
In
d

u
st

ri
a
l
 E

le
c
tr

ic
a
l
E
n

g
in

e
e
ri
n

g
 a

n
d

A

u
to

m
a
ti
o

n

CODEN:LUTEDX/(TEIE-5419)/1-35(2019)

Virtual Leash

Device-Less Remote Parking Based on
Ultrasonic Sensor Detection

Pontus Strömberg

Division of Industrial Electrical Engineering and Automation
Faculty of Engineering, Lund University

Division of Industrial Electrical Engineering and Automation

Virtual Leash – device-less

remote parking based on

ultrasonic sensor detection

Pontus Strömberg

Division of Industrial Electrical Engineering and Automation

Lund University

Box 118

SE-221 00 LUND

Sweden

© 2019 by Pontus Strömberg. All rights reserved.

Lund 2019

Abstract

In today’s car industry more and more focus is put on autonomous driving and

driving assistance. There are functions being developed that are supposed to assist

the driver as well as functions that will be fully autonomous. Parking is an area

where car companies are developing a lot of functions related to driver assistance

and autonomous driving. One of the main reasons for this is that a lot of people

think it is difficult to park their cars. Therefore, functions related to parking

assistance have a high customer value. And in order to make a good function related

to parking assistance and autonomous parking the function must be easy to use.

In this thesis work a proof of concept was made for the use of ultrasonic sensors

in an automatic parking function, where you can remotely control the movement of

a car in parking situations without any remote device. Instead of controlling the car

with a phone or a key, the car was to recognize the user as the driver and allow

him/her to lead it in and out of parking spaces, by having it following his/her

movement.

The purpose of the thesis work was to investigate whether or not ultrasonic

sensors could be used to track the movement of the user outside of the car, to be

able to authorize the user as the driver. If the ultrasonic sensors could detect a

specific pattern of movement from the user, the user would be allowed to remotely

operate the vehicle. A simulation model was created that was able to read ultrasonic

data from a test car and evaluate the movement of the user. This model could read

data from a recorded log and in real time in a test car. Since the purpose was to

evaluate the performance of the ultrasonic sensors, other signals related to the

function was mocked in the simulation.

Acknowledgements

This master thesis was written at Volvo Cars. I would like to thank everyone in

Team Concept for their help, especially Mathivalavan Gunaseelan, Andreas

Abramsson and Nenad Lazic.

Contents

1. Introduction ... 1

1.1 Virtual Leash ... 1

1.2 Problem statement ... 5

2. Ultrasonic Sensors .. 7

2.1 Ultrasonic sensor ... 7

2.2 Sensor setup .. 7

3. Method .. 9

3.1 Simulink model ... 10

3.2 Matlab functions and Python Script .. 16

3.3 Car setup ... 19

4. Results... 20

5. Discussion ... 24

6. References ... 26

1

1. Introduction

The idea of autonomous driving is very appealing to a lot of people. Functions that

operates your car fully or partly autonomous are being developed at a higher pace

than ever before. Parking is an area where a lot of functions have been developed

the last few years, and a lot of effort is put on making parking more and more

autonomous. The biggest reason for this is because there are a lot of parking

scenarios that people find difficult, and therefore parking assist functions have a

high customer value. The problem with a lot of functions within parking assistance

is that you have to either be in the car, or tell the car what to do with some remote

device. Instead of the user controlling the car with a device, we would like to make

the car recognize the user and follow its movement.

1.1 Virtual Leash

Virtual Leash is a function in Remote Automatic Parking. Like other Remote

Parking functions, Virtual Leash is operated without being in the vehicle. What

distinguishes Virtual Leash from other automatic parking functions is that instead

of having the user control the car with some device, the car recognizes the driver

with the use of ultrasonic sensors and follows the driver’s movement. The function

operates similarly for park in and park out, but there are a few minor differences.

[1]

Park out

In a Park Out scenario the user uses his/her phone to actuate the Virtual Leash

function. The phone sends the request to the car which starts to scan for the phone

through Bluetooth. Once the car has detected the phone’s Bluetooth signal, the car

starts to scan for the key. This is done through the car’s Passive Entry system, which

detects the key on a distance of approximately 1,5 meters around the car. As soon

as the car detects the key that is paired with the phone that was used to start Virtual

2

Leash, the ultrasonic sensors located in the front or rear, depending on the parking

situation, start to scan.

To be able to remotely operate the car, the user has to be recognized by the car

as the driver. This is achieved when the car is detecting the key and the ultrasonic

sensors are detecting an object that is moving from one side of the car to the other,

in the front or the back, depending on parking direction. By walking from one side

of the car to the other, while the car detects the key, the user is confirmed as the

driver of the car. This will be referred to as the initiation sequence in the report, see

figure 1.

