S THESIS | LUND UNIVERSITY 2017

4

MASTER

D)
m D] H < N

0] %H
&= 85 2%
= 2 & i
s 8 g 39
Q 22 3
O 2
S ol
5 5
— £ 3
5 .

(oF
= 3 Y

—-—? -.~——-—- 7

& | _.__“__._.___.__.__._.__
-3 b
®) o) ‘
Sz}
o S | &
B & =2,
= &8 |3
L - 9]
5 8 | =
A en | =

Purity checking for reference attribute grammars

Mikael Johnsson (dat12mj2)
dat12mj@student.lth.se

July 5, 2017

LUND

UNIVERSITY

Master’s thesis work carried out at Lund University .
Supervisors: Gorel Hedin, gorel.hedin@cs.lth.se
Examiner: Boris Magnusson, boris.magnusson@cs.lth.se

Abstract

JastAdd is a meta compilation tool. It supports Reference Attribute Grammars (RAGs)
and other declarative features for easy computation of abstract syntax tree properties
in compilers. The attributes values are computed automatically on demand, and are
defined by relations, called equations. JastAdd provides caching and optionally parallel
evaluation for evaluation of attributes. The control flow is managed by JastAdd and
thus not specified by the programmer. Therefore, the result must be invariant of exact
order of execution. This requires that the equations are without side effects, i.e., pure
otherwise unexpected behaviour might occur. This is not checked by JastAdd and upto
the programmer to guarantee. For large programs keeping the code side effect free can
be hard and side effect might find their way into the code and may cause subtle errors
under specific situations.

I explored the possibility to use existing purity checkers for JastAdd. However, no
existing tool was directly applicable, and I have therefore implemented a prototype purity
checking tool for JastAdd and Java programs. The solution is then tested on several
programs and the performance evaluated.

Keyword side effect, Reference attribute grammar, Abstract syntax tree, purity checker,
declarative programming, JastAdd

Acknowledgements

I thank my supervisor Goérel Hedin for suggesting the subject for the thesis and for
commenting on the report. I thank Niklas Fors for providing an example program to test
my tool on.

Contents

1

2

Introduction

Research Work

Motivating Examples

Background

JastAdd
ExtendJ
Purity Analysis
Degrees of Purity
Purity checkers

4.1
4.2
4.3
4.4
4.5

Existing purity analysis
5.1 Type checkers .

5.2

5.3

5.1.1
5.1.2
5.1.3
5.1.4
5.1.5
JML
5.2.1
5.2.2
5.2.3

JPure .

IGJ ..

Type Inferer . .

5.3.1
5.3.2

JPPA .
Purano

5.4 Summary . . .

Proposed architecture and annotations

6.1 The specifications for the system
6.2 Solution overview
6.3 Annotations . .

6.3.1
6.3.2
6.3.3
6.3.4
6.3.5
6.3.6
6.3.7
6.3.8

@Secret
@QPure .
@Local
@Ignore
@Fresh
@Freshlf

@NonFresh

Q@Entity

10

12
12
13
13
15
17

19
19
20
22
24
26
27
29
29
31
32
33
33
33
37

40
40
41
45
47
49
49
o1
52
53
54
54

7 Solution Implementation

7.1 Purity Annotator
7.2 Purity Checker

7.2.1 Checking QPure

7.2.2 Checking @Fresh

7.2.3 Checking @QFreshIf

7.2.4 Checking @Secret

7.2.5 Checking @QLocal

7.2.6 Checking QEntity

8 Applying the annotations for JastAdd
8.1 Abstract Grammar and Internal methods
8.2 Methods and Equations oo
8.3 Primitive Attributes
8.4 Collection Attributes
8.5 Circular Attributes
8.6 Non Terminal Attribute
8.7 rewriteandrefine
9 Evaluation

9.1 Running on Exampleso oL
9.2 Running on existing grammarso
9.3 Performance

10 Discussion

11 Related Work

12 Future Work

13 Conclusion

Bibliography

56
56
58
69
70
72
72
72
73

74
76
7
78
79
83
85
87

89
89
90
92

94
96
96
97
99

1 Introduction

Information on the purity of functions is useful for several applications. A method is
considered pure, for this project, if it doesn’t generate any externally visible side effects.
This would correspond with allowing so called "benign" side effects [1] like internal caching
of results and some changes to the own state opposed to more strict definitions.

Purity information can help with code optimizations and code management by giving
a guarantee both to compilers and programmers that methods that are pure won’t affect
other parts of the program [1, 2]. This would allow them to be reordered more freely and
make the program behaviour easier to analyse. Clausen showed how purity information
can be used to perform compiler optimisations like dead code elimination, loop invariant
code motion, constant propagation and common sub- expression elimination [2]. P.
H. Nguyen also developed a side-effect analysis algorithm and tested it by performing
compiler optimizations comparing with a different technique [3]. Purity can also help
detect programming mistakes by failing to verify the absence of side effects when invoking
a method intended to be side effect free. [1, 4].

The meta compilation system JastAdd [5, 6] uses a language that extends Java
with declarative programming functionalities to enable the use of (Reference Attribute
Grammars) RAGs. RAGs are an object-oriented extension of attribute grammar, a
formalism described by D. Knuth[7] to calculate properties declaratively on abstract
syntax trees. Knuth considered only the calculation of values but RAGs allows the use of
references. References back into the abstract syntax tree (AST) allows the constructions
of graph structures on top of the AST which enables different formulations of various
types of analysis. G. Hedin has shown how RAGs be used for name and type analysis
[8, 9].

JastAdd also supports several other declarative features beyond RAG with rewrites
and circular attributes [9]. Circular attributes enable short formulations of several
iterative problems including live analysis for variables. A full description of the features
supported by JastAdd are listed in the documentation available on JastAdds homepage
www.jastAdd.org [6].

Several aspects of JastAdd uses on-demand calculation and value caching assuming the
calculations can be performed in any order with the same result. The execution order
is not specified by the programmer but the order in which attributes are requested. To
maintain the program behaviour well determined, side-effect free programming paradigm
is desired for these aspects and a purity checker could assure this. Currently, JastAdd
doesn’t check if there are any side effects and simply trusts the programmer. There is a
risk of introducing subtle errors that can be hard to detect.

The primary goal of this project is to attempt to use a purity checker to generate
informative warnings about potential side effects in JastAdd generated code.

An JastAdd specification may contain normal Java code apart from the RAG. The
side effect freeness requirement is only on the RAG components of the specification. This
implies that three different sections of the JastAdd specification needs to be checked
based on the assumptions made by JastAdd.

1. The specification of all attributes must be at least pure. Depending on the type of
attribute it may also have to return a newly created object.

2. Java code invoked during attribute calculation must be pure. This is necessary for
the attribute to pure.

3. Java code which uses an attribute may not "mutate" the "attribute value" but may
do anything otherwise. A object obtained via an attribute may not be change but
not necessary objects contained within such an object. The members of a lists may
or may not be part of the "value" and the parameters.

The developers may then want to check code beyond the demands of JastAdd to guard
an against mistakes or exclude some Java to allow some occasional exceptional behaviour.
I decided to use annotations to specify the different restrictions to be imposed on different
parts of the specification.

During this work, I check several previous purity checkers but they all have some
obstacle to be readily applied for JastAdd checking. I then designed a new purity checker
and annotation system to address these problems and tested it on Java and JastAdd
programs.

The main purpose of this work is to introduce side effect analysis for JastAdd and
generate warnings when there are side effects in code that are should have none. This
includes the enumerated aspects and those the programmers specify.

2 Research Work

JastAdd generates Java code from the RAG specification. I decided to analyze the
generated Java code instead of JastAdd source. This choice was motivated by two
primary reasons. Firstly, since any purity checker for JastAdd must interpret Java since
JastAdd uses both Java syntax and RAG syntax. Secondly a lot of previous work about
side effect analyze has been done for Java as opposed to very little for RAG. It is then
possible to compare the results with previous tools and research in the field. The research
question, if any previous tool could easily be used to do the side effect analysis and
generate the warnings, is only meaningful when there are previous tools.

To answer it the main challenges for performing purity analysis for JastAdd generated
code must be explored. The addressed questions in this thesis could be summarized in
the following points:

1. What aspects of JastAdd needs to be checked for side effects? How are these aspects
translated into Java?

2. What challenges are there to perform side effect analysis for JastAdd?

3. Can a previously developed tool be directly used for the analysis? If not, how can
a suitable tool be developed?

Most of this work considered the third point. I concluded that none of the tools are
easily converted for the job and programmed a new solution for achieving side effect
analysis for JastAdd. I test the previous tools in chapter 5 and chapters 6,7 presents
an idea for an solution and describes my implementation. The tool is then applied to
JastAdd constructions in chapter 8 which address part of the other question.

Contributions

This work provides several contributions to the field. The main points are listed below. I
begin the report by presenting in section 3 some motivating examples and the sort of
error message that could be provided. This is followed by some tool introductions and
consents in section 4. From chapter 5 onwards the main work begins.

In section 5 I test of previous side effect analysis tools. These including JPure [10],
Efftp [10], Reim/Javari [11, 12] , IGJ [13] , ChAsE [14] , OpenJML [15] and Purano
[16] to check if they work for the application. This consist of check capabilities such
as which Java version they support and if they can handle some of the problem
working with JastAdd entails. Providing an outline of obstacles for the appliance
to the problem.

In chapter 6 I present a solution for how to side effect check for JastAdd. For the
solution I design a Java annotation system based on the annotations introduced
in previous work combining aspects from JPure, OpenJML and Efftp along with
extensions capable to expresses the required levels of purity for the problem.

Modification of JastAdd to generate the annotations for RAG aspects so these can
be purity checked. Annotations for the plain Java method are however not included
and must still be in part annotated manually since only weakly inferred. I present
these modifications in section 7.

I Implement a basic purity checker for Java as an extension to ExtendJ [17, 18]
providing features for the application. In section 7 I present this implementation.

I compare the designed purity checker with the most closely related tool JPure and
Efftp in sections 11 where I discuss related work.

In section 9 I tested and attempted to test the purity checker on several compilers
and Java programs. The tested programs include my own "SimpliC" compiler
produced during the compiler course EDA65 [19], ExtendJ (previously JastAddJ)
[17, 18], "forslambda", a small lambda calculus compiler by Niklas Fors who works
on the Bloggi language and compiler also made with JastAdd [20] , JastAdd2 [5]
and Fuji [21]. T also run the checker on itself.

In the end of the report in section 10 I shortly discuss my work and some problems or
help T had. Followed by discussion of related work and suggestions for future works in
sections 11 and 12. I finishes with a few concluding words about the results in section 13.

3 Motivating Examples

JastAdd doesn’t check for side effects. This fact leaves open the possibility to make
mistakes that might cause the code to work differently depending on the order attributes
are evaluated in. This could result in unexpected bugs during some executions and
triggered by changes in far separated parts of the program.

Example 1: A erroneous example of equations with side effects on a field. The order of
counter() respective action() invocations effects the answer.

public static int ASTNode.counter=X;

syn int ASTNode.counter () {
return counter++;

syn int ASTNode.action () {
if (counter % 3)
return 1;
if (counter % 2)
return 2;
return O;

}

In example 1 is a simple illustration of a set of equations where one of them has a side
effect which effect the other. The attribute "counter" breaks the rules and has a side
effect. Depending on if the attribute "counter' is evaluated before or after the attribute
"action" a different result will be obtained from "action".

The example illustrates the possibility of using fields to influence the result of attribute.
A possible scenario might be that field is given a correct value in one "initializing method"
then used in other places. In this case attributes should not have been used since the
assumption of evaluation order independent result doesn’t hold.

It would be helpful if a warning message was generated for side effects like these stating
where the problem is and what the problem is. For example a suitable error message
would be as shown in example 2 which is the warning format I used for the purity checker
I developed.

10

Example 2: A warning message for the side effect in example 1

In the synthesised attribute ASTNode.action()
declared in

lineNumber:counter++; contains side effects at counter.
Write to static field counter.

in AST/ASTNode. java:ASTNode

Another typical mistake is modification of a cached object. An attribute might calculate
a mutable set which another attribute might then add a new element to. If the first
attribute is later accessed after the modification the changed set is provided. The attribute
no longer follows its specification. This scenario is exemplified in example 3.

Example 3: A erroneous example of equations with side effects. The second equation
largerlist() modifies the first list obtained from list()

private List<Object> list;

syn List<Object> ASTNode.list () {
return list;

}

syn List<Object> ASTNode.largerlist () {
List<Object> list=list();
list.add (this);
return list;

}

Important special case for JastAdd is (Non Terminal Attributes) NTAs. A NTA is
an attribute which adds a node or sub tree to the AST for which attributes can be
calculated. The subtree must be fresh meaning newly created otherwise it will get the
wrong parent. Attributes might depend on the nodes parent and consequently won’t get
correctly calculated. In example 3.

Example 4: NTAs must be Fresh. The example is only correct if r() creates a new Node
and is used exclusively by the NTA equation

syn ASTNode ASTNode.r () = getChild(1l);

// An ordinary reference attribute r that points to another
// node in the AST.

syn nta ASTNode ASTNode.f () = r();

// Wrong. The attribute f is an nta and its equation must
// compute a fresh ASTnode object.

11

4 Background

This chapter will describe some concepts used in this thesis along with the compilers
JastAdd and ExtendJ.

I begin by presenting JastAdd which is the tool the purity checking should be combined
with. After that I describe the ExtendJ Java compiler which I used as a basis for my
purity checker. I then describe some theory about purity analysis, side effects, and purity
checkers.

4.1 JastAdd

JastAdd is a meta compilation tool designed for constructing easily extendible compilers,
analysers and similar tools.

JastAdd constructs classes for an (Abstract Syntax Tree) AST according to a specified
grammar. An AST is a tree representation of a language. Different analysis is then
enabled by inspecting the AST for specific properties. To simplify this process JastAdd
supports inter-type declarations of both Java constructs and RAG attribute along with
other constructs for performing calculation concerning the AST efficiently [22].

Inter-type declarations are properties like fields and methods inserted into Java classes
when declared separately from the class declaration. This is done in a similar way to
the approach in AspectJ [23]. The constructed Java class is the interweaving of all the
declarations. The use of inter-type declarations allows for behaviours to be modularized
into modules called "aspects". Using aspect oriented programming, new behaviours can be
later simply added in new modules. An aspect is a container for a set of inter declarative
declarations. Example 5 shows an example of an inter-type declaration where a field is
inserted into a class from an aspect. The resulting class is then shown in example 6.

Example 5: A fields for the C class is declared separate in an aspect

public Class C{

aspect |
public int C.x=10; // Interdeclarative declaration

Example 6: The resulting generated Java class

public Class C{
public int C.x=10;

}

The RAG constructs are a type of inter-type declarations that defines Attributes.
Attributes are like virtual methods. Their concrete implementations are called equations
which must be side effect free methods][6].

12

Jast Add provides extra behaviours depending on the type of attribute and JastAdd
settings which simplify working with the AST. The attribute can get extra code for
caching result or traversing the AST to obtain or construct the value. JastAdd will
convert RAG constructs to the necessary Java methods to calculate the value when the
analyser is generated.

JastAdd constructs a tool by weaving together an abstract grammar description for
an AST, along with normal Java source and then insert the Java code for all inter type
declarations found in aspects. This generates a collection of Java classes representing the
AST. A parser can be used to construct ASTs as objects of these classes.

All the RAG attributes should be purity checked to avoid any potential problems with
unexpected behaviour when the JastAdd system calculate them. The control flow is not
decided by the programmer so the code must support any control flow.

4.2 ExtendJ

ExtendJ is an extensible Java compiler implemented using JastAdd developed at Lund
University under many years available at http://www.extendj.org/ [18].

The use of JastAdd allows a new extension to be introduced using intertype declarations
in new modules for the additional features. ExtendJ is built in layers of extensions
successively adding support for new language features. Initially made for Java 1.4 but the
first extended to Javab by extending the features in javad by G. Hedin and T. Ekman|24]
and then later from Java 6 to Java 7 by J. Oquist and G. Hedin [17] . Erik Hogeman
introduced basic Java 8 support in a new module for his 2014 thesis [25]. ExtendJ is also
still being maintained[18].

Several extensions for ExtendJ are listed on ExtendJ home page[18] for example a
checker for non-null expressions was made by T. Ekman and G. Hedinekman2007pluggable.
Another extension called "multiplicity"[26] added some syntactic sugar for dealing with
collections allowing among other things the add assignment operator (+=) for collection
typed expressions. Finally, there 2 different extension providing control flow analysis to
the compiler called Intraflow[27] and SimpleCFG.

4.3 Purity Analysis

Purity analysis solves the problem of discovering methods without any visible side effects
or with limited side effects. Purity analysis/inference is also known as side effect analysis
and the two terms are interchangeable [11].

According to David Pearce[10] and many other, side effect analysis is made most
commonly using whole program interprocedural points-to analysis. This type of analysis
is costly since they produce lots of data. A. Rountev [4] and A. Salcianu JPPA used
variants of this approach along with many other.

Many different versions of points-to analysis have been applied working with different
precisions and cost depending how accurately objects are tracked. There is those that are
field based, variable based, type based in both flow insensitive and flow sensitive variants

13

to only mention a few. The flow sensitivity version considered the control flow within
the methods while the flow insensitive doesn’t.

The more sophisticated represent access chain more accuracy either "k-limiting" ap-
proaches which truncate after k-access levels or generalisations representing potentially
infinite access chains like Geffkens generalized access graphs (GAG) [28] or A. Deutschs
approach [29]. An access chain is a sequence of method calls or field accesses. For
example "m().x.y.z" is an access chain of length 4. A 2-access level approach would
truncate and merge that access with "m().x".

Two of the most well-known algorithms for points-to analysis are Andersen’s algorithm
[30] and Steensgaard’s algorithms [31]. Andersen and Steensgaard calculate flow insensi-
tive information with a cubic respective linear runtime [32]. Steensgaard’s achieve almost
linear time by being both field insensitive and having the aliasing relation be reflexive
and transitive. This allows the creation of an alias-graph where variables are managed in
group such that they only aliases one other group. The size of the graph is thus linear
with number of variables. Andersen’s however allow each variable to alias every other
requiring a larger graph leading to the increased precision but longer runtime.

No matter which approach are use however it’s not complete since it has been shown
that points-to and alias analysis in general is undecidable according to Ramalingam
and Landi [33]. This follows due to that the problem of deciding if any given path in a
program is executable is undecidable. This mean that any approach necessary must make
approximations and either fail to validate some valid programs or pass some invalid.

Method calls with dynamic dispatch can be modelled using class hierarchy analysis
which tries to determine the type of each expression. Pearce used a variant called static
class hierarchy analysis (SCH) which uses the static type of an expression to resolve
which method can be invoked by a method call [34].

Pearce suggested the use of a modularly checkable type and effect system. Which would
introduce that annotations summarise the conditions that must hold at function barriers,
thereby removing the need for interprocedural analysis. By doing so the annotations
determines how different variables may be used.

A type and effect system is any type system for reasoning about a program’s com-
putational effects. They have been applied for tracing a variety of different effects for
different forms of analysis [35]. Examples including throwing exceptions and checking if
eventually caught, data race analysis and memory manipulations and usage of IO and
many more [35]. A type system works by introducing new annotations to the language
and these annotations would describe effects and allowed behaviours.

Type and effect system such as Pearce’s can limit the scope of inter procedural analyses
by imposing conditions that hold on function boundary. Evaluation of each method in
isolation is thus possible with only few facts having to cross boundaries. This allows
for faster analyses inspecting only a part of a program instead of the whole program.
Annotations can summarise the state of affairs when the associated language element is
accessed or called.

The tools I checked have used several different forms of type and effect systems and
many more has been researched. This includes reference immutability in the tool Javari
[12] which has been combined with object immutability in IGJ(Immutability Generic

14

Java) [13] and a ownership system in OIGJ(Ownership Immutability Generic Java) [36].

Reference immutability is related to side effect analysis by preventing side effects by
having immutable references. An immutable reference can’t be used to induce any object
modification side effects. A method’s side effects can thus be limited by restricting the
allowed changes via specific pointers. IGJ and OIGJ extends reference immutability with
object immutability and ownership system. These extensions allow greater restrictions on
aliasing and how values may be modified not to mention providing protecting for objects
and not only pointers [36]. An immutable object is not modifiable from any pointer
and the restriction provided by IGJ is deep and applies to all object reachable from an
immutable object [13]. It is an indirect way of representing purity and the degrees of
purity that can be represented are different from approaches more specialised for purity.
REIM [11] is the only tool which explicitly formulated a purity definition used reference
immutability.

Other tools use a memory access type systems that divides the heap into regions.
These systems then constrain the side effects of methods to within regions or datagroups.
An example is the datagroup based approach by Leino[37]. Plenty of research have been
made but I find very few implementations for Java. Those I found focus mainly for
checkers for Java Modelling Language (JML)[38].

Depending on the type and effect system used, the data flow across method and inside
the method can be simplified.

4.4 Degrees of Purity

The authors of previously made tools have used several slightly different degrees of purity.
They also disagree about what should be considered a side effect [1]. Different definitions
exist about what constitutes a side effect. One definition is that a side effect is a change
in some quantity not created by the current method.

Authors agree that modifying global field which is persistent memory are a side effect
and direct assignment to local variables are not. Interpretation of parameter modifications
are also a question that divides previous authors.

They also differ according to Stewarts article[1] in which effects they are interesting.
Not every author considers throwing an exception or writing and reading IO as side
effects. It depends on the type of application they had in mind for the system and the
security concerns of the system. M. Finifter, A. Mettler used in Joe-E[39] that most
effect are not allowed but an exception counts as a method result and may be passed
along. A few exceptions are treated differently such as those related to running out of
memory which may not be cached or thrown in Joe-E since they give too much state
information. In another application throwing exceptions might be unacceptable for pure
methods. Joe-E is a subset of Java to make reasoning about security properties of such
systems or components easy.

