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A B S T R A C T
We present a Bayesian and frequentist comparison when forecasting elections through polls. Our focus
is on studying the differences of these approaches in forecasting elections. An evaluation of the fit is per-
formed using the odds ratio. We propose a frequentist methodology for prediction horizons three months
ahead while a Bayesian methodology may be slightly more accurate for shorter prediction horizons. The
contribution of this paper lies in shedding light on the importance of the prediction horizon when choosing
between a Bayesian or frequentist methodology to forecasting election results.

Keywords: Bayesian forecasting, frequentist forecasting, non-homogeneous hidden Markov models, autoregression,
kernel smoothing.

1. Introduction
One of the hallmarks of modern democracy is that of competi-
tive elections (Walther, 2015). Thus, it is not surprising that the
practice of election forecasting is gaining an increased amount
of attention in the field of political science. One of the core dif-
ferences of this field in relation to others in political science is
that of the research question. As Walther (2015) describe it; “In
that sense, the question ‘how’ rather than ‘why’ is in focus”.

Historically, a more fundamental approach to the subject
spurred a widespread literature regarding economics as the driv-
ing force behind electoral studies. Perhaps the words of Tufte,
1978 exemplify this best:

When you think economics, think elections;

When you think elections, think economics.

Opponents to these structural techniques argue that it is nec-
essary to include polling data to accurately predict election out-
comes in a multiparty context (Walther, 2015). Forecasting in
this context has received scarce attention in the literature.

Although there are a few studies evaluating different fore-
casting methods, most of these focus on Bayesian modelling. A
comparison of a Bayesian framework to a frequentist approach
in election forecasting is not known to the author.

The fundamentals of Bayesian theory focus on deriving a
probability distribution given information already at hand. This
way of reasoning is particularly interesting in election forecast-
ing since one can incorporate information about which party
voters would vote for at a given time. The question, whether
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or not prior information holds any significant advantage over
an analysis based on frequencies in election forecasting is not
entirely clear. The contribution of this paper lies in shedding
light on the importance of the prediction horizon when choosing
between a Bayesian or frequentist methodology to forecasting
election results.

This paper starts with a description of the data being used
and methods for dealing with missing observations. Notation
and basic concepts are introduced after which the actual models
are specified. Furthermore, the fit of the models are presented
after which some concluding remarks on the implications of the
results are made.

2. Data

2.1. Swedish Polls

Data containing 62 opinion polls for the 2018 Swedish election
are collected through Novus (Table 1). The mean date when
these observations was collected ranges from 2018–01–05 to
2018–09–01. We split the data set into a training set and a test
data set. The training set ranges from 2018–01–09 to 2018–06–
07. The test data set span from 2018–06–11 to 2018–09–09
(election day). The polling organisations collecting these data
are Demoskop, Ipsos, Novus, SCB, Sifo and Skop. The survey
methods used for this data set are panel sample, random sample
or a combination of these. We exclude self-selection web panels
since these are not random. These polls together contain a total
of 200667 observations of surveyed respondents out of which
95304 are random sample.
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Table 1. Description of data

Sampling Method Opinion Polls

Panel 10

Random 12

Combination 40

Total 62

2.2. Missing Observations

An often encountered difficulty in time series analysis is that
concerning missing observations. For some estimation meth-
ods it is not possible to derive parameter values with missing
observations. As Anderson (1957) notes, maximum likelihood
estimation of mean, variance and correlation is problematic to
estimate since the likelihood function is conditional on the data.
However, there are many settings in which the measurements
are irregularly spaced (Sheather, 2009). One solution for this
problem is to use kernel smoothing techniques or penalised lin-
ear regression splines. These methods often yield similar results
(Hastie et al., 2009). For our purpose kernel smoothing is used
to interpolate measurements into equally spaced time units.

3. Notation and Basic Concepts

3.1. Smoothing

Kernel smoothing can be described visually as a technique to
derive a smooth line from a noisy one. It does so by estimating
a weighted average of data points near a given point t0. This
procedure continues until the desired number of data points are
estimated and results in a smooth estimate that has less variabil-
ity. For our purpose we keep the same number of smoothed data
points as points in the original series. This result in 62 observa-
tions for the smoothed series out of which 40 are used for the
training data set.

