tracer the ray paths may not fully describe the indirect lightning for the
sample. Information that is not present in the input can not be recovered in the output.
Before the reconstruction can take place information needs to be extrapolated from the
input data. The following sections will describe how the samples are processed.

Computing densities
The de-noising algorithm assumes that the value of a sample in general is related to the
surrounding samples. By treating the input samples as circular disks (splats) the size of a
splat can be determined by analyzing the surroundings. If there are many nearby samples
the splat is enlarged. Some care must be taken however, because a spatially close sample
does not neccesarily belong to the same splat. Figure 2.6 depicts four samples lying in two
surfaces. Because the samples are on different surfaces, we do not want to group them
together.
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2.3 De-noising Algorithm

Figure 2.6: Samples in different surfaces

In order to prevent this from happening a modified version of the a kNN algorithm,
presented in section 2.2.1, is used. When searching for nearby samples movement in the
direction of the normal is discouraged using the following penalty function [13].

||p − q + 2((p − q) · n)n|| (2.2)

where p and q are the locations of the samples and n is the normal. The vertical bars
means that we are taking the euclidean length of the expression. This encourages the kNN
algorithm to prioritize spatially close samples in locally flat regions. Figure 2.7 depicts
the intended outcome of the classification of the samples from Figure 2.6. The samples
are grouped into two hit splats, one lying in each surface.

Figure 2.7: Intended outcome of sample grouping

Shrinking the hit splats

Even though measures were taken to prevent the kNN algorithm from enlarging hit splats
it should not, there are still some remaining artifacts. Imagine a small feature of the scene,
such as a leaf. The leaf will not have as many samples as a larger geometry in the path
traced image, but they might be close to other samples. This means that some of the hit
splats for these features will be enlarged by the previous step. During the path tracing
stage information was stored of a rays starting and ending point. By retracing these rays
there might now be a collision that was not there previously. Figure 2.8 depicts how this
might be a problem. Because the leaf is close to the wall the hit splat might erroneously
be enlarged. A ray that was supposed to hit the wall now intersects with the hit splat of the
leaf.
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2. Background

Figure 2.8: Flower in scene with too large hitsplat

Figure 2.9 depicts how shrinking the hit splats can solve this problem. A ray is traveling
from point A to B. After the hit splats have been determined the ray no longer reaches point
B, because it is blocked by the splat. It is therefore shrunk in order to be consistent with
the original input.

A

B

A A

B B

Figure 2.9: Reconstruction rays

2.3.3 The second pass
During the second pass the radiance for the samples is reconstructed.

The Shading Equation
In section 2.2 the shading equation, 2.1, was presented. It was used by the path tracer to
compute and store values of Lin, which represents the radiance for the samples. In this
stage the following equation will be used [6].

Lout(p −→ c) ≈
1
π

1
N

N∑
j=1

Reconstruct(p, ω j) fr(p, ω j −→)ωccosθ (2.3)

The reconstruct function is calculated by sending out reconstruction rays which is a way
of upsamling the incident light field. In section 2.3.2 samples were grouped into splats,
which represents a surface. Figure 2.10 depicts this process. The reconstruction rays hits
a sample that lies within a hit splat. By taking a weighted average of every sample that
lies in that splat the value for the current sample can be computed.
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2.3 De-noising Algorithm

Figure 2.10: Reconstruction ray

Octree

In this section a data structure called an octree will be presented. Because there is a large
amount of samples distributed across the scene there needs to be an efficient way of doing
different operations. The problem will first be outlined and shown in a binary tree (2D).
The differences to an octree are rather straightforward. As an example of why this structure
is useful, consider the process of finding the closest samples to our current sample. A naive
way of doing it could be to simply check the distance between the current sample and every
other sample. Figure 2.11 depicts a scene with samples in it. It is an illustration of a naive
way of computing the distance between sample one and every other sample.

1

2

3

4

5

6

7

8

Figure 2.11: Scene view of distances to current sample

Figure 2.12 is a list view of Figure 2.11
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1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Figure 2.12: List view of distances to current sample

In a small scale scenario a solution such as this might not be such a big problem, but
reconstruction of a 400x400 image with 8 SPP has 1280000 samples. Finding the closest
samples for every sample using the naive solution is simply going to take too long. The
purpose of the tree is to divide the space into different sections. Figure 2.13 depicts how
the scene can be divided into segments in order to speed up the computations. Figure 2.14
depicts a list view of the partition.

1

2

3

4

5

6

7

8

Figure 2.13: First partition
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5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4

Figure 2.14: List view of first partition

After the space has been divided into two, the solution is to only compare the sample
to other samples in the same space as itself. Every time the space is divided the amount
of comparisons that has to be made is greatly reduced. Figure 2.15 depicts how the scene
might look like when the space has been partitioned several times.

Figure 2.15: Partitioned space

Similar reasoning and methods can be applied to an octree, but for partitioning a 3D
space. [14] This is done by recursively dividing the scene into segments of eight. Figure
2.16 depicts a similar partitioning, but this time in a 3D space.
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Figure 2.16: Illustration of an octree recursively dividing into oc-
tants, starting with the root node

The octree is used throughout the algorithm, but primarily for the computing densities
stage, described in section 2.3.2 and the shrink stage, described in section 2.3.2.

