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Abstract

Finding the expected number of generations it takes before every in-
dividual in a population (of constant size) only has one type of gene at
a particular locus of a chromosome, can be formulated as computing the
mean absorption time in a Markov chain. However, the Markov chain ap-
proach is inappropriate when the population is large. This is commonly
solved by approximating the Markov chain with a diffusion process, in
which the mean absorption time is found by solving an ODE with bound-
ary conditions. In this thesis, the formulas for the mean absorption time
is derived in both cases. Using these formulas, the expected number of
generations is computed numerically. The two different methods are com-
pared, and we also discuss the genetic meaning of the results.
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1 Genetical background

1.1 Introduction

To properly formulate the problem and purpose of this thesis in a non-mathematical
way, we need to introduce some terminology from population genetics. Within
a cell, there are chromosomes. A particular position on a chromosome is called
a locus. On each locus of a chromosome there are, among other things, genes.

Hartl [3] describes a gene as:

“Gene is a general term meaning, loosely, the physical entity transmitted from
parent to offspring during the reproductive process that influences hereditary

traits.”

When there can be different versions of a gene at one particular locus, these
different versions are called alleles. In set theoretic notation, this can be sum-
marized as

Allele (gene type) P Locus Ă Chromosome Ă Cell.

When organisms mate, there are two types of cells to consider. There are the
”parents”, called haploid cells or gametes, which contain one set of chromo-
somes. Then there is the ”offspring”, called diploid cells or zygotes, which has
two copies of each type of chromosome, and hence two copies of each locus. The
two copies of a particular locus can contain different alleles, and the different
pairings of alleles thereby possible are called genotypes. The physical expression
of a genotype (for example having blue eyes) is called phenotype.

In this thesis, we will consider two different alleles, A1 and A2, which leads to
three1 different genotypes: A1A1, A1A2 and A2A2. The number of a certain
allele in a population depends on the number of that allele in the previous gen-
eration, and can be affected by selection, mutation and randomness (known as
drift). These three forces will be properly defined once we get to the mathe-
matical section.

Now, the purpose of this thesis is to compute the expected number of generations
it will take until every individual of the population only has A2 alleles at a
particular locus, given that each individual of the first generation only has A1

alleles at that locus, and that selection, mutation and drift are all at work. It is
an important point that even though selection may work in favor of one of the
alleles, that allele can still be lost from the population due to drift.

1We do not include A2A1 since it will have the same effect as A1A2. This symmetry will
be evident in later formulas.
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1.2 Hardy-Weinberg

The most fundamental result in the theory of population genetics is known as
the Hardy-Weinberg theorem. Its validity relies on a number of assumptions:

• Large population size.

• Non-overlapping generations (constant population size).

• Random mating (uniformly).

• Equal allele frequency in both sexes.

• No mutation, selection or migration.

Theorem 1.1 (Hardy-Weinberg). Under the assumptions stated, a population
having genotype frequencies X for A1A1, 2Y for A1A2 and Z for A2A2, achieves
after one generation of random mating, stable genotype frequencies x2, 2xp1´xq
and p1´ xq2, where

x “ X ` Y, 1´ x “ Y ` Z.

If the initial frequencies are already of the form x2, 2xp1´xq and p1´xq2, then
those frequencies are stable for all generations.

To see this, let the genotypes A1A1, A1A2 and A2A2 have frequencies X, 2Y and
Z respectively in the first generation, and let P pAiAjq denote the probability
that a certain mating results in the genotype AiAj . Then the results of random
mating can be summarized in the following table:

Mating Frequency P pA1A1q P pA1A2q P pA2A2q

A1A1 ˆA1A1 X2 1 0 0
A1A1 ˆA1A2 4XY 1/2 1/2 0
A1A1 ˆA2A2 2XZ 0 1 0
A1A2 ˆA1A2 4Y 2 1/4 1/2 1/4
A1A2 ˆA2A2 4Y Z 0 1/2 1/2
A2A2 ˆA2A2 Z2 0 0 1

Note that the frequencies are correct since they sum up to pX ` 2Y ` Zq2 “ 1.
By looking in this table, we can deduce that the genotype frequencies in the
next generation are:

X 1 “ X2 `
1

2
4XY `

1

4
4Y 2 “ X2 ` 2XY ` Y 2 “ pX ` Y q

2
,

2Y 1 “
1

2
4XY ` 2XZ `

1

2
4Y 2 `

1

2
4XZ “ 2pX ` Y qpY ` Zq,

Z 1 “
1

4
4Y 2 `

1

2
4Y Z ` Z2 “ Y 2 ` 2Y Z ` Z2 “ pY ` Zq2.
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Now let us see what happens in the next generation, i.e. after another random
mating. By following the above formulas, we get (after some algebra) that:

X2 “ pX 1 ` Y 1q2 “ pXpX ` 2Y ` Zq ` Y pX ` 2Y ` Zqq2 “ pX ` Y q2 “ X 1,

2Y 2 “ 2pX 1 ` Y 1qpY 1 ` Z 1q “ 2pX ` 2Y ` ZqpX ` Y qpY ` Zq

“ pX ` Y qpY ` Zq “ 2Y 1,

Z2 “ pY 1 ` Z 1q2 “ pY pX ` 2Y ` Zq ` ZpX ` 2Y ` Zqq2 “ pY ` Zq2 “ Z 1.

This shows that, with no forces other than drift at work, the genotype frequen-
cies in a population become fixed after one generation.
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1.3 Urn model

In this section, we develop a method to count the number of A1 alleles in a
generation. The total number of gametes will be denoted N “ 2M , where M is
the number of individuals in the population. To start with, the mating of two
diploid individuals can intuitively be visualized as in Figure 1: The black and

Figure 1: Two zygotes mate randomly

white dots are the two different alleles of a gene, and the larger ring is the locus2

we are interested in. However, since we assume that the mating of diploid indi-
viduals is random, and the offspring obtains one gene from each of its parents,
the mating of two zygotic individuals can be seen as a random collision of two
gametes, as visualized in Figure 2. This can be abstracted one step further, to

Figure 2: Two gametes ”collide” randomly, which results in a zygote.

what we will refer to as the urn model, visualized in Figure 3. In the urn model,
we imagine that all the (huge number of) gametes produced by the N zygotes in
one generation are thrown into a large urn, divided into N sections. The popu-
lation in the next generation is then obtained by ”drawing” two gametes (and
hence producing a zygote) from each section of the urn. Under the assumptions
of the Hardy-Weinberg theorem, the probability of drawing an allele is just the
frequency of that allele in the previous generation.

2Or rather, a merging of the two copies of that locus.
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Figure 3: A visualization of the urn model

We can now ask: what is the probability that there are j A1 alleles in generation
t? To start, j A1 alleles among the N genes can be chosen in

`

N
j

˘

ways. Due to
our assumptions of random mating and absence of selection and mutation, the
probability of drawing an A1 allele from the urn is just xk “

k
N , the frequency

of A1 alleles in the previous generation. The probability of drawing j A1 alleles
is then just pjk. To keep the population size constant, we must at the same time
draw N ´ j A2 alleles, and the probability of this is p1´ xkq

N´j . In total, the
probability we are looking for is

ˆ

N

j

˙

xjkp1´ xkq
N´j .

Now denote the number of A1 alleles in generation t by Xptq. In the language
of probability theory, we have shown that Xpt ` 1q, given that Xptq “ k and
that drift is the only force at work, is a binomially distributed random variable
with p “ xk “

k
N :

Xpt` 1q
ˇ

ˇ

Xptq“k
„ BinpN, xkq. (1.1)

To make things more interesting (and realistic), we can let go of the last of the
assumptions made in the previous subsection, and introduce selection and mu-
tation into our model. Selection means that some genotypes are more successful
in producing offspring than others, and therefor more likely to survive into the
next generation. Selection enters into our model in the form of two parameters.
First, a selection coefficient, denoted by s, which describes how much ”better”
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one of the alleles is, in comparison to the other.3 In this thesis we will only
consider the cases s “ 0.02 and s “ 0.1.

The second parameter related to selection is called the degree of dominance, and
is denoted by h. It models the dominance relation between the two alleles, and
decides the phenotype of the genotype A1A2. The most common (and interest-
ing) values for h are 0, 1

2 and 1. In the case h “ 0, A1 is said to be dominant
to A2, which means that the phenotype of A1A2 will be the same as that of
A1A1. In the case h “ 1, A1 is said to be recessive to A2, which means that the
phenotype of A1A2 will be the same as that of A2A2. In the intermediate case
h “ 1

2 , the effects of the alleles on the genotype A1A2 is said to be additive.

The selection parameters s and h are introduced into the model in the form of
relative weights wij for the three different genotypes, indicating how much more
successful some of the genotypes are at surviving and reproducing compared to
the others.

Genotype Relative weight Meaning
A1A1 w11 “ 1 Reference. Others are compared to A1A1.
A1A2 w12 “ 1` hs h decides relation between A1A2 and the rest.
A2A2 w22 “ 1` s A2 has selective advantage.

Table 1: Genotypes and their relative weights.

We emphasize that it is the relationship (quotient) between the weights that
matters, and not their specific value.4 Also note that in the case h “ 1

2 , we have
that w12 “

w11`w22

2 , which explains the choice of the word ”additive”.

Lastly, mutation means that given allele can, with a certain, usually very low
probability, turn into another allele. We will only consider the case when A1 can
mutate to A2.5 This enters into our model (naturally) in the form of a mutation
probability, denoted by u. The mutation probability is usually around 10´6 to
10´5, and throughout this thesis we will, unless otherwise noted, let u “ 5¨10´6.

3For example, if A2 has a selection coefficient of 0.02, it means that it is 2 percent better
than A1.

4For example, Ewens [2] uses the weights 1 ` s̃, 1 ` h̃s̃ and 1 respectively (the tilde was
added for clarity). For the quotients to be equal, we must have that s “ ´s̃ ` OpN´1q and
h “ 1´ h̃. After these adjustments, the formulas given in [2] and the ones given in this thesis
become equivalent.

5Many authors have also considered a parameter v, being the probability of mutation
A2 ÞÑ A1. Many results are known in the cases u “ v “ 0 and u ą 0, v ą 0, but we will not
consider those cases here. For details and references see [2].

10



The parameters of our model are summarized in the following table:

Parameter Meaning Values
M Number of individuals in the population. 0.5 ¨ 10k, k P N
N Number of gametes (gene copies). N “ 2M 10k, k P N
s Models how much ”better” the A2 allele is. 0.02, 0.1
h Models the dominance between A1 and A2. 0, 0.5, 1
u Probability of mutation A1 ÞÑ A2. 5 ¨ 10´6

Table 2: Explanation of the parameters.

