S THESIS | LUND UNIVERSITY 2018

4

MASTER

A Method for Performance Change

Assessment Before a DBMS Upgrade

d Phung, Tobias Ronge

i

Dav

Department of Computer Science

ing LTH
ISSN 1650-2884
LU-CS-EX 2018-43

mneering

Faculty of Eng

[

A Method for Performance Change
Assessment Before a DBMS Upgrade

David Phung Tobias Ronge
datl3tph@student.lu.se to5420ro-s@student.lu.se
November 20, 2018

Master’s thesis work carried out at Consafe Logistics.

Supervisors: Per Andersson, per .andersson@cs.lth.se
Sverrir Valgeirsson, sverrir.valgeirsson@consafelogistics.com

Examiner: Flavius Gruian, flavius.gruian@cs.lth.se

mailto:dat13tph@student.lu.se
mailto:to5420ro-s@student.lu.se
mailto:per.andersson@cs.lth.se
mailto:sverrir.valgeirsson@consafelogistics.com
mailto:flavius.gruian@cs.lth.se

Abstract

Different SQL implementations may differ in a large number of areas, includ-
ing SQL syntax, output, memory usage and timing. Therefore, a strategy to
evaluate an SQL implementation is needed, in order to allow a database man-
ager to safely upgrade a DBMS or switch to a new system by migrating the
database. In this master thesis, a method for measuring performance on rela-
tional databases is developed and presented.

As part of developing the method, a Windows application has been made in
order to help database managers test and compare different versions. With the
help of the application, performance differences (namely memory usage and
response time) can be evaluated.

Keywords: MSc, SQL, SQL Server, MySQL, DBMS, database, performance, up-
grade, migration, relational database, RDBMS

Acknowledgements

We would like to thank the following Consafe Logistics employees: our supervisor Sverrir
Valgeirsson, Jens Persson, Tommi Arminen and Mikael Owall.

We would also like to thank our supervisor at LTH, Per Andersson as well our examiner
Flavius Gruian.

Contents

(L__Introduction|

(1. Background|
(1.2 Objectives| e
(1.3 Scopeofthesis|

(1.4 About Consafe Logistics|

(1.5 Methodology|

2.2 SQL standard| . . .

2.3 Microsoft’s SQL Server]

/ VIvSO

[2.5 Query optimization|

[2.6 Performance measuri

0

3 Related work
[3.1 Queue modeling|. .
[3.2 Simulation modeling]|

10
10
11
11
12
12
13

15
15
16
16
17
17
17

19
20
21
21
22

25
25
26
27
27
28

CONTENTS

43.1 Client-sidel
M32 Serversidel oo
4.3.3 Verification of performance measuring methods|.
4.4 Tooldevelopment
S Validation
.1 Responsetime|.
0.2 Average memory|
6 Kvaluation|
(/__Conclusion
(71 Futureworkl
(/.1.1 Application|
[/.1.2 Syntax differences|
[Z13 Documentationl

CONTENTS

Acronyms and abbreviations

API - Application Programming Interface - A way of allowing programmers to com-
municate with certain software.

C# - An object-oriented programming language commonly used for developing Win-
dows applications in Microsoft Visual Studio.

DBMS - Database Management System - A system for creating and manipulating
databases.

GUI - Graphical User Interface - What the user sees on the screen and uses to interact
with the application when running an application.

JSON - JavaScript Object Notation - A quite common way of storing and describing
data.

MySQL - Common database management system.

RDBMS - Relational Database Management System - A DBMS using the relational
data model (see section 2.1)

SQL - Structured Query Language - language used for communicating with databases.
DBA - Database Administrator

OLTP - Online Transaction Processing

CONTENTS

Chapter 1

Introduction

In this chapter, an introduction to the thesis is presented. First, a problem background is
described in section "Background”. Then, the objective of the thesis is presented in section
”Objectives” and then, the scope of the thesis is presented in section ”Scope of thesis”. An
introduction to Consafe Logistics - the company this thesis was made in cooperation with
- is presented and finally, the full outline of this report is presented.

1.1 Background

Today, database management systems (shortened DBMS:s) play an important role in many
organizations and businesses. They provide support and increase productivity in various
processes, such as payment, production, decision making, online transaction etc. Some
businesses even have a database at its heart and cannot function without a DBMS.

A DBMS is essentially a piece of software, and just like other software, it changes con-
stantly. A typical release cycle is 18-36 months for major releases with minor updates
in between. [[16] New versions often introduce lots of new features, technologies, better
security and performance. However, according to [[15]], there are a number of risks associ-
ated with an upgrade. Aside from purchasing the new version, whose price often increases
10-25%, the cost for planning, installing, testing and deploying must be taken into account
as well. During an upgrade, the database will likely be unavailable, leading to disruption
of business operations. Previously supported features might be removed leading to appli-
cation errors. Supporting software products might not have immediate support for the new
version. It is important that the risks and benefits of an upgrade are weighted before hand.

Aside from the upgrading process itself, one of the biggest concerns is the performance
of the system. If the system does not behave as expected after the upgrade, it will have
many impacts on other operations. It is natural to expect that a newer version will perform

9

1. INTRODUCTION

better. However, according to [[15]], when the SQL optimization techniques are changed,
it is possible that the new version will generate SQL access paths that perform worse than
before. Furthermore, during the risk assessment process, it is useful if the organization
can gain estimate data about the system performance after the upgrade, as this can help
them weighing between the risks and benefits to make better decisions. The ability to ob-
tain data that reflect just the organization’s system is important since that would give them
the closest estimation. It is therefore useful for the organization if they can run tests of
their own that would provide them with more accurate data to aid in the decision making
process.

1.2 Objectives

In this thesis, we introduce a method to quantify the performance change of a system due
to a DBMS upgrade. The idea was that before an organization performs a DBMS upgrade,
they could apply this method in order to gain some estimated data about how the upgraded
system would behave in comparison to the existing system. The results of applying the
method would hopefully help them to decide whether the upgrade would be beneficial,
how much performance would be gained or lost, or even to detect any potential problems
within certain parts of the upgraded system.

The following questions will be answered: How can we be sure that the upgraded sys-
tem would not perform worse than before? Can we estimate the performance change?

1.3 Scope of thesis

Performance measuring will for the most part follow the black-box approach. It means
that we will look at the DBMS as a whole and from the outside. Certain measures from
the inside might be taken in order to gain accurate results but we will not look into how
different components of the DBMS work and interact with each other internally. This is
due to the fact that a DBMS is very complex and we expect that our objectives could be
achieved without delving too much into the inner working of the system.

Also, due to budget and time limit and the fact that we need to adequately validate our
method, we have chosen to focus on only the following:

* Measurements will be done on response time and memory usage only. Due to lack
of time, correctness of returned results from queries is not controlled. We will also
not check consistency of data in the database after a workload is run against it.

* Microsoft’s SQL Server (see [14] and section 1.5) will be used to validate our method.
This is because SQL Server is widely used, has good support and documentation. It
also has a free version for non-commercial uses. Moreover, SQL Server is also cur-
rently used at Consafe Logistics making it easier for them to help us and to validate
our method.