2.4 Halide
This section will discuss optimization aspects that Halide takes advantage of as well as a
introduction to the language.

2.4.1 Halide Language
In order to better understand the Halide code, the primary primitives and functions will be
introduced.

Func Funcs are objects that represents a pipeline stage. It defines what value each pixel
should have.

Expr Expressions are used to define a func at any integer coordinate.

Var Vars are used as variables, but they have no meaning by themselves. They are used
in a more symbolic manner in the definition of an expression.

Realization Since Halide is just-in-time compiled (JIT) nothing happens until you
"realize" it. This also means that you must specify the domain which you want to evaluate
your func over.

Example Listing 2.1 defines a function, vars and an expression. The func is then
defined by the expression and when it is realized it JIT compiles and evaluates the function
over the entire domain. In this case our buffer would be represent an image where every
pixel is the sum of the x and y coordinate.
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2.4 Halide

Listing 2.1: Halide example
/ / Crea t e u n d e f i n e d f u n c t i o n
Ha l i d e : : Func f ;

/ / Crea t e v a r i a b l e s . They are used s y m b o l i c a l l y
/ / x = 0 f . ex . i s u n d e f i n e d
Ha l i d e : : Var x , y ;

/ / Crea t e an e x p r e s s i o n
Ha l i d e : : Expr e = x + y ;

/ / De f i n e f u n c t i o n a t e v e r y x and y
f ( x , y ) = e ;
/ / The s i z e o f f i s no t y e t de t e rmined ,
/ / so f ( 5 , 3 ) f . ex . i s no t v a l i d

/ / The f u n c t i o n needs t o be r e a l i z e d over a domain
/ / E va l ua t e f ove r t h e s p e c i f i e d domain ( 800 , 600 )
/ / and s t o r e r e s u l t i n b u f f e r
Ha l i d e : : Buf f e r < i n t 3 2 _ t > o u t p u t = f . r e a l i z e ( 800 , 600 ) ;
/ / At e v e r y ( x , y ) f i s e v a l u a t e d u s i ng
/ / t h e f u n c t i o n d e f i n i t i o n , e = x+y
/ / f i s r e a l i z e d and s t o r e d i n t h e b u f f e r
/ / as an 800 x600 image where e v e r y ( x , y ) = x+y

2.4.2 Scheduling
One of the reasons for using Halide is the scheduling aspect. The Halide framework is
built with this in mind. Scheduling means that you can change the order in which data is
processed after the algorithm has been defined. The paragraphs below showcases some of
the ways that the order of processing can be rearranged in Halide.

Split Halide functionality for splitting a loop into two nested loops. Listing 2.2 shows
how the order of processing data can be changed using the split command.

Listing 2.2: Splitting in Halide
Ha l i d e : : Func f ;
Ha l i d e : : Var x , y , x_ou t e r , x _ i n n e r ;

/ / De f i n e A l go r i t hm
f ( x , y ) = x + y

/ / De f i n e s c h e d u l e
f . s p l i t ( x , x_ou t e r , x_ inne r , 2 ) ;
/ / D i v i d e x i n t o an i n n e r and o u t e r p a r t .
/ / The 2 s p e c i f i e s t h a t i t s hou l d be d i v i d e d i n t o two p a r t s .

/ / When f i s r e a l i z e d ( e v a l u a t e d )
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2. Background

/ / t h e s p l i t t i n g i s t a k en i n t o accoun t .
Buf fe r < i n t > ou t p u t = f . r e a l i z e ( 4 , 4 ) ;

Listing 2.3 is the C++ equivalent of listing 2.2.

Listing 2.3: Splitting in C++
i n t g [ 4 ] [ 4 ] ;
f o r ( i n t y = 0 ; y < 4 ; y++) {

f o r ( i n t x_ou t e r = 0 ; x _ou t e r < 2 ; x _ou t e r ++) {
f o r ( i n t x_ i n n e r = 0 ; x _ i n n e r < 2 ; x _ i n n e r ++) {

i n t x = x_ou t e r ∗ 2 + x_ i n n e r ;
g [ x ] [ y ] = x+y ;

}
}

}

Reorder Can be used to reorder the way data is processed. You could use it to do a
column major traversal instead of a row-major traversal. Listing 2.4 showcases how you
can change which variable is processed first. By reordering in this manner we will traverse
the data by column-major.

Listing 2.4: Reordering in Halide
Func f ;
Ha l i d e : Var x , y ;
f ( x , y ) = x + y ;

/ / When f i s e va l ua t e d , l oop over y v a r i a b l e f i r s t
f . r e o r d e r ( y , x ) ;

/ / E va l ua t e f
Buf fe r < i n t > ou t p u t = f . r e a l i z e ( 4 , 4 ) ;

Vectorize Vectorize is a functionality designed to split the input data into vectors.
It can be used to process data in vectors of 3 f.ex. Listing 2.5 defines a 6x4 image and
processes it by vectors of three.