We emphasize that the parameter values given in the table are not absolute.
However, the values given are the most typically occurring ones in the literature,
and therefore the ones we will consider.

Now with all the parameters and weights properly introduced, we redefine the
probability of ”drawing” an A1 allele in generation t` 1 as

pk “ Ppdrawing an A1 allele at t` 1 | k A1 alleles at tq

“
pw11x

2
k ` w12xkp1´ xkqqp1´ uq

w11x2
k ` 2w12xkp1´ xkq ` w22p1´ xkq

.
(1.2)

The expression w11x
2
k `w12xkp1´ xkq is commonly called the fitness of the A1

allele. Note that the assumptions made in the previous case amounts to setting
w11 “ w12 “ w22 “ 1 and u “ 0, so that

pk “
x2
k ` xkp1´ xkq

x2
k ` 2xkp1´ xkq ` p1´ xkq2

“
xk

pxk ` 1´ xkq2
“ xk,

as stated.

The numerator of (1.2) has the following interpretation: An A1 allele can come
from a A1A1 genotype (which has frequency w11x

2
k), or as one of the two pos-

sibilities from a A1A2 genotype (which has frequency w12xkp1 ´ xkq), and we
only count the fraction of A1 alleles that do not mutate into A2. The denomi-
nator describes all possible outcomes, and is commonly called the fitness of the
population.

In this setting, it is clear that Xpt` 1q conditional on Xptq still has a binomial
distribution, but now with p “ pk given by (1.2). In mathematical notation:

Xpt` 1q|Xptq“k „ BinpN, pkq. (1.3)

It turns out that the assumptions of constant population size and random mating
makes it natural to model changes in the number of A1 alleles, Xptq, at the locus
as a so-called Markov chain, regardless if Xptq follows (1.1) or (1.3). The theory
of Markov chains allows us compute many quantities of interest using linear
algebra, and it is the subject of the next section.

11



2 Markov chain on N
2.1 General theory

Definition 2.1. A Markov chain is a stochastic process tXptqu in discrete time,
with discrete state space, and which has the property:

PpXpt`1q “ in`1 | Xptq “ in, ¨ ¨ ¨ , Xp0q “ i0q “ PpXpt`1q “ in`1 | Xptq “ inq.

This property is known as the (weak) Markov property.

Intuitively, the Markov property means that the next step of the process only
depends on the current state, and not on the previous history of the process.
Most Markov chains of interest also satisfy the following:

Definition 2.2. Let tXptqutPN be a Markov chain. If the conditional probabili-
ties

pj,i “ PpXpt` 1q “ j | Xptq “ iq

do not depend on t, the process is called time-homogeneous.

The conditional probabilities in the definition above are called transition prob-
abilities, since they describe the probability that the Markov chain makes the
transition from state i to state j. The matrix whose elements are transition
probabilities is called the transition matrix, and is denoted P. Since the chain
will always move to some state in each time step, the row sums of P are all 1.
The next definition says that it is also possible to compute the probability that
the Markov chain is in a certain state, several steps from now.

Definition 2.3. The probability

p
pmq
j,i “ PpXpt`mq “ j | Xptq “ iq

is called the transition probability of order m.

From the law of total probability, we easily obtain the following important result,
which allows us to compute higher order transition probabilities in term of lower
order ones by conditioning on an intermediate step:

Theorem 2.1 (Chapman-Kolmogorov). Let P be the transition matrix of a
time-homogeneous Markov chain. Then the transition probabilities of order m`
n satisfy

p
pm`nq
j,i “

ÿ

k

p
pmq
j,k p

pnq
k,i , (2.1)

and the matrix Ppmq of transition probabilities of order m satisfy Ppmq “ Pm.

To ”start” a Markov process, we need an initial distribution, a vector containing
the probabilities of starting in each of the states. This is usually denoted πp0q.
The probability that the process is in state i at time t is then given by the i:th
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element of the vector πptq “ πp0qPt.

Under some conditions, a Markov chain can have a so-called stationary distri-
bution: an initial distribution that does not change with time, i.e. satisfies
πp0q “ πp0qPt for all t.6 We will not consider stationary distributions here
(see for example section VIII §4 in [8]), but instead focus on another important
property that some Markov chains possess:

Definition 2.4. State j is absorbing if

pi,j “ δij ,

where δij is the Kronecker delta. In other words: if the process stays in state j
forever once it has entered it.

Intimately related to the notion of an absorbing state is the notion of an ab-
sorbing Markov chain:

Definition 2.5. A Markov chain is called absorbing if it is possible to reach the
absorbing state from any other state.

A related, but more general property is that of being irreducible:

Definition 2.6. A Markov chain is irreducible if it is possible to reach any state
from any other state.

The Markov chains considered in this thesis will be absorbing, and the main
focus of the thesis is to compute the mean time it takes for the chain to reach
its absorbing state. If the absorbing state (or one of them) has index j, this is
defined as the expected value of the random variable

Tj “ mintt | t ą 0, Xptq “ ju.

Assume that a Markov chain has n states, m of which are absorbing. Then the
transition matrix of the process, P, can (possibly after a relabelling of states)
be factored as

P “

ˆ

I 0

P̄ P̂

˙

, (2.2)

where I is an mˆm identity matrix consisting of the (trivial) transition prob-
abilities between the absorbing states, 0 is an m ˆ pn ´ mq zero matrix, P̄
is an pn ´ mq ˆ m matrix consisting of the transition probabilities from the
non-absorbing states to the absorbing states, and P̂ consists of the transition
probabilities between the non-absorbing states. Observe that in order for P to
be absorbing, P̄ must contain at least one nonzero element. P̂ will be irreducible
in this thesis, but it doesn’t need to be in general. It turns out that in order to
analyze the absorption time Tj , only the matrix P̂ is needed.

6In fact, in the case u ą 0, v ą 0 briefly mentioned in the previous section, the resulting
Markov chain will have a stationary distribution instead of absorbing states.
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To simplify notation a bit, let us denote ei “ p0, . . . , 1, . . . , 0q, and 1 “ p1, 1, . . . , 1q.
Also let p.qj,i denote the element on row i and column j of a matrix. The main
result of this section is:

Theorem 2.2. The mean absorption time in a Markov chain, given that it
starts in state i, is given by

EpTj | Xp0q “ iq “ eTi pI´ P̂q´11. (2.3)

Hence, it is the i:th row sum of the matrix pI ´ P̂q´1. Some work needs to be
done before we can actually prove this. We need to show that pI´ P̂q´1 always
exists, and then figure out how to find it. First, we recall some matrix theory.

Given a vector norm }v} on Rn, the corresponding induced matrix norm on
Rnˆn (space of real quadratic matrices) is given by

}A} :“ sup
}v}‰0

}Av}

}v}
“ sup
}v}“1

}Av}.

Such a matrix norm has the submultiplicative property : }AB} ď }A}}B}. The
following lemma can now solve our problems:

Lemma 2.3. Let A P Rnˆn with }A} ă 1. Then I´ A is invertible and

8
ÿ

k“0

Ak “ pI´ Aq´1.

Proof. First we show invertibility. Let u be an eigenvector of A corresponding
to an arbitrary eigenvalue λ. Then

}A}}u} “ sup
}v}‰0

}Av}

}v}
}u} ě

}Au}

}u}
}u} “ }Au} “ |λ|}u}.

Since }u} ‰ 0 (because it is an eigenvector), this means that |λ| ď }A} ă 1.
Hence 1 is not an eigenvalue of A, so that Ax “ x only holds if x “ 0, and this
is equivalent to pI´ Aq being invertible.

By the triangle inequality, submultiplicativity and the assumption,

}

8
ÿ

k“0

Ak} ď
8
ÿ

k“0

}A}k “
1

1´ }A}
ă 8.

Hence the left hand side is well defined. It is equally easy to see that

pI´ AqpI` A` ¨ ¨ ¨ ` An´1q “ I´ An, (2.4)

so it only remains to show that lim
nÑ8

An “ 0. But this follows easily from

continuity and submultiplicativity of the norm:

} lim
nÑ8

An} “ lim
nÑ8

}An} ď lim
nÑ8

}A}n “ 0.

The result now follows by taking limits on both sides of (2.4).

14



Every row sum of P is 1, and since we assume that our Markov chain is absorbing,
there is a nonzero probability to reach the absorbing state(s) from any other
state. Hence the row sums of P̂ must all be strictly less than 1, which makes it
is natural to consider the matrix norm

}A}8 “ max
1ďiďn

n
ÿ

j“1

|aij |, (2.5)

which is induced by the vector norm

}v}8 “ max
1ďiďn

|vi|.

With the norm (2.5), P̂ satisfies the hypothesis of lemma 2.4, and so we have
proved

8
ÿ

k“0

P̂k “ pI´ P̂q´1, (2.6)

which is the first step towards proving the main result. Next, let nj denote the
number of times a Markov process is in state j.7 The next lemma shows us how
to find the conditional expectation of nj :

Lemma 2.4. Epnj | Xp0q “ iq “
`

pI´ P̂q´1
˘

j,i

Proof. Consider the indicator random variable

ItXpkq“ju “

#

1, if Xpkq “ j

0, otherwise
.

It is clear that

nj “
8
ÿ

k“0

ItXpkq“ju,

and the conditional expectation is by definition

EpItXpkq“ju | Xp0q “ iq “ p
pkq
j,i .

7Note that nj is a random variable (since it is a function of a random variable), so that it
makes sense to consider its conditional expectations. Also note that we must either set ni “ 0
if i is an absorbing state, or only define nj for non-absorbing states. However, our calculations
will not be affected by which of these approaches we choose.
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Hence, by a limit theorem for conditional expectations (see [8] p. 218):

Epnj | Xp0q “ iq “ E

˜

8
ÿ

k“0

ItXpkq“ju

ˇ

ˇ

ˇ

ˇ

Xp0q “ i

¸

“

8
ÿ

k“0

EpItXpkq“ju | Xp0q “ iq

“

8
ÿ

k“0

p
pkq
j,i

“

˜

8
ÿ

k“0

P̂k

¸

j,i

“
`

pI´ P̂q´1
˘

j,i
,

where (2.6) was used in the last equality.

With this lemma at hand, it is now an easy task to prove Theorem 2.2:

Proof. For simplicity, we consider the case when 0 is the only absorbing state
(if there are several absorbing states, then they can be merged into one by
rearranging P). Since an absorbing Markov chain will reach its absorbing state
with probability one (see for example [4] thm 3.1.1), the left hand side of (2.3)
can be computed by summing the mean time the process spends in every non-
absorbing state. This gives:

EpT0 | Xp0q “ iq “ E

˜

N
ÿ

j“1

nj

ˇ

ˇ

ˇ

ˇ

Xp0q “ i

¸

“

N
ÿ

j“1

Epnj | Xp0q “ iq

“

N
ÿ

j“1

`

pI´ P̂q´1
˘

j,i

“ eTi pI´ P̂q´11,

(2.7)

and we are done.