In the articles [1, 40, 41]by R. Davies, X. Haiying, D. Naumann and others various
definitions of side effects and purity are evaluated. The give different names for the levels
of purity.

15

I have found 3 main different degrees of purity mentioned by several authors multiple
times that I will reference in this work.

The first is strong purity that means the method doesn’t perform any side effects at
all. This means it doesn’t assign any fields, create any object, call any native code, do
1O operations or calls any method that isn’t strongly pure. This corresponds with the
strong purity used by Neumann [42, 41]. Haiying used a similar version of strong purity.
Functional purity is a what M. Finifter, A. Mettler called it for their use with it in Joe-E
[39]. The method may not read any field either.

Identification of strongly pure code is simple but too restrictive to be practically useful
for most applications.

In many cases programmers are interested in weak purity and most tools can validate
some aspects of the less restrictive weak purity.

Weak purity is achieved by allowing creation of new objects via weakly pure constructors,
changing the newly created state of these objects and calling other weakly pure methods.
This allow much more behaviours but requires more checking. Aliasing is now a problem
since the checker needs to know that a given variable points to a newly created object.

Java Modelling Language (JML) is a language for declaring detailed "design by contract"
(DBC) specifications where formal behaviour annotations declare the properties which
should hold before and after a method’s execution [38]. The DBC method allows
programmers to reason about program behaviour and serves as a documentation about
what exactly a method does given specific input relations.

Example 7: JML example with a pre- and post-condition. The precondition declares that
the input parameter x must be less than 10 and the postcondition declares
that the result is less than "10*m()."

/+@ public

@ requires x<10
@ \result <10#*m()
@x/

public int JMLmethod (int x) {
return m() *x;

}

/*@Pure x/

public int m() {
return 1;

}

Pre-and post-conditions such as displayed in the example specify the method’s behaviour
and how it should be used. For such conditions to have well defined meaning and be
verifiable, JML demands that methods used in the JML contracts must be pure. In the
example, the method "m" must be pure.

The JML checkers (ESC/Java2, OpenJML)[38, 43] checks for at least partial weak
purity with the @Pure notation. The Checker Framework [44] which is a framework for
creating type checkers comes with a collection of type checker. Among these included

16

checkers there is a checker for an annotation call @SideEffectFree which is equivalent
to JMLs Pure. Still the tests are so conservative that the verification is turned off by
default.

Observable purity further relaxes purity by allowing a method to manipulate its own
section of the hidden program state that is not visible from any allowed method call
or field read by any client code on any visible object. It is this level of purity that is
required for JastAdd since we want to support value caching and on-demand evaluation.

4.5 Purity checkers

Several different approaches to purity analysis for Java have been explored and have
resulted in different tools. The tools I found and experimented with had different
capabilities. The tool either contains a type checker, only does inferences or provides
both type checking and type inference. For a few type systems I could find both a type
checker and then a type inference tool.

Tools with only inference capability can only tell which methods are pure in a program.
They don’t check any annotations. These tools might be difficult to use for JastAdd due
to the absence of any way to exclude side effects to cache fields. JastAdd also has side
effects to fields dealing with attribute calculation such as keeping track of number of
cycles modifying a circular attribute and if cycles occurs in the non-circular.

The Purity checkers works either with source code or bytecode. The purity checkers
for bytecode would be able to work for both Java and Scala.

The type checkers which could be used for purity analysis are either designed to directly
detect purity or which can obtain purity information by looking at some other properties
such as reference immutability [12], object immutability [13] and ownership system [36].
There are also checkers that uses restriction of assignable locations.

The tested checkers can be collected into categories depending on the kind of type
system the use. One category would be those that uses reference immutability, including
Relm, Javari, IGJ and OIGJ. All four was part of the Checker Framework and inspired
each other with very similar annotations. Then there are those checkers that uses
assignable heap regions which would include the OpenJML, ChAsE and in some sense
JPure, Efftp and Purano. The last three uses a different but similar concept of modifiable
localities. The tools JPure, Efftp, Purano and OpenJML provides additional check
beyond modified locations.

Javari [12] is one of the reference immutability system and has an expressive represen-
tation for reference immutability differentiating also different levels in lists and arrays.
The type checker however requires quite vast annotations of the source code and the
Javarifier inference tool must be used to provide them. Javari was the original inspiration
of all the other system I tested based on reference immutability.

The type checker Relm|[11] simplifies the type system from Javari. IGJ and OIGJ
extends reference immutability with object immutability and an ownership system.

David. J Pearce made the tool JPure[10] that introduced and uses the concepts of
freshness and locality of objects to analyse purity. Freshness is a concept introduced to
denote that an object represent new state and assignment to its fields thus doesn’t cause

17

any observable side effects. This was to avoid having to check the whole programs as a
single unit.

The analysis in JPure is based on static class hierarchy analysis (CHA). Pearce’s
JPure inspired Efftp[45] for Scala that uses similar locality and freshness concepts but
with generalizations and extensions. Efftp uses a flow insensitivity analysis for easier
integration with several existing type checkers.

Alexandru D. S™alcianu and Martin C. Rinards developed the tool "JPPA" [46] which
uses a "pointer and escape analysis" that is supposed to also generate which field or
function that caused a method to become impure. JPPA was made already in 2003.
M.Geftkens developed a checker tool in 2014 which has similarities with JPPA depending
on a similar but modified pointer analysis.

Purano by Jiachen Yang and others [16] is an interesting more recent tool which tries
to balance both modularly checkable methods and the need for inter procedure checking.
Purano preserves the ability to trace the side effects between methods.

This is just a small selection and there are several others that have described similar
and alternative methods for example combining static with dynamic analysis. Several
JML tools provide dynamic detection of purity by inserting runtime checks in the code.

I have however only considered tools which perform statical analysis since the goal is
to warn during compile time and not during runtime testing.

18

5 Existing purity analysis

In this section I will test different purity checkers and attempt to use them for JastAdd.
I will briefly explain the tools and some of the strengths of each tool but I focus mostly
on the obstacles to their usage. I try to determine if the tools can be applied for the
difficult situations imposed by JastAdd which I describe in more detail when I go over
all JastAdd constructions in chapter 8.

5.1 Type checkers

The previous tools that could be used potentially by JastAdd applications are type
checkers for effect systems [45] and reference immutability [11, 12, 47] possibly combined
with object immutability [13] and ownership models [36]. JML tools such as Chase,
ESC/Java2 and OpenJML support a memory access type system dividing the heap into
datagroups and declaring them assignable or not.

Only Reim of the type systems Reim, Javari, IGJ and OIGJ have been directly applied
for finding side effect free methods but all mentioned system can use the same or a
more flexible version of method purity than the one used in Reim since Reim is the least
expressive of these. These immutability type systems were compared by Johan Ostlund
and Alex Potanin in their 2013 paper [48].

Most of the used type systems have a way to declare that a method modifies only a
specific part of the object’s state. Javari, IGJ and OIGJ does that with their @assignable
annotation and JML also has the @modifies annotation that can be checked with
ChAsE[14]. JPure uses @Local for the same job. This functionality is useful for handling
the caching in example 9 by having marked the only fields allowed to be modifications.

The idea when using any of these type checkers is to generate side effect warnings for
JastAdd. The idea is that JastAdd generates the necessary annotations for the particular
type system to type check if the generated code is sufficiently side effect free.

Example 8: JastAdd for the Cache Example. The compute functions should be pure

aspect Example(
syn XType CacheExample.X () = new XType () ;
syn XType CacheExample.Y () X();

19

Example 9: Cache Example to annotate. The compute functions should be pure

public class CacheExample {
XType X_value;
boolean X calculated = false;
public XType X () {
if (X_calculated)
return X_value;
X_calculated = true;
X_value = X_compute();
return X_value;
}
public XType X_compute () {
return new XType () ;
}
public XType Y_compute () {
return X();

}

To compare the different tools, I will annotate the small cache example shown in
example 9 for each tool since handling caching in some way is necessary to handle
JastAdd generated code.

This will show how the example can be annotated as pure and if the tool can handle
the example at all. Further it is interesting to note how many annotations it takes.
JastAdd contains many features that are more complicated to handle than this cache
example such as managing circular calculation where a circular attribute must be allowed
to call itself.

5.1.1 JPure

Pearce’s JPure[10], made in 2011, uses the annotations @Pure , @Fresh and @Local for
its purity type system. @Pure is placed on methods that are side effect free and @Fresh
is placed on side effect free methods that return fresh objects. An object is fresh if it
represents newly allocated state and is the state that an object is in after its constructor.

When creating a new object, a pure method is allowed to change certain fields in that
object. These fields are said to be in the locality of the new object. These fields in turn
refer to new objects, the locality of those objects transitively belongs to the locality of
the original object.

The @Local annotation is placed both on fields that belong to an object’s locality and
on methods that only modify local fields. Pearce defines Locality rules that assure that if
the parent object is fresh then so are all child objects in the locality. The calling context
can thus modify the locality of objects that it has created without destroying purity [10].
In the article Pearce demonstrates how the locality concept allows JPure to handle the
use of iterators and methods that store intermediate results in fields but it only gives

20

support for detection of weakly pure methods.

In the intended application for JastAdd-generated code the analysis must handle value
caching but JPure is not up to the task. We would need to be able to annotate X() in
the following example as @Fresh or @Pure but that won’t type check in JPure since X()
changes X wvalue and X calculated.

Example 10: JPure cache example. The compute functions should be pure.

XType X_value;
boolean X calculated = false;
@Pure public XType X () {
if (X _calculated)
return X_ Value;
X_calculated=true;
X_Value = X_compute () ;
return X Value;
}
@Pure XType X_compute () {

}
@Pure XType Y_compute () {
return X ();

}

We could try with annotating X_ calculated and X_ Value as @local. However, then
X() must also be @Local to be allowed to change them.

The protection against side effects is then unsatisfactory. For example, if Y__compute()
modifies X_ wvalue, the type checker will not catch this error since we can’t distinguish
between the assignments to any @local field. Any calling context that calculates an
attribute would be forced to either create a new ASTNode or to also be annotated with
@local. The forced annotations are in the example 11.

Example 11: JPure cache example. Forced annotation due to type rules.

@Local XType X_value;
@Local boolean X_calculated = false;

@Local public XType X () {

if (X _calculated)
return X _Value;

X_calculated=true;
X_Value = X_compute () ;
return X Value;

}

@Pure XType X_compute () {

21

}
@Local XType Y_compute () {
return X ();

}

In order to handle the cache example satisfactory more annotations would be needed
to be introduced. Introducing some heuristic detection of cache semantics along with a
white list to solve the problem would probably be difficult and still other problems would
remain.

The major drawback is the weaknesses of JPure’s underlying compiler. JPure have
the limitation of being old and build on an old version of a custom compiler also built
by Pearce Jkit [10] that has only limited support for new Java constructs and doesn’t
support packages in given Java source but only in library class files. The authors of Reim
found JPure fragile in their comparisons [11]. Error messages could however be generated
from JPure by providing a list of methods that should be pure and then receive which
methods that forces impurity of them.

Despite the limitations some form of comparison on examples that doesn’t need to use
caching or much benign side effects could still be made.

JPure also has the limitation of not giving any considering of arrays. Here there is
need for an extension of the rules. When is an array fresh? Are the internal position
part of the arrays locality or not? There is two ways that JPure could be extended to
deal with arrays in order to work with variable length parameters. Alternative one is to
have the element part of the locality and fresh as long on its known to only contain fresh
objects. The other alternative is introduce extra annotations to include or excluded the
inner objects.

The need to address this problem is because arrays are commonly enough used
to preform simple changes to many objects. The question about arrays freshness is
particularly problematic in relation with variable length arguments which is currently
not addressed by JPure. Therefore, JPure would need a significant overhaul in order be
usable. A similar limitation exists with library methods for which it is not possible to
annotate fields in library classes. This leaves the programmer with no way to specify if
internal objects in a return collection may be changed or not.

In general, I think JPure’s annotations system is quite decent for the application but
some extensions are needed to deal with more cases and for Java constructions which has
been introduced since the tool was made. I think it’s better to reimplement than try to
modify JPure due to the limited underlaying compiler.

5.1.2 Efftp

Efftp [45] is a tool inspired by JPure for analysing Scala source. It generalizes and tweaks
the type system of JPure in several ways. In Efftp every method can have a parametrized
locality annotation for the returned object in which the locality invariants hold. The
locality annotation denotes the locality the method returns and not the localities modified
as JPure does. Instead there is a new annotation for modifications @mod which denotes

22

the localities that may be changed inside the immediate method body and thus fills the
role of JPure’s @Local. A method annotated @mod(this) would be allowed to do the
equivalent to JPure’s @Local method. Efftp allow modified locations to be specified more
accurately than JPure with an annotation like @mod(this.z,a,b) giving the exact location.

Efftp can return all the localities the method returns with flexibility @loc(this.x) or
parameters @loc(a,b,c). It holds that if every object referenced in the locality annotation
is fresh then so is the returned value. Therefore, more methods could be determined as
pure based on the more detailed locality information.

Efftp contains other differences compared to JPure such as every method can be
annotated other effect annotations to denote which type of effect the methods perform.
Efftp provides annotations for throws and IO operations as well. A fresh annotation
however is included and freshness is only inferred internally.

The fundamental problem is that Efftp [45] works only on Scala source as far as I can
determine which make it difficult to use with the Java source generated with JastAdd. I
have failed to run Efftp for Java source in my attempts. It would have been possible to
get around this if Efftp worked on the bytecode which is shared by Scala and Java but
that doesn’t work.

I have failed to run the cache example on Efftp since it’s in Java source. Efftps
annotations system can however in theory deal with the example. In example 12 is a
hypothetical annotation since I have only successfully executed a Scala version.

Example 12: Hypothetical Efftp annotated cache example.

@unchecked XType X_value;
@unchecked boolean X_calculated = false;

@mod () Qloc() public XType X() {

if (X _calculated)
return X _Value;

X_calculated=true;
X_Value = X_compute () ;
return X_Value;

}

@Pure XType X_compute () {

}
@Pure XType Y_compute () {
return X ();

}

Efftp’s annotation system allows for more flexibility than JPure but it is still unclear
how arrays are handled. The problem is that it works on Scala source and I can’t find
any easy way of going over to Java source or binary.

The tools for compiling Efftp was hard to find and dated so it took significant time just

23

to get Efftp running. There is no obvious problem with the annotation system as far as I
understand from the paper [45] if it worked with Java source or java binary. However, I
can’t really determine since I haven’t tested Efftp much since my understanding of Scala
is poor. Furthermore Efftp wouldn’t be able to check that nonterminal attributes are
fresh since there doesn’t seem to be any fresh annotation.

Since Efftp won’t run on Java code it can’t be used as a purity checker for JastAdd.

The annotation system has its advantages over JPure and disadvantages if fresh
real doesn’t exist. The other extensions and innovations with the @mods and @local
annotations are a reasonable way to deal with more methods and expose more information
to the programmer.

5.1.3 Reim

Reim uses a simplification of the Javari type system that deals with reference immutability.
Javari was not tested for obtaining purity but Javari is the more advance type system. At
least the same purity information could be derived using a similar definition of purity as
Relm [11] the authors of Relm observed however that Javari pays for its expressiveness
by being significantly slower and the Javari inference tool Javarifier[49] is much costlier
to run.

Reference immutability is related to purity analysis in that side effects occur when
fields are assigned by the wrong pointers. Strong purity would then be equivalent to no
assignments and lesser forms of purity would be allowing only certain pointers to assign
certain values. An immutable pointer can’t change any field’s value and only provide
read access to the pointed data.

The author for Reim adopts the definition that a pure method is a method such that all
its formal and informal parameters and the return parameter are immutable pointers and
can be Type annotated as @Readonly or are primitive values. The informal parameter is
the implicit "this" reference to the current object.

Reim also uses @Polyread in polymorphic cases when it might be immutable or mutable
depending on calling context. @Mutable indicate that a value can be change via the
pointer. The Reim variant of the previous example would be to replace @Pure with
public @Readonly XType X(@Readonly this.Class this,@Readonly ...).

Example 13: Reim cache example.

import checkers.inference.reim.quals.x;
public class Reiml ({
XType X_value;
boolean X _calculated = false;
public @Readonly XType X (@Readonly Reiml this) ({
if (X_calculated)
return X_value;
X_calculated = true;
X_value = X_compute();
return X_value;
}
public @Readonly XType X_compute (@Readonly Reiml this) ({

24

return new XType();

Reim Error:
AnnotatedTests_ReimJavari\ReimSmall\Reiml. java:8: warning:
incompatible types.

X_calculated=true;

A

found : @Mutable

required: @Readonly Reiml
AnnotatedTests_ReimJavari\ReimSmall\Reiml. java:9: warning:
incompatible types.

X_value = X_compute();

found : @Mutable

required: @Readonly Reiml

This doesn’t type check for the same reasons as for why JPure can’t handle it. The
adopted view of purity is too conservative for our adaptation. To get the example to

type check the types would have to be changed so that X() has this mutable as shown in
example 14.

Example 14: Reim cache example.

import checkers.inference.reim.quals. *;

public class Reim2 {
XType X_value;
@Mutable boolean X _calculated = false;

public @Readonly XType X (@Mutable Reim2 this) ({
if (X_calculated)
return X_value;
X_calculated = true;
X_value = X_compute();
return X_value;

public @Readonly XType X_compute (@Readonly Reim2 this) {
return new XType();

public @Readonly XType Y_compute (@Readonly Reim2 this) ({
return X ();

25

Reim Error:
AnnotatedTests_ReimJavari\ReimSmall\Reim2.java:20: warning:
call to X() not allowed on the given receiver.

return X ();

A

QReadonly Reim2

required: @Mutable Reim?2

The new error message forces the programmer to change the annotation of Y__compute().
The "this" pointer must be declared mutable and the object can be modified and conse-
quently no guarantee on the absence of side effects. As example 14 shows any attribute
depending on another, would have to allow any field assignment side effects on the objects
involved. Reim is also unable to handle this type of benign side effects.

5.1.4 Javari

The Javari type system specifies a more expressive reference immutability system. The
Javari type checker can type check the caching example with the help of increased
complexity. Javari adds several new annotations including @assignable annotation on
field that allows fields to be assigned to even from a @Readonly pointer. The example
can thus be validly annotated as shown in in example 15.

Example 15: Javari cache example.

class Javl {

}

@Assignable @ReadOnly XType X_value;
@Assignable boolean X _calculated = false;

public @ReadOnly XType X (@ReadOnly Javl this) {
if (X_calculated)
return X _value;
X_calculated = true;
X_value = X_compute();
return X_value;

public @ReadOnly XType X_compute (@ReadOnly Javl this)
return new XType();

}

public @ReadOnly XType Y_compute (@ReadOnly Javl this)
return X_compute();

}

Nothing had to be declared as mutable and therefore these methods are considered as
pure. Javari can handle this example. However, the protection for the cache fields are

26

weak and may be assigned anywhere meaning the protection is not fully satisfactory.

Javari can do much more with possibility to declare annotations for each access levels
in matrices individually with polymorphism allowed everywhere. This make Javari very
flexible but slower and harder to preform inference[12].

A restriction is that Javari doesn’t work with object immutability but with only pointer
immutability which means the objects can be changed as long as its reachable from at
least one mutable pointer. Object immutability could be desired since it gives sufficient
side effect freeness guarantee for multi-threaded program to allow thread sharing without
having to synchronise the accesses [13].

The Javari type checker only informs about which type a value should have had and
doesn’t give informative warnings about why. This can be hard sort out what real is the
root cause for why the types must be of a given type. This is a drawback shared with
Reim. This hinders the ability to give informative warnings.

Javari annotations and the reason for why a reference must be of a particular value
can be inferred with Javarifier. Javarifier should be able to return an evaluation sequence
that results in that the annotations don’t hold. Javarifier runs on a modified version
of the Soot compiler which includes a JastAdd made Java parser. I have however been
unsuccessful in getting Javarifier’s underlying soot compiler to run correctly or to replace
it with a new version of soot. The compiler simply crashes with indexoutofbounds or
can’t load exception. The soot version included with Javarifier fails on Javal.5 source
but parses Javal.5. Replacing it has proven difficult. In any case I expect that Javarifier
would not implement and address any feature introduced after Javal.5 and this would
probably be an convenience even if all the other problem were solved.

Javaris type system is also sophisticated supporting several more annotation that Relm
and without Javarifier it would be too complicated correctly annotate library code and
unannounced user code. I would have to implement a checker which determines why the
warning was triggered to address both the lack of information in the error messages and
the need to annotate code making. This would diminish the usefulness of the Javari.

The added complexity seams excessive for the intended application since unlikely that
one would want to separate the different layers of a matrix.

Reference immutability is an indirect way of obtaining purity and doesn’t really
represent what I want to represent for the application. It’s unclear for programmers how
to relate them to

There is no abstraction for object freshness so I can’t verify that NTA are newly created
objects. Therefore, Javari might not be suited for the application either.

5.1.5 1GJ

Object immutability is modelled in for example in the IGJ type system [13] that is heavily
influence by Javari. IGJ that apart from having the @assignable, @readonly, @mutable
annotations like Javari also have @AssignsField which is denoting a method that assigns
fields in the current object and @Immutable annotations that denotes an immutable
object. @AssignsField is intended to identify helper methods to the constructor of the
object and may be called during construction of an @Immutable object. A reference to

27

an @immutable object never be aliased to a none immutable reference. IGJ can handle
the cache example using the same annotations as Javari. There is still not any concept
of freshness in the annotations so not possible to force a method to return a fresh object.