10

1.4 ABouTt CoNSsAFE LogisTics

* During the thesis, we will focus on relational DBMS. This comes as a direct con-
sequence of our decision to use SQL Server since it is a RDBMS. Another reason
is that the differences among different types of DBMS might make it infeasible to
develop a method applicable for all. A selection is therefore necessary.

* We will focus only on the case of DBMS upgrade and not on the case of DBMS
switching, that is: to move the database to a completely different DBMS. This is
because switching requires us to migrate our test database to another DBMS which
is a very difficult and time-consuming process (our test database is a large database
provided by Consafe Logistics). We will still discuss the possibility of applying our
method to the case of DBMS switching.

1.4 About Consafe Logistics

Consafe Logistics is a company selling and managing warehouse management systems.
Its headquarters is located in Lund, Sweden. According to its website, the company oper-
ates in 30 countries and has approximately 350 employees [4].

As Consafe Logistics deals with warehouse management, databases play a very impor-
tant role for them. They are used to keep track of every product and possible component a
warehouse holds. If a database crashes, the consequences could be devastating. Because
of this, the company is looking for a safe way to upgrade their current database systems,
either to a new version of the currently used system or a completely different system.

Consafe Logistics has big expertise in back-end development and database management,
yet lacks a method for evaluating database management systems after an upgrade has been
performed. If an upgraded version of the DBMS requires more memory, for example,
hardware might need to be upgraded. If the upgraded version runs too slow, it might be
avoided.

1.5 Methodology

Initially, the company had an idea of what the method should be like but there were a lot
of uncertainties around it, such as whether it was feasible or what the detailed steps would
be. Therefore, we started the project by performing a preliminary study followed by the
formulation of the method and its validation.

Preliminary study was done in beginning of the project and took a large portion of time.
The goals were to gather theoretical and empirical data to prepare for the later phases.
Theoretical data was gathered mainly through literature study. Most of these were about
performance evaluation techniques, both theory and the actual evaluations that had been
carried out. This part of the project gave us more understanding about the area, the studies
that had been done and what we could learn from them. Aside from literature study, some
information about the inner working of a modern DBMS, especially regarding the query
optimizer, was obtained through a meeting with an expert from the company. Empirical

11

1. INTRODUCTION

data was gathered through testing, vendors’ documentation and other sources such as web
articles, forums Q&A websites. The most important goal was to determine the feasibility
of the idea the company had proposed at the beginning. In order to obtain more reliable
data, each finding in this phase was verified by empirical testing to see whether it actually
worked. Different tools were also examined to see if they could be used to support the
process. It is worth to note that we were only able to try out free tools.

After the preliminary study, we performed a brainstorming session in order to analyze
the findings. The results showed that the initial idea was feasible and we started to formu-
late it formally based on the data we had gathered up until that point.

After having formulated the method, we applied it to the situation at the company as a
case study. The company provided us with a test database and workload captured from
their test system. During this, we had to tweak our tool a number of times as the actual
workload from the company introduced a number of issues we had not thought of before.

1.6 Outline

After the introduction, the report will go on to the chapter "Theory”, which will give a
brief introduction to relational databases, the SQL standard and some information about
query optimization (techniques used by a DBMS to make transactions go faster).

After this, chapter 3 will introduce related works in the area. Chapter 4 will present results
of our preliminary study and the method formulation.

Next, chapter 5 will talk about how the method was validated and after this, chapter 6
will provide discussion on the results and talk about what remains to be done. This chap-
ter also mentions how syntax and output differences between DBMS:s can be accounted
for.

Chapter 7 provides a short conclusion.

Full instructions on how testing can be performed using the applications is found in the
instructions document.

1.7 Contributions

The contribution of this thesis is a systematic formulation of a database performance eval-
uation method based on capture and replay. In addition, the report provides some insights
into the state of database performance evaluation in general.

12

1.8 WORK DISTRIBUTION

1.8 Work distribution

During the course of the thesis, much work came into experimenting with the DBMS:s
(Microsoft SQL Server and MySQL) and ODBC. This was done by both of us.

Programming was done by both of us, with David responsible for the response time aspect
and Tobias responsible for memory usage.

Both of us met with representatives of Consafe Logistics on regular meetings.

As for the report, the abstract, popular science conclusion, sections "About Consafe Lo-
gistics”, ”Outline” and “"Measuring methods” and chapters ”Theory”, ”Evaluation” and
”Conclusion” was written by Tobias. The sections “"Background”, ”Objectives”, ”Scope
of Thesis”, "Methodology”, "Method Formulation”, ”Capture” and ”Tool development”
and chapter “Related Work™ was written by David. Chapter ”Validation” was written by
both Tobias and David.

13

1. INTRODUCTION

14

Chapter 2
Theory

In this chapter, some theory about relational databases and the SQL language is presented,
giving the reader an overview of how SQL works. This will likely be needed in order to
understand further theory.

2.1 Anintroduction to relational databases

Relational databases are databases relying on a relational model. That is: a database
including different tables where data in a specific table corresponds (relates) to data in
other tables. The usual programming language for relational databases is SQL (Structured
Query Language). By forming commands using SQL, the data in a database can be af-
fected according to the programmer’s wish.

The data in a database is stored in different tables created by the database administra-
tor alternatively database developer. Each table contains different columns, whereas each
column has a specified data type, such as numbers, text or timestamps. Finally, the actual
data is stored as rows (or entries) in the table. Data in different tables can be linked to-
gether with common values, usually called ”id:s”. "Linked together" in this sense means
that queries can select information from different tables at the same time, where (for ex-
ample) a common id is specified in order to link data from multiple rows from the different
tables together. It is this kind of linking which is also known as relations.

An application that allows the creation of manipulation of databases is called a database
management system, or DBMS. Some examples of common DBMS:s are Microsoft SQL
Server [14], MySQL [17], PostgreSQL [21] and SQLite [25].

By using APL:s, the use of a DBMS can be extended to websites, Java, mobile apps and
standard Windows applications, to pick some examples.

15

2. THEORY

There are a large number of implementations of SQL, which differ. SQL seems to be
the by far most used language for relational databases: the 10 most used DBMS:s accord-
ing to [S)] implements SQL or SQL-like language.

In this thesis, only relation databases are regarded.

2.2 SQL standard

SQL has been adopted as a standard language for relational databases by ANSI and ISO/IEC
[19]. It has been standardized in the documents both called "Database Language SQL" (see

[9] and [10]). Unfortunately, the document is not available for free. It is therefore unclear

to us what the standards cover and to what degree it is followed by the different implemen-

tations.

When data is selected from a database, a command known as a query is sent to the DBMS.
The query returns the data, which is presented as a subtable of the original table in the
DBMS. In the query, information about what table(s) to select from, what columns to se-
lect from and possible statements which need to be valid is included.

Not all SQL commands are queries. Other examples of SQL commands regard data in-
sertion, data deletion and script execution. Another name for such scripts are “stored
procedures”.

