S THESIS | LUND UNIVERSITY 2017

4

MASTER

101

ingual Relat
ing Neural

ing a Multil
System Us

Construct
Extract

101N

Networks

r, Axel Larsson

artne

ik G

Er

Department of Computer Science

ing LTH
ISSN 1650-2884
LU-CS-EX 2017-15

mneering

Faculty of Eng

[

Constructing a Multilingual Relation
Extraction System Using Neural Networks

Erik Gartner

erik.gartner.770@student.lu.se

Axel Larsson

axel.larsson.534@student.lu.se

September 1, 2017

Master’s thesis work carried out at Sony Mobile Communications AB.

Supervisors: Pierre Nugues, pierre.nugues@cs.lth.se
Hakan Jonsson, hakanl. jonsson@sonymobile.com

Examiner: Jacek Malec, jacek.malec@cs.lth.se

mailto:erik.gartner.770@student.lu.se
mailto:axel.larsson.534@student.lu.se
mailto:pierre.nugues@cs.lth.se
mailto:hakan1.jonsson@sonymobile.com
mailto:jacek.malec@cs.lth.se

Abstract

A large amount of information is available on the internet in the form of natu-
ral language in written form. In order to make the information useful for com-
puter systems, such as knowledge graphs and question-answering systems, the
information must first be structured. In this thesis, we describe a multilingual
system that in a semi-unsupervised manner can learn to extract certain types
of stated facts. To achieve this, the system uses natural language processing
techniques with neural networks and word embeddings.

Our evaluation shows promising results; it achieves good precision on se-
lected relations and further improvements are most likely possible in the future.

Keywords: natural language processing, information extraction, fact extraction, knowl-
edge base, word embeddings, neural networks

Acknowledgements

We would first like to thank our amazing supervisor Professor Pierre Nugues. His deep
knowledge within the field of natural language processing and his helpfulness was in-
valuable. More so his encouragements that kept our spirits high when we encountered
problems.

Next we would like to thank PhD student Marcus Klang who provided his incredible
technical expertise in a wide range of areas from Apache Spark to natural language pro-
cessing and Java garbage collection. Without his Docforia document model library and
all the data he provided us this thesis would have been an herculean task to complete in
a semester. Finally Marcus was always just a knock on the door away when the cluster
crashed or we needed help.

Our supervisor at Sony Mobile, PhD student Hékan Jonsson, also deserves our grati-
tude. Without him this thesis simply would not have existed. It was his idea that set this
entire thesis in motion. Throughout the entire process he has been very helpful and did
his utmost to provide us with the tools and resources we needed.

We would also like to extend a thank you to Professor Jacek Malec for taking on the
role as our examiner and for igniting our interest in artificial intelligence in his course:
Applied Artificial Intelligence.

No acknowledgements would be complete without thanking our parents. Anders and
Cecilia Girtner and Staffan and Carina Larsson for their support during our entire lives
and for encouraging our interest in computer science. Axel would also like to thank his
siblings, Anna and Ulf, for their presence in his life that makes it that much more interesting
and enjoyable. Finally we would like to thanks Anders and Ceclia for proofreading this
report.

Contents

1 Motivation

2 Introduction

2.1 Background
2.1.1 Knowledgebases
2.1.2 Information Extraction
2.1.3 Resource Description Framework
2.2 Previouswork
2.3 Contributions
24 Problem
24.1 Scopeof ThisWork
242 Work Division
3 Approach
3.1 Theory e e
3.1.1 Machine Learning,
3.1.2 Features
3.1.3 NLPFeatures
3.14 One-HotEncoding
3.1.5 Coreferences
3.1.6 Word2vec Word Embeddings
3.1.7 Evaluation
3.1.8 LogisticRegression
3.1.9 Neural Networks
3.1.10 Cluster Computing
32 Method

4 Implementation
Prometheus

4.1

4.1.1

Architecture

13
13
13
14
14
15
15
16
16
18
18
19
21

25
25
26

CONTENTS

412 CorpusReader
4.1.3 Feature Transformer
4.1.4 Model Training
4.1.5 Predictor Stage Lo
416 RESTAPI e
4.2 Prometheus FactChecker
4.3 Prometheus Chrome Plugin
5 Evaluation
5.1 Experimental Setup L
5.1.1 GoogleDataset
5.1.2 Manual Evaluation
5.1.3 Wikidata Evaluation
52 Results. e
5.2.1 GoogleDataset
5.2.2 Manual Evaluation
5.2.3 Wikidata Evaluation
5.3 DisCuSSion e e
5.3.1 GoogleDataset
5.3.2 Manual Evaluation
533 Wikidata
5.3.4 General Discussion
535 Futurework

6 Conclusion

Bibliography

37
37
38
38
38
39
39
41
41
45
45
46
47
47
49

51

53

Chapter 1

Motivation

Whoever is careless with truth in small
matters cannot be trusted in important
affairs.

Albert Einstein (Holton, 2016)

During the 2016 U.S. presidential election the world witnessed an unprecedented amount
of fake news. The aim of these news seemed to be to generate ad revenue (Kirby, 2016) as
well as to disrupt democratic processes (Timberg, 2016). Before the rise of digital media
journalists could fact-check articles as they were published but today the sheer amount of
blog posts and articles make this almost impossible.

In order to combat fake news, we propose creating a large-scale and trustworthy database
of facts. This knowledge base could then later be used to check facts in social media, arti-
cles and blog posts. Our belief is that detecting fake and misleading news needs to based
on verifying stated facts.

1. MOTIVATION

Chapter 2

Introduction

In this chapter we will cover the background required to understand this thesis. Since
the fields of natural language processing, computer science and machine learning span
decades we only briefly cover the parts most relevant to the readers’ understanding. Fur-
thermore the chapter outlines the problem statement at the heart of this thesis.

2.1 Background

This section provides the user with a short introduction to the areas of knowledge bases,
natural language processing, and machine learning.

2.1.1 Knowledge bases

A knowledge base refers to a database containing information, or knowledge, in various
formats. In this thesis we will use it to refer to databases of structured information.

One prominent knowledge base was Freebase (Google, 2017) which was acquired by
Google and subsequently shut down. It was succeeded by the open Wikidata (Wikidata,
2017a). Both contain data in the form of structured relations triple in RDF format (see
section 2.1.3).

2.1.2 Information Extraction

In the computer science field of natural language processing creating structured data
from unstructured data is usually called information extraction.

Natural language processing deals with constructing programs and algorithms that can
understand, synthesise and model human language. There are multiple approaches but
we will focus on the statistical approach. By feeding large amounts of data to machine

9

2. INTRODUCTION

learning algorithms, we can create statistical models that for example can be used to extract
information from sentences.

Constructing knowledge bases

One common method for constructing a knowledge base is to gather information from un-
structured text sources. They are called unstructured because the data does not conform
to a predefined data schema. An example of unstructured text would be books and most
web pages. Structured text would be the semantic web or data formats such as RDF.

2.1.3 Resource Description Framework

In the W3C format resource description framework, or RDF, information is expressed in
the form of triples that describe relations, called predicates, between two entities (W3C
Foundation, 2014). For example the sentence ‘“Barack Obama is married to Michelle
Obama” would be represented as (Barack Obama, married to, Michelle Obama), where
“Barack Obama” is the subject, “married to” is the predicate, and “Michelle Obama” is the
object. In RDF entities and predicates have unique and language independent identifiers
which makes the information unambiguous and better structured for analysis.

Querying the data for example becomes trivial. If we want to find all information about
Barack Obama we simply retrieve all the triples containing Barack Obama as either the
subject or object. Furthermore if we want to study all the marriages we retrieve all the
triples containing the “married to” predicate. In fact the triples can be represented as a
knowledge graph were the entities are nodes and the predicates are arcs.

As such it would be very beneficial to convert unstructured text into structured text.
One method is to extract RDF triples from the information in an unstructured text. If this
can be accomplished then the vast amount of texts in books and on the Internet could be
stored in a knowledge base.

2.2 Previous work

In Distant Supervision for Relation Extraction Without Labeled Data (Mintz et al., 2009)
introduce a novel approach for creating relation extraction models. By using Freebase
to create labelled examples from an unstructured database (such as Wikipedia) they are
able to generate large amounts of training data to train high precision models for relation
extraction. Since then multiple papers using and refining Distant Supervision Learning
has been published.

Zeng et al. (2015) experimented with using convolutional neural networks as well as
new features to handle the inherent problem with distant supervision extracting false pos-
itives during training data generation.

Quirk and Poon (2016) addressed the limitation in distant supervision where learning
requires that the relations must exist in the same sentence. In their paper Distant Super-
vision for Relation Extraction beyond the Sentence Boundary they explore the possibility
of extracting relations over sentences boundaries with promising results. Like many other
papers they apply their model to the biomedical domain.

10

2.3 CONTRIBUTIONS

Dong et al. (2014a) further the work of Mintz et al. in their paper Knowledge Vault:
A Web-scale Approach to Probabilistic Knowledge Fusion by creating thousands of these
relation extraction models and then using them to create a knowledge graph. The paper
puts heavy emphasis on resolving inconsistencies and handling incorrect extraction by the
model (called knowledge fusion in the paper).