A further extension to IGJ was also implemented in the Checker Framework [44] than
include ownership annotation called OIGJ. Ownership allows restriction of which object
may change the value or access the value, relations called owner-as-modifier and owner as
dominator. The Ownership abstraction allows creation of immutable lists and separation
of the immutability of an iterator and the underlying collection.

The bad news is that Javari, IGJ and OIGJ where are all discontinued and no longer
distributed in the Checker Framework. They were removed after version 1.9.13. The
type checkers gives as error messages for any side effects they find the assignments at
which the type rules is not fulfilled.

28

5.2 JML

JML is an annotation language that can be used to specify code the pre-and post-
conditions that should hold after each methods invocation. JML have lots of annotations
for all sort of relation but the ones that seems most interesting for this application is
the modifies, assignable and pure annotations. The Pure annotation however is tested
too conservative or not at all in every previous statical checkers for JML I checked.
I[(ESC/Java, ESC/Java2,0penJML) [50, 43] and related frameworks like JForge [51].
The pure annotation implies modifies nothing.

However, the modifies [fields] and assignable annotation allow some form of reference
immutability and region based separation of the heap. That won’t be sufficient for ruling
out all side effect but a fraction of them could be ruled out. Most JML tools preforms
only runtime assertion checks and many of the static checkers uses SMT (satisfiability
modulo theories) theorem provers or other model validation prover for example FPV. I
have looked at 3 JML tools that could be applied for the application.

5.2.1 ChAsE

ChAsE is JML tool that validates the restrictions imposed by JML assignable clauses,
declared using the modifies annotation, on methods. ChAsE doesn’t use the full data
group scheme[52] which may increase the size of the modifies clauses. ChAsE doesn’t test
for method purity explicitly and it would not react to side effect from calling unknown
code and it doesn’t consider aliasing at all. It would however be sufficient to detect many
unwanted side effects.

The problem with this type of data group scheme is that the annotation of a method
must be a superset of all methods it invokes which means for complicated chains of calls
it requires some work to generate the annotations. ChAsE seems to require all the code
to be annotated and doesn’t use an implicit modify everything as default.

The age of the tool (2002) results in it only tested and built for Java 4 which is before
generic, enhanced for loop and all the other Java features introduced under the decade
since ChAsE was made. Therefor, ChAsE cannot be used to provide purity checking for
JastAdd since ChAsE can’t handle code with generics and wild cards which are essential
for understand JastAdd code. In JastAdd the use generics starts already in the type
declaration for root class for the AST by default called ASTNode.

Its output warning is not the easiest to decipher. Interpreting warning messages
on the form exemplified in example 30 quickly becomes difficult for more complicated
expressions.

Example 16: ChAsE cache example.

class Test{
private XType X_value;
boolean X calculated = false;

class XType({

29

}
/@
modifies X calculated;
*/
public XType X () {
if (X _calculated)
return X_ Value;
X_calculated=true;
X_Value = X_compute () ;
return X Value;

}

private XType X_compute () {
return new XType ();

}

private XType Ycompute () {
return X_compute () ;

}

}

The example would give the warning shown in 16 due to not having also X value in
the assignment clause.

Example 17: ChAsE output.

Checking Test.java
[[METH1,X]]
Warning: expression

:V——= [142]
| -—X_Value [113]
‘== ([139]
‘——X_compute [113]

may contain a problem
Not Passed

[[METH1, X_compute]]
Passed

[[METH1, Ycompute]]
Passed

30

5.2.2 ESC/Java2

ESC/Java2 is a static JML checker build as a successor to ESC/Java [53] an even
older checker project which terminated in 1996. Thus ESC/JAVA far predates modern
Java and doesn’t support generics or any but the basic Java features consequently I
didn’t try ESC/JAVA. It wouldn’t run on 64-bit any way. It improved ESC/Java with
more JML constructs checked and support for new java features. It has one standalone
implementation and one eclipse plug-in version. The standalone implementation doesn’t
support 64-bit operation system. The constraints generated by the tool are checked with
the theorem prover Simplify. The JML modifier "modifies" is supported which can be on
the forms "this.*", fields, "arrayname[*]", " /nothing" or "/everything". "this.* " would
allow any field in the current object. This could be used to achieve some isolation of the
cache fields as in example 16.

Example 18: ESC/Java2 example using data groups.

private XType X_value; \\Q in Xdata;
boolean X calculated = false;\\@ in Xdata;

/%@

modifies Xdata;

*/

public XType X () {

if (X_calculated)
return X Value;
X_calculated=true;
X_Value = X_compute();
return X_Value;

}

/@

modifies /nothing;

*/

private XType X_compute () {
return new XType();

}

/%@

modifies Xdatay;

*/

private XType Ycompute () {
return X_compute () ;

}

31

5.2.3 OpenJML

OpenJML is a tool that generates a problem instance to several different SMT solvers
for statically testing several JML annotations. The solver however has to be specific
version with and the latest versions of both z3 and Cvc are no longer supported and I
hade to search awhile before obtaining supported versions. OpenJML is intended as the
successor to ESC/Java2. Interesting in OpenJML is an extension to JML for testing
of observable purity using a secret data group annotation and query annotation where
fields in a secret data group only can be used by a query annotated function declared
to have access to the same data group [54]. The example 28 show a simplified usage
of the OpenJML annotations as presented at a conference but the syntax has change
in the actual tool. The method X() is allowed to assign field X _calculated because
X__calculated is annotated with "//@ in X" which declares the belonging in a data group.
This abstraction restrict access to the fields used for caching and the retrieval of the
value.

Example 19: OpenJML example using secret.

import org.jmlspecs.annotation.x;
class X {

/*@secret*/ private XType X_Value; //@ in X;
/+@secret x/ boolean X_calculated = false;
//@ in X,isCalculated ;

public /#+@ query =/ XType X () {
if (X_calculated)
return X_Value;
X_calculated=true;
X_Value = X_compute();
return X_Value;
}
public /%@ query =/ boolean isCalculated() {
return X_calculated;
}
public /#@ pure @*/ boolean z () {
return isCalculated();
}
private /#@ pure @+/ XType X_compute () {
return new XType();
}
private /#@ query */ XType Ycompute () {
return X_compute();
}
}
class XType{}

Alternatively, since OpenJML also support the assignable and modifies annotations so
it could be used as a more modern version of ChAsE. Still the assignable clauses need to

32

be supersets of all modified location which will be inconvenient and generate complicated
annotations considering all fields that JastAdd needs to assign for attribute calculation.

5.3 Type Inferer

Some tools for side effect analysis doesn’t seem to have a type checker meaning that
they seem to only be able to only infer results but doesn’t validate any pre-existing
annotations. Purano and JPPA seem to be such tools.

5.3.1 JPPA

Rinard’s JPPA [46] is one of the oldest of the mentioned tools with almost all other
comparing their results with the JPPA results or at least mentioning Rinards work. JPPA
used a whole program “pointer escape” analysis meaning it constructs a points-to graph
over all locations pointer can point to which the program has created interprocedurally.
By tracing which locations are modified using this points-to graph JPPA can identify
both pure methods and immutable references and output a regex for the access path that
generate the mutations. A method is not pure if a pointer which may point to memory
which “escapes” the method is modified. A pointer escapes the method if it points to
location not created by the method.

However, the writers for Purano reported having difficulties to run JPPA in their Java
environment [16] and JPPA fails to run most of their test cases. Like the writers of
Purano I too have problems run JPPA. In fact, I can’t get the JFlex compiler to work on
any of my available machines. JPPA did in any case only support up to GNU classpath
0.08 which is far from supporting Java 5 feature or any version of Java. JPPA only
supported a tiny subset of the Java standard library.

Even if JPPA could run on modern Java clearing the cache example would require
some heuristic which is not included in the approach. Similar later tool like the one made
by Geffken does a similar form of analysis but still would require changes to be adopted
for this application.

5.3.2 Purano

Purano is a later tool developed by J. Yang and others [16] as late as 2015 which is capable
of dividing pure methods into stateless which corresponds to depending only on parameter
state and stateful pure methods that also depend on member fields. Purano is built
with the intention of preserving the modular checkability of the JPure approach while
preserving the traceability of effects present in whole program analysis approaches based
on inter procedural checking such as JPPA. To achieve this Purano uses an internally
much more sophistically representation of side effects than JPure and Reim and the other
type checkers. The annotations store multiple features for each analysed method such as
exposed fields or arguments by the return and modified fields and arguments. The tool
operates on the byte code representation allowing values to be inferred on library code
as well a great advantage over JPure [55].

33

The tool manages to further relaxes the conditions imposed by analysis from JPure by
trying to identify observable pure methods using caching behaviour using 4 heuristical
rules and not only white lists [16]. White list is a list of trusted facts which shouldn’t be
checked.

The cache heuristical are stated in example 20. All four rules needs to hold before
declaring the assignments and reads as safe. These rules are insufficiently for JastAdd’s
parametrised attributes which caches in a map and the rules doesn’t allow caching in a
collection object. Purano doesn’t allow throwing exceptions for a pure method which is a
problem since JastAdd throws exceptions for unexpected circularities in the calculations.
Exceptions are considered a native side effect by Purano. These short comings can’t
be avoided since Purano don’t provide any way to ignore effects or methods. This is a
disappointment since Purano otherwise seemed like a good fit for this application with
its implemented detection of cache behaviour.

Example 20: Purano Cache semantic detection heuristic.

Pl The field is assigned either by a constant value, or in
only one member function.

P2 The non-constant assignment on the field occurs

within a branch block.

P3 The right-hand value of the non-constant assignment is only
depended on other fields.

P4 The branch condition of the block checks that the value of
the modified member field is a constant value.

Purano analysis takes time and for a minimal JastAdd example it takes 30 seconds on
full depths since it will read in a large part of the java library even for simple programs.
The analysis is interprocedural in its derivation of effects.

Caching the result for the Java runtime is one of the things the authors lists as a
possible speedup for Purano. Instead it only generates an inferred result. The annotations
are otherwise sophisticated and complicated to manually annotated since they contain
much information.

Purano includes new functions to analyse when Purano encounters references to
unanalysed methods in currently analysed methods in waves normally until no more new
methods are discovered. This behaviour can be altered by limiting the levels of referenced
classes to a small number. In which it will only search through x levels of imports. This
can speed up the performance greatly reducing runtime down to only a few seconds. At
least in any experiment I made limiting Purano to only import two levels did not disturb
the result significantly.

A limit of two or three levels would I my opinion suffice for the application since any
interesting side effects are likely to have been detected if present by then. For ExtendJ
unlimited passes takes 93 seconds and limited to three levels 46 seconds. 93 seconds might
be a substantial amount of time for checking on every compilation considering generating
and compiling with JastAdd only takes 17 seconds but not prohibitively long time. The
result of these analysis is shown in the examples 21 and 22 there the categories stateful
and stateless represent caching pure method and fully pure methods. The two-different

34

setting hardly produces any change in the statistic for the source methods.

Example 21: Purano full analysis of ExtendJ.

class 453
method 14918
unknown 0
stateless 2518
stateful 1856
modifier 10544
fieldM 9106
staticM 7612
argM 3686
[main] INFO Jjp.ac.osakau.farseerfc.
purano.reflect.ClassFinder
- Runtime :93372

Example 22: Purano 3 pass analysis of ExtendJ.

class 453
method 14918
unknown O
stateless 2518
stateful 1861
modifier 10539
fieldM 9101
staticM 7612
argM 3657
[main] INFO Jjp.ac.osakau.farseerfc.
purano.reflect.ClassFinder
- Runtime :46085

The problem is that Purano doesn’t seem to use user annotation or pre-annotated JDK.
It thus not possible to ask Purano to verify that a certain sub section of the methods
should be pure and give warnings for violations. The analysis also generates 45mb of
inferred effect data explaining the effects on each of the 14918 methods. In order to use
Purano for the intended application I would have to make a separate tool that processes
all this information alongside the Java source to determine if every method associated
with attributes is classified as Stateless or Stateful.

N. Ogura, J. Yang did[56] did something similar when they combined a tool that
determined which method has changed between two revisions of a software repository
and then compared Purano’s determination of these methods between the revisions. This
finds previously pure methods which have become impure change. I cannot find any copy
of their software tool so I haven’t tested it.

The data collected by Purano tells you which fields are modified, exposed and which
the fields a method depends on but it doesn’t tell you which statement that caused this
effect. The statement which causes the impurity is information that I would want to
provide for any purity warnings. This is a significant shortcoming since generating useful

35

purity warning is my goal. It also not possible to impose freshness restrictions with
Purano. Finally, Purano only works up to Java 7 and if one tries to provide Purano with
Java 8 byte code the modified underlying compiler will reject the code due to the Java
version. Because of these problems and that it probably would take a significant amount
of time it would take to address them, I decided that also Purano is not easily adapted
for the application.

36

5.4 Summary

In summary during testing and research about the different tools a few of the important
characteristics are summarised in the tables. The important aspect includes if I could
run the tool at all, if it works on a modern 64-bit machine or if they require an older
architecture environment. The needed Java version is also checked. If the tool uses Java
annotations and JML annotations are also listed. The cache example used through out
the chapter is a metric for the tool and if they can type check the code generated for a
small JastAdd examples like those in chapter 3.

Table 5.1: Selection of tool characteristics.

Characteristic JPure | Efftp | Reim | IGJ | ChAsE
Released 2011 | 2015 | 2013 | 2012 | 2003
Manage to run Yes Yes Yes | Yes Yes
Works with 64-bit Yes Yes Yes | Yes Yes
Supports Java 1.5 Yes Yes Yes Yes No
Compiles/Runs with Java 8 Yes No Yes | Yes Yes
Java Annotations Yes Yes Yes | Yes No
JML Annotations No No No No Yes
Handles cache example Yes No* No Yes Yes
Needed no annotation Yes No* No Yes Yes
Check small JastAdd example | No No No No No

Using the which approach

Pointer immutability No No Yes | Yes No
Assignable summary Yes Yes No No Yes
Freshness information Yes No No No No

* Efftps annotation system could clear the example but not the tool.

As can be seen from the tables most tools have a few years since they were last updated.
They there for doesn’t all support modern functions. If the tool clears Java 1.5 then
they tend to compile upto Java 7 with the common reason for failture that then class
file version is to high so the dependent compiler can’t load the files. This is the case for
Purano, OpenJML and Efftp. This limitation applies significantly to the tool which work
on Java classes. There reason for this is that most of the tools started to be developed or
was developed in the period of Java 7 from 2011 to 2014 when Java 8 was released.

JPure,Reim and ChASsE can be compiled with Java 8 and working on Java source
works correctly as long as to complicated Java constructs are used. The indication is to
note if I was forced to use an old Java JVM. The Java actually supported is strongly
correlated with the tools age and what was state of the art at that time. The Java 5 was
released 2005 followed by 6 in 2006 and Java 7 in 2011 and finally Java 8 in 2014. This
places almost all of the tools between Java 7 and Java 8 or in the early Java 8 era.

Therefore I indicate that ChAsE supports Java 1.4 but is runnable with a Java 8 JVM.

37

Table 5.2: Selection of tool characteristics.

Characteristic ESC/Java2 | OpenJML | JPPA | Purano
Released 2011 2017 2006 2015
Manage to run Yes Yes No Yes
Works with 64-bit No Yes No Yes
Supports Java 1.5 No Yes No Yes
Compiles/Runs with Java 8 No No No No

Java Annotations No No No Yes**
JML Annotations Yes Yes No No
Handles Cache Example No Yes No Yes
Needed no annotation No No Yes Yes
Check small JastAdd example No Yes No No

Using the which approach

Pointer immutability No No No No
Assignable summary Yes Yes No No
Freshness information No Yes No No

* Purano uses Java annotations but they are currently only placed and manipulated on
the Java binary during analysis. Taking the as input would though only be a minor
change.

One approach involves immutability annotations for pointers, objects and classes with
restriction. The tools Reim, Javari, IGJ and OIGJ followed this approach. The approach
can outlaw the modification to attribute but otherwise but the concepts of demanding
fresh object from N'TAs is not representable which is dissatisfying.

An alternative is to use a secret field and query methods access protection scheme as
in OpenJML and similarly in other JML tool using assignable clauses. JML in general
has a lot of annotation but hard to find any tool that checks them.

The assignable clauses have the drawback of being hard to combine with the first
in a call chain having to allow all locations that all methods it calls assigns. JML has
annotations for forcing newly allocated or old objects to be used in different situations
among other things which is a strength. JML might propose a lot of annotations but
hard to find any tool that test them.

Then there are tools designed with side effect analysis in mind like Efftp for Scala and
JPure that uses an own annotation system based on object locality and freshness. These
are concepts introduced for reasoning about side effects in a fast and efficient way.

The existing tools are all either too old or probably too sophisticated using powerful
SMT solvers aimed towards more complicated analysis and therefore might be too slow
to be practically useful for the intended purpose on larger software. This is a further
drawback which I find with OpenJML that the communication with the SMT solvers is
slow and sometimes confusing. It also forces the use of such a solver.

The question is how expensive analysis are we willing to tolerate. Using a full JML

38

specification and verifying it is not practical in day to day development. It’s also
inconvenient introducing more steps translating the Java and specifications to logical
theories to prove with the solver.

The problem with JastAdd code is the presence of different situation in which the same
attributes needs to be calculated differently. An NTA is an attribute that calculates a
new node to the AST and demands in its calculation method to obtain a new node which
is problematic if it enlists normal attributes. The helper attributes might be cached and
thus might return an old value. A check that an attribute is only every called from a
single NTA is needed in this case.

This sort of special casing can’t be fully expressed within the type system of any of
the tools. JastAdd rewrites are also interesting constructions allowed to perform some
modifications but not others.

The circular attributes apart from caching also presents a new special case in which
the circular attribute despite caching may call and modify data obtained from itself.

Therefore, I decided to design a new purity checker that deals with these special cases.

In designing the JastAdd and ExtendJ extension I would have to atleast let some
aspects of analysis follow the annotations of some of the previous tools, so some form of
comparison can be made regardless if the test cases must be compatible with older Java
version or not.

39

6 Proposed architecture and annotations

In this chapter I present an overview of the solution. The intended usage is explained
and the annotations system presented. In the next section the more detailed explanation
of implementation details is described.

6.1 The specifications for the system

JastAdd sources AJaStAdd Annotated Java Purity Checker
nnotatator

Warnings

Figure 6.1: High-level overview : Annotate Java and feed code to a purity checker to
produce warnings.

In designing a purity checking solution for JastAdd the intended use must be considered.
How is work with JastAdd work done?

My purity checker should work on JastAdd generated Java. For attributes, warnings
should be generated for side effects. All other methods produced by JastAdd should be
allowed to perform its functions without any complaints from the tool.

The checker should be ideally also run reasonable fast and work for large programs.
Here a decision had to be made to determine what is consider acceptable. Is the aim for
the tool to be run regularly during every stage of development after small changes or in
one extensive check only after major changes when lot of changes have been made? If the
tool is only intended to be run rarely much more expensive analysis is acceptable and
the needs for modular checking would not be as large as if the tool should be used often.
If the tool should be used only rarely significantly more powerful points to analysis than
Andersen’s algorithm like a points-to analysis based on Geffken GAGs|[28]. In addition,
whole program analysis and extensive inter procedural analysis could be applied despite
introducing potential long analysis times.

If the tool should be used often then annotations that are modularly checkable and
faster but more restrictive algorithms should be used. Then intended usage of this
checker is to be regularly used potentially after every change and thus the checking time
should ideally be short. I therefore adapt a modularly checkable annotation system. This
annotation system and the checker will incorporate other concepts used in the tested
tools in order make the checking process as simple and fast as possible.

Annotations will be used to deal with the problems of recognizing which methods
and fields which should be checked and to save resources by not preforming unnecessary
checks. JastAdd was modified for this purpose to insert more annotations into the Java
code.

40

There are two main target functionalities for the purity checker. The first one is the
side effect analysis. It tests the three segments I listed in section 2 of the JastAdd
specification. The goal is to spot potential side effect which would cause attribute values
to diverge from their definition.

The other main functionality is to verify several closely related checks. JastAdd wants
Non Terminal Attributes (NTA) as fresh objects. Further a NTA must represent a subtree
without any null children among other things.

That the checker shall operate on the Java code is clear but the question is which
compiler it should be built on. There also is a choice between working with Java source
or bytecode or a combination of both. The purity checker I built is designed on top of
ExtendJ.

ExtendJ is a Java compiler developed at Lund University using JastAdd. ExtendJ
might not provide existing implementations of many of the needed analyses like for
example Soot and is also doesn’t preform bytecode manipulation. The choice of using
ExtendJ is because its developed locally. It provided the opportunity to check how suited
RAG is for implementing a purity checker from the ground.

Using ExtendJ as the underlying Java compiler enables the use of RAGs in the
specification of the checker. ExtendJ also provides an easy way to work with representation
of the Java source. The downside is a checker made only with ExtendJ would not be
able to easily check any library code.

To handle library code with a checker that can’t read Bytecode an efficient annotations
system is needed. The annotation system must be expressive enough to allow the
specification of the effects of the most common library functions. The annotation also
should be simple enough for the users to write and understand since they would have to.

6.2 Solution overview

Warnings

Java Purity

Jastadd Checker

JastAdd and Java Annotated
sources Java code

External library
Annotations

~— 7 N

Figure 6.2: Solution overview: JastAdd generated annotation + manual annotations run
through the checker to generate warnings.

41

The work process for producing purity checked programs using JastAdd is described
in figure 6.2. From writing the JastAdd source code to purity checking the program.
The work process for the tool developers change slightly. It gains some extra steps.

1. Produce JastAdd specification normally
2. Annotate plain Java portion of the specification

Apply the purity checker to see if library methods need to be annotated

- W

Inspect the generated annotations for the libraries, and correct them if needed.
5. Iterate steps 4 and 5 library methods annotations are needed
6. Iterate until no more method are annotated.