2.3 Microsoft’s SQL Server

Microsoft’s SQL Server is one of the most common database management systems today,
with the latest major release being SQL Server 2017. According to [5], SQL Server is the
third most used DBMS in the world today.

We have almost exclusively focused on SQL Server during this thesis, together with some
focus on MySQL. This is mainly because of the fact that Consafe Logistics currently uses
SQL Server.

SQL Server turned out to differ quite a lot from other SQL DBMS:s, such as MySQL and
PostgreSQL. These differences were found in the syntax and data types used and the system
also has its own scripting language used as an extension to SQL (known as Transact-SQL
[14], or T-SQL). T-SQL allows for variables and procedural programming, which is oth-
erwise not part of the SQL standard. There is no reason to believe the differences in SQL
syntax would make it harder to apply our method to other DBMS:s.

SQL Server is often distributed with an application known as SQL Server Management
Studio (SSMS). It allows for creation and manipulation of databases. The other way of
doing this is through SQL commands, which can be done with the help of formerly men-

16

2.4 MySQL

tioned Transact-SQL and Microsoft’s Visual Studio. The differences between SQL Server
and other DBMS:s do not in any way mean that the method we develop can not be applied
to other systems as well.

In this thesis, Microsoft’s SQL Server 2012 and 2017 was used on Windows 10 envi-
ronments.

2.4 MySQL

MySQL [17]is an open-source DBMS today developed by Oracle. Development of MySQL
began in 1994 and the system was first released a year after. According to [5], MySQL is
the second most used DBMS today, after Oracle.

In this thesis, MySQL was used in order to serve as an alternate system to SQL Server.
This is partly due to its popularity but also the fact that MySQL is one of the candidates
employees at Consafe Logistics can see themselves use in the future.

2.5 Query optimization

Query optimization are built-in methods used in many different DBMS:s. By letting the
DBMS record information about how the database is used and then use these statistics to
run queries in a more efficient way, performance can be enhanced.

In SQL Server, statistics objects are created in order to enable the query optimizer to “make
the right plan choices based on estimated costs” [13]. Example of such statistics is how
many times a certain value or row has been fetched.

Query optimization caused a potential problem to this project, as such optimizations was
believed to affect the outcome of the applications. This is as the statistics might have
changed over the course of the runs. This means that the preconditions for the DBMS
changes, causing unwanted randomness in the measurements. To solve this problem, the
statistics were cleared before each run using the command "DBCC FREEPROCCACHE”
[14]. Unfortunately, not all statistics were possible to clear. In order to remove statistics
for the indexes, the indexes had to be removed completely [14]].

2.6 Performance measuring

Control and optimization of database systems require good performance models capturing
dynamics during high loads [[11]]. Performance measuring can be done by sending data to
a database according to a mathematical model. In this thesis, however, a more in-depth
strategy has been taken with the aim of actually mimicking real communication, thus cre-
ating a realistic load. This is done by using SQL queries recorded from real database usage
and replay them a large number of times in a test environment. See sections 4.1 and 4.4

17

2. THEORY

for information about the method and an application allowing such queries to be re-played
from a trace file.

18

Chapter 3
Related work

According to [29], there are four main techniques used to evaluate database systems:

* Queuing model: These models view the dynamic behavior of a DBMS as a queue
model with jobs moving around demanding services from the resource stations. This
technique is used to study system throughput, resource utilization and job response
time. Due to the complexity of database systems, a queuing model can usually only
describe parts of the behavior such as concurrency control, data allocation, locking
mechanism etc.

* Cost model: Cost analysis can be used to obtain estimates about storage costs and
query response time. However, according to the paper, cost models fails to account
for dynamic behavior of database systems.

* Simulation modeling: The two above techniques rely on analytical models to evalu-
ate performance which usually falls short due to the complexity of real life systems.
Simulation modeling takes another approach in which it approximates the behavior
of the real system and therefore produce better estimates.

e Benchmarking: This technique compares performance of two or more different
DBMS:s by running the same workload against them. The results can then be used
to compare the systems together.

Among the four techniques above, we were only able to find literatures related to the first
and fourth techniques, namely queuing model and benchmarking. For cost modeling, no
related studies were found, for simulation modeling, two were found. Therefore, in this
section, we will present our findings of the queuing model, benchmark techniques. The
simulation technique will be presented briefly. In addition, we will also present some
studies done to evaluate the performance of different DBMS:s.

19

3. RELATED WORK

3.1 Queue modeling

Software in general can be viewed as a network of queues. The idea was originally pro-
posed by Lazowska [[12]] and later developed into various software performance engineer-
ing methodologies. Since a DBMS is essentially a software system, this approach can
be applied as well. The authors of[20] have done a survey on different queuing models.
The paper divided these models into four categories based on the level of details at which
transactions are modeled:

* Black-box: The database is represented as a single queuing service center. Each
transaction class has an arrival rate and a service demand on the center. The internal
design of the transaction is not represented in the models.

* Transaction processing model: The database is represented by the underlying hard-
ware architecture. Each transaction class is defined by its service demand on com-
ponents of the hardware architecture.

* Transaction size model: Each transaction class is described by number of data ob-
jects it accesses. These data objects can be rows, data pages or locks.

* Transaction phase model: Each transaction is represented by the number of phases
it goes through, e.g. execution phase, data accessing phase.

Models in each of the above categories are suitable for different purposes, e.g. black-box
is better for overall system performance and tractability while transaction size, transaction
phase are better for statement and index performance evaluation. The paper also evaluated
a number of assumptions that most models made and how they affected the results. An
example is that all studies except one assumed data is accessed uniformly. By examining
the workloads from the production databases of 10 of the world’s largest corporations, the
authors pointed out that this was not the case for realistic workload and caused the perfor-
mance results to appear better than they actually were.

A concrete example of a queuing model is in the paper [[11] The authors performed some
preliminary experiments on MySQL to discover whether the system could be modeled as a
M/M/1 system. A M/M/1 system is a system in which there is one single server, incoming
jobs follows the Poisson process and service times have an exponential distribution. By
taking into account load dependency in service time, they were able to modify the system
so that it would correspond with the experiment results in some cases. The same authors
also performed another study on modeling a database server with write-heavy workload
[6]. Such systems are more complicated due to the buffering of disk operations when data
is too large to be stored in main memory. A queue model must capture not only the CPU
dynamics but even the hard drive dynamics. The paper proposed a model consisted of a
network delay, job queue and a dirty page buffer. After passing the network delay, requests
enter the job queue and dirty pages is placed in the dirty page buffer. In order to validate
the model, the authors developed a simulation program of the model and compared the
response time distribution with the results from a testbed experiment. The results from
the simulation fitted accurately with the testbed experiment. Queuing model studies of-
ten focus on a system with a certain characteristics and then model one or two aspects,

20

3.2 SIMULATION MODELING

such as load balancing, page caching, concurrency control protocol, lock acquisition etc.
Assumptions are usually made on other aspects which lead to uncertainty in the results,
as mentioned above. The queue modeling technique is not widely used in industry. The
paper [20] suggests it could be due to the lack of tools and empirical evaluation on their
applicability on real situations.