Listing 2.5: Vectorizing in Halide
Ha l i d e : : Var x , y ;
Ha l i d e : : Func g r i d ;
g r i d ( x , y ) = x+y ;
g r i d . v e c t o r i z e ( x , 3 )
g r i d . r e a l i z e ( 6 , 4 ) ;

Figure 2.17 shows how the data is processed, in blocks of three.
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1 2
3 4
5 6

1 1 2 2
33 44
55 66

7 87 7 8 8

Figure 2.17: Vectorized data

Equivalent C++ code for processing data in the same way would be as follows

Listing 2.6: Vectorizing in C++
i n t g r i d [ 6 ] [ 4 ] ;
f o r ( i n t y = 0 ; y < 4 ; y++) {

f o r ( i n t x = 0 ; x < 2 ; x++) {
g r i d [ x ∗3 ] [ y ] = x∗3+y ;
g r i d [ x ∗3+1] [ y ] = x∗3+1+y ;
g r i d [ x ∗3+2] [ y ] = x∗3+2+y ;

}
}

Fuse Fusing is when you merge two loops into a single loop. If you have a loop over
x and y you can fuse it to loop over a single variable. Listing 2.7 shows how you can fuse
variables.

Listing 2.7: Fusing variables in Halide
Ha l i d e : : Func f ;
Ha l i d e : : Var fused , x , y ;
f ( x , y ) = x + y ;

/ / Merge x and y i n t o one v a r i a b l e
f . f u s e ( x , y , f u s e d ) ;

Buf f e r < i n t > ou t p u t = g r a d i e n t . r e a l i z e ( 4 , 4 ) ;

The C++ equivalent is shown in listing 2.8

Listing 2.8: Fusing variables in C++
i n t f [ 4 ] [ 4 ]
f o r ( i n t f u s e d = 0 ; f u s ed < 4∗4 ; f u s ed ++) {

i n t y = fu s ed / 4 ;
i n t x = fu s ed % 4 ;
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f [ x ] [ y ] = x+y ;
}

Tile Tile can be used to divide a dataset into blocks of various sizes. This function is a
combination of using split and reorder together. Listing 2.12 shows example code for how
a dataset can be divided into tiles.

Parallel Used for computing in parallel using different threads.

Listing 2.9: Computing in parallel
Ha l i d e : : Func f ;
Ha l i d e : : Var x , y ;
f ( x , y ) = x + y ;

/ / Compute v a l u e s i n p a r a l l e l ove r t h e y c o o r d i n a t e .
/ / Each row w i l l be c a l c u l a t e d i n p a r a l l e l .
f . p a r a l l e l l ( y ) ;

Buf f e r < i n t > ou t p u t = g r a d i e n t . r e a l i z e ( 4 , 4 ) ;

Examples As an example consider listing 2.10, which is C++ code for setting the
value to x+y for every coordinate in a grid.

Listing 2.10: Grid in C++
Grid g [ 8 ] [ 8 ] ;
f o r ( i n t x ; x < 8 ; x++) {

f o r ( i n t y ; y < 8 ; y++) {
g [ x ] [ y ] = x+y ;

}
}
This could be implemented in Halide as in listing 2.11 and there would be no difference
in processing between the two.

Listing 2.11: Grid in Halide
Ha l i d e : : Var x , y ;
Ha l i d e : : Func g r i d ;
Ha l i d e : : Expr e = x+y ;
g r i d ( x , y ) = e ;
Buf f e r < i n t > ou t p u t = g r i d . r e a l i z e ( 8 , 8 ) ;
In halide changing the way the data is processed is easier. Listing 2.12 shows how split
and reorder can be used to tile the dataset.

Listing 2.12: Tiling
Ha l i d e : : Var x , y ;
Ha l i d e : : Func g r i d ;
Ha l i d e : : Expr e = x+y ;
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g r i d ( x , y ) = x + y ;

/ / Crea t e v a r i a b l e s f o r s p l i t t i n g
Ha l i d e : : Var x_ou t e r , x_ inne r , y_ou t e r , y _ i n n e r ;

g r i d . s p l i t ( x , x_ou t e r , x_ inne r , 4 ) ;
g r i d . s p l i t ( y , y_ou t e r , y_ inne r , 4 ) ;
/ / S p l i t t h e x and y v a r i a b l e i n t o an o u t e r and an i n n e r

p a r t .
/ / The 4 i s c a l l e d t h e f a c t o r
/ / I t d e t e r m i n e s how many i t e r a t i o n s t h e i n n e r d imens ion

has
/ / The x _ o u t e r and y _ o u t e r v a r i a b l e s i t e r a t e over t h e t i l e s
/ / x _ i n n e r and y _ i n n e r i t e r a t e s over t h e p o i n t s i n each

t i l e
/ / By s p l i t t i n g x and y by 4 t h e t i l e s w i l l have a s i z e o f

4 x4

g r i d . r e o r d e r ( x_ inne r , y_ inne r , x_ou t e r , y _ ou t e r ) ;
/ / S p e c i f i e s t h e o r d e r i n g . The d a t a s e t w i l l be t r a v e r s e d i n

row−major
/ / o rde r f o r each t i l e . By s w i t c h i n g x _ i n n e r and
/ / y _ i n n e r we cou ld t r a v e r s e i t i n column−major .