7. Apply purity checker to see if there are detected problems in the JastAdd specifica-
tion

8. Modify specification based on the detected problems
9. Iterate steps 7-9

10. Purity checked program without any detectable problems

The developers write equations and attributes normally and the modified JastAdd
compiler will generate annotations for them. This will automatically take care about the
method annotations for any attribute used independently. The developers simply should
take care about any annotation for the normal Java methods, attributes which are used
helpers for NTA calculation and finally of the parameters which the needed different that
standard behaviour.

However, Java methods which are either invoked during attribute calculation or which
independently needs to be checked must be manually annotated since these are not
annotated by the JastAdd tool. The annotation need to be placed on both methods and
parameters to allow or disallow different types of side effects.

The correctly generated annotated Java is then feed into the purity checker. The
source for all methods used doesn’t need to be available or parsed for the purity checker.
Library code for which the Java source is not available must be described in one or more
property files with library annotations. The generation of library annotations is work
that needs to be performed once. Once the annotations for the commonly used library
functions such as usage of the different forms of collections have been synthesised it can
simply be used for all projects.

When generating library annotations, the checker tries to suggest a level of purity
needed to avoid the warnings but is not sophisticated enough to generate annotations
that doesn’t need to be manually tweaked. For the generated warnings to be correct
the list of annotations needs to be manually verified and corrected. Depending on the
corrections provided to the annotations more methods might be needing annotations.
This means that step to generate library annotations is iterative.

42

The checker can separate the suggestions into two categories the annotations for
the actual library methods and methods in the provided source code that needs to
be annotated. The annotation generation should then be run again to see if the new
annotations or any manual changes causes more methods needing annotation to be
detected.

Finally, the purity checker is then used to generate the warnings and based on the
results the program source is modified to correct the problems if any were detected.
When program source code is later modified its rerun to check if any new problems has
occurred.

Purity annotator

The Java annotations for the attributes is generated with JastAdd. JastAdd knows
what needs to be checked and what’s part of the internal machinery. I thought that this
knowledge should be used.

The use of Java annotations allows the checker to be used independently of JastAdd
in Java programs. Java annotations are already supported in Java and existing support
for checking correct placement is built-in the Java compiler. In Java 8 the definition of
annotations was extended to allow annotations everywhere where types are used [57]
where it previously could only be placed on declarations. The difference is shown in
example 23

Example 23: Annotations in Java 7 vs Java 8.

// Java 8 SE Annotation
@Annot List <@Annot A> x =
(@Annot List<@Annot A>) new @QAnnot List <>();

//Java 7 and EztendJ only allows
@Annot List<A> x = (List<A>) new List <>();

Despite that ExtendJ only currently supports Java7 annotation style. This is still
sufficient for the intended purity annotations. The Java annotations can be made to suit
the needs for a purity checker and no extended special annotation schema are needed.
Using the Java annotation over a special annotation saves the work to implement a new
annotation schema. Any conflict with any other tools that might be used in combination
is also avoided with Java annotation. Custom annotations schemes could conflict with
other tools that might want to be used in combination with JastAdd such a JML tools.

The inability to place annotation everywhere where comments as would be allowed by
JML styled annotations would only have minor effects for the checker and the workaround
are not complicated. The purity checker acts on declarations and the effects works with
each variable as a unit. This means that for example ignoring problems or imposing some
condition for only a particular assignment of a variable is not possible. The analysis is
done for all or none of the usages of the variable but I consider this a minor inconvenience
at most.

43

Purity checker

Figure 6.3: Purity checker construction.

SimpleCFG

ExtendJ Extension

Purity Extension

The purity checker is built on top of ExtendJ [17]. For purity analysis, the information
about if objects are newly created is significant and need to be propagated along. Jesper
Oqvists SimpleCFG [58] extension which provides control flow analysis could be used to
propagate this information along with non nullity and other facts. The purity checker
would therefore be built on top of SimpleCFG [58] extension or part of it. The figure 6.3
illustrates this. I choose SimpleCFG over Intraflow because the representation is sparser
than Intraflow that’s more expressive than necessary. SimpleCFG is compatible with the
latest versions of ExtendJ which Intraflow is not.

The SimpleCFG extension provides a control flow graph representation with easily
changeable granularity. SimpleCFG represent the CFG as a graph of new nodes and
connects to the original AST.

The default configuration of SimpleCFG represent branches, method calls, exceptions
and return statements. To do purity analysis, I needed to represent object assignments as
well. The CFG representation was therefore modified to include assignments and variable
declarations which are points of interest for the purity analysis. The assignments and
declarations are where it determined how later usage of the memory location should be
interpreted.

44

6.3 Annotations

For the extension, I introduce some new annotations on methods, fields and parameters.
The chosen annotation scheme is inspired by the different tested tools combining ideas
from OpenJML, Efftp and JPure along with some own extensions. The choice of JPure
as basis is due to the annotation being reasonable suitable for the problem and that they
have been previously extended. The JPure annotations as basis allows comparisons with
the analysis from JPure and JPure’s test suit can server as starting point for the work.
The same close comparison is not possible with the other tools. I only borrow ideas and
parts of Efftp and OpenJMLs system and not the full system.

From OpenJML the idea of secret data groups for handling parts of state that should
not be considered part of the observable state is carried over. The introduced annotations
are complemented with the pre-existing annotations that JastAdd is already using.

There are 8 annotations introduced by the extension. The introduced annotations are
@Fresh, @Freshlf,@NonFresh,@Pure,@Local @Secret, @Entity and @Ignore.

@Fresh, Freshlf, @NonFresh are the freshness annotations and can be placed on both
methods and parameters. They impose restriction on the returned object when placed on
method and restriction on the passed argument when placed on parameters. The others
except @FEntity, are purity annotations restricting or allowing side effects.

The full description of where the annotations can be place are shown in the table
below. The methods represent any form of method call and there is no difference between
constructors and any other methods as far as applicable annotations.

Annotation Type Methods | Parameters | Fields | Locals | Types

Fresh Freshness Yes Yes Yes Yes No
FreshIf Freshness Yes Yes No No No
NonFresh | Freshness Yes Yes No No No
Pure Purity Yes No No No No
Local Purity Yes Yes Yes Yes No
Ignore Purity Yes Yes Yes Yes No
Secret Purity Yes No Yes No No
Entity Behaviour No No No No Yes

Purity Annotations

The four "Purity" annotations can also be parametrized with a group property for which
data group the method belongs to. In the case of Secret the data group is declared. Also
@Fresh may be parametrised with a data group.

@Secret(group="group") declares a section of the program state unobservable for all
methods except the methods with the correct data group. This is the syntax used
in OpenJML. JML datagroups syntax could equally well have been used by enabling
ExtendJ to parse JML annotations. The intended usage however doesn’t necessitate the
full expressiveness of the JML assignable clauses and datagroup concepts.

@Pure(group="group") declares a method allowed to access and operate with the state
hidden with @Secret(group="group"). The intention is that Secret on all cache fields

45

would outlaw any method from doing the error of directly trying to read a cache field.
The cache should only be reached from the using method.

In the JastAdd case it could also protect the calculation machinery. As shown in the
example 24. An unparameterized @Pure doesn’t access any hidden state.

Example 24: Annotated simplified Java for an attribute.

@Secret (group="beta () ")
protected int beta_ visited = —1;

@Secret (group="beta ()")
protected boolean beta_computed = false;

@Readonly @Secret (group="beta()")
protected int beta_ value;

@Ignore private void beta_reset () {
beta_ computed = false;
beta_ visited = —1;

}

@Pure (group="beta()") public int beta() {
ASTNode$State state = state ();
if (beta_computed) {
return beta_ value;
}

beta__visited = state ().boundariesCrossed;
beta_ value = beta_compute ();

beta_ visited = —1;

return beta_ value;

}

/+x @apilevel internal =/
@Pure private int beta_compute() {
return 2;

}

In the example, the calculation method "beta_compute()" which contain the user code
cannot assign or read the secret fields beta_ visited, beta_ computed or beta_ value. These
fields are used by the JastAdd internal machinery for evaluating attributes. Because
of the annotations, they can’t be read by any user code by mistake. Use of Unique
groups of each attribute would provide optimal protection against any access of field
used internally by the JastAdd system. Programmers who understand how JastAdd is
intended to be used however would not make such mistakes therefore unique groups are
not really necessary.

The annotation @Ignore on a method means that any side effects inside should be
completely ignored and not considered by the checker. It should be used very carefully to
simplify the checking process and allow resetting of hidden state. Any other annotations
on the method or parameter must however be fulfilled. The @Ignore annotation is useful
for cases when the analysis is not strong enough, and reports an error when there is no

46

error. In the above example it is used for resetting hidden state. Another use of @Ignore
is to annotate a method called "flush” that clears the attribute caches.

Example 25: Example signature with @Ignore where the methods them self are not
checked but the passed parameters are.

@Ignore public Object al (Object b, Object c);
@Ignore public Object a2 (@FreshIf Object b, Object c¢);

@Ignore @Fresh public Object a2 (@Local Object b, @Local Object c¢);

The annotations @Fresh and @Local fill essentially the same roles as in JPure. @Fresh
denote that the method returns an object that didn’t exist prior to the methods execution
and @Local is for local changes.

The novel annotations @NonFresh and @Entity are extensions specifically for JastAdd
and similar applications where we must assure that objects of certain classes for example
in the JastAdd case are not created and returned unless in a specific context. The
@FEntity on class denotes such a class that may not be created unless in a specific
context. @NonFresh denotes a method that opposite to @Fresh annotated methods are
guaranteed to return an object that is not Freshly created.

6.3.1 @Secret

The @Secret(group="") annotation is based on the same annotation in OpenJML and
other data group schemes. It defines a section of the object state that should have
restricted visibility such as caching or hidden debug counters etc. The group restriction
can protect a field to only a single method if that is necessary often it might be sufficient
to only hide the information.

The important detail is that assignment to a secret field should not be considered a side
effect. Local changes by which I mean the changes to same object and other considered
part of the same state are also allowed. In the section about @Local 1 explain in detail
what’s considered a Local change. The reason for this to allow caching of many values in
a map by necessary requires the map to be modified.

o A field or method can be annotated @Secret(group="group") to restrict access to
them.

o A Secret field can only be read or written to by a method annotated with a purity
annotation with the same data group or a @Ignore annotation.

e The intention is that a secret field should only be changed directly from one method
and otherwise should cache immutable results or data never exposed to the end
user.

e An object should only change the secret state of itself and not allowed to change a
different @Secret field access via a @Secret field.

47

Example 26: Example use of Secret.

public class Secret{
@Secret (group="groupl") boolean b;
@Secret (group="groupl") List<String> secretlist;
@Secret (group="group2") int a;
private int open;

// May not change the Secret fields

public Secret (int x) {

open=x;

}

// May change group2 fields and un annotated

@Pure (group="group2") Secret (int x,int y) {
open=x;
a=y;

}

@Pure (group="groupl")

public List<String> worker () {
if (b)
return secretlist;
secretlist=calcSecret ();
b=true;
return secretlist;

}

In the example 26 a small class is shown. There are three fields that has be put in two
secret groups. The method "worker()" is allowed to use the group "groupl" for caching
the list. After completion, the produced list may not be changed unless by an impure
method or an @Ignore annotated methods.

Only in very specific situations may a cached value be changed after it creation
method. This applies to a few exception scenarios for JastAdd regarding circular attribute
evaluation where the same attribute might revise its own value and NTAs constructed
with a helper attribute. In the case of helper method for NTA creation it may only be
called as part of the NTA creation. More about these special cases when I apply the
annotations to JastAdd code.

48

6.3.2 @Pure

Only methods can be annotated @Pure to declare that it should be observable side effect
free and checked. There are the parametrised variant @Pure(group="group") which gives
access to manipulate a secret data group.

A @Pure method is checked by the checker to see that no side effects is introduced
except for changes to the secret state.

This means a method annotated @Pure should follow the following restrictions

e Doesn’t assign fields unless part of secret datagroup.

e Doesn’t modify any reference pointed to by a parameter unless annotated @Ignore
or @Local.

e Doesn’t modify any fields on anything but known newly created objects.
e Doesn’t call any method including constructors which are impure.

e Doesn’t call any method including constructors annotated @Local unless called on
a newly created object.

Further changes compared to the @Pure of JPure is that the method can have @Pure
while the parameters have @Local. The annotation placed on the method apply to the
changes made to caller object "this". A @Local annotation on the parameter would
allow the local change to the parameter passed object. This allows two different ways of
expressing the same level side effect freeness as shown in example 27 while in JPure it
was not possible to separate to only allow change to the parameters without the caller.

Example 27: Example two set of equivalent method signatures in this annotation system.

//May change this, b
@Local public Object al (@Local Object b);
public Object al (Q@QLocal ThisType this,@Local Object b);

//May change b but not this
@Pure public Object a2 (@Local Object Db);
public Object a2 (ThisType this,@Local Object b);

6.3.3 OLocal

The @Local annotation declares that the method induces "local changes". A change
contained within a particular object or object chain created together. This means
assignment to the objects fields. Placed on the method it means that the calling object
may be changed. Placed on a parameter it allows local change to the parameter object.

The meaning on fields is slightly different by combining the state of two objects into one
bigger abstract state called a locality by D. Pearce in JPure. I will use the terminology
here since my interpretation of @Local on field is equivalent.

49

The locality of an object is all the program state that should be considered part of
the same "object" as far as the checker is concerned. All the state in a locality shares as
single freshness status. The locality contains all the fields in the object but for @Local
annotated fields the referenced objects’ locality is also part of the locality. This makes
multiple objects effectively part of the same state.

The shared freshness allows the checker to know that all the objects in the locality are
fresh together. This meaning the referenced objects of all fields annotated local are also
fresh if the parent object is fresh. In this way @Local allows changes which may span the
fields of several objects with in a specific subtree.

A more accurate analysis would have to deduce and share the freshness status of each
field in an object between methods. For JastAdd I thought this would be unnecessary.
In the most common situations the freshness is either always fresh or never and this can
be resented with a annotation.

Apart from being allowed to change annotated variables locality, a @Local method
must be @Pure in all other aspects. The method must be side effect free and meet the
requirements for @Pure.

There are two extra rules for what type of change are allowed introduced by Pearce to
allow for simpler analysis that’s sufficiently expressive for most scenarios. The objects
assigned to @Local field must also be newly created for successive modifications to
remained confined to the same state as was allowed to change at the method start. The
fields not annotated thus serves as end points for the locality. The end point fields can
be assigned any value since that value will not be included among the modifiable. In
other words the end point field represent the last assignable location in a access chain.

A local method does only impose limited side effect on a limited number of objects.
These can thus be safely applied to fresh object without changing the freshness status of
the object. It is still Fresh.

Example 28: JPure @Local rules.

Definition 3 (Local Method) .
A local method may modify the locality of any parameter

Annotated @Local but, in all other respects, must remain
pure. The method receiver (i.e.this) is treated as a
special parameter, with @Local placed on the method itself.

Rule 1
A local method may assign fresh objects to any field
in the locality of a parameter annotated @Local.

Rule 2

A local method may assign any reference to a field
in the locality of a parameter annotated @Local
provided that field is not itself annotated @Local.

50

Extensions to the concept is introduced when we consider the constructs beyond Pearce
consideration. Arrays, List and collections are constructs with can contain inner objects.
Arrays needs to be considered alongside variable arguments since they are represented
the same. "@Local X..." might be interpreted as short hand for "@Local X a,@Local X
b,..." for the programmer but as "@Local X]|" by Java which is different under the Pearce
rules.

The first clearly imply that all the elements are also local but the other only specify
the field storing the array should be covered by local. The @Local on an array means
only the field storing the array is changeable in JPure. I mostly adopt the same rule
as In JPure with a @Local annotated array not necessary containing only objects we
may change. The inner elements will be conservatively estimated by the checker when
modifications occur or an inner element is return as something that should be fresh.

The inner elements are only guaranteed to be included for a @Fresh annotated array
which can then only contain fresh objects. The correct translation in my implementation
is that @Local X b,..." accepts "@Local X a,@Local X b,..." and @Fresh X[] b".

There is one parameter that can be provided with the annotation when placed on
methods elsewhere the parametrised versions are meaningless. The annotated version

nn

@Local(group="a") allowed to access fields belonging to the secret datagroup "a".

6.3.4 @lgnore

A @Ignore annotation is intended to silence warnings. When placed on a method it
silences the warnings for anything happen inside the method. A method annotated
@Ignore is thus allowed to purge caches but it the programmers job to make sure that if
a method is annotated with @Ignore it won’t leave undesired observable side effects.

When placed on a variable declaration or parameter any warning triggered by these
variables will be silenced. Any value from an ignore variable has the freshness that
necessary.

For the most part shouldn’t end users use the Ignore annotation except to silence some
purity warnings in situation when the analysis can’t sort out some benign side effect that
the programmer trusts.

The effects of an @Ignore annotation are summarised in the following list.

o A method can be annotated @Ignore to state that the analysis should ignore side
effects in the annotated method.

o A method annotated @Ignore may change any field even those annotated @Secret.
This apply not only to the own object but to any reachable object.

o Any method regardless of annotation may call a method annotated @Ignore provided
that any other annotation on the method and its parameters are fulfilled.

e Any method annotated @QIgnore returns an object of whatever locality is necessary
for the situation unless annotated otherwise.

o1

e @Ignore on a parameter or variable means that all side effect induced on that object
are ignored.

It’s mostly only intended to be used by the JastAdd system to avoid preforming
unnecessary checking work of the JastAdd internal methods which are trusted apart
from cache purging. It’s applicable to all the methods of the JastAdd system that’s not
supposed to be exposed to the developer.

An @Ignore annotation is not used by any of the mentioned tools but an adaptation
for the application. It helps dealing with the cache issue that needs to be both protected
from access and purge able. Furthermore, it’s unreasonable to assume that the tool will
allow all the code, a programmer would want to be allowed to use and thus some time
the programmer would want to silence warnings.

Freshness Annotations

The freshness annotations are concerned with what object a method returns. The question
whether they are newly created, definitively not a new object. This information is needed
to determine if the returned object may be changed by the receiver.

The annotations states if the returned value is fresh or nonfresh and under what
conditions. Absence of annotation means unknown freshness and the returned object may
be either fresh or non fresh. The @Fresh and @NonFresh specified unconditional known
freshness of either fresh or non fresh. In combination with the conditional freshness from
@Freshlf a freshness which depends on caller and parameters can be determined.

6.3.5 OFresh

The @Fresh annotation is declare on a method that returns newly created state. If the
method is not otherwise annotated its implicitly annotated @Pure and must fulfill the
requirements to be annotated @Pure in addition to return an object newly created within
that method. The annotation can be combined with @Local meaning the concept of
freshness is more independent of the method purity than in JPure. The @Fresh in JPure
is inseparable connected with method purity implying @Pure and I have relaxed this to
implying at least @Local.

To be considered fresh the object and its locality must be Fresh meaning any object
in @Local annotated fields must also be assigned newly create objects or left as null.
Locality can here be used to define which subtree of objects accessible which must be
newly created at the same time and which that doesn’t. The freshness of an object
tells the purity checker that local manipulations can be made to the object without
introducing side effects.

@Fresh is desirable to have for JastAdd in certain situations that requires a newly
created AST subtree. This applies NTAs[59] where the equation must produce a new
node to the AST with all children initialized and newly created. JastAdd furthermore
want them to be nonnull. Nonnull is not built in freshness requirement per default but
enable in combination with special rules for @FEntity.

52

e A method can be annotated @Fresh only if it returns a newly allocated object with
a newly allocated locality.

o A method can be annotated with @Fresh(group="group") with the same effect as
for the purity annotations with a group annotation.

e The method annotated @Fresh must also satisfy rules for @Pure.

o A method can be annotated with the parametrised @Fresh(group="group") to also
be able to access the secret data group "group'.

e A parameter can be annotated @Fresh if it must correspond with a fresh object.
This is equivalent or stricter with @Local and the difference is in regards to arrays.

6.3.6 OFreshlif

@Freshif is a conditional freshness indicator. A method with any @Freshlf is only
returning a fresh object if all parameters annotated @FreshIf are fresh and in the
case of @FreshIf on the method also the caller. The @FreshIf annotations on a method
signature serves a similar function to how @Local was used in Efftp. It provides additional
capabilities to define the behaviour of the methods that the checker can’t observe from
the other annotations.

The examples in example 29 illustrates the additional information provided by @Freshlf.
A method with @Local doesn’t need to return a fresh object and might not be called from
a fresh object due to secret special cases. In cases where source is available cases such
as the exemplified can be discovered with little analysis but for library functions that
option is not available. With @Freshlf, @Fresh and @NonFresh the annotation system
has complete representation of the freshness status.

The last example illustrates a special case for collections and maps which also effects
arrays. It’s occasionally useful to store a collection of fresh object in a container object to
keep track of a number of object for which a some operation should then be applied. In
JastAdd this corresponds to a calculation approach JastAdd uses for collection attributes.
I demonstrate an example of that in section 8 when I discuss collections attributes.

Example 29: Example usage of @Freshlf.

import java.util.Set;

public class Test{
int v = 9;

@FreshIf @Local public Test freshIf () {
return this;

}

@Fresh public Test freshIf2 () {
return this;

}

@Local public Test freshIf3() {
return this;

53

}

@Fresh public void freshIf3 () {
Map<Test, Set<Test>> x= new ... ();
x.put (this,new HashSet<Test>());
modSet (x.get (this)) ;
// Can only work under
// @Local Map<...,...>.put (@FreshIf x)
// @FreshIf Map<...,...>.get(this);

}

@Local public void modSet (@Local Set<Test> t) {
t.add(this);
}
}

@Freshlf is not necessitated by the demands from JastAdd but I thought it was useful
to introduce for the potential usage in user code and the simple check it would .