Figure 1. User has moved from one side of the car to the other and completed the initiation

of the Virtual Leash.

When the initiation sequence is completed the car confirms this to the driver

by driving forwards a few centimeters. Then the user is allowed to walk the car out

of the parking spot as long as no other object is detected in front of the car, see

figure 2. This will be referred to as the Keep Alive sequence in the report.

3

Figure 2. The car is following the driver out of the parking spot.

The car will stop, and the Virtual Leash will end once the car has completed

the predefined parking maneuver or if the user exits the maneuvering area, see figure

3.

Figure 3. The car stops when the user exits the maneuvering area.

4

Park in

When Virtual Leash is used for Park in scenarios, the driver finds a parking spot,

and puts the car in the starting position shown in figure 4.

Figure 4. Starting point of Park in with Virtual Leash.

The user requests Park in with Virtual Leash on the dashboard in the car. Once

it has been requested the car waits for the driver door to open. When it has been

opened the Passive Entry system of the car scan for the key at the driver side of the

car and then at the front of the car (or at the back, if the parking is done in the other

direction). Once the key has been detected in the front, the ultrasonic sensors start

to scan and the user has to complete the same initiation sequence as for park out,

described in the Park out section above, see figure 5.

5

Figure 5. Initiation sequence completed for Park in.

After this, the user is allowed to lead the car in to the parking spot. The Virtual

Leash ends when the parking maneuver is completed or if the driver walks out of

the maneuvering zone shown in figure 6.

Figure 6. The car stops when the user walks out of the maneuvering zone.

1.2 Problem statement

The purpose for this thesis work was to create a proof of concept for the Virtual

Leash function using ultrasonic sensors. This was going to be done by creating a

simulation model in Simulink that could simulate and test the Virtual Leash

6

function. The goal was to have a model that could run recorded logs from a test

vehicle, and also to be connected to the CAN bus in a test car and run in real time.

The scope of the thesis work was limited to only handle the ultrasonic data, and

therefore all other signals that would be used for the real case was mocked in the

model. The propulsion of the car would not be implemented, instead the car would

be driven and the model would evaluate if the car moved correctly.

7

2. Ultrasonic Sensors

2.1 Ultrasonic sensor

An ultrasonic sensor is a device that emits and receives a soundwave with a

frequency higher than can be detected by the human ear, around 20 kHz. By

measuring the time it takes for the soundwave to come back to the sensor, one can

calculate the distance to the object that the soundwave was reflected on. This is

calculated by 𝑟 = 𝑐 ∗ ∆𝑡/2, where r is the distance, c is the speed of sound, and t is

the time. An approximate relation of the speed of sound can be derived from the

ideal gas law, where 𝑐 ≈ 331,4 ∗ √(1 + 𝑇/273,15) m/s. However, the speed of

sound is temperature dependent and at 0°C the it changes by 0,6 m/s/ °C and from

-30°C to 40°C it varies from ca 312 to 355 m/s. This needs to be takes into account

and most ultrasonic sensors on the market compensates for this.

Other factors that also will have an impact on the speed of sound is the

humidity of the air and the air pressure. However, compared to the air temperature

these are have a very small impact and are sometimes neglected. [1, 2, 3]

2.2 Sensor setup

For this project a new generation of ultrasonic sensors were used. These sensors

transmit short ultrasonic impulses with a varying frequency of 48-57 kHz that are

reflected by the surrounding objects. The processing of the returned signal is done

in a standalone ECU from the supplier and sent to the user PC through a CAN driver

from Vector, more on this in chapter 5.3.

There are six sensors in the front of the car and six in the back. The sensor

positioning is shown in figure 7.

8

Figure 7. The positioning of the ultrasonic sensors.

Every sensor returns one direct echo, meaning it registers the echo that it

transmitted, and two cross echoes, which means that it registers an echo from the

sensor positioned next to it. This means that sensor four, marked S4 in figure 7, can

register one direct echo that it transmitted itself and two cross echoes, one from S3

and one from S5. The cross echoes are primarily used to triangulate and evaluate

the accuracy of the objects detected, but they can also be used as another echo

signal.

The sensors are able to detect object at a distance from 15 cm to 510 cm with

an accuracy of 3-15 cm.

9

3. Method

Figure 8 describes the flow of events in the Virtual Leash function.

Figure 8. Communication between the different parts of the model.