Kernel smoothing is a regression technique where f̂(t) de-
notes the estimated regression function (Hastie et al., 2009). The
kernel K�(t0, ti) acts as a weighting function where the value
at ti is weighed according to its distance to t0. For our purpose
a Gaussian kernel is specified as follows by eq. 1 (Sheather,
2009).

K�(t0, ti) =
1

�
p
2⇡

exp

✓
� (t0 � ti)

2

2�2

◆
(1)

To perform kernel smoothing one needs to choose a band-
width. The choice of bandwidth � representing the width of the
kernel has a large impact on the fit (Sheather, 2009). A larger
value of � results in averages over more observations and a
larger bias (Hastie et al., 2009). One commonly used method
for obtaining an optimal bandwidth is the plug-in method
(Sheather, 2009). We use the plug-in method for selecting band-
width according to Ruppert et al. (1995) as well as graphical
inspection for our kernel smoother.

Since a formal definition of the plugin method for selecting
a bandwidth � = h as performed by Ruppert et al. (1995) is
rather technical we merely give a general description of this
methodology. This method revolves around choosing a � such
that the discrepancy between the estimated regression function
f̂h and the actual function f is minimised. However, the un-
derlying curvature of the actual function f is not known and
is estimated using kernel density estimates where a normality
assumption on f is the basis for the bandwidth.

Once a value of � is chosen a weighting method needs to be
selected. There are many weighting methods for kernel estima-
tion where Nadaraya–Watson is one of the most renown. An-
other widely used weighting method is local linear regression.
This method derives these weights by, for each target point t0,
solving a weighted least square problem as follows by eq. 2,
where T denotes the number of observed points (Hastie et al.,
2009).

min
↵(t0),�(t0)

TX

i=1

K�(t0, ti)[yi � ↵(t0)� �(t0)ti]
2 (2)

By solving eq. 2 an estimate can be inferred such as f̂(t0) =
↵̂(t0)+ �̂(t0)t0 (Hastie et al., 2009). This estimate is less prone
to bias than the classic Nadaraya–Watson method since it auto-
matically corrects for bias of the first order. By performing a
Taylor expansion it can be shown that the bias only depends
on quadratic or higher-order terms. Hence, a local linear regres-
sion approach with a Gaussian kernel is used to smooth the data.
Smoothing is performed on all measurements used in our anal-
ysis in a similar manner as described in eq. 2.

3.2. Operationalization

We define the left block as Socialdemokraterna (Social Demo-
cratic Party), Vänsterpartiet (Left Party) and Miljöpartiet
(Green Party). Four variables are used for our estimates of vot-
ers in favour of the left block throughout time (Table 2).

Our first measure is given by the combined percentage x̃ in
favour of the left block as estimated by the polling organisa-
tions. It is worth noting however that these organisations weighs
polling data such that x̃ is only an estimate of the relative num-
ber of individuals that would vote for the left block at a given
time rather than the actual fraction of votes measured.

Our second measure is an estimate of the number of inter-
viewed persons y that would vote for the left block at a certain
time. The number of individuals in favour of the left block y

is estimated by multiplying the percentage in favour of the left
block x̃ by the total number of interviewed persons n. Our esti-
mates of y are rounded to the nearest integer.

The time t at which a survey is conducted is measured such as
the mean date of the sample period. The mean date when these
observations was collected ranges from 2018–01–05 to 2018–
09–01. The training set ranges from 2018–01–09 to 2018–06–
07. Since smoothing did not result in a measurement for time
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2018–06–09 we used 2018–06–07 as an endpoint for the train-
ing set. The test data set span from 2018–06–11 to 2018–09–09
(election day).

Table 2. Description of Variables

V ariable Description

y The estimated voters favouring the left block
x̃ The estimated percentage favouring the left block
n The number of interviews
t The mean date at which data was collected

Note: Each of the variables y, x̃, and n are measured at over a time period with mean t.
Smoothing is performed to achieve equal spacing between observations.