2.3 Contributions

Despite many papers building on distant supervision we address the challenge of building
a multilingual system which is relatively unexplored. Our system in itself is not language-
dependent. As long as the underlying tools used to tokenise and parse the corpus support
the language our system supports the language.

The original paper by Mintz et al. (2009) uses a simpler approach consisting only
of logistic regression models. Our model uses a neural network for classification of the
sentence in addition to a logistic regression model for filtration.

Furthermore our model uses Word2vec word embeddings to represent the lexical fea-
tures which adds additional information about the meaning of the lexical features. This
has the benefit of turning similar word almost into word classes, since for example all the
weekdays will be close to each other in the vector space.

2.4 Problem

When working with information in computer science it is preferable to work with struc-
tured data because it makes the information less ambiguous and makes information extrac-
tion easier. Unfortunately the vast majority of information on the internet is in the form of
unstructured text, for example in encyclopedias and news articles.

Manually adding all facts contained in unstructured text into a structured format would
be a daunting and time consuming task. Therefore it would be of tremendous benefit if we
could leverage computers to automatically extract facts from the unstructured text into a
structured database.

The main problems faced when extracting facts from unstructured text are:

* Identifying the facts contained in a sentence. For examples what facts are con-
tained in the sentence Barack Obama was born in Honolulu.

* Uniquely identifying the entities in a sentence. E.g. Barack Obama and Honolulu.
* Resolving inconsistencies between different sources and extraction errors.
* Merging facts from multiple languages.

* Handling errors in the source texts.

11

2. INTRODUCTION

2.4.1 Scope of This Work

In this report we are limiting our scope to creating multilingual extraction models with
high precision for Swedish and English. We will not focus on resolving inconsistencies
based on source error or develop methods for merging facts from the different languages.

2.4.2 Work Division

Developing of the main system was shared between both authors. The fact-checker module
was written by Axel and the Chrome plugin was written by Erik. Furthermore Erik was
responsible for executing and managing the model training. Both authors performed the
manual evaluation.

In the report Erik wrote most of chapter two as well as the machine learning theory in
chapter three. Axel wrote the rest in chapter three and as well as most of chapter four. The
rest of the report was written jointly.

12

Chapter 3
Approach

In this chapter we will outline the approach we took to solving the problem defined in the
previous chapter.

3.1 Theory

This section will introduce the theoretical background needed to understand our method-
ology and implementation.

3.1.1 Machine Learning

There exists a myriad of different algorithms and approaches to machine learning. What
they all have in common is that they all tune parameters of a function to minimise a given
objective function. That is, they try to predict the behaviour of a function by minimising
some error between the predictions and the actual values.

The process of tuning the parameters and fitting the model to data is called training.

The are two types of predictions, classification and regression (Bishop, 2009, ch. 1).
Classification deals with assigning data points into discrete groups. For example labelling
an example as “good” or “bad”. Regression on the other hand tries to predict continuous
values such as predicting the stock value for the next day.

Machine learning algorithms are divided into supervised and unsupervised learning.
During supervised learning the algorithm is shown labelled examples from which it is
supposed to learn the parameters to best predict the label given an input. Labelled means
that it is shown both the input values as well as the correct output value. Unsupervised
learning on the other hand does not provide any labels. These methods strive to cluster
similar data points together into groups (Bishop, 2009, ch. 1).

Another way to express machine learning is to describe it as the process of creating a
model by observing data in order to capture underlying patterns. As such the quality as

13

3. APPROACH

well as the quantity of data have a great impact on the performance of the final model. A
common expression is “garbage in garbage out”, which expresses that if the training data
is of low quality then the model will be of equally low quality.

3.1.2 Features

In machine learning features are the different inputs of the model. In Table 3.1 each row
is a data point (also called example). “Headache” and “Temp” are features and the label
is “Has Disease A”. From this data the algorithm is supposed to create a model that can
predict whether a patient has Disease A given whether or not they have a headache and
their body temperature.

Headache Temp (C) | Has Disease A
Yes 40,5 Yes
No 41,0 No
No 37,1 No
Yes 37,2 No

Table 3.1: A toy example demonstrating the features “headache”,
“temp”, and how they relate to the label “has Disease A”.

The “Headache” feature is a categorical feature; it is limited to a finite set of possible
values, while “Temp” is a numerical feature. Likewise Has Disease A is also a categorical
variable implying that this is a classification problem, not a regression problem.

Selecting features is one of the most important aspects of machine learning since it di-
rectly affects what information is available to the algorithm. Itis very likely that a complex
disease can’t accurately be diagnosed with only two simple features.

3.1.3 NLP Features

In natural language processing there exists a few very common types of features.

Words are the most simple types of features.

Part-of-speech features are the part-of-speech tags of the words, for example “noun”,
“verb” and so forth (Nugues, 2006, p. 113).

Entity types are features describing the type of an “entity word”. For example the words
“Barack Obama” has the type “PERSON” and “Lund, Sweden” has the type “LO-
CATION™.

Dependency Parse Tree

Another feature that is useful in NLP applications is a composite feature; the dependency
parse. It is a set of words that is linked by their directional dependencies. Each word in the

14

3.1 THEORY

sentence is tagged with a part-of-speech tag (e.g. verb, noun) describing its syntactic func-
tion. The syntactic relationship between the words is then represented by the dependency
parse tree. For example, the sentence “Barack married Michelle” has the dependency parse
tree that can be seen in Figure 3.1.

dobj
v/—nsubj
NNP VBD NNP’

Barack married Michelle

Figure 3.1: An example dependency parse tree.

As a feature we extract the path from the dependency parse tree that goes from the first
entity to the second. This is achieved through a depth-first-search algorithm that searches
the tree from the first entity, targeting the second entity. At each step, the word, its depen-
dency and the direction are recorded. From the example in Figure 3.1, the dependency
path would be “true/nsubj/married, false/dobj/Michelle”, where the Boolean value indi-
cates the direction.

3.1.4 One-Hot Encoding

Machine learning algorithms are mathematical models that often require numerical repre-
sentations of all features, including the categorical features. One very common and simple
method to encode words as numerical vectors is called One-Hot Encoding.

All possible values for the categorical feature are assigned an index from 1 to N, where
N is the number of possible values. Then each value is assigned a corresponding vector
of length N where all elements are 0 except the i:th element which is 1 (“hot”), where i is
the index of the value. See Table 3.2 for an example.

Value Value number | One-Hot encoded vector
Hello 1 [1, 0]
World 2 [0, 1]

Table 3.2: A toy example demonstrating One-Hot Encoding for
a word feature containing only two different possible values.

3.1.5 Coreferences

A coreference can occur in a text when there are two or more statements in a text referring
to the same entity (Nugues, 2006). The mentions of the same entity are said to be co-
referential and one of the mentions is the antecedent, the full form of the entity, while
the others are called anaphora, usually in the form of pronouns.

15

3. APPROACH

One can follow the anaphora back to the antecedent and reach the named entity, resolv-
ing the mentions to a single named entity. Consider the example document in Figure 3.2.
Here, Barack Obama is mentioned twice, first in the full form; the antecedent, and then in
an abbreviated form, “He” — the anaphor.

[Qbreferfnngenti.?ri ICoreferer_j‘geMentior}

Barack Obama is the president He is married to Michelle Obama.

Figure 3.2: An example demonstrating coreferences.

3.1.6 Word2vec Word Embeddings

One-Hot Encoding is a simple method but the vectors produced are arbitrarily assigned
and do not contain any meaning. They also quickly grow to very large sizes for language
tasks. For example encoding the 100,000 most common English words turns each feature
into a vector of dimension 100,000.

Word2vec is a feature representing technique where the vector representation is learnt
from a large corpus using a neural network (Mikolov et al., 2013). The vectors are gen-
erally small, about 300-500 dimensions. The most significant feature of Word2vec is that
the word embeddings are close to each other in the vector space. That is they are clus-
tered in the vector space by their semantic meaning. This provides our machine learning
model with useful information about how the values of the feature relate to each other. For
example if we look at the word “Sweden”, its closest neighbours are likely other Scandi-
navian countries such as “Norway” or “Denmark” and a completely unrelated word such
as “screwdriver” is far away.

Furthermore the vectors have semantic meaning. In a well trained network for example
this arithmetic will be valid:

vector("King”) — vector("Man”) + vector("Woman”) = Vector(”Queen’)

3.1.7 Evaluation

In machine learning, evaluation of the model is of great importance, since it is how the
result of the training and the performance of the model is measured.

Because the training process involves fitting the model to the training dataset it is to
be expected that the model improve with each training iteration. This does not however
imply that the model improves for predicting previously unseen data points.

The behaviour of improving on predicting labels for data points in the training dataset
but not for similar data points not previously seen is called overfitting.

To evaluate whether or not the model actually learnt anything useful and not just over-
fitted there exist two common methods.

16

3.1 THEORY

The first method is to withhold parts of the training dataset from the model during
training, this subset is called the validation dataset. After the model is trained it is applied
to the validation dataset to predict their labels. The predictions are then compared to the
labels. This method is called cross-validation (Russell and Norvig, 2009, ch. 18.4).