/ / T i l e i s a sho r t hand f o r d e f i n i n g a s p l i t
/ / and r e o r d e r i n g i n t h i s manner
/ / We cou ld r e p l a c e t h e c a l l s t o s p l i t and r e o r d e r
/ / w i t h t h e f o l l o w i n g code
/ / and have t h e same r e s u l t
/ / f . t i l e ( x , y , x_ou t e r , y_ou t e r , x_ inne r , y_ inne r , 4 , 4 ) ;

Buf fe r < i n t > ou t p u t = g r i d . r e a l i z e ( 8 , 8 ) ;

Here the loop is split into 4 parts and reordered into what is called a tiled traversal, or
tiling. In c++ this would require a quad nested loop. Figure 2.18 shows how the data set
is processed for C++ and Halide respectively.
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1

3 4

2

Figure 2.18: C++ and reordered halide

Listing 2.13 C++ code for tiling the data set into tiles of four. It requires a quad nested
for loop.

Listing 2.13: Tiling
f o r ( i n t y_ou t e r = 0 ; y _ou t e r < 2 ; y _ou t e r ++) {

f o r ( i n t x_ou t e r = 0 ; x _ou t e r < 2 ; x _ou t e r ++) {
f o r ( i n t y_ i n n e r = 0 ; y _ i n n e r < 4 ; y _ i n n e r ++) {

f o r ( i n t x_ i n n e r = 0 ; x _ i n n e r < 4 ; x _ i n n e r ++) {
i n t x = x_ou t e r ∗ 4 + x_ i n n e r ;
i n t y = y_ou t e r ∗ 4 + y_ i n n e r ;

}
}

}
}

It is a lot more complex defining these kind of schedules in C++. Listing 2.14 shows how
tile, fuse and parallel can be combined to create a schedule.

Listing 2.14: Combining tile, fuse and parallel
Ha l i d e : : Func g r i d ;
Ha l i d e : : Var x , y , xo , yo , x i , y i , f u s e ;
Ha l i d e : : Expr e = x+y ;
g r i d = x+y ;

g r i d
. t i l e ( x , y , xo , yo , xo , yo , 8 , 8 )
. f u s e ( xo , yo , f u s e )
. p a r a l l e l ( f u s e ) ;

/ / T i l e t h e d a t a s e t i n t o 8 x8 t i l e s
/ / Fuse t h e o u t e r v a r i a b l e s ( t i l e s i n d i c e s ) i n t o a s i n g l e
/ / v a r i a b l e
/ / Compute i n p a r a l l e l ove r t h e t i l e i n d i c e s
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g r i d . r e a l i z e ( 1 6 , 1 6 ) ;

This schedule would tile the dataset into blocks of eight by eight. Each tile is computed in
row-major order. The parallelization means that each tile is computed simultaneously.

2.5 Optimization
This section gives some background as to how Halide can be used to optimize code.

2.5.1 Just-in-time compilation
Just-in-time compilation (JIT), is a way of compiling that Halide uses. Rather than com-
piling the code prior to running it, it compiles during the execution of the program. The
benefit of this is that the code can be analyzed during runtime. This can be used to identify
when a speedup can be gained from recompiling it. In Halides case this is useful because
it can rearrange executed code to optimize the usage of the cache memory. The downside
is that this type of compiling comes with overhead. If time is invested on compilation but
it is only used a few times the overhead of compiling it at runtime might outweigh the
benefits.

2.5.2 Single instruction, multiple data
Single instruction, multiple data (SIMD) is a way of using processing elements to perform
similar operations on multiple data points at the same time. This is often useful in imaging
pipelines because modifications are often made in a uniform manner over a data set. One
example of this could be when adjusting the brightness of an image. Instead of computing
one pixel at a time multiple pixels can be computed simultaneously. Halide provides the
tools to make it easy to take advantage of parallelism, such as the parallel function from
section 2.4.2.

2.5.3 Memory
There are different types of memory in a CPU. It is divided into a hierarchy which means
that data accesses take varying times. The further down you go in this hierarchy the longer
it will take in order to access the data. The list below describes the memories and their
access speeds. The values correspond to an Intel Xeon E5. [15]

• Internal register - 0.4 ns

• L1 Cache - 0.9 ns

• L2 Cache - 2.8 ns

• L3 Cache - 28 ns

• RAM - 100 ns
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• Disk (SSD) - 50-150 µs

The register is at the top of the hierarchy, but it also has the smallest amount of storage.
The L1 cache is faster than L2 cache, but has smaller storage the same follows for the other
types. Since the access times vary depending on which type of memory data is stored in
it is important to make good use of it. If we can make greater use of the cache, meaning
that data that is read into the cache is used, the run time of an algorithm can be decreased
significantly. The scheduling functions presented in 2.4.2 are helpful tools in order to
reduce organize the processing of data in order to reduce the number of cache misses,
where data that is needed is not in the cache. Section 5.3 has an example of how this can
be used.
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Chapter 3
Approach

3.1 Methodology
The process during this thesis was divided into different steps. The first stage was to gain
an understanding of a de-noising algorithm aswell as an introduction to Halide. After that
a C++ version was implemented, partly to get familiar with the algorithm in a language I
ammore comfortable with, and partly to have something to compare the Halide implemen-
tation to. Lastly an implementation was made using Halide and the result was evaluated
by comparing run times and image quality.

Understanding In the initial phase the objective was to gain an understanding of
the de-noising algorithm, as well as an introduction to the halide language. This was
achieved by studying the de-noising of Monte Carlo renderers, such as [6] and [16]. In
order to get introduced to Halide I used their tutorial [17].