3.3. Stochastic Processes

A stochastic process may be defined as a sequence of random
variables (Cryer and Chan, 2008). An autoregressive process of
order one is in turn a stochastic process where its future state de-
pends only upon its current state and an error term. Let {Xt},
t = 1, 2, . . . , T be a stochastic process for which the condi-
tional probability distribution of future states depends only on
the current state (Ching et al., 2006). The current state of Xt is
a linear combination of the state at time t � 1 and an innova-
tion term et incorporating new information in the series at time
t not explained by past values (Cryer and Chan, 2008). Since
the error term et for every t is independent of Xt�1, Xt�2, . . .

it is referred to as an innovation term. We define this process as
expressed in eq. 3,

Xt = �Xt�1 + et, (3)

where et is assumed to be an independent and identically dis-
tributed (i.i.d.) white noise process with E(et) = 0 and V(et) =
�2
e . The stochastic process Xt is said to be stationary if |�| < 1.

3.4. Markov Chains

A Markov chain may be defined as a sequence X1, X2, . . . of
random elements of a set, if the conditional distribution of Xt+1

given X1, . . . , Xt depends on Xt only (Brooks et al., 2011). A
state space is then defined such as the set M in which Xi takes
values. In other words, the conditional distribution of any future
state given the past states and present state is independent of the
past states and depends on the present state only (Ching et al.,
2006). A formal definition may be written such as,
P(Xt+1 = i|Xt = j,Xt�1 = it�1, . . . , X0 = i0) = Pij

given that t > 0, where i, j, i0, i1, . . . , it�1 2 M . That is,
the conditional probability of X at time period t + 1 is only
depending on its state at time period t. This is referred to as
the Markov property. By this definition we can see that an au-
toregressive process of order one satisfies the conditions for a
Markov chain.

A transition matrix can be defined as the probability Pij =

P(Xt+1 = i|Xt = j) that a process in state j will be in state
i after one transition (Ching et al., 2006). The n-step proba-
bility matrix is denoted P (n)

ij . A stationary or time homoge-
neous transition matrix is one that does not depend on t. A
non-homogeneous Markov chain has a transition matrix that is
non-stationary in time (Meligkotsidou and Dellaportas, 2011).

3.5. Non-Homogeneous Hidden Markov Models

A hidden Markov model (HMM) is a model where a bivariate
process {(Yt, Xt)} is the basis of a data generation mechanism
(Meligkotsidou and Dellaportas, 2011). We let Xt be an unob-
servable, finite Markov chain that governs the distribution of the
observable process {Yt}. In a standard settings a HMM has one
transition matrix

As described by Meligkotsidou and Dellaportas (2011), in
the non-homogeneous case we assume that in addition to Xt, Yt

also depend on a set of exogenous covariates that are observable
up to time t�1. Furthermore we assume that the hidden process
{Xt} is a non-homogeneous Markov chain with time-varying
transition matrix. A more general explanation may be that the
voting sentiment changes through time, where a model with a
fixed parameter might be limited in its applicability.

3.6. Monte Carlo Sampling

Monte Carlo has progressed from being the most famous casino
in the world in the 50s to a technical term for simulation of ran-
dom processes (Brooks et al., 2011). Consider that one wants to
estimate the expectation of a function µ = E{g(X)} although
an analytic solution is not possible. Simulating a number, n,
of random i.i.d. variables possessing the same distribution as
X one can perform a Monte Carlo approximation of µ such as
µ̂n = 1

n

Pn
i=1 g(Xi).

3.7. MCMC

Markov chain Monte Carlo (MCMC) is essentially merging
Markov chain simulation with Monte Carlo methods. One can
describe it as a special case of Markov chain simulation (Gel-
man and Hill, 2007). The fundamental idea is to draw values of
✓ from approximate distributions and then correct those draws
to better approximate the target posterior distribution P(✓|y). In
that sense, these approximations are improving at each step in
the simulation, converging to the target distribution.