The second method is to have a completely different dataset called test dataset. This
dataset should not be a subset of the training dataset, making the evaluation of this dataset
even less biased.

Metrics

There exist many different metrics for calculating the performance of the model. Since
our thesis deals with an information extraction problem we will cover metrics applicable
to that problem and model type (Nugues, 2006, ch. 9.9).

True Positive is the number of positive examples labelled positive. In the example from
Table 3.1 it would correspond to the number of patients that have “Disease A” and
that are also diagnosed with having it.

False Positive is the number of negative examples labelled negative. This corresponds to
the patients not having “Disease A” diagnosed with having it.

False Negative is the number of positive examples labelled negative. That is the number
of patients having “Disease A” diagnosed with not having it.

True Negative is the number of negative examples labelled negative. That is the number
of patients not having “Disease A” diagnosed as not having it.

Recall is the percentage of positive examples labelled as positive.

Precision is the percentage of positive labelled examples that are actually correctly clas-
sified.

F-measure / F1-score is the harmonic mean between recall and precision. It is a com-
posite metric that does not favour any of the two metrics. The reasoning behind the
F1-score is that getting either 100% precision or 100% recall is easy. To get 100%
precision simply label no examples as positive and you will never be wrong. Simi-
larly to get 100% recall just classify all examples as positive. The F1-score requires
both recall and precision to be high to get a high F1-score.

True Positive
Recall = 3.1
eed True Positive + False Negative G-

True Positive
Precision = 3.2
True Positive + False Positive (3-2)

Fl Recall - Precision
-score =
Recall + Precision

(3.3)

Figure 3.3 demonstrates the metrics using the same patient example as in Table 3.1.

17

3. APPROACH

Patients labelled as not having Disease A

False Negatives True Negatives

o
o

)

o
o

)

True Positives False Positives

o
o

)

o
o
o
o
o
o
o
o

)
)
)
)

Patients labelled as having Disease A

Patient without Disease A

Patient with Disease A

Figure 3.3: The figure shows a visual demonstration of the differ-
ent evaluation metrics.

3.1.8 Logistic Regression

Logistic regression is a supervised classification algorithm using the logistic sigmoid func-
tion (Bishop, 2009). Logistic regression is commonly used when there is a need to model
the probabilities of k classes via a linear function that sums to one and the output for each
class is within [0, 1] (Hastie et al., 2013).

These outputs can then be used as probabilities for each class, thus training the logistic
regression model to predict the probability of each class.

3.1.9 Neural Networks

Neural networks are nonlinear statistical models (Hastie et al., 2013, ch. 11.3). They were
originally an attempt to create a model similar to how the neurons in the brain interact
(Bishop, 2009, ch. 5). Neural networks are generally supervised models that can be used
for either classification or regression. Because the model is nonlinear it can learn and
approximate nonlinear functions which in theory makes the model a powerful tool.

In Figure 3.4 we see the schematic of a neural network. The most simple version is the
feed-forward network where the network consists of one input layer, one or more hidden
layers, and one output layer. Each “neuron” (the nodes in the schematic) in each layer are
simple mathematical functions applied to the output of every neuron in the previous layer.

18

3.1 THEORY

Input Hidden Output
layer layer layer

Figure 3.4: Schematic drawing of a feed-forward neural network
with a single hidden layer.

The mathematical function applied to the outputs of the previous layer are called acti-
vation functions.

When designing a neural network several hyperparameters have to be taken into ac-
count. For example the number of neurons in each layer, the number of layers and the
selection of activation functions for each layer.

Deep networks are those with many hidden layers.

3.1.10 Cluster Computing

We process a large amount of information in our pipeline; the whole of the English Wikipedia
is used both to train our extractor on and to perform extractions over. Thus, due to the sheer
volume of data that flows through our program, the pipeline needs to be run on a cluster
computing platform to achieve acceptable performance.

MapReduce

One popular approach to processing big data in parallel on a cluster is called the MapRe-
duce framework (Dean and Ghemawat, 2008). It was originally developed as a proprietary
Google technology but now the term is used in a broader sense for frameworks incorpo-
rating that programming paradigm. One popular open source MapReduce framework is
Hadoop MapReduce (The Apache Software Foundation, 2017a). Hadoop is a project for
distributed computing consisting of several modules:

Hadoop HDFS is a distributed file system.

Hadoop YARN is a framework for job scheduling and cluster management resources.

19

3. APPROACH

Hadoop MapReduce is a MapReduce framework for parallel processing of large datasets.

MapReduce is an algorithm for processing and generating big datasets in parallel on a
distributed computing platform. The user, i.e. the developer, needs to specify two funda-
mental functions, the map and the reduce function. The map function performs filtering
and sorting and the reduce function performs a summary operation. The promise of the
MapReduce concept lies in utilising parallelism with the help of multithreading on the un-
derlying cluster. The framework automatically distributes the data on the cluster’s worker
nodes, the “shuffle step”; such that tasks can be done in parallel. The data is distributed
based on the key as defined by the map operation. Thus, all data belonging to one key will
be on the same worker node. This incurs some communication overhead when data must
be serialised and de-serialised across the network. As such, decreasing communication
costs is paramount in order to gain good performance. In the reduce step the worker nodes
process the data in parallel per key.

Apache Spark

Spark is a “fast and general processing engine compatible with Hadoop” (The Apache Soft-
ware Foundation, 2017b). It was developed to improve upon MapReduce in a number of
ways. MapReduce enforces a linear dataflow, where input data is read from disk, mapped,
reduced and saved to disk. This slows things down and makes it difficult to implement iter-
ative algorithms that are very important in machine learning applications. Apache Spark
builds a so-called DAG, a directed acyclic graph of (mostly) in-memory tasks to model
the dependencies between the map and reduce operations of the program. This provides
better performance most of the time for certain applications such as iterative algorithms
or interactive data mining.

The Spark core provides an in-memory distributed data structure called the “RDD” -
Resilient Distributed Dataset (Zaharia et al., 2012) and an API to interact with it in Scala,
Java, Python and R. An RDD is a lazy, immutable data structure that offers abstractions
to interact with it in a natural way, especially in Scala. Consider the canonical word-count
example; count the number of occurrences of each unique word in a set of documents.
Writing this in Spark is straight-forward, see Listing 1.

val textFile: RDD[String] = sc.textFile("hdfs://...")

val counts: RDD[(String, Int)] = textFile
.flatMap (line => line.split (" "))
.map (word => (word, 1))
.reduceByKey (_ + _)

counts.saveAsTextFile ("hdfs://...")

Listing 1: Spark word count example

20

3.2 METHOD

An RDD can contain any Scala, Java or Python data type, for example RDD [St ring]
is an RDD of Strings. There are two types of operations that can be performed on an
RDD, transformations and actions. Transformations are lazy and only describe what to
do with the data, not when to do it. Actions are strict and force the computation of the
transformations leading up to the resulting data structure. In the word-count example,
the f1latMap, map and reduceByKey operations are all transformations of the data
and the only action is the last saveAsTextFile invocation, which actually forces the
computation. Because RDD:s are lazy, Spark can optimise away certain operations since
nothing is computed until the final result is required in the program.

There is also another core distributed collection of data called Dataframe which, like
an RDD is lazy and immutable. Unlike an RDD however, it is untyped and the data is
organised into named columns like in a relation database. A Dataframe can be queried
with SQL-like queries and is suitable for certain types of organised data.

On top of the Spark core there are two machine learning libraries, m11ib and ml
where the former is built on top of RDD:s and the latter on Dataframe:s.

The Spark architecture is composed of a single master and multiple worker nodes in
a cluster; a node is in this sense (usually) a physical machine in a cluster. A Spark appli-
cation that is run on a cluster is run as independent sets of processes that are coordinated
by the driver program, the main JVM process driving the execution, that is run on the
master node. The master node is then connected to the worker nodes which provide ex-
ecutors, JVM processes that actually perform the computations and store the data for the
application. The driver program sends the application code as a JAR file to the executors
and then the executors are sent serialised tasks for them to run. The tasks are able to be
de-serialised by the executors since they have a copy of the application JAR. Executors
can run multiple tasks, both in parallel and sequentially.

Spark can be run on Hadoop YARN or it can be run in so-called standalone mode.
Importantly Spark does not need to be run on a cluster but can also be run locally as long
as the Spark dependency is met, which is straight-forward to provide locally since all it
requires is the download of a single jar file. This makes it easier to develop and test locally,
with a subset of the data, before submitting the application to the cluster.

3.2 Method

The first step in building a knowledge base is to extract facts that can be inserted into
the knowledge base, to this end we build a fact extractor. The facts that we extract are
structured as so-called relation triples in the form of (subject, predicate, object), for in-
stance (Barack Obama, place of birth, U.S.A) is a relation triple stating the fact that Barack
Obama was born in the U.S.A.

The extractor is built to recognise certain types of predefined relations and we use a
subset of standardised relations defined by Wikidata (2017b). The relations we consider
can be seen in Table 3.3.