Next, we deal with the variance.

Theorem 2.5. The variance of the absorption time in a Markov chain, given
that it starts in state i, is given by

VpT0 | Xp0q “ iq “ eTi
`

2pI´ P̂q´2 ´ pI´ P̂q´1
˘

1´
´

eTi pI´ P̂q´11
¯2

(2.8)

In words, the variance is the i:th row sum of the matrix 2pI´ P̂q´2 ´ pI´ P̂q´1

minus the squared i:th row sum of the matrix pI´ P̂q´1.

16



Proof. For simplicity, let us denote

E “

ˆ

EpT0 | Xp0q “ 1q, . . . ,EpT0 | Xp0q “ Nq

˙

.

From the previous result we know that

E “ pI´ P̂q´11.

Similarly, let us denote

E2 “

ˆ

EpT 2
0 | Xp0q “ 1q, . . . ,EpT 2

0 | Xp0q “ Nq

˙

.

With this notation, the variance is

VpT0 | Xp0q “ iq “ eTi pE2 ´E ˝Eq,

where ˝ denotes the elementwise product between two vectors (also known as
the Hadamard product). Hence, we need to find the vector E2.

The i:th element of E2 can be found by conditioning on the first step of the
process, and using the law of total probability:

EpT 2
0 | Xp0q “ iq “

N
ÿ

k“0

EpT 2
0 | Xp0q “ i , Xp1q “ kqpk,i. (2.9)

If k “ 0, the process cannot visit any non-absorbing states except the starting
state. If k ‰ 0, the starting state is still non-absorbing, and by the Markov prop-
erty, we can restart the count after the first step.8 In mathematical notation,
this means that

T0

ˇ

ˇ

Xp0q“i,Xp1q“k
“

#

1, if k “ 0

1` T0, if k ‰ 0
.

Consequently,

EpT 2
0 | Xp0q “ i , Xp1q “ kq “

#

1, if k “ 0

Epp1` T0q
2 | Xp1q “ kq, if k ‰ 0

.

Observe that we now condition on k and not i (see the footnote).

8We can think of this as considering T0 for the process Y ptq “ Xpt ` 1q, which has the
same properties as Xptq due to the Markov property. For Y ptq we are then only conditioning
on Y p0q “ k.
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Hence the sum (2.9) is

N
ÿ

k“0

EpT 2
0 | Xp0q “ i,Xp1q “ kqpk,i “ 1p0,i `

N
ÿ

k“1

Epp1` T0q
2 | Xp1q “ kqpk,i

“ 1` 2
N
ÿ

k“1

EpT0 | Xp1q “ kqpk,i

`

N
ÿ

k“1

EpT 2
0 | Xp1q “ kqpk,i.

This sum can be identified as the i:th element of the vector

1` 2P̂E` P̂E2.

Hence, if we tie things together and recall the previous result, we get

pI´ P̂qE2 “ 1` 2P̂pI´ P̂q´11 “ pI` 2P̂pI´ P̂q´1q1,

which is equivalent to

E2 “ pI´ P̂q´1pI` 2P̂pI´ P̂q´1q1

“ pI´ P̂q´1pI` 2ppI´ P̂q´1 ´ Iqq1

“ pI´ P̂q´1p2pI´ P̂q´1 ´ Iq1

“ p2pI´ P̂q´2 ´ pI´ P̂q´1q1,

since pI´ P̂q´1P̂ “ pI´ P̂q´1 ´ I (recall (2.6)).

We can now conclude that

VpT0 | Xp0q “ iq “ eTi pE2 ´E ˝Eq

“ eTi
`

2pI´ P̂q´2 ´ pI´ P̂q´1
˘

1´
´

eTi pI´ P̂q´11
¯2

.

Remark 2.6. The expectation could have been computed using the same ap-
proach as in the proof above. Also, the above variance could have been computed
in a similar way to the expectation: by first computing the variance of nj, and
then summing the result over all non-absorbing states (assuming of course that
the nj’s are independent). However, that approach leads to a sum that is hard
to manage.
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2.2 Our case

Recall from section 1.3 that the number of A1 alleles in generation t`1, Xpt`1q,
conditional on Xptq “ k and that selection, mutation and drift are all at work,
follows a binomial distribution,

Xpt` 1q|Xptq“k „ BinpN, pkq, (2.10)

where

pk “
pw11x

2
k ` w12xkp1´ xkqqp1´ uq

w11x2
k ` 2w12xkp1´ xkq ` w22p1´ xkq2

,

and xk “
k
N is the frequency of A1 alleles at the locus in the previous generation.

Using the terminology introduced in the previous subsection, can now model the
changes in the number of A1 alleles from generation to generation as as a time-
homogeneous, absorbing Markov chain tXptqutPN with transition probabilities

pj,k “ PpXpt` 1q “ j|Xptq “ kq “

ˆ

N

j

˙

pjkp1´ pkq
N´j . (2.11)

The absorbing state of this Markov chain is state 0, corresponding to the event
that there are no more A1 alleles in the population. The mean and variance of
the absorption time can now be computed by (2.2) and (2.8) respectively.

Although we have now found formulas for the desired quantities, those formulas
are not suitable for numerical computation if the state space is large (which is the
case in practical applications!). For one thing, the binomial coefficients included
in the transition probabilities quickly become very large. For example, the
number

`

100
50

˘

« 1029 is already much bigger than the estimated number of stars
in the universe.9 A way to get around this is to take the natural logarithm of the
transition probabilities (2.11), and then compute them recursively according to

#

log pk,0 “ N logp1´ pkq

log pk,j “ log pk,j´1 ` log
´

N´j`1
j

¯

` log
´

pk
1´pk

¯ (2.12)

The transition matrix of the process will then be the (elementwise) exponential
of the resulting matrix. However, even with this simplification, one has to be
careful when building the transition matrix numerically for chains with state
spaces of size N “ 104 or larger. Using some more sophisticated tricks (sparse
matrix methods among other things) it is possible to do the computations up
to N “ 106, but even then it takes considerable time and computational effort.
Therefore, some other strategy is needed to do these computations for large

9It is of course impossible to know the exact number of stars, and the estimated
number varies depending on who you ask. A rough estimate is 1021, see for example
http://curious.astro.cornell.edu/the-universe/stars-and-star-clusters/78-the-universe/stars-
and-star-clusters/general-questions/345-is-it-possible-to-count-the-stars-beginner
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populations in practice.

We end this subsection by providing formulas for the mean and variance of
the change in the value of the Markov process in one time step. They will be
important later on.

Theorem 2.7. For a time-homogeneous Markov chain with binomial transition
probabilities, the conditional mean and variance of the change in one time step
is given by

EpXpt` 1q ´Xptq | Xptq “ kq “ Npk ´ k. (2.13)

VpXpt` 1q ´Xptq | Xptq “ kq “ Npkp1´ pkq. (2.14)

Proof. This follows directly from (2.10) and elementary properties of mean and
variance.

2.2.1 Scaling

The first step towards approximating our Markov chain with a diffusion process
is to scale both time and space by 1

N (so that we consider the frequency of A1

alleles rather than the number of them).10 This will not affect the transition
probabilities (2.11), since the event

1

N
X

ˆ

t

N

˙

“
k

N

is equivalent to the event Xptq “ k. However, (2.13) and (2.14) will look a bit
different, as we shall see.

In what follows, we assume that the parameters s and u are both OpN´1q (this
will be necessary for our later approximations to be valid). First, let’s see what
happens with the probability pk after scaling. If we expand (1.2), and write x
instead of xk, we obtain

pk “
px2 ` p1` hsqxp1´ xqqp1´ uq

x2 ` 2p1` hsqxp1´ xq ` p1` sqp1´ xq2

“
px` hsxp1´ xqqp1´ uq

1` 2hsxp1´ xq ` sp1´ xq2

“ px´ ux` hsxp1´ xq `OpN´2qq

ˆ
`

1´ 2hsxp1´ xq ´ sp1´ xq2 `OpN´2q
˘

“ x´ ux` hsxp1´ xq ´ 2hsx2p1´ xq ´ sxp1´ xq2 `OpN´2q

“ x´ ux` sxp1´ xqpx´ 1` hp1´ 2xqq `OpN´2q,

where we used a Taylor expansion in the third equality.

10For the time scale, maybe ”relabelling” is a better word, since the scaling function t ÞÑ t
N

is just a bijection between the sets N and t0, 1
N
, 2
N
, . . .u.

20



To simplify notation a bit, let us denote τ “ t
N and δτ “ 1

N . The expected
change in one time step, corresponding to (2.13), can then be computed as:

E
ˆ

Xpτ ` δτq ´Xpτq

N

ˇ

ˇ

ˇ

ˇ

Xpτq

N
“

k

N

˙

“
1

N
E
ˆ

Xpτ ` δτq ´Xpτq

ˇ

ˇ

ˇ

ˇ

Xpτq

N
“

k

N

˙

“
1

N
E pXpt` 1q ´Xptq | Xptq “ kq

“
1

N
pNpk ´ kq

“ pk ´ x

“ ´ux` sxp1´ xqpx´ 1` hp1´ 2xqq

`OpN´2q.

By a similar computation, the variance corresponding to (2.14), is seen to be:

V
ˆ

Xpτ ` δτq ´Xpτq

N

ˇ

ˇ

ˇ

ˇ

Xpτq

N
“

k

N

˙

“
1

N2
VpXpt` 1q | Xptq “ kq

“
1

N
pkp1´ pkq

“
1

N
px`OpN´1qqp1´ x`OpN´1qq

“
1

N
xp1´ xq `OpN´2q.

In the third equality we used the fact that x “ OpN´1q unless x “ 0 or 1 (and
in those cases, the mean and variance above is zero anyway). We will return to
these quantities in section 4.

The next step is to see what happens when N Ñ 8, so that the times become
positive real numbers and the state space becomes the closed interval r0, 1s. The
process thereby obtained is called a diffusion process, and it is the subject of
the next section.

21



3 Diffusion process in [0,1]

3.1 General theory

In this section, we will study a diffusion process which is the limit of the scaled
Markov process from the previous subsection as N Ñ 8. For convenience, we
allow ourselves to abuse notation and denote this process by Xptq as well. It is
not obvious that such a limit process exists (and many authors simply assume
it does), but Watterson [10] proved the following

Theorem 3.1. Let FN px, tq “ PpXptq ď xq. Under the time-scale transforma-
tion t “ Nu and certain sufficient conditions,

lim
NÑ8

FN px,Nuq “ F px, uq

where F px, uq is a distribution function uniquely determined by a diffusion equa-
tion subject to boundary conditions.