The simulation was set up with a state flow model in Simulink that was started

from a GUI created in Appdesigner. The state flow model changed states from park

in to park out, park forwards or backwards etc., depending on the input data from

the GUI.

When all required conditions for the start of the Virtual Leash had been met,

the state flow model called a Matlab function, called LeashInit, which started the

initiation sequence of the Virtual Leash function. The Matlab function called a

Python script that read ultrasonic data from a log file or from the CAN bus in a test

car in real time. The Python script then filtered the data and changed states in the

initiation sequence.

When the initiation sequence is finished, the Matlab script returns that

information to the state flow model which puts itself in the Keep Alive state. This

state calls another Matlab function, called KeepAlive, which calls another Python

script that reads the ultrasonic data and handles the Keep Alive scenario.

The information regarding which state the initiation sequence is in, if the user

is detected, if the initiation sequence is completed, and the status of the Keep Alive

is continuously fed back to the GUI so the user can track the progress.

10

3.1 Simulink model

The Simulink model consists of two state flow blocks and a number of input

variables, see figure 9.

Figure 9. The State flow model in Simulink.

The inputs to the state flow blocks comes from a GUI shown in figure 10

below. The GUI can start, stop and pause the model, as well as changing the models

input variables by flipping the switches in the model

11

Figure 9. The GUI that controls the model.

Remote Operation Control

The RemoteOperationControl block handles the initiation sequence of Virtual

Leash. The first thing that the RemoteOperationControl block does is check whether

the user has requested park in or park out, see figure 11 below. Depending on the

variable inOut the RemoteOperationControl-block enters either the ParkIn-block or

the ParkOut-block. The simulation continuously checks that value of the inOut

variable and if it changes during the simulation, if also changes states between

ParkIn and ParkOut.

12

Figure 11. The RemoteOperationControl block chooses park in or park out depending on

the input data.

Park in

The ParkIn-block handles the park in scenario of the initiation, see figure 12. When

it enters the ParkIn-block it enters the InCar-state and sets the variable startParking

to false. startParking is the variable that starts the KeepAlive block once the

initiation is completed. The parkIn block first waits for the user to request park in

in the GUI. When the user does, the parkInReq variable turns to 1. After this the

block waits until the signals for doorOpened and keyInZone are true. These signals

represents that the driver door opens during a park in and that the key paired with

the users phone is recognized by the Passive Entry system in the car. In the

simulation these signals are mocked by the GUI.

Once the doorOpened and keyInZone signals are both 1 the ParkIn-block

enters the OutOfCar-state. It then looks if the parking is going to be done forwards

or backwards, which is chosed by the user in the GUI, and depending on that it

enters ParkInFront of ParkInBack. If the keyInZone and doorOpened variables turns

to 0 during the simuation the model will return to the InCar state.

13

Figure 12. ParkIn block.

The ParkInForwards- and ParkInBackwards-blocks contain the same things.

As seen in Figure 13, the ParkInForwards-block calls LeashInit-function. LeashInit

is a Matlab function that handles the initiation sequence of the Virtual Leash. The

function inputs are the current state, parking direction (forwards or backwards), and

the parking scenario (park in or park out). The function returns the new state of the

initiation sequence. If the function returns a state of 7 or -7 the model will enter the

InitiationCompleted state, which sets the startParking variable to 1, which starts the

KeepAlive block. If the returned state is not 7 or -7 the GetState state calls the

LeashInit function again, as seen in the figure 13.

14

Figure 13. ParkInForwards-block.

Park Out

The same way as the ParkIn block handles the park in scenario of the initiation

sequence of Virtual Leash, the ParkOut block handles the park out scenario, as seen

in figure 14 below. When it enters the ParkOut block it sets the startParking variable

to 0. It then waits for the phoneOk variable to turn to 1. The phoneOk variable

represents that the park out sequence has been requested by the user and that the

phone is detected by the car via Bluetooth. These conditions are mocked by the GUI

in the simulation.

When phoneOk is 1 the model checks if the keyID and the phoneID variables

are the same. These variables are put into the GUI, and they represents that the key

that the car is detecting is the same key that is paired with the phone that is detected

through the Bluetooth.

Once the conditions described above are true the ParkOut-block enters the

TrackUser-state. Here it will enter ParkOutForwads or ParkOutBackwards

depending on the value or the parkDir variable, which represents parking direction.

15

Figure 14. ParkOut block.

The ParkOutForwards- and ParkOutBackwards-blocks work the same as the

ParkInForwards-block, see Figure 13.