3.2 Simulation modeling

The simulation approach approximates a real system with a model and then use that model
to gather estimates about the true performance characteristics of the system. In the study
[2]], the authors used a simulation model to show that the interpretation overhead done by
the data manipulation routines can be a significant factor affecting performance. Another
study [8] used a simulation model to show that security constraints can be incorporated
into a real-time database system in such a way that the performance is not significantly
affected.

3.3 Benchmark

Benchmarking is often used to assess the relative performance of different DBMS:s. It is
the act of running similar workloads against multiple systems while measuring the perfor-
mance. Since the workloads are the same, the results give an estimate about how differ-
ent database systems fare against each other. Before performing a benchmark, a system
configuration must be defined. The system configuration consists of the DBMS and the
environment it runs on. Notable factors of the environment are hardware and operative
system [29]].

In order for benchmark results to be comparable, certain measures need to be taken. Run-
ning different workloads against different systems will not yield anything meaningful while
it is difficult to design an workload representative for all systems. This has led to the
forming of the Transaction Processing Council (TPC), a non-profit corporation founded to
define industry standard benchmarks as well as to review and monitor those benchmarks
[28]. The members of the council are among the largest on the market, such as Oracle, Mi-
crosoft, IBM etc. TPC has developed a number of benchmarks suitable for different types
of computing environments. The TPC-C benchmark, for example, is suitable for Online
Transaction Processing (OLTP) systems. It consists of a complex database with nine types
of tables and a workload that simulates multiple real users making transactions towards the
database. These transactions include order acceptance, delivery, payment recording etc.
It simulates a company owning warehouses on different districts [27]. This benchmark is
therefore useful for systems with similar characteristics. Other examples include TPC-H
for decision support systems, TPCx-V for databases running in virtual machines, etc. On
TPC’s website, users can see benchmark results published by different DBMS vendors. It
is worth to note that a higher benchmark value does not necessarily mean an overall better
DBMS. It only means that the published DBMS, running on the published system config-
uration yielded that particular performance value. We cannot draw any certain conclusion

21

3. RELATED WORK

when that DBMS is run on another system configuration [26]].

The findings regarding benchmarking raise an interesting questions. Can we look at the
benchmark values of two versions of SQL Server on the TPC’s website and determine the
performance change after the upgrade? There is certainly a correlation between those val-
ues and the unknown performance change we are looking for. However, without knowing
this exact correlation, it is still difficult to gain a good estimate. Our thought process re-
garding this matter has been that performance depends on four factors: the DBMS itself,
system configurations (operative system and hardware), the database and the workload.
When one of these factors varies, the performance changes. When interpreting the bench-
mark results from the TPC’s website, users need to compare their specific system with
the benchmark in terms of these factors. How similar are the database, the workload, the
system configurations of the organization in comparison to the ones in the benchmark?
This thought process is of course unproven, but it can be reinforced by a statement in the
TPC-C’s specification[27]: "Despite the fact that this benchmark offers a rich environment
that emulates many OLTP applications, this benchmark does not reflect the entire range of
OLTP requirements. In addition, the extent to which a customer can achieve the results re-
ported by a vendor is highly dependent on how closely TPC-C approximates the customer
application. The relative performance of systems derived from this benchmark does not
necessarily hold for other workloads or environments. Extrapolations to any other envi-
ronment are not recommended.”" A similar statement can be found in the specifications of
the other TPC-benchmarks.

A study [24] and a PhD thesis [30] introduced an approach called application-specific
benchmark. This approach incorporates characteristics of the application of interest in the
benchmarking process, thus producing results that closely reflect the behavior of the appli-
cation. It is worth to note that these studies were about software benchmarking in general.
They did not specifically target DBMS:s.

3.4 Evaluation studies

In 2011, a master thesis was done to compare the performance of SQL Server and Ora-
cle in terms of response time and memory usage [18]. A database with four tables was
used. Four types of SQL statements were executed against the database multiple times,
after each time the number of rows in the database was increased in order to monitor the
performance change on growing database. It was not clear how measurements were ob-
tained. The result was that Oracle required times more memory than SQL Server and both
had about the same response time.

In 2012, a study was done to compare the performance of five DBMS:s, namely SQL
Server 2008, Oracle 11g, IBM DB2, MySQL 5.5 and MS Access 2010[3]. A tool was
developed to fill the database tables with 1 000 000 rows of data and then execute the
queries. The database was modeled to simulate a business retail system with a front end to
create invoices, receipts, orders and a back end to manage item stocks. A set of 10 queries
with different levels of complexity was executed against the database. It was unclear how

22

3.4 EVALUATION STUDIES

many times each query was run. The performance aspects that were measured were re-
sponse time, CPU utilization, memory utilization, virtual memory utilization and number
of threads used. These values were obtained by using Windows’ task manager. The result
was that there was no clear winner, different DBMS:s were strong at different aspects.

In 2015, a study was done in order to compare the performance of MySQL 5.6.17 and
SQL Server 2008 in terms of response time[23]]. A database was deployed on MySQL
and then migrated to SQL Server. Then a number of SELECT, UPDATE and DELETE
statements were executed against each of them. Each statement was executed five times.
The paper gives some information about the structure but not the exact statements. The
results were that SQL Server performs better on the statements that were used .

All of the above evaluation work followed the benchmark approach in which they devel-
oped a database to model a certain type of system and then executed a number of statements
against the database while taking measurements. Another common characteristic is that
they all performed the testing on a personal computer in lab-controlled environment. There
are therefore uncertainties in interpreting their results. Can the results obtained by these
studies be translated into other situations, with different system configurations, a different
database and realistic workloads? Here we applied the same reasoning we presented in the
end of section [3.3] about benchmarking.

23

3. RELATED WORK

24

Chapter 4
Results

In this section, we first introduce the method, then we present our findings regarding cap-
turing of an workload as well as how to measure the response time and memory usage.

4.1 Method formulation

The principle of the method is similar to that of the benchmark technique in which we run
the same workload against two different DBMS:s. The difference is that instead of using
synthetic workload and database, we will use the actual ones. In another word, we will use
the database that the organization is using and the workload that their current system has
to handle. This way the characteristics of the specific system are automatically included.

First, a test environment must be set up. The test environment should consist of the old
and new DBMS version, system configurations (hardware and operative system), and a
test database. Then a workload is captured and replayed against the old and new DBMS
versions while measurements are obtained. It is not necessary to do these replays in par-
allel. Finally, the measurements are reported.

We think that the capturing should be done in the production environment as this would
capture the real workload that the system currently has to handle. This, however, can af-
fect the server and therewith the organization’s current operations. Careful considerations
must be made before performing live capturing. Therefore we recommend that the process
should first start with a planning step where the risk of production environment capturing
is determined. The affect of capturing could be assessed first in a test environment.

During the replaying step, the captured workload is run by a tool against the two DBMS:s.
The tool should run the workload as accurately as possible. By accurately we refer to the
order of the requests, the number of connection sessions and the delay between requests.

25

4. REsuLTs

The delay can be obtained from the timestamps of the requests when we captured the work-
load. The connection session information will be mentioned later.