The ”certain sufficient conditions” stated by Watterson are rather technical, but
the point of them is that the moment generating function of the difference

θpXpt` 1q ´Xptqq,

where θ is a continuous parameter, should have a certain form. Since the proof
is rather long and complicated, we refer to the original source [10] for details.
Observe that the u used by Watterson should not be confused with the mutation
probability u used otherwise in this thesis.

Throughout this chapter, we let δx denote the change in the random variable

lim
NÑ8

1

N
X

ˆ

t

N

˙

from the previous subsection in one time unit δt, and we use Ewens [2] assump-
tions that

Epδxq “ apxqδt` opδtq, (3.1)

Vpδxq “ bpxqδt` opδtq, (3.2)

Ep|δx|3q “ opδtq, (3.3)

where both the expectation and variance is of course conditional on a current
value x of the random variable.
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3.1.1 The forward and backward equations

This subsection concerns the so called forward and backward equations. They
are both of fundamental importance in the theory of diffusion processes, but we
will only need the backward equation for our purposes. Despite this, derivations
of both are included in this thesis for the sake of completeness. Also, we will
not solve the backward equation explicitly, but instead use it as a tool in further
derivations.

Let f : r0, 1s ˆ r0, 1s ˆ r0,8q Ñ r0, 1s be a 3-dimensional distribution function
which is C2 in the first and second arguments, and C1 in the third argument.
Our discussion then begins with the Chapman-Kolmogorov equation, which
takes the form:

fpz, p, t` δtq “

ż 1

0

fpx, p, tqfpz, x, δtq dx. (3.4)

This should be interpreted as the probability density of the process changing
value from p to z in time t ` δt. Let Q P C2pr0, 1sq be a function that satisfies
Qp0q “ Qp1q “ Q1p0q “ Q1p1q “ 0.11 If we multiply this equation with such a
Q on both sides, and integrate over r0, 1s, we obtain

ż 1

0

Qpzqfpz, p, t` δtq dz “

ż 1

0

ż 1

0

Qpzqfpx, p, tqfpz, x, δtq dx dz. (3.5)

If we now do a Taylor expansion of Qpzq (recalling that z “ x` δx) and using
the linearity of the integral, we see that this is equal to

ż 1

0

ż 1

0

Qpxqfpx, p, tqfpz, x, δtq dx dz

`

ż 1

0

ż 1

0

Q1pxqδxfpx, p, tqfpz, x, δtq dx dz

`

ż 1

0

ż 1

0

Q2pxq
pδxq2

2
fpx, p, tqfpz, x, δtq dx dz

`

ż 1

0

ż 1

0

Op|δx|3qfpx, p, tqfpz, x, δtq dx dz

(3.6)

We will now deal with the integrals one by one, assuming throughout that the
orders of integration can be interchanged. Since f is a density function, it is
clear that the first one is equal to

ż 1

0

Qpxqfpx, p, tq

ż 1

0

fpz, x, δtq dz dx “

ż 1

0

Qpxqfpx, p, tq dx.

11A simple example of such a function is Qpxq “ x2px´ 1q2.
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The second integral is similar, but now we also need to use integration by parts
and the assumption (3.1):

ż 1

0

Q1pxqfpx, p, tq

ż 1

0

δxfpz, x, δtq dz dx

“

ż 1

0

EpδxqQ1pxqfpx, p, tq dx

“ δt

ż 1

0

apxqQ1pxqfpx, p, tq dx` opδtq

“ δt rQpxqapxqfpx, p, tqs
1
0

´ δt

ż 1

0

Qpxq
B

Bx
papxqfpx, p, tqq dx

˘

` opδtq

“ ´δt

ż 1

0

Qpxq
B

Bx
papxqfpx, p, tqq dx` opδtq.

The third integral needs to be integrated by parts twice:

1

2

ż 1

0

Q2pxqfpx, p, tq

ż 1

0

pδxq2fpz, x, δtq dz dx

“
1

2

ż 1

0

Eppδxq2qQ2pxqfpx, p, tq dx

“
1

2

ż 1

0

VpδxqQ2pxqfpx, p, tq dx` opδtq

“
1

2
δt

ż 1

0

bpxqQ2pxqfpx, p, tq dx` opδtq

“
1

2
δt

ˆ

“

Q1pxqbpxqfpx, p, tq
‰1

0

´

ż 1

0

Q1pxq
B

Bx
pbpxqfpx, p, tqq dx

˙

` opδtq

“ ´
1

2
δt

˜

„

Qpxq
B

Bx
pbpxqfpx, p, tqq

1

0

´

ż 1

0

Qpxq
B2

Bx2
pbpxqfpx, p, tqq dx

¸

` opδtq

“
1

2
δt

ż 1

0

Qpxq
B2

Bx2
pbpxqfpx, p, tqq dx` opδtq.

In the second equality we used the fact that

Vpδxq “ Eppδxq2q ´ Epδxq2

“ Eppδxq2q ´ papxqδt` opδtqq2

“ Eppδxq2q ` opδtq,

24



which is true since pδtq2 “ opδtq. Also, assumption (3.2) was (obviously) used
in the third equality. Finally, observe that the last integral is bounded by a
constant times Ep|δx|3q, which is opδtq by assumption. Hence, putting all the
pieces together, we have that

ż 1

0

Qpzqfpz, p, t` δtq dz “

ż 1

0

Qpxqfpx, p, tq dx

´ δt

ż 1

0

Qpxq
B

Bx
papxqfpx, p, tqq dx

`
1

2
δt

ż 1

0

Qpxq
B2

Bx2
pbpxqfpx, p, tqq dx` opδtq,

which simplifies to
ż 1

0

Qpxqpfpx, p, t` δtq ´ fpx, p, tqq dx

“ δt

ż 1

0

Qpxq

ˆ

´
B

Bx
papxqfpx, p, tqq `

1

2

B2

Bx2
pbpxqfpx, p, tqq

˙

dx` opδtq.

Dividing both sides by δt and letting δtÑ 0, we arrive at
ż 1

0

Qpxq
Bf

Bt
px, p, tq dx “

ż 1

0

QpxqHpxq dx, (3.7)

where

Hpxq “

ˆ

´
B

Bx
papxqfpx, p, tqq `

1

2

B2

Bx2
pbpxqfpx, p, tqq

˙

.

For the final step, we will need a lemma, known as the fundamental lemma of
calculus of variations. The proof presented here is basically the same as the one
in [1].

Lemma 3.2. Let h P C1pr0, 1sq, and Q P C2pr0, 1sq be a function such that
Qp0q “ Qp1q “ Q1p0q “ Q1p1q “ 0. If for every such Q,

ż 1

0

Qpxqhpxq dx “ 0,

then hpxq “ 0 for all x P r0, 1s.

Proof. We prove the contrapositive statement, which reads as follows: Assume
that there exists a point x0 where hpxq ‰ 0 (we may without loss of generality
assume that hpxq ą 0 there). Then there also exists a function Q P C2pr0, 1sq
which satisfies the conditions, but makes the integral nonzero.

Since h is continuous, there exists some ε ą 0 such that hpxq ą 0 for |x´x0| ă ε.
For this ε, consider the function

Qpxq “

#

px´ x0 ` εq
2px´ x0 ´ εq

2, |x´ x0| ă ε

0, |x´ x0| ě ε
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Clearly, this Q satisfies our conditions and is positive in |x´ x0| ă ε. However,

ż 1

0

Qpxqhpxq dx “

ż x0`ε

x0´ε

px´ x0 ` εq
2px´ x0 ´ εq

2hpxq dx ą 0

since the integrand is positive.

Since the identity (3.7) is assumed to hold for any Q with the given properties,
we can use lemma 3.2 with h “ Bf

Bt ´H to finally arrive at:

Theorem 3.3 (Kolmogorov Forward Equation). Under the assumptions made
in the beginning of this section, the following equation holds

Bf

Bt
px, p, tq “ ´

B

Bx
papxqfpx, p, tqq `

1

2

B2

Bx2
pbpxqfpx, p, tqq. (3.8)

If we focus on the starting position p rather than the current position x (so that
z “ p` δp), the Chapman-Kolmogorov equation becomes

fpx, p, t` δtq “

ż 1

0

fpx, z, tqfpz, p, δtq dz. (3.9)

Note that some authors use a different notation for this case (see for example
[2] p.118). If we do a Taylor expansion of fpx, z, tq with respect to z “ p ` δp
and use the linearity of the integral, we obtain

fpx, p, t` δtq “

ż 1

0

fpx, p, tqfpz, p, δtq dz `

ż 1

0

δp
Bf

Bp
px, p, tqfpz, p, δtq dz

`
1

2

ż 1

0

pδpq2
B2f

Bp2
px, p, tqfpz, p, δtq dz `Op|δp|3q.

Performing calculations similar to the ones in the case of the forward equation,
we see that this is equal to

fpx, p, tq `
Bf

Bp
px, p, tqEpδpq `

1

2

B2f

Bp2
px, p, tq

`

Vpδpq ` opδtq
˘

` opδtq

“ fpx, p, tq `
Bf

Bp
px, p, tqappqδt`

1

2

B2f

Bp2
px, p, tqbppqδt` opδtq

“ fpx, p, tq ` δt

ˆ

appq
Bf

Bp
px, p, tq `

1

2
bppq

B2f

Bp2
px, p, tq

˙

` opδtq.

In the second equality we used (3.1) and (3.2) again and merged all the opδtq
terms into one. Combining this with (3.9), rearranging, dividing by δt and
letting δtÑ 0, we arrive at

Theorem 3.4 (Kolmogorov Backward Equation). Under the assumptions made
in the beginning of this section, the following equation holds

Bf

Bt
px, p, tq “ appq

Bf

Bp
px, p, tq `

1

2
bppq

B2f

Bp2
px, p, tq. (3.10)
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3.1.2 Equations for F, P0 and P1

For our purposes, it will be useful to have an equation involving

F px, p, tq “

ż x

0

fpy, p, tq dy

rather than f . To find such an equation, we need the following lemma concerning
differentiation under the integral sign. A version of this lemma can be found in
[6]:

Lemma 3.5. Let

Iptq “

ż b

a

fpy, p, tq dy,

and assume that f is C1 in the third argument. Then

I 1ptq “

ż b

a

Bf

Bt
py, p, tq dy.

Proof. Define

gpx, p, tq “
fpx, p, tq ´ fpx, p, sq

t´ s

for |t ´ s| ă δ. By the mean value theorem, there is a u P rs, ts such that
gpx, p, tq “ Bf

Bt px, p, uq. Since |u´ s| ď |t´ s| ă δ, our assumption gives that
ˇ

ˇ

ˇ

ˇ

gpx, p, tq ´
Bf

Bt
px, p, sq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

Bf

Bt
px, p, uq ´

Bf

Bt
px, p, sq

ˇ

ˇ

ˇ

ˇ

ă ε.