Numerous algorithms have been proposed for MCMC sam-
pling (Hoffman and Gelman, 2014). Some of the most com-
monly mentioned algorithms are Hamiltonian, Gibbs and the
Metropolis-Hastings. What sets the Hamiltonian algorithm
apart from Gibbs and Metropolis-Hastings is that it does not
share their tendency to explore the parameter space via ineffi-
cient random walks. The downside of this method is that it is
demanding to calculate and needs two parameters, a step size
✏ and a desired number of steps L to be specified in advance,
where a poorly chosen value will cause a decreased efficiency.
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The standard algorithm for performing sampling with RStan (an
r package developed by Stan Development Team) is the No-U-
Turn Sampler (NUTS) algorithm which is a development of the
Hamiltonian algorithm (Hoffman and Gelman, 2014; R Core
Team, 2013; Stan Development Team, 2018). Since this sam-
pling method by automatic adaption requires no specified pa-
rameters in advance we rely on the NUTS algorithm.

4. Models

4.1. Frequentist Model

We refer to the frequentist model as Model I. An autoregres-
sive model of order one is specified for comparison with the
Bayesian model. We let X̃t be the smoothed time series ob-
tained by the procedure described in section 3.1. where X̃t rep-
resents the percentage in favour of the left block at time period
t. The index t = 1, 2, . . . , 40 is increasing by approximately
3.92 days increments spanning from 2018–01–09 to 2018–06–
07. We specify a centred model according to eq. 4 as follows,

X̃t � µ̃ = �̃(X̃t�1 � µ̃) + ẽt, (4)

where µ̃ is the expectation of the process X̃t and ẽt is an iid
process with zero mean and V(ẽt) = �ẽ

2. Rewritten we have
that,

X̃t = ↵̃+ �̃X̃t�1 + ẽt, (5)

where ↵̃ = µ̃(1� �̃).

4.2. Bayesian Model

The Bayesian model is referred to as Model II. We let Yt be an
estimate of the observed number of people that would vote for
the left block at time period t. The number of interviewed per-
sons nt is known and we also have an estimate of the proportion
Pt in favour of the left block. The distribution of Yt can then be
derived as a consequence of the following stochastic relation-
ship:

Yt ⇠ Bin(nt, Pt), (6)

where t denotes the time at t = 1, 2, . . . 40 equally spaced
smoothed measurements from 2018–01–09 to 2018–06–07. The
model can then be specified in terms of a latent unobservable
process, a constant and an error term such as,

g(Pt) = ↵+Xt + Zt, (7)

where ↵ is a constant, Xt is the hidden process we would like
to estimate during time period t, Zt is a parameter control-
ling for over-dispersion and g(Pt) is the logit link of Pt. Over-
dispersion is a way of incorporating a larger variance than is
accounted for by the model (McElreath, 2015). When variation
in counts exceeds what would be expected from a binomial pro-
cess one can control for this by allowing differences in constant
terms for each observation. A time varying beta was chosen

upon comparing the fit of this model with one where the co-
efficient was constant. Sigma is modelled using a standard half
Cauchy prior, denoted HC. A Cauchy distribution constrained
to positive values is referred to as a half Cauchy and is often
preferred as a prior for scale parameters (Gelman, 2006). Priors
are chosen as,
�Z ⇠ HC(0, 1),
�X ⇠ HC(0, 1),
↵ ⇠ N(0, 1),
� ⇠ N(0, 1),
Z ⇠ N(0,�Z),
Xt ⇠ N(�tXt�1,�X),
where �Z is the standard deviation of the over-dispersion term
Zt, �X is the standard deviation of the hidden process Xt and
�t is a time varying coefficient.

Knowing that the log odds ratio of Pt is equal to ↵+Xt+Zt,

g(Pt) = log

✓
Pt

1� Pt

◆
, (8)

one can then traverse from g(Pt) to Pt by logit link such that,

Pt = g�1(↵+Xt + Zt) =
e↵+Xt+Zt

1 + e↵+Xt+Zt
. (9)

4.3. Measures of Predictive Accuracy

A reasonable way to evaluate a model is by the accuracy of its
predictions. As noted by Gelman et al. (2014), this accuracy
may be valued in its own right, such as when evaluating a fore-
cast. In a different setting this accuracy may not be of interest
in isolation but rather in relation to another model.