Measuring is done at the same time as replaying. Different options will be presented in
M.3] It is possible to incorporate the measuring task into the replay tool.

Figure [.1] illustrates the process of capturing and replaying. The checkpoint is a backup
of the production server right before the workload is captured, so that the test server can
be restored to this point before the replaying is done.

Production environment

Users Server

Captured Checkpoint
workload
/ Test environment
k4
Replay
Server
tool

Figure 4.1: The process when capturing is done on production
database.

4.2 Capture

In this section, we present our findings regarding the uncertainties we had in the beginning
of the project: whether it is possible to capture a workload. Two approaches were studied,
packet sniffing and DBMS features.

26

4.2 CAPTURE

4.2.1 Packet sniffing

Packet sniffing is the act of listening to traffic flowing on a network. On a broadcasting
network, a machine can be set to promiscuous mode which causes it to silently accept
all the packets on the network, even if they are not intended for that machine [1]. This
technique can be used to for the capturing task. The advantage of packet sniffing is that it
can be run on a separate machine and therefore does not use the server’s system resources.
This technique was studied briefly in the project but we did not go into depth with it.
Instead, we focused on another technique which we will present in the next section.

4.2.2 DBMS features

Instead of capturing SQL data independently from the DBMS as above, the method we are
about to present here rely on features supported by the vendors in order to record activities
happening from the inside the database engine. DBMS:s often provide advanced users,
such as the database administrator and developers, with functionalities to look inside the
system for tuning and debugging. During our study, we found out that these could be used
for the purpose of our capturing workloads as well.

In SQL Server, the dedicated feature used for viewing actions happening inside the DBMS
at real time is called SQL Trace [14]. A trace is a collection of events and data returned by
the database engine. When started, a trace runs in real time among other processes in the
engine and stores recorded information in a table. All events have a number of attributes
represented by data columns in this table. There are about 200 types of events and 60
types of attributes. At the time of creation, users can specify what events and attributes
they would like to be included in the trace. Among the attributes, server process ID (SPID)
can be used to distinguish between different connection sessions. For the purpose of re-
playing, we do not need all of these event and attributes. In addition, capturing fewer data
also reduces the performance impact on the server.

SQL Server provides two methods to work with SQL Trace: through system stored proce-
dures or the tool SQL Server Profiler. There are four system stored procedures to work with
traces: sp_trace_create, sp_trace_setevent, sp_trace_setfilter, sp_trace_setstatus [[14]. These
can be called from Transact SQL script and sent from an application, suitable for writing
custom tools specific to certain needs. For most other general purposes, the tool provided
by Microsoft, SQL Server Profiler, is sufficient [14]. It provides same results as the four
mentioned procedures with the addition of a GUI. Once done, a trace can be saved as a
file format native to SQL Server or as an XML file. It is also worth to mention that the
feature SQL Trace is in maintenance mode and may be removed in the future versions of
SQL Server. Instead it is going to be replaced by another feature called Extended Events,
a lightweight performance monitoring system, although it still includes all the function-
alities of SQL Trace [14]]. In this thesis, we have chosen to focus mainly on SQL Trace
instead of Extended Events because we are examining the case of upgrading from an old
version to a new version. Capturing must therefore be done on an old version of the DBMS
which does not have the new Extended Events feature.

27

4. REsuLTs

4.3 Measuring methods
4.3.1 Client-side

The client side refers to what is run at the computer running the application.

If the DBMS runs on the same computer as the application, timing and memory can be
measured client-side. This might be the case in a test environment. Memory is measured
by looking at the memory usage of the corresponding Windows process of the DBMS,
while timing can be measured either by profiling (letting the DBMS provide timing statis-
tics) or by letting the application measure it. If the latter is chosen, the ”stopwatch”-class
of the .NET framework is used by the application.

4.3.2 Server-side

Server-side refers to the DBMS side of the system, while the DBMS is located on a remote
computer.

Since the application runs on client-side only, there is currently no way of measuring mem-
ory server-side built-in to the application. This is as there is no functionality in SQL Server
allowing memory allocation to be extracted while there is also no functionality in the ap-
plication allowing the user to find memory of processes on the remote computer.

The latter functionality could be added in the future, for example by the creation of a
server-side application which would read the memory of the DBMS process on the remote
computer and then send it on the network to the client.

Timing analysis can hopefully be done by the tool using SQL Server Profiler as ODBC
allows for remote connections. It has, however, not been tested. The network communica-
tion is in this case handled by ODBC and timing data is transferred from the SQL Profiler
to the application using an SQL request.

4.3.3 Verification of performance measuring meth-
ods

During the course of the thesis, an application was programmed which measured mem-
ory and timing performance of databases. Timing values was extracted from the DBMS
while memory was measured using methods built into the .NET framework. Currently,
This application was proved compatible with SQL Server as well as MySQL and possibly
compatible with other common DBMS as well.

The application measured timing according to a method selected by the user: either using
application-side measuring or by using a built-in profiler. The second option is likely to
be more accurate, as it would extract actual CPU time rather than the total timespan.

28

4.4 ToOoL DEVELOPMENT

In order to extract memory usage, process monitoring was used. By calling methods in
the .NET framework, processes could be listed and selected and measurements could be
extracted. By letting a separate thread take measurements on memory while the applica-
tion executed SQL commands, average and maximum memory values could be found.

As the methods were proven successful, both of these techniques for measuring perfor-
mance were implemented in the final application as well.

4.4 Tool development

During the project, we developed a tool to automate the process of sending requests to
the DBMS while taking measurements of the response time and memory usage. Initially
we wanted to write the tool in Java, but since the company had better expertise in C#, we
decided to use C# instead. This way they could better help us during the process if we
encountered programming problems. There are four main tasks performed by the tool:
loading of captured workload, replaying, measuring and reporting. The total lines of code
for the tool is 1041, obtained by the code metric function in Visual Studio 2017.

Loading of captured workload

Before, the captured workload can be replayed, it must first be loaded together from the file.
How this is done depends on the format the trace file was stored in. In our implementation,
we used the format native to SQL Server instead of XML. The reason was because SQL
Server supplies a function to allow easier reading of this file, the function returns a table
that can be used directly by the application. If we had used XML file, we would have
had to concern ourselves with the matter of parsing the file. The supplied load function is
sys.fn_trace_gettable and can be used as part of a select statement. The following is the
SQL statement that we used to query the content of the trace file. It returns the events and
attributes necessary for our replay strategy.

SELECT EventClass, TextData, EventSequence,

StartTime, EndTime, SPID, DatabaseName,

ApplicationName, HostName

FROM sys.fn_trace_gettable (pathToTraceFile)

WHERE EventClass = 11 OR EventClass = 13
OR EventClass = 14 OR EventClass = 15
OR EventClass = 17

As can be seen on the select part of the statement, the event type, text data, start time, end
time, server process id (SPID), database name, application name and host name of each
event were read from the trace file. The event classes 11, 13, 14, 15 and 17 correspond
to SQL:BatchCompleted, RPC:Completed, Audit Login, Audit Logout and Existing Con-
nection events. This selection is not necessary if the trace file only contains these data.
However, we did not want to impose such requirements on the capturing process.