Hence gpx, p, tq Ñ Bf
Bt px, p, sq uniformly as tÑ s.

Using the uniform convergence of g, we can now compute

I 1psq “ lim
tÑs

Iptq ´ Ipsq

t´ s
“ lim
tÑs

ż b

a

gpy, p, tq dy “

ż b

a

lim
tÑs

gpy, p, tq dy

“

ż b

a

Bf

Bt
py, p, sq dy.

Since this holds for all s in |t ´ s| ă δ, it holds in particular for t, and we are
done.

With this lemma at hand, we are justified in computing

BF

Bt
px, p, tq “

B

Bt

ˆ
ż x

0

fpy, p, tq dy

˙

“

ż x

0

Bf

Bt
py, p, tq dy

“

ż x

0

ˆ

appq
Bf

Bp
py, p, tq `

1

2
bppq

B2f

Bp2
py, p, tq

˙

dy

“ appq
B

Bp

ˆ
ż x

0

fpy, p, tq dy

˙

`
1

2
bppq

B2

Bp2

ˆ
ż x

0

fpy, p, tq dy

˙

“ appq
BF

Bp
px, p, tq `

1

2
bppq

B2F

Bp2
px, p, tq.
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Hence F solves the backward equation (3.10) as well. Note that lemma 3.5 was
used again on the p-variable in the second to last equality.

Recall from earlier sections that a state x is absorbing if the probability to get
out of it is 0. In the language of diffusion processes, this means that fpz, x, tq “ 0
for all z ‰ x. Now assume that x “ 0 and x “ 1 are absorbing states and
consider the probability that absorption has occurred at or before time t for the
respective states:

P0pp, tq “ PpXpT q “ 0, T P r0, ts | Xp0q “ pq “ F p0, p, tq,

P1pp, tq “ PpXpT q “ 1, T P r0, ts | Xp0q “ pq “ F p1, p, tq.
(3.11)

From this definition it is clear that P0 and P1 also solve the backward equation

appq
BP0

Bp
pp, tq `

1

2
bppq

B2P0

Bp2
pp, tq “

BP0

Bt
pp, tq. (3.12)

Now define P0ppq “ limtÑ8P0pp, tq. Since P0pp, tq satisfies the above equation
for all non-negative t, we can take the limit in t on both sides and conclude
that the equation is satisfied for P0ppq as well. Note that this process makes the
right hand side equal to zero. Carrying out the same argument for P1, we can
summarize this with the two equations

appq
dP0

dp
ppq `

1

2
bppq

d2P0

dp2
ppq “ 0, (3.13)

and

appq
dP1

dp
ppq `

1

2
bppq

d2P1

dp2
ppq “ 0. (3.14)

We also have the intuitively obvious boundary conditions

P0p0q “ 1, P0p1q “ 0, P1p0q “ 0, P1p1q “ 1.

Now we will solve both equations at once, beginning with the observation that
dP0

dp ppq “ ´
dP1

dp ppq, which is true since P0ppq ` P1ppq “ 1 for all p.

With this in mind, set qppq “ dP0

dp ppq “ ´dP1

dp ppq. This simplifies equations

(3.13) and (3.14) to
dq

dp
ppq ` 2

appq

bppq
qppq “ 0.

Multiplying both sides by the integrating factor, this becomes

d

dp

˜

exp

ˆ

2

ż p

0

apzq

bpzq
dz

˙

qppq

¸

“ 0,

or equivalently

qppq “ C exp

ˆ

´2

ż p

0

apzq

bpzq
dz

˙

.
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The boundary conditions give us that

ż 1

0

qptq dt “ P0p1q ´ P0p0q “ ´1,

(which means that C ă 0), and also

ż p

0

qptq dt “ ´P1ppq,

ż 1

p

qptq dt “ ´P0ppq.

From this, we conclude that

P0ppq “

ş1

p
qptq dt

ş1

0
qptq dt

“

ş1

p
ψptq dt

ş1

0
ψptq dt

, P1ppq “

şp

0
qptq dt

ş1

0
qptq dt

“

şp

0
ψptq dt

ş1

0
ψptq dt

, (3.15)

where

ψptq “ exp

ˆ

´2

ż t

0

apzq

bpzq
dz

˙

.

3.1.3 Mean absorption time

The goal of this section is to give a formula for the expected time until absorption
occurs, starting with the case when both x “ 0 and x “ 1 are absorbing states.
For this purpose, first consider the density function giving the probability of
absorption (in any of the two states) at time t:

φpp, tq “ PpXptq “ 0 or Xptq “ 1 | Xp0q “ pq

“ PpXptq “ 0 | Xp0q “ pq ` PpXptq “ 1 | Xp0q “ pq

“ fp0, p, tq ` fp1, p, tq

(3.16)

(for each t, absorption in 0 and 1 are disjoint events). From this definition it
is clear that φ also solves the backward equation (3.10). Now, the expected
time until absorption occurs, given that the process starts in p, is given by the
function

t̄ppq “

ż 8

0

tφpp, tq dt. (3.17)

Observe that we must have that limtÑ8 tφpp, tq “ 0 for the integral to make
sense.

Theorem 3.6. t̄ppq satisfies the boundary value problem

appq
dt̄

dp
ppq `

1

2
bppq

d2t̄

dp2
ppq “ ´1, t̄p0q “ t̄p1q “ 0. (3.18)

Proof. Assume that φ is nice enough to allow interchange of differentiation and
integration (this could be justified for example by the dominated convergence
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theorem, see [7]). Then we can use integration by parts and the fact that φ
solves the backward equation (3.10) to compute:

´1 “ ´

ż 8

0

φpp, tq dt “ ´1 ¨

ˆ

rtφpp, tqs
8

0 ´

ż 8

0

t
Bφ

Bt
pp, tq dt

˙

“

ż 8

0

t

ˆ

appq
Bφ

Bp
pp, tq `

1

2

B2φ

Bp2
pp, tq

˙

dt

“ appq
d

dp

ˆ
ż 8

0

tφpp, tq dt

˙

`
1

2
bppq

d2

dp2

ˆ
ż 8

0

tφpp, tq dt

˙

“ appq
dt̄

dp
ppq `

1

2
bppq

d2t̄

dp2
ppq.

The boundary conditions are intuitively clear: if the process starts in one of the
absorbing states, it will not take any additional time to get there!

Before we actually solve this problem, we recall some facts from the theory of
ordinary differential equations:

Definition 3.1. The Wronskian W py1, y2q of two solutions to a second order
ordinary differential equation is defined as

W py1, y2qpxq “ det

ˆ

y1pxq y2pxq
y11pxq y12pxq

˙

“ y1pxqy
1
2pxq ´ y

1
1pxqy2pxq.

For the Wronskian, we have the following useful identity:

Lemma 3.7 (Abel). Let y1, y2 be solutions of the ordinary differential equation

y2pxq ` ppxqy1pxq ` qpxqypxq “ 0

for x P I Ă R. Then

W py1, y2qpxq “W py1, y2qpx0q exp

ˆ

´

ż x

x0

pptq dt

˙

for every point x0 P I.

Proof. We write W pxq instead of W py1, y2qpxq for simplicity. Using that y1 and
y2 solves the differential equation, we can find a differential equation for W pxq:

W 1pxq “ y11pxqy
1
2pxq ` y1pxqy

2
2pxq ´ y

2
1pxqy2pxq ´ y

1
1pxqy

1
2pxq

“ ´y1pxqpppxqy
1
2pxq ` qpxqy2pxqq ` y2pxqpppxqy

1
1pxq ` qpxqy1pxqq

“ ´ppxqpy1pxqy
1
2pxq ´ y

1
1pxqy2pxqq ` qpxqp´y1pxqy2pxq ` y1pxqy2pxqq

“ ´ppxqW pxq.

This can be solved using the method of integrating factor, which gives us that

W pxq “ C exp

ˆ

´

ż x

x0

ppzq dz

˙

.

Setting x “ x0, we conclude that C “W px0q.
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Lemma 3.7 shows that the Wronskian is either always zero (in which case the
solutions y1, y2 are linearly dependent) or never zero. The following two results
can be phrased more elegantly if we introduce the notation

L “
ˆ

a2pxq
d2

dx2
` a1pxq

d

dx
` a0pxq

˙

,

B “
ˆ

ba11 ba12 bb11 bb12

ba21 ba22 bb21 bb22

˙

,

ȳa,b “ pypaq, y
1paq, ypbq, y1pbqqT .

A general boundary value problem can then be written
#

Ly “ f

Bȳa,b “ c̄
, (3.19)

where c̄ “ pc1, c2q. Typically, most elements of B is 0. For example, if ba11 “

bb21 “ 1 and the rest is 0, we get Dirichlet conditions ypaq “ ypbq “ 0, and if
ba12 “ bb22 “ 1 and the rest is 0, we get Neumann conditions y1paq “ y1pbq “ 0.

Definition 3.2. The Green function of the boundary value problem
Ly “ f,Bȳa,b “ 0̄ is defined as

Gpx, ξq “

$

’

’

&

’

’

%

y2pξqy1pxq

a2pξqW py1, y2qpξq
, a ď ξ ď x ď b

y2pxqy1pξq

a2pξqW py1, y2qpξq
, a ď x ď ξ ď b

, (3.20)

where y1 and y2 solve the corresponding homogeneous equation Ly “ 0 with one
boundary condition each and W py1, y2q is their Wronskian.

The next result will be crucial for our computations.

Theorem 3.8. The boundary value problem (3.19) has a unique solution for
every f P Cpra, bsq if and only if the homogeneous problem (f ” 0) only has the
trivial solution y ” 0. In that case, the solution is given by

ypxq “

ż b

a

Gpx, ξqfpξq dξ. (3.21)

Going back to our diffusion process, here is the main result of this section, which
is stated in [2] without any proof or reference:

Theorem 3.9. Equation (3.18) has a unique solution, given by

t̄ppq “

ż 1

0

tpx, pq dx,

where

tpx, pq “

$

’

’

&

’

’

%

2P0ppq

bpxqψpxq

şx

0
ψpyq dy, 0 ď x ď p ď 1

2P1ppq

bpxqψpxq

ş1

x
ψpyq dy, 0 ď p ď x ď 1

. (3.22)
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Proof. The result follows easily from Theorem 3.8 once we make the right iden-
tifications. It is clear that 1

2bpxq corresponds to the function a2pxq in the def-
inition on the Green function. From (3.13) and (3.14) we see that P1 and P0

solves the homogeneous version of (3.18), with the required boundary conditions
P1p0q “ 0, P0p1q “ 0. Hence P1 and P0 correspond to the functions y1 and y2.