In this study, predictive accuracy is of interest for its own
sake but more importantly for comparison of a Bayesian and
frequentist methodology to election forecasting. A relatively re-
cent approach is to use the odds ratio of a poll compared to the
actual outcome (Jennings and Wlezien, 2018; Arzheimer and
Evans, 2014; Martin et al., 2005). This ratio will be used both
for evaluating the given model but also for comparisons. The
odds-ratio of Model I is based on the predicted votes X̃t (eq.
10) at time period t while the odds of Pt (eq. 11) is the equiv-
alent for Model II. These are compared to the actual votes vt.
Since the election day is two time units from the last smoothed
t, we let t = 64 be the time at which we measure these models
predictive accuracy.

A(1)
t = log

✓
X̃t

1� X̃t

1� vt
vt

◆
(10)

A(2)
t = log

✓
Pt

1� Pt

1� vt
vt

◆
(11)
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5. Results

5.1. Smoothing

Upon smoothing the series using the plugin method for choos-
ing bandwidth it appears that a large part of the variance of the
original series disappeared (Figure 1). A value for � of approx-
imately 30.8 was obtained by this method. By choosing a lower
value, setting � to 4 a larger part of the original series was pre-
served (Figure 2). Since our aim is to model a latent process
hidden in noise a series that is too smooth is not desirable. One
could argue that the smooth series using � = 30.8 already is an
estimate of an underlying process and therefore nothing is left
to model. When fitting the models to the smoothed series using
the plugin method a rather poor fit was achieved which coin-
cides with our suspicions. For this reason we rely on a � = 4,
chosen by eye instead.

5.2. Frequentist Model

An autoregressive model of order one was fitted to the smoothed
series in Figure 2 using maximum likelihood estimation (Table
3). Both the coefficient, �̂ and the mean of the process, µ̃ are
significant at a 0.05 level as suggested by the confidence inter-
vals. The constant ↵̃ is approximately 0.04. We see that �̃ is
positive and takes on a large value although not close to one
which implies that this process is stationary. Upon studying the
auto-correlations of the residuals we found that these for most

Fig. 1. Kernel smoothing using the plugin method, as applied
to yi, the estimated voters favouring the left block. An optimal
bandwidth is obtained by minimising an approximation of the
squared error of the true function and its estimator.

of the part are within the confidence interval which is another
indication of a stationary process.

The predictions for Model I are presented in Figure 3. The
smoothed series is represented by empty dots before the pre-
diction period and crosses during the prediction period while
the predicted values are marked by filled in dots. The election
result is marked by an asterisk. We see that this model copes
remarkably well in predicting the election outcome. Although
lacking the alternating pattern of the smoothed series it seem to
model the overall direction of the trend quite well.

The predicted value at the time of the election is 0.388 while
the actual result is v = 0.407. The predictive accuracy measure
amounts to A(1)

64 = �0.0781. Rounded to two decimals this
model predict an outcome of 0.39.

5.3. Bayesian Model

A non-homogeneous HMM was fitted to the smoothed series in
Figure 2 using MCMC sampling (Table 4). The posterior inter-
val around the intercept ↵ implies that this estimation is signif-
icant at a 0.05 level. The estimate of �Z is approximately one
3rd of the equivalent for �X . This suggests that the variability
of the estimated voters favouring the left block throughout time
is greater than allowed by a model without an over-dispersion
term. The estimates of �t along with 0.80 and 0.95 posterior
intervals are given i Figure 4. We can see that these estimates
are rather similar until the date 2018–05–26 where �t starts to
increase until it peaks at 2018–06–07.

Fig. 2. Kernel smoothing by graphical inspection, as applied
to yi, the estimated voters favouring the left block. Bandwidth is
selected by choosing the value preserving most variation in the
original series while still yielding equally spaced data points.
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Fig. 3. Prediction, Model I. A prediction of the estimated vot-
ers favouring the left block using an autoregressive model of
order one with a frequentist methodology.