6.3.7 ©NonFresh

The @NonFresh annotation is declared on a method that is guaranteed to return an
object that existed prior to the method execution. It can also be placed on parameters
forcing the parameter to not be a newly created object.

This annotation guarantees that the value doesn’t satisfy @Fresh.

6.3.8 Q@Entity

The FEntity annotation declares a class and all it subclasses as an entity type. This
changes the default assumptions about objects of these types. An object of entity type is
assumed @NonkFresh if unannotated instead of maybe fresh that is the default assumption
for not annotated parameters and methods. A method returning an Entity type are
implicitly NonFresh unless overridden by a @Fresh annotation.

The freshness analysis get modified expectations and want that entities assigned to
@Local fields should be non null otherwise null is allowed as a fresh value. Further more
Entity

Entity are treated differently regarding how the are allowed to be created. Invoking a
"attribute" annotated method on an entity type which is newly created is not allowed.

A FEntity type must be created in an "nta environment" for methods with the "isNTA"
property for the JastAdd annotations.

JastAdd annotations

JastAdd already generates some useful annotations. The annotations include "@ASTN-
odeAnnotation.Attribute" and "@ASTNodeAnnotation.Token". These are placed on the
methods which obtains the attribute or the "Token". The purity checker uses these

o4

annotations to improve warning messages and to adapt the analysis for some kinds of
attributes.

A Token is a value set by the parser during the tree construction. A Token may not
be set in any Attribute according to JastAdd reference manual[6] since they have side
effects. The ASTNodeAnnotation.Token doesn’t have any significant role for the checker
apart from indicating a value that may not be indicated to be fresh and thus editable
when obtained. It’s used to enhanced the warning messages slightly. An example of this
is illustrated in example 31.

Example 30: Example of enhanced messages.

Enhanced warning message:

The method call A.getX obtains an AST token. Tokens cannot
be considered newly created and changeable after initial
assignment by the AST parser.

Normal warning message:
The method call A.getX does not return a newly allocated object.

@ASTNodeAnnotation.Attribute has several arguments showing what sort of attribute
the method represent of which two have some important for the checker. The arguments
"isNta" indicating that it creates an NTA and "isCircular" for any attribute that might
depend on itself indirectly. These arguments are also used to enhance the warning
messages by displaying a few effected attributes by a problem. The "isSNTA" and
"isCircular" properties is used to identify that the behaviour has to be tweaked from the
normal attributes.

Example 31: NTA using a helper attribute. The helper attribute needs to be considered
fresh. This is determined with help of the isNTA annotation and a call
graph check.

//nta using a helper attribute
nta A ASTNode. getA (){
int i=5;
return creation (i);

}

syn A ASTNode. creation (int i)=new A(new B(ID), new B(ID));
// Generated code

@ASTNodeAnnotation. Attribute (isNta=yes, isCircular=no)
@Pure (group=_ASTNode) public A ASTNode.getA (){

node = compute_getA ();
return node;

}
@Fresh protected A ASTNode.getA (){
Int i=5;
return creation (i);
}

@Pure (group=_ASTNode) public A ASTNode. creation (int i){...}

95

7 Solution Implementation

In this section, a more detailed exploration of the solutions implementation for both tools
are given and some motivations for why the solution is designed the way it is. First the
purity annotator version of JastAdd is explained and my purity checker which I have
called ExtJPureChecker.

7.1 Purity Annotator

Figure 7.1: Constructing a purity annotating JastAdd variant.

——

RAG sources

‘_/—\
—

new JastAdd Compile with purity

Java sources JastAdd L N
verision annotation

S N
:H

Java generation
templetes

S— 7 N

Modified JastAdd sources

The annotations are implemented as Java annotations and not as keywords for either
JastAdd or EztJPureChecker. Since the annotations are Java annotations the annotations
can also be used for ordinary Java programs not generated by JastAdd.

The first change made to JastAdd was to let JastAdd generate a Java class ”SideEf-
fect.java” that contains the declarations of the annotations to be used in the analysis,
e.g., @QPure. This SideEffect class has the same package as the AST classes. Hence, these
classes can refer to the "Pure” annotation as SideFEffect. Pure.

The class SideEffect could be imported in order to allow writing unqualified annotations.

56

Example 32: The side effect annotations generated by JastAdd.

VL
* @ast class
* @declaredat ASTNode:259
*/
public class SideEffect {
@java.lang.annotation.Retention (
java.lang.annotation.RetentionPolicy.RUNTIME)
@java.lang.annotation.Target ({METHOD,
CONSTRUCTOR, PARAMETER 1)
public @interface FreshIf {
}

@java.lang.annotation.Retention (
java.lang.annotation.RetentionPolicy.RUNTIME)
@java.lang.annotation.Target ({METHOD,
CONSTRUCTOR, PARAMETER,
LOCAL_VARIABLE,FIELD })
public @interface Fresh {
String group() default "";
boolean rewrite () default false;

@java.lang.annotation.Retention (
java.lang.annotation.RetentionPolicy.RUNTIME)
@java.lang.annotation.Target ({METHOD,
CONSTRUCTOR, PARAMETER,
LOCAL_VARIABLE,FIELD 1)
public @interface NonFresh {
String group() default "";

@java.lang.annotation.Retention (
java.lang.annotation.RetentionPolicy.RUNTIME)
@java.lang.annotation.Target ({FIELD,
METHOD })
public @interface Secret {
String group() default "";

@java.lang.annotation.Retention (
java.lang.annotation.RetentionPolicy.RUNTIME)

@java.lang.annotation.Target ({TYPE })

public (@interface Entity {

}

o7

@java.lang.annotation.Retention (
java.lang.annotation.RetentionPolicy.RUNTIME)
@java.lang.annotation.Target ({METHOD,
CONSTRUCTOR, PARAMETER,
LOCAL_VARIABLE,FIELD 1)
public @interface Ignore {

}

@java.lang.annotation.Retention (
java.lang.annotation.RetentionPolicy.RUNTIME)
@java.lang.annotation.Target ({METHOD,
CONSTRUCTOR, FIELD,
PARAMETER 1)
public @interface Local {
String group() default "";
}

@java.lang.annotation.Retention (
java.lang.annotation.RetentionPolicy.RUNTIME)

@java.lang.annotation.Target (METHOD,
java.lang.annotation.ElementType.CONSTRUCTOR)

public @interface Pure {
String group () default "";

}

}

As displayed the changes to JastAdd simply consist of inserting the correct annotation
into the right template. In most template, the change is to place @Pure with secret
datagroup for the attribute returning method and without data group for the compute
method. The exception is NTAs where the compute method is @Fresh.

All the default AST constructing methods have also been annotated. The deep internal
methods with a combination of @Ignore and annotation on what they should be passed.
That is to save time and not analyse none user code too much. An example is "@QLocal
setChild(@Fresh ASTNode)" which is called from the constructor of an ASTNode which
demands that each child to an ASTNode is a newly created ASTNode.

In a few cases the method signatures and cache fields is generated entirely internally
in the JastAdd code this applied to for example rewrites and circular collections. These
also needed to be annotated and required a tedious manual search of the JastAdd code
to find.

7.2 Purity Checker

The purity checker has two tasks. It’s supposed to collect all the warnings for when side
effect occurs by checking the annotation and display them to the programmer. Secondly it

58

supposed to generate the annotations for external libraries and Java source not annotated
by the annotator. The JastAdd annotator could have partly provided these annotations
during interweaving but I didn’t have time to study JastAdd enough to provide this
functionally, I spent my time with programming the checker in ExtendJ. They therefore
have to be inferred by the purity checker.

The second task depend on the first one. Warnings trigger because methods were
insufficiently pure or had the wrong freshness annotations so the needed annotations
depends on which warnings are triggered. In the case of external libraries, the are no
annotations present in the start meaning they all default as impure. The methods that
should be side effect free will thus issue a warning for any usage. To avoid the warnings,
the correct annotations must be determined and for this the checker first collects all
warnings and then controls each of them to determine the annotations it demands. The
checker is helped by which JastAdd annotations are present to more precisely deduce
the needed annotations but they are still mostly suggestions that will need manual
corrections.

The warning could have been triggered because of a parameter was lacking an annotation
or the caller was modified and in these cases the checker will suggest that the relevant
part of the method signature be annotated. This inference of library method annotation
does not have access to the Java source of the method and can thus only check the
signature. but even for the methods with Java source I only infer for the signature.

The annotation inferences can only make suggestions for the method signature and
field annotations. It cannot suggest for any local variables. The reasons include that
it would be more difficult to check and for the most part the local variables shouldn’t
have any special behaviour.They should mostly be treated as genuine errors. I therefore
haven’t prioritised that and then I haven’t had time to include inference for that.

Types are not annotated beyond what my JastAdd annotator provide which only
annotates the AST classes as entities. This enforces the type to be considered special and
imposes some JastAdd related restrictions. I leave it up to the programmer to specify if
any other class needs the restrictions I described in the section 6.3.8. Finally, I don’t
fully determine fields to annotate with @Local and impose the associated restricts and
neither for the @Fresh and @Secret. Fields the programmer manually uses as cache fields
could be annotated with @Secret according to the rules used in Purano [16] but I don’t
currently provide this. The JastAdd annotator can only provide annotations for the
field which are part of attribute calculation. There are thus several parts that must be
annotated manually.

Example 33 shows a small section of an annotation list. It is constructed to be
written and read by the Java properties class [60] which builds on a hash table . The
format consists of key value pairs with first a complete method signature specified
by package followed by "=" and then purity information. The list specify method
purity annotations which consist of annotations for the methods and their parameters
where each may have multiple annotations. To specify all information related to a
method with only one key I store the information combined into one string. The
string can then be split using "-" and "," such that "," denotes more annotations and
"-" moves to the next parameter to recover the annotation information. For example

59

"java.util.stream.collect(java.util.stream.Collector)=Local, FreshIf-FreshIf" would indicate
method has @Local and @FreshIf and the parameter @FreshIf. Under this annotation
we can deduce that the return from this method is only fresh if both the parameter and
the caller is fresh. An more concrete situation demonstrating how well behaviour can be
specified is shown in example 34 where the correct annotation is "Pure,Freshlf-Freshlf-
Local" which encapsulates the behaviour completely.

Example 33: Example list of annotated methods of library methods.

#Wed May 03 08:44:02 CEST 2017

java.util.HashSet<T>.<init>

(jJava.util.Collection<wildcards.?\ extends\ T>)=Fresh
java.util.HashMap.<init> (int)=Fresh
java.util.Collections.singleton(java.lang.String)=Pure
java.util.Set<T>.remove (java.lang.Object)=Local
java.util.Set<java.lang.String>.add(java.lang.Object)=Local,FreshIf-FreshIf
java.util.stream.Collectors.toSet ()=Pure

java.util.stream.collect (java.util.stream.Collector)=Pure,FreshIf--
java.util.Collections.emptySet ()=Fresh

Test.X.trickyFresh ()=Pure,FreshIf-FreshIf

Example 34: Example motivating trickFresh()

Int k;
public X trickFresh(X a,X b){
b.k++;
if (a.k > this.k)
return a;
return this;

}

I have made the checker such that it takes previous lists of annotations and based on
those and annotations in source code suggest new annotations separated into two different
lists. One list for annotations needed in the source code and one for external methods.
Java properties [60] are used with the method signature as key and the annotations for
method and parameters separated with "," and "-".

Since the design of the checker is to modular check the methods. Any internal side
effects apart from in a few special cases can just be collected with a collection attribute
that visit the AST for the method and check if any assignment, call or read causes any
problem.

The first type of warning that the checker identifies is invalid annotation combinations
both for newly parsed information and for the library annotations.

Type rules

Not all combinations of annotations are allowed and for inconsistent and redundant
annotations warnings are issued. The Java compiler will, due to the "target" property
on the annotations, reject some combinations. For example, the @Secret annotation
must only be placed on fields and cannot be placed on types or methods. This can

60

be guaranteed by the Java compiler. The Java compiler will also rule out redundant
duplicate annotations by following the annotation rules.

This leaves for the checker to simply verify that of the applicable annotations the given
combinations are consistent. The annotations must be consistent in the class hierarchy
as well.

In the table below are all consistent annotations for method placed. Only one freshness
annotation is allowed (Fresh, FreshIf, or NonFresh), and it can be combined with Local or
Ignore. Pure can only be combined with FreshIf but it is implied every time a freshness
annotation is used unless a other purity annotation is used.

Figure 7.2: Valid combinations of annotations on Methods.

Annotation | Fresh | Freshlf | NonFresh | Pure | Local | Ignore
Fresh X X X
Freshlf X X X X
NonFresh X X X
Pure X X
Local X X X X X
Ignore X X X X X

A constructor permits the same annotations but with slightly modification. Local is
implicit for constructors since they create the new state and assigns the default value to
each field and doesn’t have to be written out. Figure 7.2 marks all the valid annotation
combinations for constructors.

Figure 7.3: Valid combinations of annotations on Constructors.

Annotation | FreshIf | NonFresh | Pure | Ignore
Freshlf X X X
NonFresh X X
Pure X
Ignore X X X

Parameters permit a single freshness annotation or Local. The annotation state what
type of argument can be passed to the method. Ignore applies to the behaviour for the
usage of the variable inside the method. In figure 7.3 the valid combinations are shown.

Fields allows the same annotations as Parameters with extension of Secret and the
removal of Freshlf as shown in figure 7.4 . A local variable has the same rules as fields but
disallowing Secret. There is only one annotation for types so there are no inconsistencies
possible for types.

Then the type checker control that the class hierarchy is consistently annotated. This is
done by controlling that each implementing method or overriding method has an equally
or more restrictive annotation than the overridden method. No difference between sub

61

Figure 7.4: Valid combinations of annotations on Parameters.

Annotation | Fresh | Freshlf | NonFresh | Local | Ignore
Fresh X X X
Freshlf X X
NonFresh X X
Local X X X
Ignore X X X X X

Figure 7.5: Valid combinations of annotations on Field.

Annotation | Fresh | Secret | NonFresh | Local | Ignore
Fresh X X
Secret X
NonFresh X
Local X X
Ignore X

classing and interface implementation. The implementation must match the strictest
definition.

The purity annotation is ordered as "@Ignore<unannotated<@Local<@Pure" where
"<" denotes which is more restricted. This means @Local annotated method may override
or implement @Ignore annotated and unannotated but not methods annotated @Pure.

The freshness annotation is almost independent of the purity annotations and for
the class hierarchy to be consistently annotated an implementing or extending method
must also have a freshness annotation that is consistent with the original definition.
An ordering exists such that "@Ignore<unannotated <@FreshIf"<(@NonFresh/@Fresh)".
The primary check preformed are listed in figure 7.6.

If a program does not violate these type checks then it has a potentially consistent set
of annotations. The only remaining issue is that the methods actually has the correct
behaviour restricted by the annotations. These rules guarantee that it is correct to
use the statically known type of the caller of a method when determining the purity of
the invoked method. The statically known super type method declarations gives the
minimal purity and freshness condition of any method which overrides or implement that
method. The restrictions only get stricter further down the type hierarchy. A circular
type hierarchy which is one where loops of the kind “A extends B” and “B extends A” is
of course only consistent if all effected methods have the same annotations. Otherwise
at least one class will complain that they have lesser restriction than the class which it
extends. The checks only need to check one step up the hierarchy.

62

Figure 7.6: Typing rules for the class hierarchy.

A method may be annotated only equal or more restricted than any overridden
method according to the listed ordering. This both according to the freshness and
purity orderings.

A method may be annotated only equal or more restricted than the interface
definition of the method. This both according to the freshness and purity orderings.

A method parameter may be annotated only equal or more restricted than its
definition in an overridden method according to the listed ordering. This only
according to the freshness ordering.

A method parameter may be annotated only equal or more restricted than its
definition in the interface specification of the method according to the listed ordering.
This only according to the freshness ordering.

In the case that a method implements both an Interface method and extends a
superclass method the strictest annotations apply. This applies to both parameters
and methods.

A class with any method with stricter definitions in superclass than the same
method signature in an interface cannot implement the Interface.

Example 35: Example demonstrating the type rules.

import lang.ast.SideEffect.x;
public class ExtendandImpl0O3 extends

}

Parent implements InterfaceOl{

//Wrong missing @Fresh!

public Integer freshMethod() {return 1;}
//Wrong needed @Pure!

@Local public Integer pureMethod() {return 1;}

public class Parent({

}

@Pure public Integer freshMethod() {return 1;}
@Pure public Integer pureMethod() {return 1;}

public interface Interface01l{

}

@Fresh public int freshMethod();
public int pureMethod();

63

Method Checking

The checking is mostly modular, handling each method in isolation. The assignment
statements and method calls are checked to verify if they are correctly used. For each
method call there are two parts to the checking.

The checking needs to make sure that the passed arguments matches the appropriate
target methods annotations. This is a verification of each expression provided as an
argument if it has the correct freshness given the target methods parameter annotations.
The expressions freshness can either directly be determined based on types and annotations
on involved methods, fields and variables or determined via dataflow analysis. In the
section 7.2 (Freshness analysis) I describe more in detail how the freshness analysis is
done.

First the called methods must be determined to know which annotations should be
followed. This means determining an exact type or a super type for the callers. The
annotation rules assure that the analysis is safe as long as the type is a super type of all
the possible callers but I want to have an as close as possible super type since stricter
restrictions might apply to implementations for types further down the in hierarchy. That
would be more information for the type checker. The less precise the type is the more
false positive are possible when the super class methods are more precise.

The type is obtained using a simple data flow analysis which collects only the most
constrained super type for each variable if the expression is a local variable or a parameter
otherwise the statical declared type is used. The effectively final property and final
annotation is used to aid the type deduction in which case the initiation or possible
initiations are checked to determine the type. No attempt is currently made to limit the
type of fields.

The example 36 exemplifies a case where more accurate type information effects the
allowed calls. The statement "x.getOpen()" is okay if the type of x is resolved to "B" but
not if its "A "as according to the declaration.

I construct a simple call graph in my checker to be used for two things. Firstly is
for limited interference purposes. 1 determine what type of callers the method has to
determine if it is appropriate to assume a freshness annotation or FreshIf annotation.
If the checker determine that all calls are known to be from a constructor then local
is acceptable. If all calls are from an NTA calculation then using the Fresh should be
attempted despite having Pure already possible form the annotator.This is needed to
allow combining NTA to use helper attributes.

The call graph operates under a closed world assumption.

The call graph is currently constructed using a static class hierarchy analysis (CHA)
approach. A later change to a Rapid type based approach was planned to increase
accuracy. CHA tries to connects a method call with all possible implementations that
could be invoked which is the type of the caller and all suptypes [34]. CHA might however
give false positive due to the overly conservative determination of the type of the caller
of the method. According to [34] a change to rapid type algorithm would not be too
costly but give greatly increased accuracy. A Rapid type algorithm determine a set of
candidate types based on those that actually instantiated in the program or the method

64

Example 36: Example demonstrating the type rules.

import lang.ast.SideEffect.x;
public class Main{
@Pure public static void main(String[] args) {
A p=new A();
A x=new B();
p.getOpen(); //Wrong!!
x.getOpen(); // (Type dataflow = Okey, declared type= Wrong)

}

public class A{
public int getOpen () {
return 5;}

}

public class B extends A({
@Pure public int getOpen () {
return 5;}

as far as can be determined.

The call graph uses the declared type at each method call and is constructed by storing
the pairs of call sites and destination. The representation is a map over methods and
caller sites in order accommodate this. Only calls sites either from an annotated method
or which calls an annotated method are represented in the call graph. This is because
the checker is only concerned about how protected values from attributes and annotated
methods are used and called. When a method needs to obtain its callers a lookup is
preform first of it self and then of the overridden or implemented method .

Freshness Analysis

The freshness of an expression determines if it may be change in any way. This concept is
used to support that new objects may be modified before they are returned by a method.
A method annotated local is only callable for a local annotated expression or a fresh
expression.

The freshness information is firstly obtained for the expression type. The immutable
types which in Java is String, Null and the primitive classes are always fresh due to
being immutable. No work is needed when encountering these types. In other cases, the
information needs to be deduced. This may involve both alias analysis and data flow
analysis.

First the locality of the expression is traced to its top meaning access chain is reduced
as much as possible or until known freshness. This is according to rules of the influence
of @Secret and @Local annotations. These annotation influences the determination of
the next access. For example, new Z().x.y might be of same freshness as new Z().x if

65

field "y" is Local. If this simplification for example encounters an object creation or array
creation or a "fresh" method call then the expressions freshness is clear.

When the locality top is a variable the cases are that it is unqualified or qualified.
In the unqualified case, then the annotations on the variable are controlled to find the
top of the locality. Depending on the annotation on the field, method or variable which
represent the top of the locality it determined if the freshness status is known or not.
Annotations such as @Fresh, @QIgnore, @Secret give information about the freshness
status. If no quick conclusion can be drawn the checker starts to search backward in the
Control Flow Graph (CFG) to find the current definitions of the locality and check their
freshness status.

In the Freshness analysis, I utilizes a k-limiting approach to represented my access
chains to be precise. I default to using 3 levels of access and a marker for a forth layer
only indicating if in locality or not. The implementation is that first a map of all access
chains used in the method is constructed using k-limiting. This creates one unique object
for every access chain so results can be cached for the same access chain. The longest
access chains are of length 3 and longer will be truncated. The chain “x.y.z.d.f” will be
truncated to "x.y.z" if in locality or "x.y.z.NonLocality".

For any access chain which ends in the NonLocality marker no CFG traversing is
necessary since these locations are not explicitly tracked and not influenced by any
assignment to a tracked location. These untracked locations cannot be assumed to be
fresh under any circumstances.