It remains to compute the Wronskian of P1 and P0. We have that

W pP1, P0qp0q “ det

ˆ

P1p0q P0p0q
P 11p0q P 10p0q

˙

“ det

ˆ

0 1

p
ş1

0
ψpyq dyq´1 ´p

ş1

0
ψpyq dyq´1

˙

“ ´

ˆ
ż 1

0

ψpyq dy

˙´1

,

since P 11pxq “ ψpxqp
ş1

0
ψpyq dyq´1 and P 11pxq “ ´P

1
0pxq. Hence by lemma 3.7,

the Wronskian is

W pP1, P0qpxq “ ´

ˆ
ż 1

0

ψpyq dy

˙´1

exp

ˆ

´2

ż x

0

apzq

bpzq
dz

˙

“ ´ψpxq

ˆ
ż 1

0

ψpyq dy

˙´1

.

With this, we conclude that

Gpx, ξq “

$

’

’

’

&

’

’

’

%

P1pξqP0pxq
bpξq

2 W pP1, P0qpξq
, 0 ď ξ ď x ď 1

P0pξqP1pxq
bpξq

2 W pP1, P0qpξq
, 0 ď x ď ξ ď 1

“

$

’

’

&

’

’

%

´
2P0pxq

bpξqψpξq

şξ

0
ψpyq dy, 0 ď ξ ď x ď 1

´
2P1pxq

bpξqψpξq

ş1

ξ
ψpyq dy, 0 ď x ď ξ ď 1

is the Green function of the boundary value problem (3.18). Since fpxq ” ´1
in our case, the solution of the boundary value problem is given by

t̄pxq “

ż 1

0

Gpx, ξqfpξq dξ

“

ż x

0

2P0pxq

bpξqψpξq

ż ξ

0

ψpyq dy dξ `

ż 1

x

2P1pxq

bpξqψpξq

ż 1

ξ

ψpyq dy dξ,

(3.23)

which was to be proven. This is equivalent to the solution stated in [2] after
renaming the variables.
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To prove the uniqueness of the solution, Theorem 3.8 says that all we need to do
is to show that the homogeneous problem only has the trivial solution t̄ppq ” 0.

Setting qppq “ dt̄
dp ppq, we recover the equation

dq

dp
ppq ` 2

appq

bppq
qppq “ 0,

with the solution
qppq “ Cψppq.

This, together with the condition t̄p0q “ 0 gives that

t̄ppq “ C

ż p

0

ψptq dt.

However, since ψ ą 0, the other condition t̄p1q “ 0 gives that C “ 0, so that
t̄ppq ” 0.

In the case of only one absorbing state, many of the same arguments can be used
as in the case of two absorbing states. We will only go through the case where
x “ 0 is the absorbing state here, since that will be the case of interest later on.
In this case, t̄ppq will still solve equation (3.18), but needs to be redefined as

t̄ppq “

ż 8

0

tfp0, p, tq dt,

and have the new boundary conditions t̄p0q “ 0, t̄1p1q “ 0. To find the solution
to this problem, we will once again use Theorem 3.8.

Just as in the previous case, the function 1
2bpxq corresponds to a2pxq. Also,

the function P1 still solves the homogeneous version of (3.18) and the boundary
condition P1p0q “ 0 (of course, we no longer interpret P1 as a probability, since
it would have to be 0 in this case!). For the second solution, we simply pick
the constant function 1pxq ” 1 (any constant function would work, since the
derivative of such a function is zero everywhere). The Wronskian becomes

W pP1, 1qpxq “ ´P
1
1pxq “ ´ψpxq

ˆ
ż 1

0

ψpyq dy

˙´1

.

Hence the Green function of this problem is given by

Gpx, ξq “

$

’

’

’

&

’

’

’

%

P1pξq
bpξq

2 W pP1, 1qpξq
, 0 ď ξ ď x ď 1

P1pxq
bpξq

2 W pP1, 1qpξq
, 0 ď x ď ξ ď 1

“

$

’

&

’

%

´
2

bpξqψpξq

şξ

0
ψpyq dy, 0 ď ξ ď x ď 1

´
2

bpξqψpξq

şx

0
ψpyq dy, 0 ď x ď ξ ď 1

,

(3.24)
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and the solution of the boundary value problem is given by

t̄pxq “

ż 1

0

Gpx, ξqfpξq dξ

“

ż x

0

2

bpξqψpξq

ż ξ

0

ψpyq dy dξ `

ż 1

x

2

bpξqψpξq

ż x

0

ψpyq dy dξ,

(3.25)

where fpxq ” ´1 as before. As in the previous case, this solution is equivalent
to the one stated in [2] once we rename the variables.

Showing that the solution is unique is no harder in this case. Arguing as in the
previous case, we obtain

t̄ppq “ C

ż p

0

ψptq dt,

and the new condition t̄1p1q “ 0 gives that C “ 0.
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3.1.4 Higher moments

One can use the same approach as in the derivation of (3.18) to compute higher
moments of the absorbtion time. Under the (increasingly strong) assumption
that

lim
tÑ8

tnφpp, tq “ 0,

the n:th moment is given by the function

t̄pnqppq “

ż 8

0

tnφpp, tq dt,

and it satisfies the differential equation

appq
dt̄pnq

dp
ppq `

1

2
bppq

d2t̄pnq

dp2
ppq “ ´nt̄pn´1qppq, (3.26)

plus the boundary conditions t̄pnqp0q “ t̄pnqp1q (in the case of two absorbing
states) or t̄pnqp0q “ t̄pnq1p1q “ 0 (in the case of one absorbing state). The
boundary conditions for the higher moments come from the boundary condi-
tions for t̄ppq, since for example t̄p0q “ 0 requires that φp0, tq “ 0, which in turn
affects the value of t̄pnqp0q.

For example, the variance is given by

Vpt | pq “ t̄p2qppq ´ t̄ppq2,

where the second moment t̄p2qppq solves

appq
dt̄p2q

dp
ppq `

1

2
bppq

d2t̄p2q

dp2
ppq “ ´2t̄ppq, (3.27)

plus one of the two types of boundary conditions.

Note that the boundary value problems for higher moments will all have the
same Green function as the boundary value problem for t̄ppq, since the left hand
sides of their differential equations do not change with n. The difference in the
solutions of the boundary problems comes from the different left hand sides, the
f in definition 3.2. Therefor, we can easily follow a similar procedure as in the
previous subsection, and deduce that the second moment has the form:

t̄p2qpxq “

ż 1

0

Gpx, ξqfpξq dξ

“ 4

˜

ż x

0

t̄pξq

bpξqψpξq

ż ξ

0

ψpyq dy dξ `

ż 1

x

t̄pξq

bpξqψpξq

ż x

0

ψpyq dy dξ

¸

,

(3.28)

where t̄pxq has the form (3.25) or (3.23) depending on whether the process has
one or two absorbing states respectively.
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Although in theory it is possible to find formulas for these higher moments by
the above procedure, the formulas become increasingly complicated, since the
n:th moment depends on complete knowledge of the previous n ´ 1 moments,
and is given by a very complicated looking 2n-dimensional integral.

3.2 Our case

3.2.1 Mean

The quantity we are ultimately interested in is the function (3.25) given in the
previous section, evaluated at x “ 1 (so that we start with nothing but A1

alleles) and multiplied by N (so that the answer is in number of generations).
Hence, our original mean absorbtion time can be approximated by

Nt̄p1q “ N

ż 1

0

2

bpxqψpxq

ż x

0

ψpyq dy dx (3.29)

(note that the second half of the Green function vanishes).

The first step towards expanding (3.29) is to find the functions apxq and bpxq
in our model. In section 2.2 we found that

Epδxq “ ´ux` sxp1´ xqpx´ 1` hp1´ 2xqq `OpN´2q,

Vpδxq “
1

N
xp1´ xq `OpN´2q.

This, together with the assumptions (3.1) and (3.2), reveals that

apxq “ ´Nux`Nsxp1´ xqpx´ 1` hp1´ 2xqq, (3.30)

bpxq “ xp1´ xq. (3.31)

Using (3.30) and (3.31), we can now also find our ψpxq as

ψpxq “ exp

ˆ

´2

ż x

0

´Nuz `Nszp1´ zqph´ 1` zp1´ 2hqq

zp1´ zq
dz

˙

“ exp

ˆ

´2

ż x

0

ˆ

´
Nu

1´ z
`Nsph´ 1` zp1´ 2hqq

˙

dz

˙

“ exp
`

´2Nu logp1´ xq ´ 2Nshx` 2Nsx´Nsp1´ 2hqx2
˘

“ p1´ xq´2Nu expp2Nsp1´ hqx´Nsp1´ 2hqx2q.

This allows us to expand Nt̄p1q in all of its glory:

Nt̄p1q “ N

ż 1

0

2

xp1´ xq
p1´ xq2Nu expp´2Nsp1´ hqx`Nsp1´ 2hqx2q

ˆ

ż x

0

p1´ yq´2Nu expp2Nsp1´ hqy ´Nsp1´ 2hqy2q dy dx

“ 2N

ż 1

0

1

x
p1´ xq2Nu´1

ż x

0

p1´ yq´2Nuepx, yq dy dx,
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where epx, yq “ exp
`

´2Nspx´ yq
`

p1´ hq ´ p 1
2 ´ hqpx` yq

˘˘

.

From this formula we see why h “ 1
2 and h “ 1 are interesting cases. More im-

portantly, we note that the integrand appears to be singular in both endpoints.
However, the singularity at 0 is removable, since

lim
xÑ0

1

x

ż x

0

ψpyqdy “ lim
xÑ0

ψpxq “ ψp0q “ 1,

by l’Hôpitals rule. It is nonetheless tempting to do the change of variables

ξ “ x, η “
y

x
,

which transforms the integral to

Nt̄p1q “ 2N

ż 1

0

p1´ ξq2Nu´1

ż 1

0

p1´ ηξq´2Nuepξ, ηξq dη dξ. (3.32)

The numerical evaluation of this integral is one of the main points of this thesis,
and the results can be found in subsection 4.2.2.

The computation of (3.32) simplifies significantly if we set s “ 0. Mathemati-
cally, this provides an upper bound of the integral, since a quick analysis reveals
that 0 ď epx, yq ď 1 and epx, yq “ 1 only if s “ 0. In genetic terms, s “ 0 means
that the A2 allele has no selective advantage over A1, so it can only go to fix-
ation by mutation. With a very small mutation probability, it is expected to
take a very large number of generations before fixation occurs, and the largest
number of generations (in mean) is Nt̄p1q

ˇ

ˇ

s“0
. We state the result as a theorem:

Theorem 3.10.