21

3. APPROACH

Title Wikidata ID Subject Object
spouse P26 Person Person

place of birth P19 Person Location
educated at P69 Person Organisation

Table 3.3: Supported relations and their Wikidata property num-
bers as well as the types of the participating entities.

Wikidata

Wikidata is a free and open multilingual knowledge base that can be edited by both hu-
mans and machines (Wikidata, 2017a). It acts as central storage for structured data from
Wikipedia and other free sources. In Wikidata there is the concept of items that are used
to represent the “things” in human knowledge, including concepts, topics, and objects.
Items are unique and each item has an identifier prefixed with a “Q”; for instance “Q76” is
the Q-number for Barack Obama and “Q34” is the Q-number for Sweden. Each item has
its own Wikidata page that contain statements about the item such as “Barack Obama” is
an “instance of human” and “is the spouse of”” Michelle Obama. Furthermore, these state-
ments about the entities are called properties and each type of property has a Wikidata
identifier prefixed with a “P”. For instance, the P-number for the spouse relation is P26.

Distant Supervision Learning

The approach we have taken to build the relation extractor is to use machine learning to
build a model that learns to detect stated facts in text. To train this model we need to have
a labelled training set. Ideally we would thus have a very large corpus of text where all the
stated facts in the text are correctly labelled as relation triples. The model would then be
fed this corpus and would learn from texts that state actual relations using them as positive
examples and using texts that does not contain them as negative examples. For instance
the sentence “Goran Persson is married to Anitra Steen” would be a positive example of a
married to or spouse relation.

This would allow us to perform supervised learning; the task of learning from labelled
data. Unfortunately there is no such large pre-labelled corpus but we would not like to
resort to unsupervised learning; the task of learning from unlabelled data.

Instead we use distant supervision learning (Mintz et al., 2009). Distant supervi-
sion learning is a hybrid of supervised and unsupervised learning; it is a form of semi-
supervised learning. The main idea is to compile a list of pairs of entities that participate
as the object and subject in a relation and find all the occurrences of sentences that con-
tain these pairs. For instance, we know from Wikidata statements that Barack Obama has
Michelle Obama as spouse (and vice versa since it is a symmetrical relation). Thus when
we find both Michelle and Barack as disambiguated named entities in a sentence, there
is a high probability that that sentence actually states the spouse relation between the two
entities and we can count that sentence as a positive example of a spouse relation. To be
able to extract training examples we must annotate the input text with appropriate annota-
tions such as part-of-speech tags and dependency parse trees. These annotations are used
to extract features from the sentences.

22

3.2 METHOD

The most important annotation however is the named entity disambiguation. A
named entity is a real-world object such as a person, location, organisation; objects that
can be denoted with a proper name. Disambiguation means that we must uniquely identify
the named entity. For instance if we encounter a sentence mentioning Goran Persson we
need to know whether it is the former prime minister of Sweden that is referred to and
not some other person with the same name. To this end we use HERD - an entity recog-
niser and disambiguator (Sodergren and Nugues, 2017) to annotate the corpora that we
use as inputs in the program. It is the job of HERD to disambiguate which Goran Pers-
son is meant in the sentence; whether in the above example Goran Persson refers to the
former prime minister of Sweden with the id “Q53747” or the progg musician with the id
“Q6042900”.

Features

The next step is to extract features from the examples found. We use a number of lexical
and syntactic features. For each pair of entities found in the example sentences we extract
a number of features:

* k words before the first entity in the sentence and their part-of-speech tags

* k words after the second entity in the sentence and their part-of-speech tags
* the sequence of words between the two entities and their part-of-speech tags
* the dependency path between the entities

* the dependency window for each of the two entities. The dependency window is
a single dependency edge from an entity that is not part of the dependency path
between the two entities

* the named entity tags of the two entities (e.g. Person/Location/Organisation etc)

The window size k has been varied during development to investigate the impact of differ-
ent values of k. Currently we use a window size of 3 words.

The named entity tags can be either “Person”, “Location”, “Organisation”, “Miscella-
neous” or “None”. The rationale behind this feature is that the tag can suggest whether it is
likely a certain type of relation is expressed between the entities. For instance, a sentence
with two entities of type “Person” is not likely to express the place of birth relation.

Furthermore, we use two syntactic features, the dependency path between the two en-
tities, and for each entity a node that is not part of the dependency path. Syntactic features
can be useful to differentiate between otherwise similarly expressed relations in sentences.

Feature Transformation

In order for a machine learning algorithm to learn it needs numeric input, thus we need to
convert the words and their part-of-speech tags to some index.

One approach that we employ is one-hot encoding. The part-of-speech tags, the
named entity tags, and the dependency features are all encoded in this way. This is suitable

23

3. APPROACH

because the vocabulary size is rather small for these types of features; there is only a fixed
number of part-of-speech classes.
However, for the word features, i.e. the word windows, we use Word2vec.

24

Chapter 4

Implementation

We constructed a system, that we refer to as Promet heus that consists of several software
artefacts:

* Prometheus is the main program and is used to train the model and to use the afore-
mentioned model to perform relation extractions; it implements our NLP pipeline.

* a proof-of-concept system to showcase Prometheus in a more user-accessible way,
built for Sony and consisting of:

— Prometheus Fact Checker, see Section 4.2, a backend to check facts against a
database.

— Prometheus Chrome Plugin, see Section 4.3, a browser plugin for Chrome that
sends the currently viewed page in the browser to Prometheus Fact Checker and
displays any found relations on the page and whether they could be verified or
not by the backend.

4.1 Prometheus

Prometheus is the main result of this thesis and it is used to produce a trained model and
to perform predictions, i.e. extract relations from the input corpus. Prometheus can per-
form extractions by either extracting relations from a given input corpus or by responding
to HTTP requests with its built-in HTTP server. This can be useful for demonstration
purposes and to provide a sort of fact-checking service, see Section 4.2 Prometheus Fact
Checker.

In Figure 4.1 the packages in the program are laid out. As can be seen, there is one
root package dubbed com. sony.prometheus which includes four sub packages:

* stages - includes implementations of all of the stages in the pipeline as well as
the abstract traits that defines a stage

25

4. IMPLEMENTATION

e annotators - includes the VildeAnnotator that can be used to send text to the
Vilde machine at LTH which runs the Langforia language processing pipeline

* utils - includes some utilities for use throughout the program

* interfaces - defines the HTTP server that serves a REST:ful api that can be
POST:ed to in order to extract relations from text

com.sony.prometheus

stages annotators

interfaces utils

Figure 4.1: Overview of the different packages in the program

4.1.1 Architecture

Prometheus is written in Scala, has a monolithic architecture, and is designed to be able
to execute on a cluster. We use Apache Spark extensively to be able to run Prometheus on
a cluster in order to process large input corpora.

The general idea of the software architecture is to implement the pipeline in so called
stages. A stage is a step in the pipeline and its output is some data that is saved to disk, this
data can in turn be used as the input of the next step in the pipeline. This design ensures
a data-centric way of performing the execution of the pipeline and enables very useful
features.

The data is used as an indication of what actually needs to be computed. For instance,
in order to extract features, training sentences are needed. If they already exist on disk,

26

4.1 PROMETHEUS

these will be used, but if they have been deleted they will be recomputed and saved to
disk. This means that we have a caching mechanism built into the program. Any stage
that is requested by a future stage will first check whether its output data already exists
in which case this data will be returned or else this data will be computed and the output
path returned, ready to be consumed by the next stage in the pipeline. If the data to be
computed requires other stages, these will in turn recompute or use cached data.

The pipeline abstraction is programmatically represented in the file “Pipeline.scala”
in the com.sony.prometheus.stages package. It defines two traits, Data and
Task. A stage must at least mix in the Data trait but most stages also mix in the Task
trait. Thus, there are no stages only implementing the Task trait. Code Listing 2 shows the
structure of a typical stage in our pipeline.

class ExampleStage (path: String) extends Task with Data {
override def getData(): String = {
if (!pathExists (path)) {
run ()

}
path

override def run(): Unit = {

def readData (path: String): Seqg[String] = {
val data =
data

Listing 2: Example stage implementation

Stages that are runnable mix in the Ta sk trait which requires an implementation of the
run method. When called it performs the computation but returns Unit. Stages where
you can actually retrieve data from would also mix in the Data trait and would thus need
to implement the getData method. This method returns the path on disk to the data
produced by the stage if the data exists, otherwise, if it also implements the Task trait,
run is called to produce the data.

In conclusion, every stage mixes in the Data trait and one can call getData to get the
path to the data. In addition, some stages (most in fact), also mix in the Task trait and thus
can themselves also produce the data if it is missing. And if it is missing, the stages will
themselves call their run method to produce the data and then return the path to the data.

For other stages to consume the data, they will need to be able to read it as intended
and to this end the stage that writes the data to disk will also have a method to read the
data into memory and return a suitable data structure representing it.

An overview of the most important stages required to produce the trained model can

27

4. IMPLEMENTATION

be seen in Figure 4.2. The following sections will detail the stages that are involved in the
execution of the pipeline.