C++ To further the understanding of the de-noising algorithm and also to have some-
thing to compare the Halide implementation to I implemented it in C++. C++ was selected
because Halide is embedded in this language. By comparing the implementations a real-
istic measure of how much could be gained from switching to Halide can be achieved.

Halide Originally the plan was to have the code running entirely in Halide. Due to
limitations with the Halide language, further outlined in section 5.2, this was not the case.
Instead a hybrid version was implemented where certain parts are running in C++ and
other parts in Halide. The goal of this phase was to achieve a faster run time than the strict
C++ implementation.

Evaluation In order to compare the output image quality a ground truth image is
needed. A ground truth is used to measure the accuracy of an algorithm. In an object
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classification algorithm, where the computer labels objects in an image, a ground truth
could be a human labelling everything in the image. If the algorithm deviates from the
humans labels it is considered as an error. The term is a bit confusing for computer ren-
dered images, since even our ground truth image has noise or errors in it. Regardless a
way of measuring the image quality is needed. In this project the ground truth image is
an image rendered using path tracing with 2048 spp, depicted in Figure 4.2. This im-
age was rendered using PBRT, which is an open source software used for rendering high
quality images. [12] A scene can be created through tools such as Blender or Maya and
ran through PBRT to render the images. Originally I planned to do a comparison of the
image quality using two methods called peak signal-to-noise ratio (PSNR) and structural
similartity (SSIM). Due to compatibility issues explained in section 4.1 the ground truth
has different lighting than the result, which made those comparisons meaningless. The
run times of the Halide and C++ de-noising implementations will be compared to the path
tracer. The test platform was a Intel Core i5-4670k @ 3.40GHz NVIDIA GeForce GTX
1070.
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Chapter 4
Results

In this chapter the results will be presented. First the input and output images are presented,
along with the ground truth image. The ground truth is then compared to the output images
and the run times are presented.

4.1 Resulting Images
Figure 4.1 depicts the rgb values of the input. This is the starting point before the de-
noising algorithm is applied. It was path traced using PBRT and with 8 SPP. It contains
visual artifacts and is noticeably noisy.

Figure 4.2 is an image of the result after the de-noising algorithm. The quality is much
higher. The noise is severely reduced and there are not many, if any, visual artifacts re-
maining.

Figure 4.3 depicts the ground truth image. It is an image that was rendered using PBRT
with an SPP of 2048. This image has different lightning than the result in Figure 4.2. The
differences are not due to the algorithm, but because it is of a different scene with different
lightning. In order to extract and sort the output from the path tracer a parser was used,
mentioned in 2.2. Due to compatibility issues it could not be used to generate a sample
buffer from any PBRT file. Therefore I had to use a sample buffer that was already parsed.
The rgb values of this buffer is depiced in Figure 4.2. This is an older version of the San
Miguel scene which has one type of lightning. The path traced image rendered with pbrt,
Figure 4.2, is the same scene, but an updated version with a different type of lightning.
I could not find a pbrt file of the older version and therefore this was the best image to
compare it with. That is also the reason that the de-noising algorithm is only applied to
one image.
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Figure 4.1: Path traced image with 8 SPP
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Figure 4.2: Reconstructed image

35



4. Results

Figure 4.3: Path traced image with 2048spp
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Figure 4.4 are side by side comparisons of a door in the scene. I think it is fair to say
that the de-noising does a good job of resembling the ground truth. There is still some
remaining noise.

(a) Reconstructed (b) Ground truth

Figure 4.4: Comparison between reconstructed and ground truth

Figure 4.5 depicts a comparison of smaller geometry of the scene, leaves. Because a
leaf is smaller, than say a brick, there are less samples in the input that relates to the same
surface. That means that the reconstruction has less information from related samples to
work with. This leads to smaller geometries not being reconstructed as well as large ones.
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(a) Re-
con-
structed

(b)
Ground
truth

Figure 4.5: Comparison between reconstructed and ground truth

4.2 Run times
Table 4.1 presents the run times for the C++ implementation, Halide implementation and
path-traced images. The run times for C++ and Halide are for the de noising algorithm,
with input and output in Figure 4.1 and Figure 4.2. The run time for the path traced image
corresponds to Figure 4.3, which was rendered using PBRT with 2048 spp.

Type Run time
C++ 2h 32m 12s
Halide 2h 43m 53s
Path-traced (2048 spp) 3h 9m 8s

Table 4.1: Run times
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Chapter 5
Discussion

5.1 Strengths and limitations of Halide
The functions presented in 2.4 are high level abstractions. Whenever we use f.ex. tile on
a function there is code running under the hood to enable it. This enables the possibility
of simpler syntax for scheduling a different order of processing the data. It also enables
us to separate the algorithm from the scheduling. These are the strong points of Halide.
Optimizations can more easily be explored and defining them is a lot simpler. These ab-
stractions does come at a cost however, in order to enable themHalide has some restrictions
in terms of what can be done within the language. It only handles feed forward pipelines.
Figure 5.1 represents a feed forward pipeline.