29

4. REsuLTs

Replaying

Before each time the workload is run against the database, we performed a backup restore
to restore the database to the same state. This requires that a backup must first be created
and stored somewhere. Our tool will not do this, instead, it must be done manually. The
procedure to create and revert a backup is fairly simple is is described here [[14]. The tool
requires location of the backup in order to work. Through practical testing, we found that
restoring does not work if there are existing connections to the database. All connections
to the database must be closed first. The task of killing existing connections is done auto-
matically by our tool.

Each event type is represented by a separate class. Each class contains its own logic to
handle the execution of the corresponding event type. The Login class, for example, cor-
responds to the Audit Login event type and will create and open a new connection object
when executed. The connection objects are of type OdbcConnection and contains neces-
sary functions to execute SQL batches or stored procedures against the DBMS.

After the workload is loaded into a table, it is turned into a list of event objects and stored in
a ExecutionContext object. The ExecutionContext class contains common data needed by
each event object in order to execute itself. Aside from the the event list, another important
data stored in the context object is the map of connection objects and their corresponding
server process ID (SPID). Each connection to the server is given a separate SPID even if
they come from the same application. This map is therefore used to maintain the same
number of connections to the server as when the workload was captured. Each time an
event is about to execute itself, it checks to see if its SPID is in the map. If yes, it uses
the corresponding connection, if not, it opens a new connection. The event list has the
same order as the loaded table and is executed in order by only one single thread. This
preserves the chronological order of the workload. Another option could be to use one
separate thread for each connection and run them concurrently. If the work done by each
connection is independent from each other, this should not cause any errors.

During testing, we discovered a number of difficulties regarding replaying of the work-
load. Some of these problems were solved by introducing a preprocessing phase. The
preprocessing is run after the trace file is loaded and before it is replayed. The following
presents the problems we encountered and how we chose to solve them.

* Auto-generated stored procedures: We found that in the trace file, the Audit Logout
was always preceded by a exec_reset_connection stored procedure. Through testing,
we were able to determine that the procedure was auto-generated, it was unclear
whether by the DBMS or by ODBC. Our solution was to ignore all of these event in
the preprocessing phase.

* Related events: Some of the stored procedure events have output variables that store
values returned by the DBMS. These values can later be used in other stored pro-
cedures. Similar to above, implementing this would require a parser to identify the
output variables and store their returned values. Since we did not have time to im-
plement a parser, we had decided to ignore these events from the trace file in the

30

4.4 ToOoL DEVELOPMENT

preprocessing phase. The amount of such events was very small compared to the
rest of the workload so the impact should be minimal.

Measuring

Response time measuring is done by using a class in C# called StopWatch. The StopWatch
object is stored in the ExecutionContext. Each event class starts the stopwatch right before
sending a request to the DBMS and pauses it right after a response has been received.
This is to reduce the inaccuracy of the measurements due to execution overhead. Memory
measuring is done by monitor the process SQL Server is run on. A separate thread is
dedicated for this. It checks the memory usage of the process every 200 ms and store the
results in an array. After the replay is finished, the average of array elements together with
the min and max values are reported.

Reporting

In order to show the progress in real time, we have decided to implement a small GUI with
two charts for response time and memory usage. Each chart shows measurement values
obtained so far and the current average. The GUI also provides additional data such as
standard error and 95% confidence interval. The goal of this GUI is to help detecting
problems with distribution of measurements in real-time as well as to decide when to stop
the replay. At the end of the process, all values are written to a file in the .cvs format for
storage, final analyses and other reporting activities. This part of the program used two
external libraries. LiveChart was used for drawing charts and MathNet was used to obtain
the t-value used for confidence interval calculation.

31

4. REsuLTs

32

Chapter 5
Validation

In order to validate the method, we needed a database and a workload. These were pro-
vided by Consafe Logistics. First, a test database was sent to us from Consafe Logistics
and imported into our SQL Server instances. Then, a trace file recorded by Consafe Lo-
gistics was sent to us. With the help of the trace files, our application (see 4.4) was run
with the test database.

The testing environment was a personal computer Acer Aspire V5-552, running Win-
dows 8.1 Basic Edition. The CPU type was AMD A10-5757M APU 2.5GHz with a total
number of 4 cores. The workload was run 30 times against the SQL Server 2012 Express
Edition and SQL Server 2017 Developer Edition. After each run, the total response time,
average memory, min memory and max memory were stored in a file.

5.1 Response time

Figures [5.1] and [5.2] show the response time of the 30 runs for the 2012 respective 2017
versions. The gray lines represent the average values. For the 2012 version, this value is
20487 ms while for the 2017 version, it is 19217 ms. Table presents the benchmark
values obtained from the TPC-website. Initially, we searched for results of the TPC-C and
TPC-H benchmarks. However, there was no TPC-C result for either the 2012 or 2017 ver-
sion of SQL Server. Therefore only the TPC-H benchmark results are presented. QphH
(the last column) is the metric of the benchmark, called the composite query-per-hour per-
formance metric.

Although the differences in system configuration make it difficult to obtain a fair com-
parison, we can still observe from the table that there is a very large difference between
the 2012 and 2017 versions. Our results, however, showed a very small difference. As we
looked closer into the workloads from Consafe Logistics and the TPC-H benchmark, we

33

5. VALIDATION

discovered that the TPC-H queries were more complex. The database used by the bench-
mark is also much larger than the database Consafe Logistics gave us. This led us to think
that the TPC-H benchmark comes closer to the top processing capability of the 2012 ver-
sion, causing it to perform worse. The Consafe Logistics workload is lighter and can be
handled with approximately the same ease by the two versions. This, of course, is a very
simple explanation. An in-depth study of the differences between the two workloads and
the databases is outside the scope of this thesis.

T

10 11 12 13 14 15 16 17 18 15 20 21 22 23 24 25 26 27 2B 29 30

35000

:

0

Response Time (ms)
= P
¢ 8§ ¢
o ——
o
W
B I ——
L
o

=i

Run

Figure 5.1: SQL Server 2012: The total response time values over
30 runs. The gray line is the average.

35000

20000

15000
10000
5000
0

2 3

1

Response Time (ms)

5 6 7

B % 10 11 12 13 14 15 16 17 18 1% 20 21 22 23 24 25 26 27 28 19 30

Run

Figure 5.2: SQL Server 2017: The total response time values over
30 runs. The gray line is the average.

34

5.1 RESPONSE TIME

Database | System Operating CPU #CPUs | #Cores | #Threads | QphH
Software System Type
Microsoft Microsoft
Intel Xeon
SQL Server| HP Proliant | Windows
Platinum
2017 DL580 Server 2016 4 112 224 1479749
8180M
Enterprise | Genl0O Standard
2.50GHz
Edition Edition
Microsoft Microsoft
Intel Xeon
SQL Server| Lenovo Windows
Platinum
2017 ThinkSystem| Server 2016 4 112 224 1336110
8180M
Enterprise | SR950 Standard
2.50GHz
Edition Edition
Microsoft Microsoft
SQL Server| HP ProLiant | Windows Intel Xeon
2012 DL980 Server 2012 E7-4870 8 80 160 158108.3
Enterprise | G7 Standard -2.40 GHz
Edition Edition

Table 5.1: TPC-H benchmark results with scale factor 10000.