This k-limiting approach also reflect to my assumption about ASTs should be relatively
immutable and there should not really be any need to change the node through complicated
access chains. 3 or 4 levels of field sensitivity should be more than sufficient for typical
changes. Another detail is that I use a single field representation of arrays which might
be quite restrictive since the properties must apply to all locations for properties like
freshness and nonnull. If a single assignment to an array is violating fresh then no
locations can be assumed to be fresh or local.

In example 36 I try to illustrate how k-limiting works. I trunkate long access chains
to avoid wasting computing power on representing all the extra field information that
would be required to track that information both for aliases and the dataflow itself. I
can’t think of a practical situation where one needs to manipulate new created object
via long access chains. The while loop in the example represent the more reasonable that
if we want object "x.x.x.x.x" to be fresh then we want every object accessed via "x" to be
fresh and @Local is well suited to enforce that.

66

Example 37: Examples about k-limiting and locality.

public class Test({
int x;
Test t;
@Local Test Lt;

@Local public Test FreshnessDemol () {
Test tester = new Test(); // testl = [Fresh]
tester.t= new Test(); // tester.t = [Fresh]
tester.t.Lt.Lt=tester;
// The locality top for tester.t.Lt.Lt is tester.t
//tester.t is deduced to fresh of
//"new Test ()" and assign valid.
tester.FreshnessDemol () .Lt.Lt = tester;
// Locality top is tester.FreshnessDemol () which
// has not Fresh assignment is thus wrong!!
tester.t.Lt.t = new Test();
Lt = tester.t.Lt.t.Lt;
// The locality top "tester.t.Lt.t" is a to long access
// chain. It unlikely that it should be fresh and expensive
// to keep track of field information so deep in objects.

tester.Lt.t = tester;
Lt = tester.Lt.t.Lt.Lt
// Locality Top = tester.Lt.t which is Fresh okay

// Loop updating tester.i , ... , tester.t.t.t.i
// .Verifing all individually would be expensive way
// of finding the the error at tester.t.t.t.i1
// especially if the loop is long.
tester.t = new tester();
tester.t.t = new tester();
for (int 1=0;i<4,i++){
tester.i=0;
tester = tester.t;

// @Local provides an infinite chain of
// locations that are either null or fresh.
while (tester!=null) {
tester.1=0;
tester = tester.Lt;
}

return g()>3 ? t : tester;

67

In the analysis, I search backwards in the CFG to determine if an access chain represents
a fresh object or not. The analysis is implemented as a combination of a few attributes.
A freshness attribute which determines the freshness for a given Java construction. This
attribute invokes a helper attribute heapStatus(AccessChain a) when needed information
from the CFG.

In the heapStatus(AccessChain a) attribute current definitions for the access chain
across different control flow paths are evaluated to determine the minimum freshness
of the access chain. The definitions evaluated in the heapStatus(AccessChain a) are
obtained in a circular attribute I called currentDefinitions.

Example 38: Examples about k-limiting and locality.

// Simplified overview of Freshness analysis

// Freshness=local information if knownlocally otherwise

// Freshness=heapStatus (Access chain) (cfg lookup)

// heapStatus (Access chain)=

// min (currentDefinitions ((Access chain).Freshness()),

// Ignore>Fresh>Local>NonFresh>Maybe
public class Test {
@Local Test LT;

Test T;

int x;

@Fresh public test FreshAnalysis (int a) {
Test test = new Test(); //#1 // Freshness=Fresh
test.T = new Test(); //*2 // Freshness=Fresh
test.LT.T = new test (); //*3
if (x>a) {
test.T = FreshAnalysis(4); //#4 // Freshness=Fresh
lelse(

test .LT.T = T; } //#*5

// Freshness=NonFresh

if (x==10)

test.T=test.LT.T; //*6

// Freshness=heapStatus (test.LT.T) ->

// currentDefinitions={*2, x4, *5}
test.LT.LT.T = test(); //+7

return test.T.LT.LT;

// Freshness=heapStatus (test.T)->

// min (currentDefinitions (test.T).Freshness()),
// with currentDefinitions (test.T) = {#6, x4, x3}

// Freshness=min (heapStatus (test.LT.T),Fresh,Fresh)
// Freshness=min (min (Fresh, Maybe, NonFresh), Fresh)

// Freshness=Maybe —-> wrong because #4

The implementation of currentDefintions is a critical point in the analysis the options
where there were many options and I made several versions. One alternative was forward
data flow analysis either flow insensitivity or flow sensitive and another was a backwards

68

collection of definition as they come. The second alternative is the one I use currently.
The current implementation collects the definitions for every access chain requested up
to where the access chain was requested.

Aliasing is not a problem for local fields since the rules for local field is that they hold
fresh or local objects at all times. This is invariant of aliasing. Any aliased variable would
simply be under the same restriction or harder restrictions since the annotations is on
the field. An objects freshness is the freshness of itself and all it fields annotated @Local.
These fields can only be assigned fresh objects in any method without visible side effects.
Therefore, side effect free methods can’t destroy freshness no matter aliasing.

Aliasing is only a potential factor for local variables and for fields without any @Local
annotation.

Example 39: Aliasing example.

public class Test({
@Local Test Lt;
Test t;
int i;

@Pure public void AliasDemo () {
Test tester = new Test ();
testl.t= new Test ();
Test aliaser = tester;
aliaser.t = t; // tester.t no longer fresh
tester.t.i++; //Wrong !
// The same is not possible for Local field due to Locals rules

aliaser.Lt = t; // Not allowed due to t not fresh.

// Any aliasing variable can only place fresh objects

// in which case the freshness is preserved

aliaser.Lt = new Test ();

// tester.Lt consequently always fresh invariant of any aliasing;
tester.Lt.t = t; // always acceptable

7.2.1 Checking @Pure

The @Pure is the standard annotation for side effect free method.

To check that the method satisfy @Pure each so annotated method is traversed.
Warnings might be triggered for reading a method, assigning a variable, calling a method
and passing a variable as an argument to a method.

In the rules listed in figure 7.2.1, different type of statement is illustrated.

A problem in checking that the method only does the following is the aliasing problem
that a local variable may alias a pre-existing object and an assignment to a field may not
point to a newly allocated object. Thus, an limited alias analysis is also implemented.

69

Figure 7.7: Pure behaviours.

1. Function calls are allowed to methods annotated @Ignore, @Pure and @Fresh
without any criteria.

2. Function calls are allowed to methods annotated @Local if called on a locally newly
created object (Fresh). For example x.y.m() is valid only if x.y is "Fresh" according
to the freshness analysis.

3. Function calls to methods annotated @Local may get passed Fresh objects to its
@Local annotated parameters and any object to any non annotated fields.

4. A Pure method are not allowed to modify the referent of it parameters unless the
parameter is annotated @QFresh.

5. A field annotated @Secret may only be read and assigned to if belonging to the
same group.

6. A local variable may be freely assigned.
7. A referent may only be assigned to if it’s a locally created object.
8. Any field without @Secret may be read.

9. The function may throw exceptions but not read them or manipulate them.

A second problem is if the function call is to unannotated methods it will be with all
legacy code. Then the checker simply has to assume that they break rules. If the source
is available inference can be done but my ExtJPureChecker does only attempt to do
inference in a few special cases. For library method whose source can’t be analysed an
error message will be generated if not in a list of pure library methods provided.

The problem possed by unannotated methods has to be addressed with manual work
and the list generating functionality of the checker. If the checker is asked to generate
a list over all the methods that needs to be annotated. Then a guess based on current
warning information is provided.

7.2.2 Checking @Fresh

For @Fresh on a method there are a few additional checks beyond those for @Pure. The
extra tests regards the return value and the method type. In the figure 7.2.2 a few point
about what must be checked for @Fresh.

The problem here is to determine that all return statements value is a fresh object.

70

Figure 7.8: Fresh behaviours.

o Allowed to do the same as QPure.

e Must return an object created during it execution either internally or obtained via
method call.

o All return objects should be fresh. A fresh object may be null.

e The type should be of reference type. A primitive numerical type is not allowed.
Primitives are always fresh values since they are not objects so an annotation is
redundant.

e If called by an assignment to a local field of an entity type then it should be non
null. The same applies if the caller is a NTA then we want nonnull as value.

Checking @lgnore

The @Ignore annotation on a method causes the checker to skip the inside of the method
and only check the method signature. As far as the warning generation is concerned a
@Ignore method has no statements and consequently no warnings will be generated for
any side effects and any call will be okay.

Since the method signature is still checked any other freshness and purity annotation
on method and on the parameters still apply and causes warnings.

Furthermore, an Ignore method is not modelled by the call graph. The programmer has
total responsibility to guarantee that such a method doesn’t do anything unintentional.

When placed on any variable or parameter the @QIgnore annotation guaranties that the
variable can’t trigger any warnings for any of its usage.

71

7.2.3 Checking @Freshlif

The @FreshIf annotation provides the polymorphism for the return value type. The
annotation is important for the freshness analysis but has no specific checks. There is no
warning apart from the inconsistent annotation warnings which is generated because the
@FreshlIf annotation. The freshness analysis will use this annotation when determining
if a method returns a fresh object or not. For all parameters with this annotation and
for the caller if the method is annotated the freshness analysis is invoked and if the
determination is not Fresh or Ignore for each of them then the returned object is not
fresh. This information can then trigger other warnings.

In example 40 a minimal example for @FreshlIf is shown. In the example some
complicated element selection code has been factored out from selected() and the returned
object might or might not be fresh. The freshness depends on the objects given to a,b
and link.

Example 40: @FreshIf example.

public class X{

Int k;

X link;

@Local public X obtainselected() {
X a= new X(); a.k=10;
X b= new X (); b.k=3;

link = new X();
return a.selectX(link) .selectX (b);

}

@FreshIf public X selectX (QFreshIf X a) {
// complex selection process!!!
return a.k<this.k ? a : this;

7.2.4 Checking @Secret

The @Secret annotation is the easiest since it a field only annotation. The check only
involve study every field access and determining if it’s in a method with the required
annotation. The group should be correct.

Furthermore, to isolate secret states it’s not allowed to read or write through a chain
of Secret annotated fields. This is due to that secret field are intended to be object secret
and only assigned via the corresponding object. A warning is thus issued when an access
chain contains two or more fields annotated secret.

7.2.5 Checking @Local

The @Local annotation on the other hand requires more work to verify. It can be placed
on both methods, field and parameters. When placed on a method it allows everything a

72

Pure method can do with the addition of assigning the current objects fields so that no
longer triggers warnings. For an annotated parameter, the local changes to the parameter
is allowed meaning warnings for these changes are silenced.

Figure 7.9: Local behaviours.

e Allowed to do the same as @QPure.
o May assign fields Annotated @Local with fresh objects in the corresponding object.
e May modify fields not annotated by @Local in the corresponding object.

e For an array annotated @Local the array may be modified but not the elements.

7.2.6 Checking @Entity

The entity annotation is placed on the classes for AST nodes, to denote that they are
entity objects, rather than objects that represent values. There are a few specific checks.
When an entity type is passed to as a fresh parameter or to a field which demands a
fresh object then the analysis tries to determine that it’s also non null. Null is otherwise
allowed in those contexts. This is to meet the requirements that nodes in the children of
an AST node are always complete sub trees and never refer to null. The correct way for
entities is to use an object as the null value.

On the other hand @FEntity modify the behaviour for assignment to fields which doesn’t
want a fresh object. They are not allowed to be fresh any more. In way normal reference
attributes are not allowed to reference to new ASTNodes but if the type is not an entity
then it may be fresh. JastAdd "Tokens" can escape this limitation with exception for
token fields which may be assigned any value.

73

8 Applying the annotations for JastAdd

There are several different forms of impurity that we would want to detect and warn
against regarding the code generated by JastAdd. I presented two introductory examples
in the section 3 as motivating examples. In this section I will go through all the JastAdd
semantic constructions and address how each work with the checker and how they should
be annotated. The different constructs used in a specification to JastAdd which I have
considered are

e Type declarations: Programmer specified class and Interfaces declarations doesn’t
need any annotations. The @entity should be provided by the programmer if needed.
For JastAdd only the implicit AST root class ASTNode need @entity.

e Methods and Constructor: Java method and constructors specified by the
programmer need to be annotated depending on usage. The programmer can specify
the annotation separately in annotation files as an alternative to modifying source
code. Many implicit methods need annotations. AST constructing gets @Local or
@Ignore depending on if they are supposed to be exposed to the programmer.

e Primitive Attributes: There are two primary types of attributes. They are
either synthesised or inherited. An attribute is converted into mainly two methods
which is a retrieving method and one calculating method for each equation. The
getter can manipulate secret state and the calculation can not. These are annotated
@Pure. Any cache field is annotated @Secret to protected the field.

o Parametrised Attributes: Attributes may be given parameters. They are
cached in map instead of directly to a field which forced the analysis to allow this
modifications to a @Secret protected field. They are otherwise treated in the same
way as primitive attributes.

e Collections Attributes: Collection attributes generates more methods for their
implementation. In addition to the normal methods there is a new contribution
method for potential addition which performs a local change to the collection passed
as a parameter. A survey method performs a similar construction of the set of all
nodes which might affect the collection.

e Non Terminal Attributes: NTAs requires a fresh object from their computation
method but the getter method should still be Pure. This approach works well until
we encounter NTAs which enlists helper attributes for the calculation. The helper
attributes need to be assumed @Fresh by the call graph heuristic if they are only
referenced by the NTA.

e Circular Attributes: Circular attributes is attribute which needs to be evaluated
to fix point. This is no new problem since every attribute is only modified in its own
equation and then either form a completely fresh value or from its own previous

74

value. The checker has no problem allowing this with the same annotations as for
non circular attributes under the rules explained in the previous chapter.

o refines: A refines replaces the definition for another synthesised attribute and are
given no special treatment by the checker. I haven’t considered them much. Unless
they reference the original definition they completely replaces it and the checker
only sees the new attribute otherwise the redefinition is one attribute that simply
references a compute method. The computation method used the same annotation
as the original.

o rewrites: Rewrites are constructs which replaces one node with a new one in.
They utilize the same structure as NTAs except that the computation method is
divided into many smaller rewrite rule methods for each scenario in which the node
may be replaced. These are also annotated @Fresh.

The Java that needs to be checked is described. For some constructs, complications
can arise when combined with other code and for those I explain how the checker can
deal with them.

The examples I present here are described on a AST generated for a small abstract
grammar shown in example 41. I also used the examples from JastAdd test suits used
for JastAdd development [61].

Example 41: small test grammar as context for the examples

//A simple test grammer for the testing

Tree :: Ax B; // A top class that has a list of A:s;
A ::=<ID> Cx B; // Independent class 1

B::=<ID>; // Independent class 2:

C = Cond:Expr<ID>; // parent to D,E.

D C ::= Elist:Exprx <ID>;

E : C ::= <ID>;

abstract Expr;
Numeral : Expr ::= <NUMERAL>;

75

8.1 Abstract Grammar and Internal methods

When working with JastAdd an AST class structure is built by from an abstract grammar.
This grammar is used to generate the AST classes with the fields needed to hold the
children and values of the nodes. Children to an AST class are an AST class, an instance
of opt or list or a NTA class. NTA classes have no implementation generated by the
JastAdd system but must be defined by the programmer. The generated code should be
considered a pure implementation and generate no warnings to the programmer.

The default generated code will however contain setters and getter for internal fields
used by JastAdd. JastAdd automatically generates ASTNode, List and Opt as default
classes. For the default AST classes fields storing the parent and children are assign be
such default code. Apart for code for constructing the AST there several other methods
are provided. JastAdd provides an iterator over children and methods for constructing
deep and shallow copies of the AST. Much of the code is likely to be invoked by use in
attributes and rewrites and must be annotated.

Example of this is are the “init$children”,”addChild(T node), setChild(ASTNode
node,int i)” methods which should be allowed to be used only when it’s allowed to change
the object. That would apply in constructors but also for addition of a NTA and during
rewrites. Warnings should otherwise be issued for any attribute calculation or @Pure
method that tries to use these methods.

Example 42: Internal JastAdd methods and fields
package test;

public class A{
// Constructing AST
@SideEffect.Secret (group="_ASTNode") private int childIndex = -1;
@SideEffect.Secret (group="_ASTNode") protected ASTNode parent;
// Local to control rewrites authority and modifiablity
@SideEffect.Local protected ASTNode[] children;
@SideEffect.Ignore public void init$Children() {
children = new ASTNode[1l];
setChild (new List (), 0);
}
// Force all childs to be newly created nodes to assure
@SideEffect.Local public void addChild(Q@Fresh T node) {
setChild(node, getNumChildNoTransform());}
@SideEffect.Ignore public void setChild(@Fresh ASTNode node, int 1) {
-}

Several methods such as "clone()", "treeCopy()", "getParent()", "numChildren()" should
be callable by the programmer without generating any warnings. All these methods need
to be annotated with an appropriate annotation to allow both the default generated code
to type check and for the methods to be useable in user code.

76

8.2 Methods and Equations

There is no major distinction between methods and equations and attributes for the
purity checking once the Java code has been generated. They all results in methods been
generated.

The JastAdd system should generate annotations for each method corresponding to an
equation or the appropriated list of functions that should be pure.

For use with the purity checker JastAdd would need to generate annotation to specify
that methods associated with an equation needed annotation for purity checker. An
equation or method involved in constructing a NTA needs to create a new AST node
apart from simple being pure.

The cache resetting methods are special and needs to be annotated @Ignore since they
must be allowed to reset the cache fields which are protected by @Secret. In example 43
the top level cache resetting methods are shown. A method for resetting all attribute
and the smaller resetting methods for types of attribute and finally individual attributes.

Example 43: Cache resetting example

package test;

public class A{

@SideEffect.Ignore public void flushAttrCache () {
super. flushAttrCache();
attr_String_reset();

}

@SideEffect.Ignore public void flushCollectionCache () {
super.flushCollectionCache () ;

A_b_visited = false;
A_b_computed = false;
A_b_value = null;
contributorMap_Node_b = null;

7

8.3 Primitive Attributes

An attribute works as virtual methods added to classes. An attribute can either be
inherited or synthesized meaning defined in the context of a parent in AST or in the
object itself. This is what separates them from normal methods.

An attribute is declared by an equation which is a block of Java code that needs to be
pure. Every attribute declared in aspects must be checked so that it’s the Java code in
the equation is pure.

An attribute is translated by the JastAdd system, in all but the case when the attribute
is defined by single expression, into at least two methods. One that does the calculation
("calculate-methods") and one that preform caching and circularity checks and retrieves
the value ('retrieve-method"). This structure is common for all types of attributes
including the collections and NTAs. The differences lie in which additional methods are
needed. In the case of Inherited attributes there is "lookup methods".

Example 44: Synthesised Attribute

Aspect Pure(

syn String A.synAttr () {
// something pure!

}

}

Both the compute and retrieve methods are annotated @Pure. The checker then
complains about any side effects in the compute method which contains the code given
definition to the attribute.

Example 45: Inherited Attribute

aspect Pure {
inh String B.Amessage();

eq A.getB () .Amessage () {
//Must be pure !

return "Parent:A";

}

eq Tree.getB () .Amessage () {
return "Parent:Tree';

}

}

In the case of an inherited attribute the value is defined in other objects. A lookup
method is used to queries a parent in the AST for the value and that parents class
would have either a method for searching further up the AST or a calculate method to
obtain the value of the attribute. All involved lookup, retrieve and calculate methods is

78

annotated @Pure. This assures side effect freeness of the attribute and correct behaviour
when used by other attributes and methods.

Example 46: Generated code for primitive attributes

public class A{
/*+ @apilevel internal x/
@Secret (group="_ASTNode") protected boolean synAttr_computed = false;
@Secret (group="_ASTNode") protected boolean synAttr_visited = false;
@Secret (group="_ASTNode") protected String synAttr_value;

@Pure private String synAttr_compute () {
// somthing pure
}

@SideEffect.Ignore private void synAttr_String_reset () {
synAttr_value = null;

synAttr_visited = false;

}

@Pure (group="_ASTNode") public Object ASTNode.synAttr() {

if (synAttr_computed) {
return synAttr_value;

}

synAttr_value = synAttr_compute();
synAttr_computed = true;
synAttr_visited = false;

return synAttr_value;

}

Parametrised Attributes

Parametrised attributes both inherited and synthesized work the same way as the
unparametrized versions as far as the created methods and their desired annotation goes.
The difficulty is in the caching where the attributes are placed and retrieved from inside
a map. This forces that apply methods to a secret field variable must be allowed.

8.4 Collection Attributes

Collection Attribute is a type of attribute that are built from many contributions collected
in some class. The attribute is declared to belong to some class and then one or several
AST classes can contribute values to the collection. All the contributions are when
requested gathered by the JastAdd system that traverse the AST invoking contribution
methods for everyone.

79

Example 47: Generated code for a parametrised attribute.

package test;

public class A{

@Secret (group="_ASTNode")
protected java.util.Set synAttr_String visited;
@Secret (group="_ASTNode")
protected java.util.Map synAttr_String values;

@Ignore private void synAttr_String_ reset () {
synAttr_String_values = null;
synAttr_String visited = null;}

@ASTNodeAnnotation.Attribute (kind=ASTNodeAnnotation.Kind.SYN)
@ASTNodeAnnotation.Source (aspect="Test", declaredAt="x.jrag:2")
@Pure (group="_ASTNode") public boolean synAttr (String s) {
Object _parameters = s;

if (synAttr_String values == null)
synAttr_String_values = new java.util.HashMap (4);

if (synAttr_String_values.containsKey (_parameters))
return (Boolean) synAttr_String_values.get (_parameters);

boolean synAttr_String_value = s.equals("");
synAttr_String_values.put (_parameters, synAttr_String_value);

return synAttr_String_value;
@Pure public boolean synAttr_compute (String s) {

// Something pure
return true;}

Example 48: Collection Attribute Example.

coll ArrayList<String> A.allchildren()
[new ArrayList<String> ()] with add root A;

syn boolean B.condition ()=true;

B

contributes getID()
when condition ()

to A.allchildren();
contributes getID()
when true ()

to A.allchildren()
for relevantAs();

80

The important things for the correct behaviour of a collection attribute is that the
method declared as contribute method only makes a modification to the collection method
e.i satisfy @Local. The contribute method is declared after the keyword "with". In the
example "add" is the contribute method.