Word2
Wikipedia Vec
Model

) —‘
Training
i Features Model
L T . -
Wikidata Séigf;g? Serne:grllr;gs Extraction Features Training
~_
Config
/—'

Figure 4.2: General overview of the model training stages in the
pipeline

4.1.2 Corpus Reader

The Corpus Reader’s purpose is to read the annotated corpus into memory. This stage
is represented by the “Wikipedia” part of Figure 4.2. The corpus is read from parquet
files, a columnar storage format commonly used by Apache Spark The stage also supports
sampling a fraction of the corpus which can be convenient when one wants to quickly run
through the pipeline but is not concerned with using the entire corpus.

We use a HERD-annotated Wikipedia dump as the input corpus (Sodergren and Nugues,
2017). When run over a corpus it produces an annotated dump of the corpus. The annota-
tions are stored in layers in Docforia. Docforia is an efficient multilayer document model
that is designed to support processing of millions of documents and billions of tokens from
large corpora such as Wikipedia (Klang and Nugues, 2016a). It also has support for cluster
computing frameworks such as Hadoop and Spark.

Thus Corpus Reader requires that the annotated corpus is available in the working
directory set by the main method in the program. If the corpus is not present, the Corpus
Reader will throw an exception as it is not a Task stage and cannot compute its own output.

Entity Pair Extractor

The purpose of the Entity Pair Extractor is to extract “entity pairs”’; pairs of entities that
participate in a given relation. This constitutes the distant supervision. This module re-
quires a Wikidata dump and a configuration object that describes which relations to extract
entity pairs for. This module is thus represented by the “Wikidata” part of Figure 4.2. The
Wikidata dump is read and all entities’ properties are checked to see if they include a target
relation. If a property matches a target relation, that Wikidata entity and the property’s key
constitute an entity pair for that specific relation. This module also defines the Relation

28

4.1 PROMETHEUS

data holder, which is a Scala case class. Apart from the sequence of entity pairs, a Relation
contains the name of the relation, a string identifier for the relation (the Wikidata property
identifier) and the expected types of the subject and object in the relation. For each relation
there is an expected type tuple; i.e. for the married relation, we expect both the subject
and object to be persons, and for the place of birth relation, we expect the subject in the
relation to be a person while the object should be a location.

Training Data Extractor

The Training Data Extractor handles the extraction of training sentences. Its input is the
corpus that the model should be trained on represented by the Corpus Reader as a Data
stage, and the sequence of relations produces by the Entity Pair Extractor as described pre-
viously. The corpus is read sentence by sentence and the named entities in each sentence
are matched against the known entity pairs. If there is a match, the matching pair and the
sentence are returned as a positive training example.

Furthermore, if there are more than two named entities in the sentence, all other per-
mutations of pairs of entities in the sentence are also returned but as negative training
examples. Thus, from the same source sentence we extract as many examples as there are
permutations of pairs of named entity pairs. See Figure 4.3 and Table 4.1 for an example
of this. The Training Data Extractor also extracts random sentences that contain any entity
pair that do not participate in any known relations. These are treated as negative examples.

Feature Extractor

The Feature Extractor stage extracts features from the sentences provided by the Training
Data Extractor. Since the Training Data Extractor labels all permutations of entity pairs in
a sentence as positive if at least one of the entity pairs is known to partake in a relation, all of
the training sentences are not guaranteed to actually be positive. One of these permutations
is an example of a positive example and the others are treated as “near-positive”. Thus, the
Feature Extractor makes another distinction between the negative examples: pure negative
or “near-positive”. Thus near-positive examples are examples extracted from a sentence
which states the relation but which contain other entity pairs than the pair that actually
participates in the relation.

Q76 Q13133 Q643049
[PERSON| PERSON| [PERSON|

Barack Obama and his wife Michelle visited their daughter Malia.

Figure 4.3: An example sentence stating a married relation.

An example is seen in Figure 4.3. In that sentence there are three named (and disam-
biguated) entities; Barack, Michelle and Malia Obama. The sentence states that Barack is
married to Michelle and thus the positive example for the “spouse” relation would be the
sentence together with the named entity pair consisting of Barack and Michelle. However,
the Training Data Extractor would also have extracted the example with the named entity

29

4. IMPLEMENTATION

pairs (Barack, Malia) and (Michelle, Malia) even though the sentence do not state that they
are married. The example is however very close to a positive example since there is a state-
ment of marriage in the sentence, just not with that entity pair. These types of examples
are distinguished by the Feature Extractor and labelled near-positive, meaning they are
negative examples but ones that are hard to distinguish from the real positive examples.
See Table 4.1 for the different types of training examples that would be extracted from the
sentence.

Entity pair Example type
(Barack, Michelle) positive
(Barack, Malia) near-positive (negative)

(Michelle, Malia) near-positive (negative)

Table 4.1: Training examples extracted from the sentence:
“Barack Obama and his wife Michelle visited their daughter
Malia”.

The reason we do this is to be able to balance the training examples into a good mix
of positive, negative but near-positive examples, and purely random sentences. The idea
is that the model should be able to easier disregard random sentences as negative but also
have enough near-positive examples to be able to distinguish between tricky cases such as
in the above example.

Apart from labelling the examples further, the Feature Extractor also actually extracts
features. The features extracted are described in the Features section. Each example is
returned as a “TrainingDataPoint”, this data holder includes some attributes about the
relation, i.e. name and identifier, the features extracted, the label, and also a Boolean flag
ent1IsSubject indicating whether the first entity in the entity pair is the subject or
not. All of the features extracted are either simple strings or sequences of strings. Thus
there is no feature encoding happening in this stage. That is handled by the next stage, the
Feature Transformer.

4.1.3 Feature Transformer

The Feature Transformer stage mix in both the Data and the Task stage and the output is the
features transformed, or encoded, into their numerical representations to be consumed by
the model training stages. This stage has a number of dependencies; apart from the Feature
Extractor stage, which it requires in order to gain access to the features to transform, it also
depends on a number of feature encoders.

Different feature encoders are used for different types of features as described in the
Feature Transformation section. Those different types of encoders are also all implemented
as stages:

* PosEncoderStage
* NETypeEncoderStage

* DependencyEncoderStage

30

4.1 PROMETHEUS

For details of the implementation of these stages we refer to the source code (Girtner and
Larsson, 2017a).

4.1.4 Model Training

At this stage in the pipeline, the data pre-processing is complete and the models are ready to
be trained. We train two models, one model is used for filtering and one for classification.
The filtering model is a logistic regression model which is trained to discern between
sentences that contain a relation and those that do not; it is a binary classification model.
The purpose of this step is to act as a filter so that the input data to the classification model
is cleaner.

The filter model is implemented as stage in the class FilterModelStage to be
found in FilterModel.scala in the com.sony.stages package. The stage de-
pends on the previously described Feature Transformer stage. It provides a method that
trains the model and outputs some classification metrics that are useful to indicate how
well the model performs. The examples are split into two sets, a train set and a test set in
order to produce the metrics. Logistic regression computes a probability of each example
to belong to either class. This lets us set a threshold that can be used to tune how much
irrelevant sentences we want to discard at the cost of possibly excluding relevant training
data.

For the actual implementation of logistic regression we use the built-in Spark im-
plementation of Logistic Regression called LogisticRegressionWithLBFGS from
Spark’s m11ib (The Apache Software Foundation, 2017c). See Section 3.1.8 for more
details.

The model is automatically saved and thus when training is complete subsequent runs
of the pipeline can load this model in from disk and does not need to retrain the model
every time.

ClassificationModelStage isimplemented in the stages package. Like the
filter model it depends on the Feature Transformer stage to load in the data in the form of
training sentences. Note that this means that the classification model has no dependency
on the filter model. So in training the filter model and classification models are trained
independently and on the entire dataset. The filter model’s output is used only when per-
forming predictions - the data fed into the classification model is only then filtered through
the filter model to discard non-relation sentences. The classification is implemented as a
fully-connected 3-layer neural network. The first layer has an input size equal to the length
of the features and an output size of 512. The second layer has an input size of 512 and
output size of 256 which naturally is the input size of the third and last layer. The output
size of the last layer, and thus the whole network, is equal to the number of relation classes,
including the null-class.

The backpropagation algorithm used is the stochastic gradient descent method, ADAM
(Kingma and Ba, 2014) and the activation function is a Rectified Linear Unit, see Equa-
tion 4.1.

Sf(x) = max(0, x) 4.1)

The network is built with the Java library “Deep Learning for Java” which is a an
open source distributed deep learning library for the JVM (Deeplearning4j Development

31

4. IMPLEMENTATION

Relation class Size (English) Size (Swedish)

Spouse 184,238 23,954
Place of birth 389,000 52,315
Educated at 69.068 1,064

Table 4.2: Distribution over the sizes of the training data for the
different relation classes.

Team, 2017). A relevant related class is the Relat ionModel class which combines the
filter model and the classification model into one model and provides methods to perform
predictions.