35

5. VALIDATION

5.2 Average memory

Figures[5.3] and [5.4] show the average memory of the 30 runs for the two versions. Again,
the gray lines represent the final averages. We have not found any benchmarks regarding
memory usage.

Average memaory (MBE)

Run

Figure 5.3: SQL Server 2012: The average memory values over
30 runs. The gray line is the final average.

Ayverage memaory (MB)

Run

Figure 5.4: SQL Server 2017: The average memory values over
30 runs. The gray line is the final average.

36

Chapter 6

Evaluation

In this chapter, an evaluation of the resulting method is made. It will be explained what
the uses are of the method, and its advantages and drawbacks.

It is worth mentioning that performance is affected not only by the DBMS but also by
hardware. For applications including databases too large to store in main memory, hard
drive dynamics will influence performance in high loads. [7] Further, operations can be
buffered at the server in order to improve efficiency [7] (see [22] for more information on
network file system buffering). Because of this, it should be concluded that the environ-
ment which the testing is performed on should be the same environment (or a very similar
one) as the one actually used in reality. The main reason for not using the actual system
already in place would be that it is currently in use.

Also noteworthy is that large fluctuations in timing may occur, as the DBMS needs to
deal with buffering and caching (see [7]]). It is therefore particularly important that the test
runs a large number of times, in order to even out the results and obtain the true maximum
values. An approximation of the number of times needed is hard to know and has not been
obtained by us.

The project only focused on SQL Server. The applicability on other DBMS:s is not yet
clear. This means that the method currently cannot be used for database switching, such as
when migrating a database from SQL Server to MySQL, or upgrading a completely other
DBMS such as MySQL. Future work can be done here, which will be discussed more in
chapter 7.

Problems might occur when letting the application parse the trace files. If complications
happens, human intervention might be required. Should exactly everything in the trace file
be replayed?

37

6. EVALUATION

Another problem which might show up when switcing database vendor is that queries
will need to be changed in order to match the target DBMS:s SQL syntax. After experi-
ence from working with this thesis, it has turned out that this is impossible to automate
completely unless every single possible DBMS is studied first. This conclusion was drawn
after finding out about the differences between common DBMS:s. If such a study indeed
was made, it might be possible to achieve such an application, but it would require a lot
of work and would be far outside the scope of this thesis. It should be noted that changing
queries in trace files is currently not supported by our tool.

38

Chapter 7

Conclusion

The performance measuring application was successful in measuring timing and mem-
ory usage for SQL Server, thus allowing for the completion of our method of measuring
and comparing performance of different DBMS versions. As such, it is believed that this
application could be used on the market or in research. An advantage to this method in
comparison to, for example, the method of using a proxy which mirrors SQL commands
to a test server is that the commands, when they have been recorded, can be replayed a
large amount of times and without unnecessary delay (that is: as fast as the DBMS can
handle them).

It is recommended that these applications are to be further developed, for example in order
to be compatible with other DBMS:s. This should be possible to achieve, although it is
hard to safely say this as more information about how the other DBMS:s work is needed.
See the next section.

7.1 Future work

Future work remains mostly in further development of the test application. This will be
explained in detail in section 7.1. The issue of finding logical differences between DBMS
vendors will also be discussed in section 7.2. Finally, different approaches for evaluating
database management systems might be attempted as well, as will be described in the last
section of this chapter.

39

7. CONCLUSION

7.1.1 Application
Feasibility study on other DBMS

One interesting question worth studying is whether the application used can be extended
to be compatible with other database systems, such as MySQL, PostgreSQL and DB2.
While this would not solve the issue occurring when switching between different systems,
it would still allow for safer upgrades of the compatible systems.

In order to find out more about this topic, documentation of different DBMS:s needs to be
studied. During the course of this thesis, MySQL'’s tracer was briefly studied in order to
let a test application extract timing values. As such, it is clear that such a tracer exists for
MySQL and that it includes the different queries that have been executed on the system.
In conclusion, it is already clear that our tool could be extended to be compatible with
MySQL.

Comparing outputs

Yet an other way of further developing the application is to allow for checking of dif-
ferences in output. That is, when the database has been upgraded, the application would
check if the output of selected queries is still the same as before. This is quite an important
task and could probably be implemented without too much work being needed.

7.1.2 Syntax differences

Syntax differences refers here to the differences in SQL dialects, such as names of data
types and stored procedures. It appeared to us that it is impossible to automate the finding
of such differences with an application. Instead, the database manager would be required
to manually study the new DBMS and compare it with the old one.

7.1.3 Documentation

Finally, a safe (but time consuming) way of evaluating syntax and output differences be-
tween completely different DBMS:s (released from different vendors) is simply to make
a grand evaluation of all common DBMS:s while documenting the results. For every
method available to one ore more DBMS:s, an evaluation report could tell whether the
specific DBMS differs from the SQL standard (or, if not included in the standard, the most
common way) and if so, how. This could all be concluded in a number of tables, allowing a
developer to quickly see if the new system differs from the former one and on what aspects.

A problem with this solution is that the different vendors frequently release new versions
of their systems, which would mean that the report would need to be updated very fre-
quently. Still, it might serve as a quick guide to allow the database manager to see where
main differences lies, even if the report is not all up to date.

40

Bibliography

[1] Sabeel Ansari, SG Rajeev, and HS Chandrashekar. Packet sniffing: a brief introduc-
tion. IEEE potentials, 21(5):17-19, 2002.

[2] AJ Baroody and David J DeWitt. The impact of run-time schema interpretation in
a network data model dbms. IEEE Transactions on Software Engineering, (2):123—
136, 1982.

[3] Youssef Bassil. A comparative study on the performance of the top dbms systems.
arXiv preprint arXiv:1205.2889, 2012.

[4] Consafe Logistics. About us. https://www.consafelogistics.com/
about-us/\.

[5S] DB-Engines. Db-engines ranking - popularity ranking of database management sys-
tems. https://db-engines.com/en/ranking.

[6] Manfred Dellkrantz, Maria Kihl, and Anders Robertsson. Performance modeling and
analysis of a database server with write-heavy workload. In European Conference
on Service-Oriented and Cloud Computing, pages 184—191. Springer, 2012.

[7] Manfred Dellkrantz, Maria Kihl, and Anders Robertsson. Performance modeling
and analysis of a database server with write-heavy workload. 2012.

[8] Maysam Hedayati, Seyed Hossein Kamali, Reza Shakerian, and Mohsen Rahmani.
Evaluation of performance concurrency control algorithm for secure firm real-time
database systems via simulation model. In Networking and Information Technology
(ICNIT), 2010 International Conference on, pages 260-264. IEEE, 2010.

[9] ISO/IEC. Database language sql, 2003. ANSI/ISO/IEC 9075:2003.
[10] ISO/IEC. Database language sql, 2003. ISO/IEC 9075:2003.