Nt̄p1q|s“0 “

#

2N
2Nu´1 pΨp2Nuq ´Ψp1qq if 2Nu ‰ 1

2NΨ1p1q if 2Nu “ 1
, (3.33)

where Ψpxq “ d
dx logpΓpxqq is the digamma function.
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Proof. We start by simply evaluating the integral:

Nt̄p1q
ˇ

ˇ

s“0
“ 2N

ż 1

0

p1´ ξq2Nu´1

ż 1

0

p1´ ηξq´2Nu dη dξ

“ 2N

ż 1

0

p1´ ξq2Nu´1

„

1

2Nu´ 1

1

ξ
p1´ ηξq1´2Nu

1

0

dξ

“
2N

2Nu´ 1

ż 1

0

1

ξ

`

1´ p1´ ξq2Nu´1
˘

dξ

“
2N

2Nu´ 1

ż 1

0

2Nu´1
ÿ

k“1

ˆ

2Nu´ 1

k

˙

p´1qk´1ξk´1 dξ

“ 2N
2Nu´2
ÿ

k“0

ˆ

2Nu´ 2

k

˙

p´1qk

k ` 1

ż 1

0

ξk dξ

“ 2N
2Nu´2
ÿ

k“0

ˆ

2Nu´ 2

k

˙

p´1qk

pk ` 1q2
.

A sum on this form can be computed explicitly with the aid of the digamma
function Ψpxq “ d

dx log Γpxq and the harmonic numbers Hn “
řn
k“1

1
k . First

note that the digamma function follows the recursion

Ψpx` 1q “
d

dx
plog Γpx` 1qq “

d

dx
plog xΓpxqq

“
d

dx
plogpxq ` log Γpxqq “

1

x
`Ψpxq,

so that, for integer n,

Ψpn` 1q “ Ψpnq `
1

n
“ . . . “ Ψp1q `Hn.

Next, note that Hn can be written as:

Hn “

n´1
ÿ

k“0

1

k ` 1
“

n´1
ÿ

k“0

ż 1

0

xk dx “

ż 1

0

n´1
ÿ

k“0

xk dx “

ż 1

0

1´ xn

1´ x
dx,

which after the change of variables x ÞÑ 1´ x becomes

ż 1

0

1

x
p1´ p1´ xqnq dx.

This integral is very similar to what we had after the third equality in the
computation of Nt̄p1q

ˇ

ˇ

s“0
, so if we do a similar manipulation, we see that

Hn “ n
n´1
ÿ

k“0

ˆ

n´ 1

k

˙

p´1qk

pk ` 1q2
.
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Now, if we set n “ 2Nu´ 1 and put all the pieces together, we get

Ψp2Nuq ´Ψp1q “ p2Nu´ 1q
2Nu´2
ÿ

k“0

ˆ

2Nu´ 2

k

˙

p´1qk

pk ` 1q2
,

so that, finally

t̄p1q
ˇ

ˇ

s“0
“

2N

2Nu´ 1
pΨp2Nuq ´Ψp1qq. (3.34)

Observe that if 2Nu “ 1, this needs to be interpreted as the limit

lim
xÑ1

2N

x´ 1
pΨpxq ´Ψp1qq “ 2NΨ

1

p1q,

where Ψ1pxq is known as the polygamma function of order one.

The expression (3.33) has the advantage of being much easier to compute nu-
merically than the integral form (or the sum for that matter).

Remark 3.11. In fact, Ψp1q “ ´γ, where γ is the Euler-Mascheroni constant

γ “ lim
nÑ8

pHn ´ logpnqq « 0.577.

Since Γpn` 1q “ n!, the easiest way to prove this is to use the identity

Ψp1q “ Ψpn` 1q ´Hn, (3.35)

and Stirling’s approximation

n! „
?

2πn
´n

e

¯n

.

For large n, the right hand side of (3.35) is approximately

d

dn

´

log
`
?

2πn
`n

e

˘n˘
¯

´Hn “
d

dn

ˆ

logp
?

2πq ` pn`
1

2
q logpnq ´ n

˙

´Hn

“ logpnq `
1

2n
´Hn.

The identity becomes exact when nÑ8, and then the above expression tends
to the definition of ´γ.
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3.2.2 Variance

Recall from section 3.1.4 that it is also (in theory) possible to compute higher
moments of the absorbtion time using similar methods. Here we will only con-
sider the variance of the absorbtion time, given that we start with only A1

alleles. This is given by

VpT0q “ t̄p2qp1q ´ pt̄p1qq2, (3.36)

where

t̄p2qp1q “ 4

ż 1

0

t̄pξq

bpξqψpξq

ż ξ

0

ψpyq dy dξ (3.37)

is (3.28) evaluated in x “ 1, and t̄pξq is given by (3.25). In theory, (3.36) should
serve as an approximation of (2.8), but due to its complicated nature, the author
was not able to compute it numerically for any values of N .12 It is therefore
not clear how good of an approximation it is.

One possible approach to compute (3.36) could be to approximate t̄pxq by a
simpler function, for example a polynomial. That would transform (3.37) into
a sum of integrals, each of which would be similar to (3.32), which we know
how to integrate numerically. However, to approximate t̄pxq with a polynomial
might be hard since the graph of t̄pxq is highly skewed (see figure 4). Another
approach could be to only consider the case s “ 0, which hopefully leads to
some simplifications.13 In conclusion, more knowledge of numerical methods, or
dramatic simplifications, is required before the formulas (3.36) and (3.37) can
become useful in practice.

Figure 4: t̄pxq evaluated at 20 equally spaced points, with N “ 106,
s “ 0.02, h “ 0.5, u “ 5 ¨ 10´6.

12This is not that surprising, since numerical integration requires one to evaluate the func-
tion at a large amount of points, and our function t̄pxq is hard enough to evaluate at only a
handful of points.

13In fact, in the case s “ 0, the first part of t̄pxq can be written in terms of the generalized
hypergeometric function as 2xF p1, 1, 1´ 2Nu, 2, 2, xq, which can easily be integrated numeri-
cally. However, for the second part, the author has not found any simplifying expression.
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4 Numerical Experiments

This section concerns numerical computations of the quantities derived in earlier
sections. The numerical computations have two purposes: one genetic and
one mathematical. The genetic purpose of the computations is to get some
idea of the distribution of the absorbtion time, and see how it depends on
the parameters N, s, h and u. The mathematical purpose is to see how well
the mean absorption time, computed via the diffusion process, approximates
the same quantity computed via the Markov process. It is also interesting to
see how large the population size N can be before the computations become
troublesome or impossible.

4.1 Method

For the numerical computations, Python 3.7.0 was used with Spyder, on a
2017 Lenovo ideapad 320 (unless otherwise noted). The packages scipy.linalg,
scipy.integrate and scipy.special was imported. In the Markov chain case, (2.3)
was used for computation of the mean, and the square root of (2.8) was used
for the standard deviation. For both quantities, the solve() method was used to
compute the required inverses. In the diffusion process case, (3.32) was used,
and computed using the quad() method twice (for N ď 105) and dblquad() (for
N ě 106). Missing values in the tables means either that the number could not
be computed at all (within reasonable time), or that the result was nonsense
due to numerical issues.

4.2 Results

To make the results more readable, recall the table from section 1 explaining
the parameters:

Parameter Meaning Values
M Number of individuals in the population. 0.5 ¨ 10k, k P N
N Number of gametes (gene copies). N “ 2M 10k, k P N
s Models how much ”better” the A2 allele is. 0.02, 0.1
h Models the dominance between A1 and A2. 0, 0.5, 1
u Probability of mutation A1 ÞÑ A2. 5 ¨ 10´6

Table 3: Explanation of the parameters.
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4.2.1 Markov Chain Computations

We now present some reults of computing the mean absorbtion time

EpT0|Xp0q “ 1q

numerically. The first two tables were computed by Pelle Pettersson [5] using
Matlab. For N ě 105, more sophisticated numerical methods (sparse matrix
methods), as well as a more powerful computer was used, since the very large
matrices involved causes memory problems. We choose to provide his numbers
instead of the thesis authors own results, since more available numbers makes
it easier to compare the two different methods later on.

N h “ 0 h “ 1
2 h “ 1

10 187930 183233 178738
102 120163 87957 66114
103 40235 10850 6192
104 13841 2179 2950
105 6828 1648 6884
106 5814 1828 20183

Table 4: Mean absorbtion time with s “ 0.02.

N h “ 0 h “ 1
2 h “ 1

10 151662 134708 120944
102 56676 21600 12278
103 17987 2349 1514
104 6111 521 1150
105 2937 408 3065
106 - - -

Table 5: Mean absorbtion time with s “ 0.1.

As expected, a larger selection coefficient leads to shorter absorption time in
general, but apart from this, we can see similar patterns in the two different
cases. Since we start with only A1 alleles, we need to wait until two mutations
have occurred before selection starts working in favor of A2A2. If there has
been only one mutation, there is a nonzero probability that the single A2 thus
obtained is ruled out by drift, in which case we are back where we started and
need to wait for two more mutations. This explains why the numbers are larger
for smaller populations, since mutations are less frequent then.

Now let us first look at h “ 1, in which case the A1A2 and A2A2 genotypes
have equal selective advantage. One needs to wait until the first two muta-
tions have occurred, but after that, selection kicks in and quickly increases the
number of A2 alleles. With increasing N , we can expect more mutations and
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hence decreased absorption times. However, we can also notice another effect
after N “ 104, when the numbers starts to increase. Note that selection only
works against the A1 alleles that come in pairs. This means that two indi-
viduals having the A1 allele need to mate and produce offspring carrying the
A1A1 genotype before those two A1 alleles can be lost from the population by
selection. In larger populations, mating of two such individuals quickly becomes
rare, since the fraction of A1 alleles in the population quickly decreases.

Apart from selection working against the A1A1 genotype, A1 alleles can only
be lost from the population by mutation or drift. To sum up: in the case h “ 1
and in populations of size 104 or larger, there will for a long time remain a small
number of A1 alleles which are hard to get rid of completely. We will gather
more numerical evidence for this phenomenon later.

In the case h “ 0, the genotypes A1A1 and A1A2 are equally bad in comparison
to A2A2. Since we start with only A1 alleles, the first A2 alleles to enter the pop-
ulation does so in the form of a A1A2 genotype. However, a single such A2 allele
might be ruled out by selection, since selection is now working equally against
the A1A1 and A1A2 genotypes! In other words: selection, which works in favor
of the A2A2 genotype, might also get rid of single A2 alleles ”by mistake”. Also,
as we mentioned earlier, single A2 alleles obtained through mutation could also
be ruled out by drift. These factors together explain why we see the largest
numbers in this case, up until N “ 105 (at which point another phenomenon
starts to increase the numbers in the case h “ 1). The numbers are at their
peak when N “ 10, because for such a small population, the loss of only one
A2 allele makes a big difference.