Fig. 4. Estimates of �t, Model II. Each dot represent an es-
timate of the parameter �t at time t with 0.80 (light grey) and
0.95 (dark grey) posterior intervals.

The predictions for Model II are presented in Figure 5. The
smoothed series is represented by crosses while the latent trend
is marked by empty dots before the prediction period and filled
in dots during the prediction period. The election results is

Fig. 5. Prediction, Model II. A prediction of the estimated
votes favouring the left block using a non-homogeneous hidden
Markov model with a Bayesian methodology.

Table 3. Estimates and standard errors for the constant term µ̃
and the coefficient �̃ for Model I.

Estimate S.E. LB UB

µ̃ 0.389 0.007 0.375 0.403

�̃ 0.898 0.074 0.769 1.028

�ẽ 0.005

Note: Estimates are presented with an, 0.95 confidence level, interval where LB denotes the
lower bound and UB denotes the upper bound. The abbreviation S.E. represent the standard
error of the estimate.

Table 4. Estimates and standard errors of the estimators of the
constant term ↵, �X and �Z for Model II.

Estimate S.E. LB UB

↵ �0.433 0.000 �0.453 �0.415

�X 0.028 0.000 0.019 0.040

�Z 0.009 0.001 0.001 0.022

Note: Estimates are presented with a 0.95 posterior interval where LB denotes the lower
bound and UB denotes the upper bound. The abbreviation S.E. represent the standard
error of the estimate.

marked by an asterisk. All of the smoothed observations fall
within the 0.95 posterior interval during the prediction period.
The first 9 estimates closely matches the smoothed series. De-
viations become more substantial as time approaches election
day. The predicted value at the time of the election is 0.393

while the actual result is v = 0.407. The predictive accuracy
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measure amounts to A(2)
64 = �0.0573 which means that the

more advanced Bayesian model does not underestimate the re-
sult as much as the simpler frequentist model does at the time of
the election day. Rounded to two decimals this model predict an
outcome of 0.39. Considering the magnitude of the predictions,
these models do not differ substantially.

6. Conclusions
The goal of this paper has been to compare the predictive

accuracy of Bayesian and frequentist modelling in a Swedish
election setting.

First, a model was specified according to a frequentist frame-
work. An autoregressive model of order one was fitted to a
smoothed series of polling data stretching from January to June
2018. The model in question yielded a surprisingly good pre-
diction three months ahead of the election day.

Secondly, a model was specified according to a Bayesian
framework. A non-homogeneous hidden Markov model was fit-
ted where a latent process was specified according to an autore-
gressive model of order one for a period between January and
June 2018. An over-dispersion term was added to account for
a larger variance than permitted by the model as well as a con-
stant. A logit link was used for the overall model. This model
produced an estimate closer to the election outcome than that of
the frequentist model.

Comparing the simpler autoregressive model to a more ad-
vanced hidden Markov model we can conclude that differences
are negligible when predicting election results three months
ahead. These two models yield election day estimates that are
almost identically. Although the Bayesian model underesti-
mates the election outcome to a lesser extent than the frequentist
counterpart, there is a small difference in the odds ratio between
these models. Larger deviations from the smoothed values ex-
ist in the beginning of the prediction interval which implies that
a more advanced Bayesian framework may be more accurate
for shorter prediction horizons. Possibly a precision gain may
be achieved for shorter prediction horizons while predictions
far ahead in the future might not be very accurate regardless of
methodology.

A valid question would be if there is a rationale for Bayesian
modelling in election forecasting since these models are of-
ten more strenuous in terms of computational resources. Even
though these results may not generalise to a wider setting they
still spark an important controversy. Mainly, that of whether the
effort in specifying a more advanced model considering prior
beliefs is justified by the accuracy of the predictions. We make
no such remark but merely note that prior information is not al-
ways a benefit. Perhaps, the main factor in deciding if a frequen-
tist or Bayesian framework is preferred may be the prediction
horizon. Further research may focus on comparing the effec-
tiveness of a Bayesian and frequentist methodology in election
forecasting for different prediction horizons.
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