Keep Alive

The KeepAlive-block starts in the WaitingToStart-state, as seen in figure 15. Once

the RemoteOperationControl sets the value of the startKeepAlive variable to 1,

meaning the initiation sequence is completed, the KeepAlive block will enter the

CallScript-state and call a Matlab function called keepAlive. The inputs to the

function are parking direction, parking scenario and keep alive state, which

represents if the car is allowed to follow the driver or not. The outputs from the

function is the new keep alive state.

16

Figure 105. KeepAlive block.

3.2 Matlab functions and Python Script

LeashInit

LeashInit is the Matlab function that handles the initiation sequence of Virtual

Leash. When it enters the function it imports the saved data from the Model

Workspace in Simulink. The data consists of the previous echoes, timestamp and

state from the previous function call.

When it has imported the data it calls a Python script that receives the current

echo data from a log file or from the CAN bus in the test car, depending on if the

user is running the model in simulation mode or in real time. The Python script will

call a method that creates an app for CANoe, which is a software used to read CAN

data. The Python script then reads the echo data from CANoe and returns it to

Matlab. Once it has the new echo data it filters it according to the formula below.

𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 𝑒𝑐ℎ𝑜 = 𝑜𝑙𝑑 𝑒𝑐ℎ𝑜 ∗ 0,6 + 𝑛𝑒𝑤 𝑒𝑐ℎ𝑜 ∗ 0,4

The script also sets a maximum value of the echo data at 300 cm. This is done

because in the initiation and the keep alive sequences in the script never look at

values greater than 200 cm.

When the filtered data is passed back to the Matlab function it calls another

Python method that evaluates which state the initiation sequence is in. Depending

on the state, the method looks at the next position in the initiation sequence. There

is a timer that resets the initiation sequence if the user does not reach the next state

17

within one second. When the user has completed the initiation sequence the script

returns that information to the state flow diagram in Simulink and that triggers the

Keep Alive block to start.

KeepAlive

KeepAlive is the Matlab function that handles the part of the Virtual Leash when

the car is starting to move. When the initiation sequence is completed, the

KeepAlive function starts. KeepAlive imports the saved data from the Model

Workspace in Simulink. The data consists of the previous echoes, the position of

the user, and state from the previous function call.

KeepAlive calls two Python scripts that reads and filters the echo data from

CANoe in the same way as LeashInit above. It then calls another Python script that

evaluates whether or not the user is in the right position to operate the Virtual Leash.

The script looks at where the user is supposed to be positioned and compares that

to the echo data from the sensors. If the user is not in the right position the Keep

Alive lamp in the GUI turns red, which represents that the car would have stopped

in the real case.

During a park out sequence the driver has to be positioned at the end position

of the initiation sequence, between 50 and 200 cm from the car, at the cars side, as

seen in the figure 16.

Figure 16. Maneuver zones for Virtual Leash during park out.

18

If the user steps out of the maneuver zone the KeepAlive script will pause the

Virtual Leash sequence and wait for the driver to enter the maneuver zone again. If

this takes too long the script will exit the sequence.

A park in sequence is performed in the same way as a park out. However, the

maneuver zone is not limited to the sides of the car since the car is not moving

towards you, as seen in figure 17.

Figure 17.Maneuver zone for Virtual Leash during park in.

19

3.3 Car setup

The setup in the car is shown in figure 18.

Figure 118. Figure showing the setup for the ultrasonic sensors in the car.

The ultrasonic sensors are connected to a standalone ECU from the supplier.

The ECU is connected to the cars Chassis CAN network. The ECU sends the

ultrasonic data to the PC that we are running the software on through a CANFD

protocol. Due to the fact that the PC cannot read a CANFD protocol we have used

a Vector CAN driver to read the data. The data was then read by the PC through

CANoe, which is a CAN processing software from Vector.

20

4. Results

Figure 19. Plot of the user position during the initiation sequence and the park out.

Figure 19 shows a plot of the position of the user during the initiation and Keep

Alive sequences. The plotted position is relative to the car, which means that when

the car is being led out of the parking spot the plotted position in the graph does not

change much because the car itself is also moving.

The position of the user is plotted every time the user enters a new state in the

initiation sequence and every fifth loop in the Keep Alive sequence.

The progress of the Virtual Leash can be tracked in the graph, but also in the

GUI, see figure 20. The three green lamps at the right end of the GUI turn green

when a user is detected, when the initiation sequence is complete, and when the car

is allowed to follow the driver. Otherwise they are showing a red light. The Keep

Alive lamp turns green when the initiation sequence is complete and when the user

is located within the maneuver zone. The State field at the right bottom corner of

the GUI shows what state the initiation sequence is in. This states go from 0 to 7 if

the initiation is done from the right side of the car to the left side, and from 0 to -7

21

if it is done from the left side to the right. The states represents how far through the

initiation sequence the user has come. State 7 is entered when the Keep Alive script

stars running.