Since the raw training data is quite unbalanced; some relations are easier to find ex-
amples of in the training corpus than others, a balancing method is needed. Otherwise the
classification model might become biased towards classifying relations as the relation that
has the most training data. This method is called balanceData and is implemented
as a static method in the RelationModel companion object. It can either under- or
over-sample the largest or the smallest class to the size of the smallest or largest class,
respectively. The result is a training dataset with equally sized classes. In Table 4.2 we
see the distribution over the sizes of the different relations. As can be seen, there is a con-
siderable difference between the size of training data for the Educated at relation and the
Place of birth relation.

There are three ways of utilising the model in the program. Via either the REST api,
the evaluation methods in the evaluation package or via the PredictorStage.

4.1.5 Predictor Stage

The Predictor stage mixes in both Data and Task and it depends on a CorpusData,
a RelationModel and feature encoders. Its purpose is to extract all relations it can
find in the CorpusData with the help of the predictions it receives by feeding the corpus’
sentences into the relation model. It returns a sequence of extracted relations that each
contain the predicted subject, object and predicate as well as the source sentence and both
the individual probabilities given by the filter model and the classification model and the
combined probability of the model.

4.1.6 REST API

There is a module called REST residing in the package interfaces that launches an
HTTP server that exposes an API in the form of a POST endpoint; /api/<lang>/-
extract.

The endpoint expects requests with a data payload in the form of plain text that Prometheus
will attempt to extract relations from. To perform the extractions, the Predictor class
that is also used by the PredictorStage is sent the input text. However, the input
to the Predictor needs to be pre-processed. To this end, the VildeAnnotator in the
stages package is used. It sends the input text for annotation to the LTH machine called
Vilde which is running the so-called Langforia pipeline (Klang and Nugues, 2016b), at

32

4.2 PROMETHEUS FAcT CHECKER

cs.vilde.lth.se:9000. Vilde is set up to serve various NLP pipelines and the
configuration we use is called “herd”. The “herd” configuration runs CoreNLP 3.8.0 and
HERD on the input text, responding with an annotated Docforia JSON response. The
response is converted to a Docforia Document which now contains several layers of anno-
tations containing named entities, named entity disambiguations, tokens, sentences, part-
of-speech tags etc. The document now contains all the layers required for the Predictor to
be able to extract features and perform extractions.

The response will be in JSON format and contain all extracted relations together with
some meta data, see Listing 3 on page 59 for an example response.

Coreference Propagator

Inthe ut i 1s package there is an object called Core f with a single method: propagate-
Corefs. The method takes one parameter in the form of a Docforia Document: doc, and
returns Unit. It tries to resolve any coreference chains in doc by copying over the named
entities of the antecedents to all of their anaphora. See Figure 4.4, where the antecedent,
Barack Obama, previously annotated with the named entity, of type PERSON and the
disambiguation Q76 is copied to the anaphora; He. This effectively means that when this
method has been applied to doc, it can be read as “Barack Obama is the president. Barack
Obama is married to Michelle Obama”.

m-F_’-ERS N_ | _ ” | -PE.I-%S“ON

[Cbreferfnq?Menti.ori |Coreferer1_ceMenti.or}

Barack Obama is the president He is married to Michelle Obama.
Figure 4.4: Coreference propagation

This module is be used by the REST API if the appropriate command line interface
parameter is set when running Prometheus. Using this flag when running the REST API
ensures that more sentences can be extracted from.

4.2 Prometheus Fact Checker

During the course of the project we also built a small proof-of-concept demonstration;
the Prometheus Fact Checker (Gértner and Larsson, 2017c). Refer to Figure 4.5 for an
overview of the architecture of the system. As can be seen, the system consists of three
main parts, the Prometheus main program running in “demonstration mode”, the Prometheus
Fact Checker backend server, and a client, in the form of a Chrome plugin.

The Prometheus Fact Checker backend exposes an API in the form of an HTTP POST
endpoint; /check. Clients will send POST requests to this address with a URL payload
and the backend will fetch the HTML page that resides on the URL posted, see steps 1 and
2 in the figure.

33

4. IMPLEMENTATION

Prometheus
running demo server

3. POST text 2. Fetch page
from page to
Prometheus

i

4. Prometheus
responds with
extractions

Prometheus Fact Checker
1. POST url of page

5. Responds with o~ Chrome plugin
relations extracted =

and their verdicts

Figure 4.5: Prometheus Fact Checker

The backend will perform some processing of the HTML document and extract all
paragraphs, i.e. the HTML <p></p> tags, on the page as plain text. The text will be
split into chunks, where each chunk is up to 10 paragraphs large and up to 10 chunks
will be sent in parallel to a running instance of Prometheus, configured to run in so-called
demonstration mode; step 3 in the figure. In step 4, Prometheus will respond with any
found relations in the chunks sent to it, see Listing 5 on page 61 for how this will look.
Then the Prometheus’ Fact Checker will compare the extractions from Prometheus with its
knowledge base. The knowledge base consists of JSON files of previously done extractions
performed by Prometheus over some corpus, e.g. the whole of the English Wikipedia.

For each extraction, the backend will try to find a match in the knowledge base and then
label the extraction as either unknown, verified or disputed. If, for instance, the sentence:

Jay-Z is married to American R&B singer Beyoncé.

is found on the page that the URL points to, Prometheus may extract the relation triple
(Jay-Z, married, Beyoncé). If that exact same relation triple can be found in the knowledge
base, the triple is labelled “verified”, since, according to the knowledge base, it is a correct
statement. If on the other hand a relation triple stating for instance (Jay-Z, married, Taylor
Swift) is found, then a partial match on the subject and predicate but with a differing object
is found (the object will be Beyoncé in the knowledge base). The resulting label in that
case would be “conflicting” - indicating that the statement could be false. That label will
be returned in the response together with the evidence, the disputing facts in the knowledge

34

4.3 PRoMETHEUS CHROME PLUGIN

base.

4.3 Prometheus Chrome Plugin

As a more user friendly way of interacting with the Fact Checker, we developed a browser
plugin for Chrome, called the Prometheus Chrome Plugin (Gértner and Larsson, 2017b).
See Figure 4.6 for a look at the interface.

The plugin works by extracting the URL of the website the user visits and sends an
HTTP POST request to the backend, the Prometheus Fact Checker, with the URL as the
data payload. It then awaits the response from the backend, displaying a progress anima-
tion in the meantime. If there is a non-empty response it presents the findings by listing
all the statements that were found on the page together with their source sentences from
the page and their verdict.

< C 1 @ Secure https://en.wikipedia.org/wiki/Christopher_Ging * & S
Logi
7 s Checked facts: .
¢ Ll) L
% 2 Article Talk « Christopher Ging place of birth Mannheim L Q
%
$ 1
g . o ¥ Mentions
wikeepra Christopher Géng
The Free Encyclopedia From Wikipedia, the free encyclopedia o Christopher Ging (born 10 May 1988 in Mannheim) is a German football
goalkeeper who currently plays for SG Sonnenhof GroRaspach.
Main page Christopher Géng (born 10 May 1988 in Mannheim) is a German fot Sources: Wikipedia (0.88): Mannheim
Contents Sonnenhof GroBaspach.!] ourees P o L

Featured content
Current events

Random article Career [edt]

Donate to Wikipedia He made his professional debut for Hertha in the Bundesliga on 11 November 2008 against Werder Bremen when
Wikipedia store the first goalkeeper, Jaroslav Drobny was injured. He allowed five goals in a 1-5 loss and did not play for the first
Interaction team anymore until he left.

Help

About Wikipedia References [edit]

Community portal
Recent changes
Contact page

1. A"Gang, Christopher" @ (in German). kicker.de. Retrieved 24 April 2011.

External links [edit]

o Christopher Gange at Fussballdaten (in German)

Tools
What links here
Related changes

Upload file Personal information
Special pages Full name Christopher Gang
Permanent link Date of birth 10 May 1988 (age 29)
Page information Place of birth Mannheim, West Germany
Wikidata item Height 1.88m (6 ft 2in)

Cite this page Playing position Goalkeeper

Club information
Print/export
Current team SG Sonnenhof GroBaspach

Create a book LNumber 1

Figure 4.6: Prometheus Chrome Plugin

35

4. IMPLEMENTATION

36

Chapter 5

Evaluation

In this chapter we present our findings and discuss the implications of them. Finally we
discuss possible future work on the system.

5.1 Experimental Setup

Prometheus’ entire pipeline (data preprocessing, training and evaluation) can be run on
LTH’s natural language processing cluster, Semantica. It is a small Spark cluster consist-
ing of about ten computers with around 20 GB of memory available to each worker. The
pipeline can also be run on Amazon Web Services to perform multiple tests simultane-
ously.

The evaluation of the system is done in several steps. Firstly, during the training of the
machine learning models we perform cross-validation to verify whether or not the models
improves with each epoch. The result of the cross-validations however are not interesting
since that evaluation is performed on parts of the training data. The similarity of the test
data and training data makes the result biased since high scores can simply imply that the
model over fitted to the training data.

In order to get a less biased evaluation of the system we complement the cross-validation
with three more methods detailed below.

Using these methods we can tune the system’s main hyperparameter “threshold” which
is the threshold for the probability of a prediction being considered credible. For example
the system might claim that the sentence “Barack Obama is married to Michelle Obama”
would be represented as (Barack Obama, married to, Michelle Obama) with a certainty of
90%, but unless our threshold is lower or equal to 0.9 it will be discarded.