Lastly, in the case h “ 1
2 , the numbers lie somewhere in between the two other

cases. This is because the relative weight of the A1A2 is the average of the other
two weights, and so the absorption time is affected by all the effects previously
mentioned.

43



Next we provide tables of the standard deviation (computed using (2.8)), and
also include the mean, to hopefully gain some more insight on the distribution.
The standard deviations turned out to be more convenient and illustrative to
use, since the variances turned out to be very large.

N h “ 0 h “ 1
2 h “ 1

10 (187930, 187913) (183233, 183215) (178738, 178720)
102 (120163, 119992) (87957, 87770) (66114, 65907)
103 (40235, 39541) (10850, 10148) (6192, 5293)
104 (13842, 12032) (2179, 1030) (2950, 1139)

Table 6: Mean and standard deviation of absorbtion time, with s “ 0.02.

N h “ 0 h “ 1
2 h “ 1

10 (151662, 151645) (134708, 134691) (120944, 120926)
102 (56676, 56576) (21600, 21488) (12278, 12142)
103 (17987, 17705) (2349, 2136) (1514,1152)
104 (6111, 5376) (521, 217) (1150, 471)

Table 7: Mean and standard deviation of absorbtion time, with s “ 0.1.

We note that in most cases, the means and standard deviations are very sim-
ilar, especially for small populations. This suggests that in those cases, the
absorbtion time follows a geometric distribution, T0 „ Geppq, since for such a
distribution,

µ “
1

p
, σ “

?
1´ p

p
,

and these numbers are very close if p is small, which is certainly true in our case,
with p “ u. Since we start with only A1 alleles, the fixation of the A2 allele
can only happen after a mutation has occurred. Hence most of the time before
absorption is spent waiting for a first mutation to occur, which is exactly the
type of situation which the geometric distribution is used to model. We should
not say too much, though. If the absorption time has geometric distribution
with p “ u, the mean would be 1

u “ 200000, which we see is not the case. This
makes it clear that the mutation probability is not the only thing that affects the
absorption time. Also, as N increases, the standard deviations decrease and no
longer stay close to the mean, which means that the distribution becomes more
centered around its mean. Hence the mean says more about the distribution in
those cases.

To gain even more insight about the distribution of the absorption time, we
can try to see what happens with the mean and standard deviation when the
mutation probability u is increased by powers of 10. Intuitively, with a higher
mutation probability, the first two mutations are likely to occur faster, and as
we mentioned earlier, once the first two mutations have occurred, the remaining
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time before absorption is rather short. These two things together suggests that
the mean absorption time should be smaller in this case. Apart from this, we
expect to see the same patterns that we discussed earlier.

N h “ 0 h “ 1
2 h “ 1

10 (18809, 18791) (18340, 18322) (17891, 17873)
102 (12156, 11986) (8985, 8799) (6837, 6633)
103 (4504, 3836) (1708, 1038) (1429,630)
104 (2392, 982) (1179, 188) (2406, 989)

Table 8: Mean and standard deviation of absorption time, with s “ 0.02 and
u “ 5 ¨ 10´5.

N h “ 0 h “ 1
2 h “ 1

10 (15181, 15164) (13488, 13471) (12114, 12096)
102 (5742, 5642) (2262, 2151) (1351, 1217)
103 (1981, 1709) (424, 217) (484, 191)
104 (996, 443) (311, 39) (1132, 452)

Table 9: Mean and standard deviation of absorption time, with s “ 0.1 and
u “ 5 ¨ 10´5.

N h “ 0 h “ 1
2 h “ 1

10 (1896, 1879) (1850, 1832) (1806, 1788)
102 (1349, 1189) (1077, 906) (897, 914)
103 (853, 340) (694, 194) (856, 341)
104 (862, 108) (865, 132) (1949, 777)

Table 10: Mean and standard deviation of absorption time, with s “ 0.02 and
u “ 5 ¨ 10´4.

N h “ 0 h “ 1
2 h “ 1

10 (1533, 1516) (1366, 1349) (1231, 1213)
102 (646, 551) (326, 221) (256, 138)
103 (355, 142) (213, 40) (364, 147)
104 (329, 38) (251, 28) (935, 403)

Table 11: Mean and standard deviation of absorption time, with s “ 0.1 and
u “ 5 ¨ 10´4.

The results are as expected. The means have decreased by roughly a factor of
10, which is the same factor that we increased u with. This is another indication
that the value u plays an important role in the value of the mean absorption
time.

45



4.2.2 Diffusion Process Computations

Now we provide computed values of

Nt̄p1q “ 2N

ż 1

0

p1´ ξq2Nu´1

ż 1

0

p1´ ηξq´2Nuepξ, ηξq dη dξ

from section 3.2, which should serve as an approximation of EpT0|Xp0q “ Nq,
and should be computable for larger N . The following two tables should be
compared with tables 4 and 5 from the previous subsection.

N h “ 0 h “ 1
2 h “ 1

10 187450 181290 175372
102 119786 86680 64255
103 40178 10707 6047
104 13831 2159 2919
105 6822 1635 6822
106 5807 1753 19652
107 2826 1019 58989
108 544 9985 167524
109 - 1093 406404
1010 - - 778228

Table 12: Mean absorbtion time when s “ 0.02.

N h “ 0 h “ 1
2 h “ 1

10 149383 126446 107642
102 56131 20112 10743
103 17927 2207 1365
104 6099 496 1094
105 2928 391 2834
106 2354 220 8769
107 101 203 27101
108 109 217 81459
109 - - 223312
1010 - - 507096

Table 13: Mean absorbtion time when s “ 0.1.

From these tables it is clear that the mean absorption time can be computed
for larger N if it is done via the diffusion process. However, it is hard to say
much about the reliability of the numbers for N ą 106 since there simply aren’t
anything to compare them to! Also, for large N , different numerical methods
gives different answers. Given that these numbers are reliable though, the ge-
netic interpretation of them is the same as that of tables 4 and 5, since the same
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patterns that we saw in those tables only seem to continue with larger N .

For N ď 106 we see that the numbers in tables 12 and 13 are close to the ones
in tables 4 and 5. This what we hoped for, but it is also remarkable, since one
of the assumptions made in the diffusion approximation was that s “ OpN´1q,
and that doesn’t hold for most N we have considered! To see just how well the
diffusion process approximates the Markov process, a table of the relative errors
is provided:

N h “ 0 h “ 1
2 h “ 1

10 0.26 1.06 1.88
102 0.31 1.45 2.88
103 0.14 1.32 2.34
104 0.07 0.92 1.05
105 0.09 0.79 0.90
106 0.12 4.10 2.63

Table 14: Relative error (percent) of the diffusion approximation when s “ 0.02.

N h “ 0 h “ 1
2 h “ 1

10 1.50 6.13 11.00
102 0.96 6.89 12.50
103 0.33 6.05 9.84
104 0.20 4.80 4.87
105 0.31 4.17 7.54

Table 15: Relative error (percent) of the diffusion approximation when s “ 0.1.

We see that, with few exceptions, the errors are very small, so the diffusion
process approximates the Markov process remarkably well. All the additional
mathematical work has payed off!

To gather more numerical evidence of some of the genetic effects mentioned in
the previous subsection, we can compute the mean time until 95 percent of the
population is A2 and compare it to the mean absorption time (when 100 percent
of the population is A2). We compute this by (3.32), with the modification that
the outer integral now is from 0.05 to 1. The following two tables should be
compared with tables 12 and 13.
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N h “ 0 h “ 1
2 h “ 1

10 187449 181289 175371
102 119777 86670 64246
103 40108 10626 5946
104 13649 1866 1997
105 6523 1112 1584
106 5393 365 1077
107 2315 36 805
108 - - 445

Table 16: Mean time until 95 percent A2, when s “ 0.02.

N h “ 0 h “ 1
2 h “ 1

10 149381 126445 107641
102 56121 20103 10733
103 17895 2162 1268
104 6046 405 421
105 2852 255 232
106 2172 21 180
107 - - 86

Table 17: Mean time until 95 percent A2, when s “ 0.1.

When comparing tables 16 and 17 with tables 12 and 13, we see several inter-
esting things. For small N , the numbers are almost the same in both cases, and
this indicates that absorption happens rather quickly once the first mutation
has occurred.

In the case h “ 1, we note two things. For one thing, the numbers no longer
increase after N “ 104. This means that in a population of that size, there are
still A1 alleles in the population that are hard to get rid of, but they are very
few, namely at most 5 percent of the population. The other thing is that the
numbers have decreased dramatically for larger N in comparison to tables 12
and 13. This proves the point mentioned earlier, that although the A1 alleles
are very few, those few remaining A1’s are very hard to get rid of completely.
In genetic terms, this explains why there are still many bad genes with low
frequencies in the human population, giving rise to diseases and malformations.

In the case h “ 0, the difference in mean time between 95 and 100 percent
fixation is very small, which indicates that the last 5 percent A1 alleles is no
harder to get rid of than the previous 95. This makes sense, because with h “ 0,
selection can work against all the A1 alleles, regardless if they are part of A1A1

or A1A2, and independent of the remaining frequency of A1.

Again, the case h “ 1
2 is intermediate.
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Lastly, we consider the case s “ 0 (which makes the parameter h redundant).
We compare the means computed via the Markov and diffusion methods to the
exact value given by (3.33). The numbers in the Markov case for N ě 105 were
computed by Pettersson [5].

N Markov Chain Diffusion Exact form
10 200017 200020 200020
102 200197 200200 200200
103 201986 201987 201987
104 218985 218812 218812
105 327960 328987 328987
106 497392 628660 628660
107 - 1045424 1045935
108 - 1492470 1498393
109 - 1904733 1957697
1010 - 2143666 2418051

Table 18: Mean absorbtion time when s “ 0.

These numbers impliy yet again that for smaller N , the absorption time fol-
lows a geometric distribution, T0 „ Gepuq, because if that was the case, then
EpT0q “

1
u “ 200000, which is close to the numbers in the table.

It is no surprise that we get the same result up to N “ 107, regardless if we
use the diffusion approximation or the exact form, since the exact formula was
derived using the diffusion approximation. The advantage of the exact form is
that it is much faster to compute, and can be computed for (practically) arbi-
trarily large N . We also see that the diffusion computation is starting to fall
behind after N “ 107. This might indicate a computational limitation of the
diffusion approximation (3.32), or at least a limitation of the methods by which
the author chose to compute it.

Also note that in the case N “ 106, the number computed using the Markov
chain method is quite far off. This shows that the dramatic simplifications and
special methods required to make the computation possible at all may have a
negative effect on the end result in some cases.
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