Figure 20. GUI showing the progress of the Virtual Leash.

In figure 21 below we can see a use case where the user did not complete the

initiation sequence and therefore only four positions were plotted.

22

Figure 21. Graph showing an uncompleted initiation sequence.

Figure 22 below shows the GUI for the same use case. The lamps for the

initiation and keep alive sequences are red and the State field in the bottom shows

that the user never made it passed state -5.

23

Figure 22. GUI during an uncompleted initiation sequence.

When the car is moving it is important to make sure that no other persons or

objects are in front of the car. This was implemented for the Keep Alive function,

but not for the initiation sequence. The reason for this is that the ultrasonic sensors

were not able to give us a useful object list. Therefore we had to rely on the echo

data from the sensors, and because of the wide spreading angle and the poor quality

of the echo data we were not able to distinguish different objects from each other

with an acceptable accuracy during the initiation sequence.

24

5. Discussion

The purpose of this thesis work was to evaluate if ultrasonic sensors could be

used for the Virtual Leash function. Even though all aspects of the function were

not able to be implemented, the overall results look promising.

As mentioned in the previous chapter, there were some performance issues

with the ultrasonic sensors. Because of the fact that the sensors could not provide

object lists with object IDs and position connected to each object as planned, the

model had to rely only on echo data from the sensors. This meant the model had to

scan for objects, and once an object was found the model had to anticipate where

that object was going. With a reliable object list the model would be able to find an

object and know where it is located and where it is moving. This would make the

function more reliable and it would probably also make it easier to implement as

well. However, the echo data that was used is good enough to show that the function

could be implemented using ultrasonic sensors.

The fact that the model was not able to distinguish different object from each

other also was an issue. If another person or object gets in front of the car during

the initiation sequence the model is supposed to stop and wait for the user to restart

the initiation sequence. This is a safety requirement for Virtual Leash. Due to the

fact that the sensors could not provide an object list, the model had to try to

distinguish different object form each other using the echo data. However, because

of the wide spreading angle of the sensors the user could be detected by up to four

different sensors at the same time. Therefore, the model was not able to know if the

sensors the user had passed had picked up another object or if they were still

detecting the user. As a result, this part of the function could not be implemented.

The conclusion that can be drawn from this thesis work is that ultrasonic

sensors could be used for the Virtual Leash function. As already mentioned, to be

able to develop a reliable function the sensor performance needs to be improved. If

the supplier can solve these performance issues, it is possible to think the function

can be implemented with the desired reliability. Instead of anticipating where an

object is going the model would be able to find an object, get its position relative to

the car and see where it is moving. For safety and reliability this is a huge difference.

There are some things that could be interesting to develop further in the future.

Once the performance issue is solved the whole function should be implemented

using the object list. As mentioned above, this would increase reliability of the

function. It would also be very interesting to be able to test the Passive Entry system

25

in the car. The Passive Entry system was not accessible during the thesis work, and

it was also considered out of scope, so these signals were mocked in the model. It

would be very interesting to try to match the Passive Entry signal from the key to

an object from the ultrasonic sensors to confirm that object as the user.

Another interesting area is sensor fusion. It would be very interesting to use

the ultrasonic data together with camera data. This could help the model to

understand what kind of object the car is detecting and differentiate people from

other cars or static objects, which could make the function better in several ways. It

would make it easier to detect the driver, increase the reliability of the function, and

estimate the safety risk in different situations depending of what kind of object is

getting closer to the car.

To summarize, it would be fair to say that the thesis work shows that ultrasonic

data could be used to implement the Virtual Leash function. The fact that most of

the function was implemented successfully while only relying on the echo data is

very promising. If the object lists from the sensors would be accessible it would

make the function more reliable, it would make it possible to implement the whole

function, and it would probably make the function easier to implement.

26

6. References

[1] Volvo Car Corporation. 2016. Virtual Leash – Device Less Remote Auto

Parking. Gothenburg, Sweden.

[2] Blitz, Jack. 1967. Fundamentals of Ultrasonics. 2 Ed. Butterworths, London.

[3] Lindstedt, Gunnar. 1996. Borrowing the Bat’s Ear for Automation – Ultrasonic

Measurements in an Industrial Environment. Lund, Sweden.

[4] Nordevall, Johan. 2015. Method Development of Automotive Ultrasound

Simulations. Chalmers University of Technology. Gothenburg, Sweden.

	Blank Page