Input
Func 1 Func 2 Func 3

Output

Figure 5.1: Feed forward pipeline

Figure 5.2 represents a feedback pipeline.
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Input
Func 1 Func 2 Func 3

Output

Figure 5.2: Feedback pipeline

Halide also only operates on image data. Data structures such as trees, lists or hash
tables can not be expressed. [5] Halide does not have support for dynamic recursion, that
is a recursive function that uses data computed in another recursive step for the current
one [5]. That is because it is not possible to express higher-order functions in Halide, or
a function that calls another function in other words. [5] This is a serious limitation for
the de-noising algorithm, because it is very reliant on the octree, which is a tree type data
structure generated through dynamic recursion. The octree is used in nearly every step of
the algorithm.

5.2 Hybrid
Originally the intent was to have it fully running in Halide. However since the algorithm
is so reliant on the octree, which can not be represented in Halide this was not a reason-
able goal. One of the creators of Halide had the following to say: "It is much harder to
imagine how the existing Halide language can generalize to encapsulate trees and other
data structures in a unified and efficient way". [5] Therefore I decided to move forward
with a hybrid version instead. Certain parts of the code, specifically ones that relies on the
octree, is implemented in C++. Other parts, mainly in the second stage in section 2.3.3,
are implemented in Halide.

5.3 The ideal Halide pipeline
An ideal Halide pipeline would make use of its strengths. The main optimization benefits
comes from things such as vectorized computations and scheduling in order to improve
the memory locality. Therefore we would like a pipeline where an image is read from
file and uniform modifications are made to the entire structure. Memory locality cant be
taken advantage of unless your reusing the data. An example of a situation where taking
advantage of locality could be as follows. Imagine you want to averages 2x2 boxes of
pixels. The resulting boxes are then averaged again in 2x1 boxes to produce the output.
Figure 5.3 depicts this process. In the first step 2x2 boxes in A are averaged into 1x1 boxes
in B. In the second step 2x1 boxes in C are averaged to 1x1 boxes in D, which is the result.
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A

1 2 3 4

5 6 7 8

9 10 11 12

B

Step 1

Step 2
1 1 12 2
3 3 4 4
5 5 6 6

2
3 4
5 6

c D
Figure 5.3: Visualization of algorithm

A typical C++ algorithm would compute the averages for every box in A, then com-
pute every box in B to produce the output. This is not optimal because the result of the
calculations is re-used in the stage B. This means that the result is no longer stored in the
cache, and would need to slowly be read back into memory. A much smarter solution can
be obtained by interleaving the stages, as in Figure 5.4. The averages are computed in step
one, and immediately re-used in step two to produce the one resulting pixel in D.

A

1 2

B

Step 1

Step 2
1 1 1

c D
Figure 5.4: Interleaved stages
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5.4 Pipeline in this project

The pipeline in this project does not have many computations that can be reorganized as
in Figure 5.3. Data is fetched from a buffer and immediately put to use. Modifications are
also not made to an input image. Instead we are utilizing the data from the path tracing
process presented in section 2.3.2. Many types of operations are also not performed uni-
formly on the input data, but on a subset, which is problematic. An example of this could
be during the reconstruction process. Before sending a reconstruction ray we must make
sure that the hit point and origin are valid, meaning that they are actually in the scene.
Sometimes the ray can "miss" the scene and go off in the distance and those samples sim-
ply do not contribute. While it is possible to compute conditionally in Halide, this leads to
redundant work. Halide always works on the entire domain. Using conditional statements
simply alters the output [5].

There are certain sections of code that can be made more efficient with Halide. As an
example every pixel has 8 entries of the normal for the secondary ray, which is a vector of
length three. In the filtering process these values need to be normalized. In this case we
can take advantage of parallelism. Figure 5.5 depicts a single pixel and the 8 corresponding
samples for the normal values of the secondary hit.

Pixel

Normals values for secondary hit

1st Sample

2nd Sample

3rd Sample

4th Sample

5th Sample

6th Sample

7th Sample

8th Sample

Figure 5.5: One pixel and its input for the normal

By storing all of the samples in 8 separate Func buffers, we can calculate the normals
with vectorized computations. Figure 5.6 represents four pixels and their normal values
for the secondary hit. The first sample for all pixels is stored in the first Func, second
sample for all pixels in the second Func and so on.
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1 2

3 4

Pixels
1st Sample 2nd Sample 3rd Sample 4th Sample 5th Sample 6th Sample 7th Sample 8th Sample

Figure 5.6: Normal values for a pixel in 8 different buffers

Code for calculating the normal for every sample in the func input is shown in listing
5.1

Listing 5.1: Normalizing in Halide
1 Ha l i d e : : Func h a l i d e _ n o rm a l i z e ( Ha l i d e : : Func f ) {
2 Ha l i d e : : Func no rma l i z e ;
3 Ha l i d e : : Var x ;
4 no rma l i z e ( x ) = f ( x ) / s q r t ( f ( 0 ) ∗ f ( 0 )
5 + f ( 1 ) ∗ f ( 1 ) + f ( 2 ) ∗ f ( 2 ) ) ;
6 re turn no rma l i z e ;
7 }

In order to highlight some of the problems with using Halide for some of the calculations
consider the the problem of calculating an orthogonal basis for every input normal. Listing
5.2 contains code for this computation is as follows

Listing 5.2: Computing orthogonal basises in C++
1 Mat3f o r t h o g o n a lB a s i s ( cons t Vec3f& v )
2 {
3 Mat3f m;
4 Vec3f mx = v ;
5 f l o a t temp ; / / f o r swapping
6 i f ( s t d : : f a b s (mx . x ) > s t d : : f a b s (mx . y ) && s t d : : f a b s (mx . x )