The contributions them self needs to be side effect free in their construction and so
also the condition on whether a contribution should be made. This means the Java
expressions after the keywords "contributes”,"when", "to", "for" needs to be side effect
free. They will all be represented in the generated code in pure methods. The traversing
methods also needs to be pure.

The side effect check of the initial value expression will be performed since this
expression is executed in the "retrieving" method. The problem is that it should also be
fresh.

In the example 49 code for an synthesised collection attribute is shown. The user pro-
vides an initial value which must be a fresh value. The first part of the computation is to
collected contributing nodes. This is done with a surveying method which in the example is
"survey_A_ coll". It the uses the "collect_ contributors_ A_ coll(this,contributorMap_A_ coll)"
methods which adds contributing nodes to a map of contributions. The map representa-
tion allows the system to keep track over many different collections for with the same
"root". A root is a node which serves as the starting point for the collection with con-
tributions collected form the subtree with that root. In order to filling the Maps and
annotations the shown annotations are needed.

Example 49: Generated code for a collection attribute.

public class A{
@ASTNodeAnnotation.Attribute (kind=ASTNodeAnnotation.Kind.COLL)
@ASTNodeAnnotation.Source (aspect="Test", declaredAt="X.jrag:10")
@Pure (group="coll") public ArrayList<String> coll () {

A_coll_value = coll_compute();

}

@Fresh (group="coll") private ArrayList<String> coll_compute () {
ASTNode node = this;
while (node != null && ! (node instanceof 2A)) {

node = node.getParent () ;
}
A root = (A) node;
root.survey_A_coll();
ArrayList<String> _computedValue = new ArrayList<String>();
if (root.contributorMap_A_coll.containsKey (this)) {
for (ASTNode contributor : root.contributorMap_A_coll.get (this)) {
contributor.contributeTo_A_coll (_computedvValue) ;
}
}
return _computedValue;
}
// Helper method
@Pure (group="coll") protected void survey_A_coll() {
if (contributorMap_A_coll == null) {

81

contributorMap_A_coll = new
java.util.IdentityHashMap<ASTNode, java.util.Set<ASTNode>>();
collect_contributors_A_coll (this, contributorMap_A_coll);

}
// Collect contribution
@Pure protected void collect_contributers_A_coll (A _root, @Local
HashMap<ASTNode, java.util.Set<ASTNode>> _map) {
if (condition()) {

A target = (A) (a());
java.util.Set<ASTNode> contributors = _map.get (target);
if (contributors == null) {

contributors = new Jjava.util.LinkedHashSet<ASTNode> () ;
_map.put ((ASTNode) target, contributors);
}
}
super.collect_contributors_A_set (_root, _map);
}
@Secret (group="coll") protected java.util.Map<ASTNode,
java.util.Set<ASTNode>> contributorMap_A_coll = null;
@Pure protected void
contributeTo_A_coll (RLocal ArrayList<String> collection) {
super.contributeTo_A_coll (collection);
if (condition())
collection.add(getID());

82

8.5 Circular Attributes

Some attributes can be dependent on themselves. An example is dataflow calculations
[9]. These are calculated to fixed point. For the side effect analysis, they however don’t
impose any new mayor problem. The calculation and retrieving method should both still
be annotated @Pure the same as for other attribute types.

Example 50: Circular Attribute.

Aspect Purity {

syn Set<Function> Function.reachable() circular
[new HashSet<Function> ()]
{

Set<Function> temp = new HashSet<Function> (collectFunctionCalls());

for (Function £ : collectFunctionCalls())

{
temp.addAll (f.reachable());

}
return temp;

}

}

In the example 51 code for an synthesised circular attribute is shown. A user provided
initial value needs to be provided for which, in contrast to the initial value for collection
attributes, no requirement is placed on freshness. Furthermore in order to deal with
circularity more internal fields are necessary to keep track on the internal status as
compared to none circular attribute. The new status fields are like all other fields part of
JastAdds internal calculations annotatede @Secret(group="_ASTNode").

83

Example 51: Generated code for a circular attribute.

public class A{
/*+ @apilevel internal x*/
@Secret (group="_ASTNode")
protected boolean circAttr_computed = false;
——————— protected boolean circAttr_visited = false;
——————— protected String circAttr_value;
7777777 protected boolean circAttr_initialized = false;
——————— protected ASTState.Cycle circAttr_cycle = null;

@Pure private String synAttr_compute () {
// somthing pure
}
@Pure private String initial() {
// A inital value (user provided)
}
@SideEffect.Ignore private void synAttr_String_reset () {}
@ASTNodeAnnotation.Attribute (kind=ASTNodeAnnotation.Kind.SYN,
isCircular=true)
@ASTNodeAnnotation.Source (aspect="Test", declaredAt="X.jrag:3")
@Pure (group="_ASTNode") public String ASTNode.circAttr () {
if (circAttr_computed) {
return circAttr_value;
}
ASTState state = state();
if (!circAttr_initialized) {
circAttr_initialized = true;
circAttr_value = inital(); // bottom value
}
if (!state.inCircle() || state.calledByLazyAttribute()) {
state.enterCircle () ;

circAttr_computed = true;

state.leaveCircle();

} else if (circAttr_cycle != state.cycle()) {
circAttr_cycle = state.cycle();
if (state.lastCycle()) {
circAttr_computed = true;
boolean new_circAttr_value = synAttr_compute();

return new_circAttr_value;
}
boolean new_circAttr_value = synAttr_compute();
if (new_circAttr_value != circAttr_value) {
state.setChangeInCycle();
}
circAttr_value = new_circAttr_value;

}

return circAttr_value;

8.6 Non Terminal Attribute

NTASs represents new branches of the AST created via an equation. They must be newly
created ASTNodes in order to be insertable into the AST having a single parent. The
single unique parent is needed for the calculation of attributes traversing the AST such
as inherited or collections to be calculatable.

Example 52: NTA Examples

Example 1

nta A ASTNode.getA() {

// has to produce a fresh object and be pure
A node = new A (new B(ID), new B(ID));
return node;

}

//Example 2
nta A ASTNode.getA ()=creation();
syn A ASTNode.creation()=new A(new B(ID), new B(ID));

NTA differ from normal attribute by demanding the creation of fresh object. Therefore,
NTAs will have here computation methods annotated fresh.

Circular NTA

A NTA can be circular or using another attribute. In this case explained methodology of
having unobservable computation methods fresh and the visible method pure wouldn’t
work since a NTA must receive a fresh object. An exception must be utilized in these
cases. This uses the rule that an attribute that’s only called from a NTA or more
commonly from the associated computation method may be consisted to @Fresh instead
of @Pure if its only called from a fresh method part of a NTA calculation.

In the example 53 code for a synthesised NTA is shown. The difference for NTAs
compared to the other types of attributes is that the compute method is now annotated
@Fresh. NTAs uses "setChild" to add the result as a new node in the AST which therefore
needed to be annotated as I showed in example 42.

85

Example 53: Generated code NTA.

public class ASTNode({

/*+ (@Qapilevel internal =/
@SideEffect.Secret (group="_ASTNode")
protected boolean getA_visited = false;
@SideEffect.Secret (group="_ASTNode")
protected boolean getA_computed = false;
@SideEffect.Secret (group="_ASTNode")
protected A getA_value;

@ASTNodeAnnotation.Attribute (kind=ASTNodeAnnotation.Kind.SYN,
isNTA=true)

@ASTNodeAnnotation.Source (aspect="Test", declaredAt="X.jrag:2")

@SideEffect.Pure (group="_ASTNode") public A getA() {

A getA_value = getA_compute();
setChild(getA_value, getAChildPosition());

A node = (A) this.getChild(getAChildPosition());
return node;

@SideEffect.Fresh private A getA_compute () {
// Pure effects
A node = new A(new B(ID), new B(ID));
return node;

86

8.7 rewrite and refine

Rewrite constructions can be used to replace a node in the AST with a new node of
any node type either unconditionally or conditionally. These are conditions are called
rewriting rules. Many different rewrite rules can be specified with different conditions
and rewrites. The rules and the corresponding rewrites are the applied recursively in
priority order as long as any condition hold.

The implication for purity analysis is that attribute values only need to be deterministic
for a given AST. When an ASTNode has changed type the attribute may change. JastAdd
will not cache any attribute until the AST is in its final rewritten form after all rewrite
rules have applied until no longer applicable. Any client code accessing an attribute will
however only see the final value since the rewrite rules will apply when an ASTNode is
referenced from its parent.

Purity is important since the rewrite rules can apply in any order but it is required
that the result should be the same AST independent of the order or how the AST is
traversed. Otherwise the modelled language could behave unpredictable.

For unconditional rewrites the equation creating the replacing AST class must be
annotated @Fresh and for the conditional rewrites the rewrite conditions that can depend
on attributes also must be annotated @Pure. The purity checker will guarantee that the
code doesn’t contain any side effects. The situation during rewrite is special in that the
node being rewritten is effectively fresh during the process. A parametrisation of @Fresh
indicates that the current node should be treated as fresh during the method.

Example 54: Rewrite Example.

// rewrite calls a impuremethod or equation
rewrite B{

when (ImpureCond()>3)

to D{

// Should generate a fresh object

return new D ();

}

int B.conf = 3;

syn lazy int B.ImpureCond () {
int a=conf;

conf++;

return 3a;

}

//In this case impurity should be reported
for the condition method

There is something called circular rewrites which is rewrites depending indirectly on

87

the rewrite itself. These are implemented using circular NTAs and thus handled the same
way.

In example 55 an example of the code generated for a rewrite is shown. A few methods
to indicate that a node can be rewritten has been added as well as one rewriting method
for each rewrite rule.

Example 55: Cache resetting example.

public class A{
@SideEffect.Local public ASTNode rewriteTo() {
if (RewriteConditionO()))
return rewriteRuleO () ;
return super.rewriteTo () ;
}
// Rewrites should allow itself to be rewriteable
@Fresh (rewrite=true) private D rewriteRuleO () {
// Create new C node
D newD= new D(...);
newD.children[l]=this.children([2];
newD.children[0]=this.children[1];
newD.setB(getB());
return D;
}
/#** @apilevel internal x/
@Pure public boolean canRewrite () {
if (RewriteConditionO()) {
return true;
return false;

@Pure public boolean mayHaveRewrite () {
return true;

@ASTNodeAnnotation.Attribute (kind=ASTNodeAnnotation.Kind.SYN,
isCircular=true, isNTA=true)

@ASTNodeAnnotation.Source (aspect="", declaredAt=":0")
@SideEffect.Local (group="_ASTNode") public ASTNode rewrittenNode () {
// ... circular NTA more or less

}
// Circular NTA fields

88

9 Evaluation

I tested the constructed purity checker and the JastAdd annotator in several ways. Since
it uses similar annotations to JPure I could as a first check see that code annotated with
JPure typecheck in ExtendJPure excluding @Entity specific warnings.

9.1 Running on Examples

During the development of the checker continuously as new feature or problems were
discovered new test were constructed as testing for the tool.

Running JPure on examples generates correct code for the situations JPure can handle.
Excluding my slight redefinition for arrays. This is by the design of my checker. My
checker is more advanced than JPure and less conservative which means that when JPure
determines a method to be of one purity level my checker will either agree with JPure,
or determine that the method has even greater purity and can be annotated with more
details. My purity type system is after JPure’s and designed to be compatible with JPure
for the situations Pearce considered in his paper [10].

The JPure examples was included in the test suit for the tool and is part of the basic
testing of the checker. They cover a lot of Java situations but is in no way complete and
the tests are all very simplistic. The latest publish version of JPure could not deal with
all the tests in its own test suit when run with its own test script where some test were
ignored. JPure can handled them using the include partly annotated Javal.5 runtime.

My checker can with its own suggested external annotations handle all the JPure suit
test according to the Pearce’ s manual annotations including the once.

I made several variations of the JPure test suit with small changes to check that the
tool closely agreed with JPure and to check that lessening of annotations would induce
errors. The result was that it does closely follow JPures annotations.

I wrote many new tests as I encountered problems and addressed them. My new test
address questions regarding more complicated inheritance situation and control flows,
anonymous class among other things.

A few tests from the JastAdd test suits[61] served as significant guide discovering
problems and situations needed to be addressed since it contains many examples with
all the different JastAdd constructions. JastAdd is the target application after all. The
JastAdd examples contains lots of varied side effects to be mostly ignored but under
various circumstances need to be checked in different ways. From the JastAdd tests I was
forced to address questions of how unobservable state is allowed be used and modified
specially when storing composite objects such as arrays and collections.

The JPure test suit consisted of 68 test cases where mine has around 200 test cases.
My tests however are on average quite large with the entire JPure suit being counted as
one test in my test suit.

89

9.2 Running on existing grammars

Testing of the complete solution was first done on minimal grammars with only one
attribute to check. This was done to make sure that the annotations of the JastAdd
annotator was reasonable enough to not trigger warnings for correct grammars.

The first real grammar the solution was tested on was my SimpliC compiler constructed
for a compiler course. It parsed a very small subset of C consisting of basic method calls,
numerical algebra and "if" conditionals along with some basic name and type analysis.
In SimpliC I added an analysis which constructed the call graph for the program. It was
designed very imperatively like I programmed normal Java and I didn’t utilize collection
attributes which could have simplified the code. In this code for this analysis I did
overwrite parameters but otherwise all my attribute is side effect free. I didn’t do code
generation via attribute and it couldn’t be easily converted since there I do have side
effects. After allowing the parameter to be changeable my SimpliC program is without
any side effects. After some work I determined that the checker result that SimpliC
doesn’t contain any side effects is a reasonable result. Any side effect containing code are
well separated from any attribute calculation. The result of 0 warnings seems correct so
I don’t detect any mistakes there. SimpliC was a small enough compiler that I could
keep it side effect free.

Next the purity checker was tested on a small lambda calculus compiler made by
Niklas Fors. It posed as a test using NTAs and library code. The NTAs was only simple
NTAs and not complicated circular NTAs. With only a few annotations in the user
provided code or in external annotation file the example could be purity checked without
errors. The example contained only one problem according to the checker a theoretical
possibility for returning null as a NTA. This because the default method in the abstract
class “Expr” return “null” and this then used for a NTA. NTAs can’t be null according
to the rules. My checker can’t determine that the abstract method couldn’t be invoked
an issue a warning and It would be more appropriate to use a null object or throw an
exception other than NullPointerException.

The example also helped me notice that I had missed to handle all Java statements.
The compact conditional statements on which is the statement on the form "cond ? iftrue
: iffalse" was not handled by my checker at that time. I had missed that for some reason.
Thanks to Fors example I could address this and fix this gap and other gaps.

A try was made to test the tool on the compiler Fuji[21] but I can’t have much
confidence in the result since after generating the source code I cannot get the full
program to compile without Java errors. This might be due to Fuji requiring some
dependencies I miss and configured to be build using an old JastAdd version which might
be incompatible with my annotating JastAdd version. Through some modification in the
build scripts I have in any case obtained an AST. For the Fuji code I get many potential
warnings. I reduced the number by identify error in how I handled rewrites which is used
quite extensively in Fuji. Still quite a few remained but most of the errors are though
problems with suggested annotation which caused some attribute construction code to be
introduced. Removing all the noise few genuine side effects would remain. I know that
there are side effects which have been detected. I have confirmed that Fuji uses manual

90

cache clearing apart for JastAdds own clearing method which is not how attribute should
be cleared among other things.

ExtendJ on the other hand is no problem to compile. Significantly less warnings than
for Fuji. A few problems were reported by the checker. From attribute code requests
the parsing of additional Java source occurred. In which a counter counts the number of
parsed Java sources and other side effects. The orgin for the error however is difficult to
find with my checker currently not providing sufficient tracing information. The iterative
addition of classes to the checking process currently doesn’t save a complete trace over
the information something that needs improvement. In any case sorting away the false
errors is time consuming.

Also, there are some work with type constraint where information is collected and
extracted in field in a static class. More warnings are generated due to the inaccuracy of
the suggested annotations.It takes time to correct when you don’t know which method
does what. The warnings in example 56 shows a small subsection of the warnings
generated.

Example 56: Example of some warnings in ExtendJ.

in ast\ConstantPool. java:ConstantPool

160:return labelCounter++; violates the annotations
at labelCounter

160:1abelCounter:write effects the this object

but this object is not being constructed and

thus the method is impure

ast\ClassSource. java

141 :program.numdavaFiles += 1; violates the
annotations at numJavaFiles 141l:program.numJavaFiles:
write to visible field in an object that is not Fresh
because alias for parameter program that cannot be
assumed fresh on entry.

in ast\ClassSource. java:ClassSource

ast\ConstructorDecl. java
Called by org.extendj.ast.ConstructorDecl.createBCode (Unknown)
on line 871

197:int index = gen.constantPool().

addFieldref (classname, name, desc); violates the annotations.
The method call CodeGeneration.constantPool () called

for gen is local but the caller is not fresh or in

a modifiable locality.

The caller is not fresh because parameter gen cannot

be assumed fresh on entry but only Maybe.

91

ast\NumericLiteral. java
Called by org.extendj.ast.NumericLiteral.rewriteTo ()
on line 570

584 :return literal; of Freshness NonFresh cannot be
returned from a @Fresh method because literal =

parser.parse() initizises the variable to parser.parse().
That is not Fresh but only NonFresh->

The method call org.extendj.ast.NumericLiteralParser.parse ()
of puritylevel Local doesnot produce a new object.

in ast\NumericLiteral.java:org.extendj.ast.NumericLiteral

For ExtJPureChecker, itself there is the warnings for ExtendJ which is in the basis for
the analysis. Additionally, there is warnings because how Jesper made the construction
of the predecessors to the CFG. This construction is side effect full. In order to avoid this
side effects all control flow graph constructor would have to be performed before the main
analysis instead of during the analysis on demand. This is the added warnings because
of the SimpleCFG. The checker itself otherwise doesn’t introduce any new warnings
after the annotations provided. I have some manual caching and resetting but these are
annotated as to be valid or sufficiently seperated from the attribute code.

9.3 Performance

On the tested examples and JastAdd compliers the runtime for an iteration of the checking
either for generating the library annotations or for generating warnings take only slightly
more time than the compilation.

In the case of external library files having to be generated it could take a magnitude
more time since annotations are generated in iterations with each iteration taking about
the compile time of the program. Designing the generation to be done in iteration gives
less data to be manually corrected in each iteration but make the initial generation of all
the annotations information slow. If 6 different iteration cycles are required the then
that will take 6 times the checking time. Fortunately, this is work that is only preformed
once and then reused.

The runtimes for the checker on different programs is displayed in figure 9.3. I measure
the ExtJPureChecker performance with the time it takes to generate and compile the
code with JastAdd and Javac via the build scripts provided with the tools. I first clear
all generated files and then I run the script and checks the time reported.

For my own checker I use an open source timer application since windows command
prompt doesn’t provide any. The timer times how long it takes to run the checker. The
checkers two functions are timed in different groups. The time it takes on average to
run an iteration of the annotator and how many iteration are needed. I measure with
deciseconds accuracy.

The third statistic I measured is the suggest annotation feature were I measure the
average time per annotation iteration. The biggest programs requiring upto 7 iterations

92

ExtlPurityChecker runtimes

50
o
an
@ 0
E
= 30
20
||] |
SmpleC | OSEMIEC peng) | BEPUTEVC JastAdd?
alculys hecker
mchecker 1,7 1,3 13,4 16 13,7 4
mcompile 34 2 21,4 24 60,3 11
annotaor)ier 17 1,3 12,1 124 10,3 3.8

£

Figure 9.1: Purity Checker runtimes.

of loading. The number of needed annotation iterations are shown in figure 9.3.

The result is that the checker in its current implementation tend to be faster than the
compilation once all annotations has been generated. This is show in figure 9.3 where
the checker runs for 13,4s on ExtendJ and the compilation takes 21,4s. The reason for
this is that most of the attributes tend to be defined by very small equations or methods
mostly consisting of method calls. This can be evaluated quickly. Object manipulation
via deep access chains and other modification which are time consuming to check are
used fairly rarely. Then it might also be an indication that my approach could have
been more precise but I think for very regular application of the tool that a doubling
or less would be descent. Its for future work to allow the programmers more control
and implement more precise tracking of structures and have a version that separates
array accesses more. As ExtendJ becomes more supportive of Java 8 annotations , gets
improved type inference for Java 8 and support more Java 8 features new options new
opportunities would open up to expand this purity checker to handle different level of
analysis and to address these features.

93

Annotating lterations

ca

7

G
= 3
= 4
=]
s 3
i
L 2

E s .

SimpleC forslamda Extend) ExtiPurity Fuji lastAdd2
calculys Checker

terations 1 1 7 7 B 3

Figure 9.2: Number of annotation iterations.

10 Discussion

The development of the purity checker has had several setbacks and unexpected develop-
ments along the road.

When I decide to build my checker, I didn’t look around much for which compiler. I
was already biased towards using ExtendJ from initial discussions with my supervisor.
I began working with ExtendJ without really consider the alternatives much. It was
easy to work with ExtendJ due to access to the developers on the University, clear
documentation and available visualisation AST tools. I didn’t really consider ExtendJs
limitations regarding bytecode manipulation.

A more capable checker might have been developed if Soot or ASM had been used
from the begin due to byte code analysing and access to the pre-existing call graph
construction, points-to analyses and dataflow analyses provided with Soot respective
ASM. The bad experiences I had with Soot for Javarifier and other tested purity checkers
was one factor to that I didn’t look at Soot in any detail until late in my development
when I already spent months working with ExtendJ.