37

5. EvALUATION

5.1.1 Google Dataset

In 2013 Dave Orr, Product Manager of Google Research, released a blog post containing
several human-evaluated corpora containing relation extractions from Wikipedia (Google
Research, 2013). Each extraction was evaluated by at least five humans labelling the ex-
traction as either correct or incorrect. The dataset contains around 10,000 examples of
place of birth relations and over 40,000 of attended or graduated from relations. The ex-
amples contain small text snippets called “evidences” from which the system is supposed
to extract the relation. Each example also comes with a relation triple that may be correct
or incorrect according to the human judges. See Listing 4 for an example from the Google
dataset. Note that the Google Dataset is only available in English, as such this evaluation
is only available for English.

In the original format the Google dataset uses Freebase IDs for the subject, object
and predicate. Since Freebase is defunct we translate these IDs to Wikidata IDs. This
conversion process is not successful for every example so those which cannot be converted
are discarded.

Next we filter out all examples judged incorrect by the judges. The reason for this is
that the correct examples can be used to calculate recall but the incorrect examples are
harder. Even if our system could extract the correct relation in the evidence we would
have nothing to compare against.

After all filtering we have about 1,600 place of birth relations and about 3,800 “at-
tended or graduated from” relations.

In the Mintz et al. (2009) paper they evaluate the top 100 and top 1,000 most probable
extractions according to the model itself. In order to compare results we also calculate the
scores for the best 100 extractions.

5.1.2 Manual Evaluation

Furthermore we perform a manual evaluation by running the extractor over the entire En-
glish Wikipedia and manually evaluating the top 100 extractions. This was again used as
a measure to compare against the Mintz et al. results.

5.1.3 Wikidata Evaluation

Lastly we use the extraction from running the extractor on Wikipedia. These extractions
could be seen as a knowledge graph like Wikidata.

We calculate some basic statistics such as: the number of facts in our database, how
many of “our” facts that are present in Wikidata, and how many facts are conflicting. We
defined conflicting as:

1. Given an extraction (SubjectA, PredicateP, ObjectB).

2. Itis deemed conflicting iif there exists one or more other triples containing the same
subject and predicate but never the same object. Such as (SubjectA, PredicateP,
ObjectC).

38

5.2 REsuLTs

This definition of conflict above follows the local closed-world assumption defined
in Dong et al. (2014b). That conflicts occur when the knowledge base has some triples
containing (Subject, PredicateP) but none of them contains the object ObjectB.

So for the “education at” relation where multiple institutions are possible, a conflict
occurs if we have some information about a subject’s education but the extracted fact is
not part of the knowledge base. Where as if we have no knowledge we don’t label this fact
conflicting.

The Wikidata evaluation is mainly used to provide a lower bound for the precision of
system. Since we do not know how many facts in Wikidata are present in Wikipedia and
vice versa the returned precision is only a lower bound.

5.2 Results

This section contains the final result for the system for our three evaluation types. All
results are from the same model, from the same training sessions and with the same hy-
perparameters.

The relations evaluated are listed in Table 3.3.

5.2.1 Google Dataset

In Table 5.1 the final evaluation scores on the Google dataset are displayed. Note that the
Google dataset was only available in English. HERD Recall is the recall of the underlying
named entity disambiguation software on the dataset. This provides the theoretical upper
bound for our recall. Table 5.2 shows the result of the subset of exampels where HERD
successfully found the named entities.

Relation Data points True positives Recall Precision F1 HERD Recall
Place of birth 1616 489 0.30 0.71 042 0.46
Educated at 3850 206 0.054 0.22 0.09 0.21

Table 5.1: Results on the Google dataset.

Relation Data points True positives Recall
Place of birth 756 489 0.65
Educated at 791 71 0.07

Table 5.2: Results on the Google dataset on the subset of exam-
ples where HERD successfully disambiguated the named entities.

39

40

5. EvALUATION

Model Performance for "Place of birth" relation on Google dataset
1

0,75

0,5

Recall

0,25

0,7 0,75 0,8 0,85

09 0,95
Model threshold

@ Recall == HERD's Recall Precision

Figure 5.1: The figure shows the results of the Google dataset

evaluation for the ‘“Place of birth” relation for varying model
threshold.

Model Performance for "Educated at" relation on Google dataset
05

0,4

03

Recall

0,2

0,1

0,675 0,7 0,725 0,75

0,775 0,8 0,825
Model threshold

@ Recall = HERD's Recall Precision

Figure 5.2: The figure shows the results of the Google dataset
evaluation for the “Educated at” relation for varying model thresh-
old.

5.2 REsuLTs

5.2.2 Manual Evaluation

Table 5.3 shows the result from the manual evaluation on the top 100 (as scored by the
model) extractions from Wikipedia. Note that for the Educated at relation in Swedish the
system found only 7 relations altogether therefore we excluded it from the table.

Language Relation Precision Mintz et al. (2009) Top 100 Precision
English Place of birth 0.89 0.78
English Spouse 0.32 -
English Educated at 0.75 -
Swedish Place of birth 0.96 -
Swedish Spouse 0.79 -

Swedish Educated at - -

Table 5.3: Result from the manual evaluation from extraction on
Wikipedia.

5.2.3 Wikidata Evaluation

The results of the Wikidata evaluation are shown in Table 5.4 as well as in Figures 5.4,
5.5,5.6,5.7 and Figure 5.8.

The “verified rate” metric represents how large percentage of the extractions that are
found in Wikidata. Looking at Figure 5.3 it is defined according to Equation 5.1.

verified extractions
verified rate = - - 5.1
relation triples extracted

This metric provides a lower limit for our system’s precision on the dataset.

Language Relation Extractions Verified rate
English Place of birth 327859 0.43
English Educated at 71231 0.19
English Spouse 924723 0.045
Swedish Place of birth 15786 0.64
Swedish Educated at 0 -
Swedish Spouse 516 0.56

Table 5.4: Result from the manual evaluation from extraction on
Wikipedia with a model threshold of 0.75.

41

5. EvALUATION

Verified extractions

Relation triples in Wikidata

Figure 5.3: The figure explains how the verified extractions re-
lates to Wikidata triples and extracted triples.

Wikidata evaluation for English "Place of birth" relation

2000000 06

. \ /_\

1000000

04

Number of extractions

0,2

500000

05 06 07 08 09
Model threshold

@ Number of extractions == Verified rate

Figure 5.4: The figure shows the results of the Wikidata evalua-
tion for the “Place of birth” relation in English for varying model
threshold.

Percentage verified

42

5.2 REsuLTs

Wikidata evaluation for English "Educated at" relation

400000 04
300000 03
£ 200000 02 8
2 &
g [«%
100000 01
0 0
0,5 06 07 08 09
Model threshold
@ Number of extractions e Verified rate
Figure 5.5: The figure shows the results of the Wikidata evalu-
ation for the “Educated at” relation in English for varying model
threshold.
Wikidata evaluation for English "Spouse" relation
8000000 0,125
0,1
6000000
s 0075 3
g 4000000 ;gj
s g
g 0,05 é
§ 5
E a
2000000
0,025
0 0
05 06 07 08 09

Model threshold

@ Number of extractions e Verified rate

Figure 5.6: The figure shows the results of the Wikidata evalua-
tion for the “Spouse” relation in English for varying model thresh-
old.

43

5. EvALUATION

Wikidata evaluation for Swedish "Place of birth" relation

Number of extractions

60000 08
0,75
40000
0,7
20000
0,65
0 0,6
0,5 0,6 07 08 09

Model threshold

@ Number of extractions e Verified rate

Figure 5.7: The figure shows the results of the Wikidata evalua-
tion for the “Place of birth” relation in Swedish for varying model
threshold.

Wikidata evaluation for Swedish "Spouse" relation

Number of extractions

60000 1

0,75
40000

0,5
20000

0,25

0 0
0,5 0,6 0,7 08 09

Model threshold

@ Number of extractions e Verified rate

Figure 5.8: The figure shows the results of the Wikidata evalua-
tion for the “Spouse” relation in Swedish for varying model thresh-
old.

Percentage verified

Percentage verified

44

5.3 DiscussioN

5.3 Discussion

5.3.1 Google Dataset

As seen in Table 5.1 the results for the Place of birth relation are quite promising while
the Educated at relation is much worse. While investigating this discrepancy we found
that the formulations in our training corpus, Wikipedia, differed greatly between relations.
The articles on Wikipedia usually state certain types of relations in a very formulaic and
encyclopedic way without a lot of variation, such as:

Christopher Géang (born 10 May 1988 in Mannheim)...

So the article starts with the name of the person, followed by the date and place of birth
in parentheses. This type of formulation is not always used, and there are also examples
where the place of birth is stated in a more “natural” way such as:

Persson was born in Vingéker in Sodermanland, Sweden, in a working-class
home.

However, this illustrates the fact that using Wikipedia as our training corpus means that the
model will associate certain formulations and grammatical constructs to a certain relation
very strongly.