> s t d : : f a b s (mx . z ) )
7 {
8 temp = mx . x ;
9 mx . x = mx . y ;
10 mx . y = temp ;
11 mx . x = −mx . x ;
12 }
13 e l s e i f ( s t d : : f a b s (mx . y ) > s t d : : f a b s (mx . x ) && s t d : : f a b s (

mx . y ) > s t d : : f a b s (mx . z ) )
14 {
15 temp = mx . y ;
16 mx . y = mx . z ;
17 mx . z = temp ;
18 mx . y = −mx . y ;
19 }
20 e l s e
21 {
22 temp = mx . z ;
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23 mx . z = mx . x ;
24 mx . x = temp ;
25 mx . z = −mx . z ;
26 }
27 m. s e tCo l ( 1 , c r o s s ( v , mx) . no rma l i z ed ( ) ) ;
28 m. s e tCo l ( 0 , c r o s s (m. ge tCo l ( 1 ) , v ) . n o rma l i z ed ( ) ) ;
29 m. s e tCo l ( 2 , v ) ;
30 re turn m;
31 }

This seems at first glance like something that could be taken advantage of by Halide. Every
time this function is called a vector, mx, is computed in lines six to twenty six. The vector
is then used to compute a matrix, m, in lines twenty seven to twenty nine. One might think
that we could structure this in a similar way as in Figure 5.4, by interleaving the stages.
In order to make it an effective Halide pipeline we would like to input every value for the
normals, and get every matrix as an output. The problem lies with the temporary values
and the switching of values between variables, in line eight, ten, fifteen, seventeen, twenty
two and twenty four in listing 5.2. Because Halide is a feed-forward pipeline once a Func
has been used to define another Func, the Func cannot be modified. In order to switch the
values we must first store the temporary value in a Func, and then use the stored value to
define another Func. This can be circumvented by sending in a single input normal and
calculating the orthogonal basis for that normal like in listing 5.3.

Listing 5.3: Computing orthogonal basises in C++
1 Ha l i d e : : Func o r t h o g o n a lB a s i s ( Ha l i d e : : Func inpVec )
2 {
3 Ha l i d e : : Func vec , mat , co l0 , co l1 , c o l 2 ;
4 Ha l i d e : : Var x , y ;
5 vec ( x ) = inpVec ( x ) ;
6 i f ( Ha l i d e : : abs ( vec ( 0 ) ) . g e t ( ) > Ha l i d e : : abs ( vec ( 1 ) ) . g e t ( ) &&

Ha l i d e : : abs ( vec ( 0 ) ) . g e t ( ) > Ha l i d e : : abs ( vec ( 2 ) ) . g e t ( ) )
7 {
8 vec ( 3 ) = vec ( 0 ) ;
9 vec ( 0 ) = vec ( 1 ) ;

10 vec ( 1 ) = vec ( 3 ) ;
11 vec ( 0 ) = −vec ( 0 ) ;
12 }
13 e l s e i f ( Ha l i d e : : abs ( vec ( 1 ) ) . g e t ( ) > Ha l i d e : : abs ( vec ( 0 ) ) . g e t

( ) && Ha l i d e : : abs ( vec ( 1 ) ) . g e t ( ) > Ha l i d e : : abs ( vec ( 2 ) ) . g e t
( ) )

14 {
15 vec ( 3 ) = vec ( 1 ) ;
16 vec ( 1 ) = vec ( 2 ) ;
17 vec ( 2 ) = vec ( 3 ) ;
18 vec ( 1 ) = −vec ( 1 ) ;
19 }
20 e l s e
21 {
22 vec ( 3 ) = vec ( 2 ) ;
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23 vec ( 2 ) = vec ( 0 ) ;
24 vec ( 0 ) = vec ( 3 ) ;
25 vec ( 2 ) = −vec ( 2 ) ;
26 }
27 co l 1 = h a l i d e _ c r o s s ( inpVec , vec ) ;
28
29 co l 1 = h a l i d e _ n o rm a l i z e ( co l 1 ) ;
30
31 co l 0 = h a l i d e _ c r o s s ( co l1 , inpVec ) ;
32
33 co l 0 = h a l i d e _ n o rm a l i z e ( co l 0 ) ;
34 co l 2 ( x ) = inpVec ( x ) ;
35
36 mat ( x , y ) = 0 . 0 f ;
37 mat ( 1 , y ) = co l 1 ( y ) ;
38 mat ( 0 , y ) = co l 0 ( y ) ;
39 mat ( 2 , y ) = co l 2 ( y ) ;
40 re turn mat ;
41 }

This works when the input Func contains singular normals, but not for multiple normals.
In listing 5.3 vec(x) can store four values. This is one more value than the (x,y,z) of the
input normal. By using the fourth slot as a way of storing the temporary value this works
fine for a singular normal. If we send in a Func that contains more than one normal and
thus executes the code more than once, the fourth slot has already been used in order to
define col1 in line twenty seven. We are not allowed to change the definition of a Func, in
this case vec(x), that has been used to define another Func, namely col1. The problemwith
these types of solutions is that wemight aswell be using C++. We can not take advantage of
anything the Halide framework has to offer such as parallelism or any form of scheduling.