The work has been greatly simplified thanks the use of DrAST. DrAST is a visualizations
tool and attribute debugger for JastAdd developed as master thesis project Joel Lindholm
and Johan Thorsberg 2016 [62]. DrAST provides a visualization of the AST after parsing
a given input to a Compiler built with JastAdd. DrAST provides the possibility to
inspect the values for the attributes of each of the nodes in the AST and also demand
evaluation of the annotation. DrAST does in this way provide debugging by seeing the

94

values of the attributes at different nodes in the AST.

DrAST helped me quickly gain an understanding for ExtendJs AST structure. The
work would have been much slower without this visualisation.

The changes, I had to make to JastAdd internally took me long time to find where the
equation was. These I had to find manually giving me a clear view for exactly how hard
it is to understand the structure of a large tool without any aid.

95

11 Related Work

The designed purity checker has a lot in common with JPure attempting to provide fast
modular purity checking for use in common development. The annotation provides for
methods to be checked almost independently from all the rest. Like with JPure the main
information that must cross the method boarders is whether the caller is fresh and the
arguments are fresh and if the returned value is fresh.

Since this tool is an extension in addition to the information collected by JPure a few
new points of information needs to cross the barrier between methods. The information
if a value is cached or not and type of attribute. Alias information doesn’t need to cross
the border due to "the laws of locality" which Pearce presented. This vastly simplify the
analysis but sacrifices precision when more complex changes of objects occur.

I deemed this loss of precision acceptable since for the objects of greatest interest
ASTNode are intended to be "almost immutable" and the changes are very local. For
general Java, the purity checker approach will of course not accept all programs which
are valid. You are not generally allowed by the checker to change object through other
objects either.

I decided to separate the concepts of freshness and purity more the JPure did.

The checker maybe should have fully adopted the ideas of Efftp with modification
annotation for modified localities and the parametrised returned localities to clear more
Java programs. I didn’t build in those in the checker since I felt the annotations I had
where sufficient for typical JastAdd situations. I partly introduced return localities in
form of my @FreshlIf its only that Efftps are more flexible with fields and not only
parameters and caller. Time and complexity constraints where are also important. I
didn’t have time for implement and test if a more powerful annotation system were
sufficiently more useful compared to increased analysis costs.

The contribution of the data group abstraction from OpenJML with outlaw of directly
accessing the fields used for caching makes sure that the value can be read pre-calculated
and makes it easy to spot methods that uses caching.

12 Future Work

Neither of the 2 tools/extensions are complete or perfect and several changes and extension
to both can be made in the in the future.

The annotating JastAdd tool generating the annotations could be optimized so the
checker doesn’t need to perform as much excess testing as its currently preforming due to
an optimization of JastAdd. An attribute might not generate a compute method and this
forces the checker then to look over all the JastAdd machinery code. If there always is a
compute method containing what needs to be checked then all the code in the JastAdd
machinery can be ignored reducing the amount of work the tool needs to do.

Late during my work, i update was released to JastAdd improving JastAdds own
annotation to the point that they can provide more information to the checker regarding
correct annotations of constructor. The new changes could be incorporated into the

96

tool. These changes require quite a bit of work to be integrated. Further I considered
extracting a list of all the annotation separately instead of having the annotation in the
templates to make it easier to integrate with changes to JastAdd.

A major weakness in the checker is that it is external library annotation approach is
quite hard to work with and have significant weaknesses. It doesn’t completely infer the
annotations on parameters nor determine if the method has the same return freshness as
the caller. There is no complete prioritisation over the options always return fresh or
conditional fresh.

The inference capabilities of JPure is greater since it an annotation tool primary. JPure
annotates all methods and parameters fully to fixed point. This purity checker could be
extended to preform that as opposed to the single pass solution currently.

It doesn’t fully utilize shadowing super types and unbounded captures to reduce the
size of the lists of external methods that needs to be annotated. The format is also not
pretty especially for methods with many parameters. An unique simpler representation
which would have to be separately parsed could make the annotation easier to verify and
manually correct. Improved inference capability would make the tool more easily used
the current scheme is rudimentary requiring excessive manual verification. Full inference
as in JPure could be implemented with some changes.

Java 8 concepts like lambdas and function references are not fully explored I didn’t
really considered them much and ExtendJ didn’t seem to provide the type analysis I
need to allow quick implementation of analysis for them. This would probably change
with further development of ExtendJ.

Implementation of a more detailed analysis for aliasing and data structures could be
included to be used when more precision is desired giving more options to configure the
precision used by the checker depending on the time the programmer is willing to spend
on the analysis.

Providing better debugging of why additional annotations are suggested could help
the programmer understand and find problems during annotation verification which I
presented as the fourth step in the use case for the tool in chapter 6.2.

There are opportunities to make the code faster and more readable by sorting away
different aspects and improve the caching for the most important variables.

13 Conclusion

The conditions JastAdd imposes are many and where beyond the scope of all the previous
existing tools. I designed a purity tool for JastAdd which works for some JastAdd and
Java programs. The tool can detect several types of side effects but are in no way perfect.
Java is complicated and I have only implemented for a subset of Java. The limitation is
mostly in Java 8 features such as lambda constructions for which I have implemented
only limited checking other misses can also be present.

The design of the checker was for ease of implementation not for optimal tracing of
the origin of a given problem. The modular checking checks within a method what
problems might be present and can answer the problem is here with these assignments.

97

The developer however is interested in which attribute calls the modifying code or why
the code is included in the checking. This information is only full available during the
annotation iterations. Despite storing data to resolve this the warnings aren’t as easy to
trace to the root causes as one could hope.

It performs a fast analysis pass over the code which even for large programs will
only take time comparable to the compilation time. This is after the more expensive
task of generating the additional needed annotations in iterations for the user code and
library code which take more time but is done once. The tool can detect a lot of basic
programming errors.

I explored at one point in how hard a purity checker is to develop using RAG. Inter
declarative programming allows the specification of different functionalities to be compact
and in one place and is the main benefit. The interesting analysis steps which is the
pointer analysis and the call graph construction. Is effectively implemented using circular
attributes and collections. The pointer analysis uses circular attributes on the CFG.
Circular attribute allows simple formulation of data flow like analysis.

Warnings are easily collected with collection attributes. The collections attribute
provides traversing of such that the checking is performed for every Java construction
using very little code to specify it.

In short RAG work, quite well for designing a purity checker the only difference is
the memory usage. For example, a freshness analysis which simply moves forward and
preforms all lot of field side effects would not have to cache all the intermediary values of
the freshness analysis.

The annotations of external library functions are the source of most of the problems
for the checker. It takes time to verify and correct the annotation given to external
library functions which the checker cannot inspect. The library annotations are a major
source of unsoundness since the checker will give them the attribute required to silence
warnings. This is the drawback of an analyser which doesn’t operate on byte code. The
annotations are stored in an inconvenient way in the external files.

98

References

1]

2]

[13]

Arran D Stewart, Rachel Cardell-Oliver, and Rowan Davies. Csse technical report
uwa-csse-14-001. Side effect and purity checking in Java : a review. 2014.

Lars R Clausen. A Java bytecode optimizer using side-effect analysis. Concurrency:
Practice and Experience, 9(11):1031-1045, 1997.

Phung Hua Nguyen and Jingling Xue. Interprocedural side-effect analysis and optimi-
sation in the presence of dynamic class loading. In Proceedings of the Twenty-eighth
Australasian conference on Computer Science-Volume 38, pages 9-18. Australian
Computer Society, Inc., 2005.

Atanas Rountev. Precise identification of side-effect-free methods in Java. In Software
Maintenance, 200/4. Proceedings. 20th IEEE International Conference on, pages
82-91. IEEE, 2004.

Torbjorn Ekman and Goérel Hedin. The jastadd system—modular extensible compiler
construction. Science of Computer Programming, 69(1):14-26, 2007.

Jastadds homepage. http://jastadd.org/web/index.php, 2017. Accessed:2017-5-10.

Donald E Knuth. Semantics of context-free languages. Theory of Computing Systems,
2(2):127-145, 1968.

Gorel Hedin. Reference attributed grammars. Informatica (Slovenia), 24(3):301-317,
2000.

Eva Magnusson and Gorel Hedin. Circular reference attributed grammars-their
evaluation and applications. FElectronic Notes in Theoretical Computer Science,
82(3):532-554, 2003.

David J Pearce. Jpure: a modular purity system for Java. In International Conference
on Compiler Construction, pages 104-123. Springer, 2011.

Wei Huang and Ana Milanova. Reiminfer: method purity inference for Java. In
Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations
of Software Engineering, page 38. ACM, 2012.

Matthew S. Tschantz and Michael D. Ernst. Java ri: Adding reference immutability
to Java. In Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-
ortented Programming, Systems, Languages, and Applications, OOPSLA ’05, pages
211-230, New York, NY, USA, 2005. ACM.

Yoav Zibin, Alex Potanin, Mahmood Ali, Shay Artzi, et al. Object and reference
immutability using Java generics. In Proceedings of the the 6th joint meeting of the
European software engineering conference and the ACM SIGSOFT symposium on
The foundations of software engineering, pages 75-84. ACM, 2007.

99

[14]

[15]

[16]

[17]

Néstor Catano and Marieke Huisman. Chase: A static checker for jml’s assignable
clause. In Verification, Model Checking, and Abstract Interpretation, pages 26—40.
Springer, 2003.

David R Cok. Openjml: software verification for Java 7 using jml, openjdk, and
eclipse. arXiv preprint arXiv:1404.6608, 2014.

Jiachen Yang, Keisuke Hotta, Yoshiki Higo, and Shinji Kusumoto. Revealing purity
and side effects on functions for reusing Java libraries. In International Conference
on Software Reuse, pages 314-329. Springer, 2015.

Jesper Oqvist and Gérel Hedin. Extending the jastadd extensible Java compiler
to Java 7. In Proceedings of the 2013 International Conference on Principles and
Practices of Programming on the Java Platform: Virtual Machines, Languages, and
Tools, pages 147-152. ACM, 2013.

Jesper Oqvist. Extendj - the jastadd extensible Java compiler, May 2017.
http://www.extendj.org.

Gorel Hedin. Edan65 - compilers. http://cs.lth.se/edan65, 2016. Accessed:2017-5-10.

Niklas Fors. The design and implementation of bloqqgi—a feature-based diagram
programming language. 2016.

Sergiy Kolesnikov, Ing Sven Apel, and Christian Lengauer. An extensible compiler
for feature-oriented programming in Java. 2011.

The JastAdd group. Jastadds homepage, May 2017.

Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G Griswold. An overview of aspectj. In Furopean Conference on Object-
Oriented Programming, pages 327-354. Springer, 2001.

Torbjorn Ekman and Goérel Hedin. The jastadd extensible Java compiler. SIGPLAN
Not., 42(10):1-18, October 2007.

Erik Hogeman. Extending jastaddj to Java8. Master’s Thesis LU-CS-EX: 2014-14,
Dept of Computer Science, Lund University, 2014.

Friedrich Steimann, Jesper Oqvist, and Gérel Hedin. Multitudes of objects: First
implementation and case study for Java . Journal of Object Technology, 13(5):1-1,
2014.

Emma Séderberg, TorbjoRn Ekman, Goérel Hedin, and Eva Magnusson. Extensible
intraprocedural flow analysis at the abstract syntax tree level. Science of Computer
Programming, 78(10):1809-1827, 2013.

Manuel Geftken, Hannes Saffrich, and Peter Thiemann. Precise interprocedural side-
effect analysis. In International Colloquium on Theoretical Aspects of Computing,
pages 188-205. Springer, 2014.

100

[29]

[30]

31]

[32]

[41]

[42]

Alain Deutsch. Interprocedural may-alias analysis for pointers: Beyond k-limiting.
ACM Sigplan Notices, 29(6):230-241, 1994.

Lars Ole Andersen. Program analysis and specialization for the C programming
language. PhD thesis, University of Cophenhagen, 1994.

Bjarne Steensgaard. Points-to analysis in almost linear time. In Proceedings of the
23rd ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 32—41. ACM, 1996.

Paul Anderson, David Binkley, Genevieve Rosay, and Tim Teitelbaum. Flow insen-
sitive points-to sets. In Source Code Analysis and Manipulation, 2001. Proceedings.
First IEEE International Workshop on, pages 79-89. IEEE, 2001.

Ganesan Ramalingam. The undecidability of aliasing. ACM Transactions on
Programming Languages and Systems (TOPLAS), 16(5):1467-1471, 1994.

Frank Tip and Jens Palsberg. Scalable propagation-based call graph construction
algorithms, volume 35. ACM, 2000.

Daniel Marino and Todd Millstein. A generic type-and-effect system. In Proceedings
of the Jth international workshop on Types in language design and implementation,
pages 39-50. ACM, 2009.

Yoav Zibin, Alex Potanin, Paley Li, Mahmood Ali, and Michael D Ernst. Ownership
and immutability in generic Java. In ACM Sigplan Notices, volume 45, pages 598-617.
ACM, 2010.

K Rustan M Leino, Arnd Poetzsch-Heffter, and Yunhong Zhou. Using data groups
to specify and check side effects. ACM SIGPLAN Notices, 37(5):246-257, 2002.

Gary T Leavens and Yoonsik Cheon. Design by contract with jml, 2006.

Matthew Finifter, Adrian Mettler, Naveen Sastry, and David Wagner. Verifiable
functional purity in Java . In Proceedings of the 15th ACM conference on Computer
and communications security, pages 161-174. ACM, 2008.

Haiying Xu, Christopher JF' Pickett, and Clark Verbrugge. Dynamic purity analysis
for Java programs. In Proceedings of the 7th ACM SIGPLAN-SIGSOFT workshop
on Program analysis for software tools and engineering. ACM, 2007.

David A Naumann. Observational purity and encapsulation. Theoretical Computer
Science, 376(3):205-224, 2007.

Mike Barnett, David A Naumann, Wolfram Schulte, and Qi Sun. 99.44% pure:
Useful abstractions in specifications. In ECOOP workshop on Formal Techniques
for Java -like Programs (FTfJP), 2004.

101

[43]

Lilian Burdy, Yoonsik Cheon, David R. Cok, Michael D. Ernst, Joseph R. Kiniry,
Gary T. Leavens, K. Rustan M. Leino, and Erik Poll. An overview of jml tools
and applications. International Journal on Software Tools for Technology Transfer,
7(3):212-232, 2005.

Matthew M Papi, Mahmood Ali, Telmo Luis Correa Jr, Jeff H Perkins, and Michael D
Ernst. Practical pluggable types for Java. In Proceedings of the 2008 international
symposium on Software testing and analysis, pages 201-212. ACM, 2008.

Lukas Rytz, Nada Amin, and Martin Odersky. A flow-insensitive, modular effect
system for purity. In Proceedings of the 15th Workshop on Formal Techniques for
Java -like Programs, page 4. ACM, 2013.

Alexandru Salcianu and Martin Rinard. Purity and side effect analysis for Java
programs. In International Workshop on Verification, Model Checking, and Abstract
Interpretation, pages 199-215. Springer, 2005.

Shay Artzi, Adam Kiezun, Jaime Quinonez, and Michael D Ernst. Parameter
reference immutability: formal definition, inference tool, and comparison. Automated
Software Engineering, 16(1):145-192, 20009.

Alex Potanin, Johan Ostlund, Yoav Zibin, and Michael D Ernst. Immutability. In
Aliasing in Object-Oriented Programming. Types, Analysis and Verification, pages
233-269. Springer, 2013.

Jamie Quinonez. Java rifier: Inference of reference immutability in Java. PhD
thesis, Massachusetts Institute of Technology, 2008.

Lilian Burdy, Yoonsik Cheon, David Cok, Michael D Ernst, Joe Kiniry, Gary T
Leavens, K Rustan M Leino, and Erik Poll. An overview of jml tools and applications.
FElectronic Notes in Theoretical Computer Science, 66(2), 2003.

Greg Dennis, Felix Sheng-Ho Chang, and Daniel Jackson. Modular verification of
code with sat. In Proceedings of the 2006 international symposium on Software
testing and analysis, pages 109-120. ACM, 2006.

K Rustan M Leino. Data groups: Specifying the modification of extended state. In
ACM SIGPLAN Notices, volume 33, pages 144-153. ACM, 1998.

Greg Nelson. Extended static checking for Java . In International Conference on
Mathematics of Program Construction, pages 1-1. Springer, 2004.

D Cok and Gary T Leavens. Extensions of the theory of observational purity and a
practical design for jml. In Seventh International Workshop on Specification and
Verification of Component-Based Systems (SAVCBS 2008). Number CS-TR-08-07
in Technical Report. School of EECS, UCF, volume 4000, pages 328162362, 2008.

102

[55]

[56]

[57]

[58]
[59]

Jiachen Yang, Keisuke Hotta, Yoshiki Higo, and Shinji Kusumoto. Towards purity-
guided refactoring in Java. In Software Maintenance and Evolution (ICSME), 2015
IEEE International Conference on, pages 521-525. IEEE, 2015.

Naoto Ogura, Jiachen Yang, Keisuke Hotta, Yoshiki Higo, and Shinji Kusumoto. Hey!
are you injecting side effect?: A tool for detecting purity changes in Java methods.
In Program Comprehension (ICPC), 2016 IEEE 2/th International Conference on,
pages 1-3. IEEE, 2016.

Type annotations and pluggable type systems (the Java ™ tutorials > learning the
Java language > annotations), May 2017.

Jesper Oqvist. Simplecfg extension for extendj, May 2017.

Gorel Hedin. An introductory tutorial on jastadd attribute grammars. Generative
& Transformational Techniques in Software Engineering III, pages 166—200, 2011.

Properties, May 2017.
The JastAdd group. Jastaddtest, May 2017.

Joel Lindholm and Johan Thorsberg. Drast-an attribute debugger for jastadd.
LU-CS-EX 2016-10, 2016.

103

Sidoeffektsanalys for referens-attribut-grammatik

Mikael Johnsson
Lunds Universitet
2017

Sidoeffekter

Det finns situationer da det dr viktigt att veta att metoder
inte har nagra sidoeffekter. Det gar da att genomfora olika
optimeringar, bland annat for kompilatorer, utan att orsaka
fel.

Avsaknad av sidoeffekter kan visa att metoder inte
paverkar resultatet av varandra. Anropsordningen kan da
optimeras och delresultat kan memoriseras, det vill siga
sparas och ateranvindas, vilket annars kan leda till fel. En
sidoeffektschecker kan anvindas for att undvika sadana fel.

Jag har programmerat en sidoeffektschecker for Java
specifikt for att anvindas med JastAdd. JastAdd &r ett verk-
tyg for att konstruera kompilatorer med hjilp av en formal-
ism kallad referens-attribut-grammatik. JastAdd stiller krav
pa olika Javametoder som att de maste vara sidoeffektsfria
och producera nya objekt. Dessa krav finns eftersom Jas-
tAdd anvinder tekniker som kriver sidoeffektsfrihet. Ingen
verifiering gors av dessa krav vilket ldmnar risken for att
man gor fel och det #r det som jag forsokt att atgérda.

Jag testade forst om diverse tidigare verktyg for Java kan
anvindas dven for JastAdd. Jag bedomde att ingen av de
testade alternativen fungerade riktigt for JastAdd. En flesta
klarar inte av memorisering eller de andra specialfallen som
dyker upp vid anvindande med JastAdd. De mest kapabla
verktygen dr for langsamma och svara att arbeta med.

Jag borjade dirfor programmera ett nytt verktyg som &r
anpassat efter de krav som JastAdd stiller. Jag designed ett
nytt typsystem med annoteringer utformade for att hantera
de krav JastAdd stiller.

Mitt verktyg genomfor en snabb analys som kan hitta
manga vanliga fel som nyborjare till JastAdds kan gora.
Aven for professionella projekt kan sidoeffekter som har
introducerats mojligen upptickas.

Mitt bidrag &r ett verktyg som kan anvindas for att
upptédcka vanliga sidoeffeckts fel in Java och som inte &r
for svart att manuellt annotera for. Annoteringarna dr des-
ignade med tanke pa svarighet att anvdnda annoteringarna,
analyskostnad och vilka olika beteende man troligen vill
tillata. Jag kombinerade tidigare idéer fran andra verktyg
som JPure och OpenJML tillsammans med nya idéer for att
hantera JastAdd-relaterade situationer.

Typsystemschecker

Jag provade flera olika typsystemsverktyg men de hade
alla olika nackdelar. JPure som blev min primira inspiration

anvinde egna annotering for sidoeffektfrihet sa som @ Fresh
for nyskapande objekt, @Local for lokala @ndringar och sa
vidare. JPure’s annoteringar kdndes néra till beteendena som
jag behover kategorisera metoder i.

E};'Jmp e 1. Olika annoterade metoder.

@Secret (group=X) X value=null; int counter=0;

@Pure (group=X) public X method() {
if (value!=null)
return value;
value=calculate();
return value;

}

@Fresh public X calculate() {
counter++; //Fel
return new X ();

}

@Local public int count () {
return counter++;

}

Exemplen visar nagra metoder med annoteringar mitt
verktyg anvinder. Annoteringen @ Local innebér dndring i
samma objekt eller platser nabara via @Local annoterade
referenser. @ Pure indikerar en metod som ska vara sidoef-
fektsfri forutom hemliga sidoeffekter till falt med Secret.

Memoriseringar anvéinder sig av tillatna sidoeffekter,
nidmligen att spara delresultaten i filt. Genom att gora dessa
falt @Secretr Kklarar analysen av att skilja pa tillitna och
otillatna sidoeffekter. Datagrupper kan vidare bestimma var
memoriseringen fa ske.

	Tom sida
	Tom sida