[11] Maria Kihl, Gustav Cedersjo, Anders Robertsson, and Bertil Aspernis. Performance
measurements and modeling of database servers. In Sixth International Workshop on

41

https://www.consafelogistics.com/about-us/
https://www.consafelogistics.com/about-us/
https://db-engines.com/en/ranking

BIBLIOGRAPHY

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

Feedback Control Implementation and Design in Computing Systems and Networks,
2011.

Edward D Lazowska, John Zahorjan, G Scott Graham, and Kenneth C Sevcik. Quan-
titative system performance: computer system analysis using queuing network mod-
els, volume 22. Prentice Hall Upper Saddle River, 1984.

Ami Levin. Sql server: Auto statistics cleanup, 2013. https:
//blogs.msdn.microsoft.com/mvpawardprogram/2013/09/
09/sgl-server—auto—-statistics—-cleanup/.

Microsoft. Microsoft sql documentation. https://docs.microsoft.com/
en-us/sqgl/.

Craig Mullins. Database administration: the complete guide to practices and pro-
cedures. Addison-Wesley Professional, 2002.

Mullins, Craig S. The importance of keeping your dbms up-to-date.
MySQL. Mysql, 2012. https://www.mysgl.com/.

Margesh Naik. Database management system performance analysis and comparison.
2011.

Oracle. Sql standards. https://docs.oracle.com/cd/B28359_01/
server.111/b28286/intro002.htm.

Rasha Osman and William J Knottenbelt. Database system performance evaluation
models: A survey. Performance Evaluation, 69(10):471-493, 2012.

PostgreSQL. Postgresql: The world’s most advanced open source relational database.
https://www.postgresqgl.org/.

Stephen Rago, Aniruddha Bohra, and Cristian Ungureanu. Using eager strategies to
improve nfs i/o performance. 2011.

A Saika et al. Comparative performance analysis of mysql and sql server relational
database management systems in windows environment. [International Journal of
Advanced Research in Computer and Communication Engineering, 4(3):160—164,
2015.

Margo Seltzer, David Krinsky, Keith Smith, and Xiaolan Zhang. The case for
application-specific benchmarking. In Hot Topics in Operating Systems, 1999. Pro-
ceedings of the Seventh Workshop on, pages 102—-107. IEEE, 1999.

SQLite. Sqlite home page. https://www.sglite.org/index.html.

Steve Callan. Database = benchmarking. https://www.
databasejournal.com/features/oracle/article.php/
3462091 /Database-Benchmarking.htm.

42

https://blogs.msdn.microsoft.com/mvpawardprogram/2013/09/09/sql-server-auto-statistics-cleanup/
https://blogs.msdn.microsoft.com/mvpawardprogram/2013/09/09/sql-server-auto-statistics-cleanup/
https://blogs.msdn.microsoft.com/mvpawardprogram/2013/09/09/sql-server-auto-statistics-cleanup/
https://docs.microsoft.com/en-us/sql/
https://docs.microsoft.com/en-us/sql/
https://www.mysql.com/
https://docs.oracle.com/cd/B28359_01/server.111/b28286/intro002.htm
https://docs.oracle.com/cd/B28359_01/server.111/b28286/intro002.htm
https://www.postgresql.org/
https://www.sqlite.org/index.html
https://www.databasejournal.com/features/oracle/article.php/3462091/Database-Benchmarking.htm
https://www.databasejournal.com/features/oracle/article.php/3462091/Database-Benchmarking.htm
https://www.databasejournal.com/features/oracle/article.php/3462091/Database-Benchmarking.htm

BIBLIOGRAPHY

[27] Transaction Processing Council. Tpc-c specification documentation.
http://www.tpc.org/tpc_documents_current_versions/pdf/
tpc—c_v5.11.0.pdf.

[28] Transaction Processing Council. = Tpc history. http://www.tpc.org/
information/about/history.asp

[29] S Bing Yao and Alan R Hevner. A guide to performance evaluation of database
systems. 1984.

[30] Xijaolan Zhang and Margo Seltzer. Application-specific benchmarking. Harvard
University, 2001.

43

http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
http://www.tpc.org/information/about/history.asp
http://www.tpc.org/information/about/history.asp

DEPT. OF COMP. SCI. | LUND UNIVERSITY - FACULTY OF ENGINEERING | PRESENTATION 2018-11-07

THESIS Evaluating and Comparing Performance of Database Systems

STUDENT David Phung and Tobias Ronge

SUPERVISOR Per Andersson (LTH), Sverrir Valgeirsson (Consafe Logistics)

EXAMINER Flavius Gruian (LTH)

A Method for Performance Change
Assessment Before a DBMS Upgrade

POPULAR SCIENCE CONCLUSION David Phung and Tobias Ronge

In this thesis, instructions for how to perform such impact analysis have been pre-
sented, including an application for performance measuring. Such an analysis would
make the database developers and administrators feel safer that the database works
as before, after an upgrade has been done. And while the area of such impact analysis
is huge - it includes timing, memory allocation, output and syntax differences - the
work of this thesis can be seen as a step forward in establishing methods for studying

these impacts.

Databases are used in a lot of different industries
today. If a database fails because of, say, logical
errors or lack of memory, there can be devastating
consequences. There are several known database
management systems available today and many of
them are frequently updated. Sometimes, even a
switch to a completely different system might be
wished for. However, such upgrades and switches
are likely to have impacts on the functionality
and performance which is why impact analysis
should be considered before an upgrade is fully
accepted.

In the thesis, a method based on capture
and replay - that is, capturing commands sent to
the database and replay them - is presented for
performance testing, more precisely for measuring
memory and timing. Using a test application pro-
grammed specifically for this thesis, performance
testing can be done on different versions of a well
known database management system. By first
recording database communication in a so-called
trace file, the communication can be replayed on

the database a large number of times, resulting in
a realistic simulation of real communication while
making performance measurements during the
execution. The application allows for multiple
sequential runs and also presents statistics on the
results.

Advantages of the method is that the tester
can choose the test environment on which to run
the commands, along with the fact that the set of
commands can be run over and over again. Using
the application, the developer does not need to
temporarily take the original database system out
of action in order to test it.

The application has been programmed with
the intent of allowing future programmers to
contribute to the code, allowing for more complex
testing and more database management systems
to be compatible.

	Introduction
	Background
	Objectives
	Scope of thesis
	About Consafe Logistics
	Methodology
	Outline
	Contributions
	Work distribution

	Theory
	An introduction to relational databases
	SQL standard
	Microsoft's SQL Server
	MySQL
	Query optimization
	Performance measuring

	Related work
	Queue modeling
	Simulation modeling
	Benchmark
	Evaluation studies

	Results
	Method formulation
	Capture
	Packet sniffing
	DBMS features

	Measuring methods
	Client-side
	Server-side
	Verification of performance measuring methods

	Tool development

	Validation
	Response time
	Average memory

	Evaluation
	Conclusion
	Future work
	Application
	Syntax differences
	Documentation

	Bibliography
	Tom sida
	Tom sida