5.4.1 Run times
The run times were not improved at all by the Halide modifications I made. There were
not that many opportunities to use Halide in an efficient way. The octree is present in many
parts of the algorithm. In order to work around it I had to keep double buffers. This is a big
problem, because for every image we are storing eight samples for every pixels. There are
thirteen data points for every sample. For an image that is 360x620 there are over twenty
million values stored in the buffers. There is also the problem of redudant computations
described in section 5.4.
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Chapter 6
Conclusion

This project set out to answer the following questions

How efficient is Halide for optimizing advanced image filters?
Specifically for this project there were no improvements in run time. I do not think it is fair
to say that Halide is inefficient for all types of image filtering because of that. Halide has a
lot of great features and I believe it can be used to produce highly efficient imaging code as
long as the algorithm is suitable with the language. There are applications where Halide
has been used effectively. Jonathan Ragan-Kelley, one of the designers behind Halide,
presents a camera pipeline which is 3.4x faster than an hand-tuned implementation in C.
[5] A camera pipeline is used to transform data from an image sensor into a usable image.
Google is also using Halide in their Pixel Visual core, an image processing unit used in
the Pixel 2 smartphone. [18]

Are there any challenges using Halide for these situations?
There were a lot of challenges in using Halide for the de-noising algorithm. In retrospect
it is easy to say that it was a poor choice for testing Halide, specifically the octree is the
biggest obstacle to overcome. Making it run fully in Halide was not a reasonable goal for
one person in the given timeframe. Replacing the octree with a similar structure is a hard
problem to solve. [5] In my opinion Halide is simply not suitable for pipelines that depend
on such structures at the current time. Halide is quite different to other popular languages
such as java, c++ or other. Implementations of an algorithm in java can rather easily be
converted to c++ and vice versa. This is not the same for Halide. While optimization is
made easier, there is also the downside that it is not as versatile in the data structures it
can represent. Implementations that relies heavily on data structures such as trees or lists
needs large structural changes to be implemented in Halide.
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6. Conclusion

Future projects
There are some things I would change in order to make future research on this topic more
conclusive. In future projects I would recommend building an algorithm in Halide from
the ground up, where the focus and design of the algorithm is entirely on an Halide im-
plementation. Because Halide is more limited than C++ there is a larger hurdle writing a
Halide equivalent of C++ code than it is to write a C++ equivalent of Halide. That would
make the run time comparisons more fair.
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Framtiden för bildbehandling?

POPULÄRVETENSKAPLIG SAMMANFATTNING Fredric Berg

Halide är ett modernt programmeringsspråk designat för bildbehandling. Detta arbete
utforskar dess styrkor och svagheter genom att använda det för optimeringen av en
bildrekonstruktions algoritm.

Bildbehandling är en viktigt del av dagens
samhälle. Det används i många olika fält som da-
torgrafik, medicin och datorseende. Det största
problemet som förhindrar fortsatt utveckling är
hårdvara och exekveringstider. I mobila enheter
är det speciellt viktigt, då hårdvaran är ännu mer
begränsad. En applikation som är begränsad av
exekveringstid är path tracing. Det är ett sätt
att rendera fotorealistiska bilder av hög kvalitet.
Det största problemet för sådana verktyg är att
renderingstiden är väldigt lång. Genom att ha
väloptimerad kod kan man sträcka gränserna för
vad som är möjligt ännu längre. Med utvecklingen
av hårdvara och större fokus på optimering skulle
det kunna bli en möjlighet att utnyttja path trac-
ing eller liknande metoder för att rendera bilder
i realtid. Halide är ett programmerinsspråk som
är designat för bildbehandling. Principen bakom
språket är att det ska bli lättare att optimera kod
jämfört med andra språk som används i dagsläget.
I språk som C++ är det krångligt att skriva effek-
tiv kod och den blir också svår att tolka för oin-
satta. I halide kan en optimerad version skrivas
med enklare kod och med mycket bättre överblick.
I det här examensarbetet implementeras en bil-
drekonstruktions algoritm med hjälp av Halide för
att undersöka möjligheterna och begränsningar
med språket. När man renderar en bild med path
tracing så finns det mycket information att hämta
från processen. Ju längre man renderar desto hö-

gre kvalitet får den slutgiltiga bilden. Genom att
köra en snabb rendering får man en lågkvalitativ
bild. Algoritmen som presenteras i detta arbete
tar informationen från en snabb rendering och an-
vänder den för att återskapa bilden. På detta viset
får man en hög kvalité på den slutgiltiga bilden
men framförallt mycket kortare renderingstid.

Arbetet visar att Halide inte är den ultimata
lösningen för optimering av all typ av kod. På
grund av begränsningar inom språket är det inte
lämpligt att använda det för alla typer av al-
goritmer. Halide stödjer bland annat inte data
strukturer som träd, vilket är vanligt förekom-
mande inom datorgrafik. Det medför problem
som försämrar prestandan. För det här projek-
tet blev det ingen förbättring av exekveringstid
jämfört med en implementation i C++. Det kan
istället fungera som en studie om vad Halide är
lämpligt och olämpligt för. Det belyser det som
gör Halide till ett effektivt språk och även prob-
lematiken i vissa användingsområden.
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