We use Wikipedia as our training corpora and there are several beneficial reasons for
doing so. Wikipedia is free and open and multilingual and via Wikidata we can use the
same set of entity pairs as our distant supervision for multiple language editions.

This type of constrained language will affect the model’s performance on datasets not
using similar language, such as blog posts or news articles. To counter this type of over-
fitting it would be advisable to train the model on datasets from different sources. The
reason we did not use other sources was because that would require those corpora to be
annotated by HERD and the other NLP tools, such as CoreNLP, which is a slow process.

Furthermore the recall of our system is bounded by the performance of the underlying
tools. Our pipeline is highly dependent on the previous parsing, annotation, and specifi-
cally the named entity recognition and disambiguation.

In order to be able to extract features we need the sentences to be correctly annotated
with disambiguated named entities; otherwise there will be no facts to check against in the
knowledge base. If for instance we would only extract the named entity “Goran Persson”,
but not know which Goran Persson the mention refers to, it would be impossible to verify
factual statements about that named entity because we would not be able to resolve it to an
entity in the knowledge base. This means that if our underlying tools fails to disambiguate
anamed entity, or fail to detect a named entity altogether in the input sentence, our program
will fail to extract any facts from that sentence. This is perhaps the biggest constraint of
our system - the dependency on a named entity recogniser and disambiguator.

For the evaluation this means that HERD’s 46 % recall on the Place of birth relation
becomes our recall’s upper bound. There is no way of getting around this constraint. As
seen in Table 5.2 our recall is 65 % out of the correctly annotated examples.

As for the Educated at relation the HERD recall is even lower but that alone does
not explain our poor results. A big reason seem to be that many examples in the dataset
actually lack the full name of the person in question, like this sentence:

45

5. EvALUATION

He studied botany at the University of Leipzig under Christian Gottlieb Lud-
wig (1709-1773). In 1752 he succeeded Abraham Vater (1684—1751) as pro-
fessor of botany and anatomy at the University of Wittenberg, where in 1782
became a professor of therapy

This is not only a coreference problem but actually the example completely lacks the
named entity. This yields a low recall for the system. Thus the poor evaluation is also
partly due to a hard and sometimes impossible evaluation set.

The biggest reason for the poor performance may stem from few training example for
the Educated at relation as seen in Table 4.2. This is especially detrimental to the Swedish
model. As seen in Table 5.3 the system does not even find 100 extractions from the entire
Swedish Wikipedia.

5.3.2 Manual Evaluation

The manual evaluation, while small scale, is directly comparable to the Mintz et al. (2009)
evaluation and can give us precision for the system on a real world dataset for both English
and Swedish.

The English Place of birth relation in Table 5.3, which is the only relation that Mintz
et al. (2009) also use, shows very good results and is a clear improvement. The Place of
birth relation is also very good in Swedish. As discussed this is partly due to the very
formulaic sentences in Wikipedia for this relation. Though it should be noted that since
we only share one relation with the Mintz et al. (2009) system and they perform larger
evaluation we cannot claim that our system outperforms their system in general. That
would most likely require a top 1000 evaluation for their selected 10 relations.

The Educated at relation in English gives a precision of 75 %. It is interesting to note
however, that of the 25 relations that were incorrect, 7 of these were due to incorrect named
entity disambiguation. Out of the rest of the 18 incorrect extractions, an overwhelming
majority were similar to this type of sentence:

Judge Underhill teaches a course on Federal Courts as an adjunct professor at
University of Connecticut School of Law, and a course on Federal Sentencing
at the University of Virginia School of Law.

That is, sentences stating that a person holds a professorship or other academic position at
a university, which is not the same thing as being educated at that same university. A few
of the extractions also equate an honorary degree with a real degree — something counted
as incorrect in the evaluation. In conclusion, the top 100 English extractions of Educated
at are of high quality or at least very near being correct. As for the Swedish evaluation of
Educated at, there were only 7 extractions made so these were not included in the table. It
is unclear why the extractor found so few examples in Swedish but it is probably a combi-
nation of bad named entity disambiguation for Swedish regarding educational institutions
and a lack of coreference resolution.

The Spouse relation showed very varied results between English and Swedish with the
Swedish model vastly outperformning the English. In the Swedish extractions the top 100
extractions were almost entirely related to royal families where lineage was denoted in a
formulaic and clear manner. This would have helped the model as was the case of the

46

5.3 DiscussioN

Place of birth relation. The mistakes were usually due to convoluted sentences containing
many entities such as mistresses, illegitimate children as well as the actual married couple.

5.3.3 Wikidata

The Wikidata evaluation is the largest of our evaluations since we try to use our extractor to
extract facts from the entire Swedish and English Wikipedia. As can be seen in Table 5.4
the extractor performs very well on the English and Swedish Place of Birth relation. Again,
this could be due to the extractor having learnt the very specific formulation in use on
Wikipedia regarding this relation.

For the Spouse relation, we see that we have a very good verified rate for Swedish while
it is considerably worse for English. Another interesting aspect is that for Swedish, we fail
to extract any Educated at relations at all while for English the results are much better.

It is unclear what the underlying cause to these discrepancies may be, but note that
a low verified rate does not mean that all of the extractions not verified are incorrect —
it only means that they are not present to be verified in the Wikidata dump. As such
it only provides us with a lower bound for the precision. We can consider at least the
verified extractions as correct. There could also be a discrepancy between Wikipedia and
Wikidata; Wikidata is supposed to represent a knowledge graph over Wikipedia but there
are no guarantees that the Wikidata database is 100 % up to date with Wikipedia.

When doing the Wikidata evaluation we evaluated our model with varying threshold
for the three relations for both English, and the two for Swedish (excluding Educated at).
Overall, the graphs demonstrate the expected behaviour; a higher threshold yields a higher
verified rate while the threshold is inversely proportional to the number of extractions.
Thus there is a tradeoft between precision and recall as can be expected. We have settled
on a threshold of 0.75 since that seems to give reasonably accurate extractions while still
keeping a reasonable number of extractions.

It should be noted that the lower number of extractions for Swedish compared to En-
glish is to be expected since the Swedish Wikipedia has fewer articles.

5.3.4 General Discussion

The evaluation of the program carried out has shown that it is possible to implement a
relation extractor using the distant supervision approach. Furthermore it is possible to
achieve quite good precision for our extractor for certain relations.

Looking at the results of the various evaluations it is clear that most natural-language
sentences are not composed in the way that would maximise the performance of our ex-
tractor. Since we train on a corpus without coreferences resolved, the amount of training
data becomes limited to the type of sentences with proper mentions of the named entities.
For example a sentence such as “Barack Obama married Michelle Obama” would occur in
the training set as long as HERD successfully disambiguates Barack and Michelle Obama
and these two share the spouse relation in the Wikidata dump; something that is likely the
case. However, consider the sentence “He married Michelle Obama”. This is the type of
sentence that includes two mentions, but only one antecedent; Michelle Obama. The other
is a so-called anaphor. Unless the anaphoric term can be resolved to its antecedent earlier
in the text where it is stated what the He refers to, the system will not be able to extract any

47

5. EvALUATION

facts. Yet, these types of sentences are very common since most natural-language contain
a lot of mentions that only abbreviate the antecedent, usually in the form of prononuns.
Resolving these coreferences, e.g. He, Barack Obama, would be needed to be able to give
the extractor a chance at extracting any facts from these types of sentences.

We have implemented a module to propagate any coreferences from their anaphora to
their antecedents if the document in question has been annotated with the appropriate lay-
ers, see Section 3.1.5. However, doing coreference resolution is very costly computation-
wise and our training corpus does not include coreferences. Furthermore, it is only avail-
able for English and not Swedish.

We have experimented with coreference resolution when doing evaluation on the Google
dataset and there is support for switching it on for the REST API for demonstration pur-
poses as well. However, we have noticed that using coreferences when evaluating the
Google dataset results in considerably worse precision. A potential explanation for this
could be that that the amount of training data will still be affected by the lack of corefer-
ence resolution and this will also bias the training set towards the type of sentences that
do contain proper mentions. One could imagine that sentences with proper mentions are
structured in a certain way and state the relations in a more formal manner than when
pronomials are used. Thus, using coreferences in testing but not in training does not work
well.

During development of our program we have from the very beginning have scalability
as an important goal: being able to scale our pipeline with the number of relations in a
sustainable way. The execution time of the program would need to grow significantly less
than linear in the number of relations. Especially in pre-processing this is important; going
over the entire training corpus more than once would not be feasible. Our pre-processing
is efficiently implemented and scales well with the number of relations. However, for
each relation we must produce training data. The training data is separate for each type of
relation. This is a property of the problem domain, separate relations will in most cases
be stated in separate sentences. There are of course sentences where a single sentence
can contain more than one fact. However, these will still be treated as separate training
examples to our program. Recall that a single sentence in our program is not a single
example, rather it can contain a multitude of different training examples — one for each
permutation of pairs of entities in the sentence.

This means that the more relations we support in our program, the more training data
will be produced and thus the training will take longer. Producing less training data is not
something that would be desirable, rather a different training algorithm that is faster could
potentially be a solution if one wanted to improve performance when training the relation
extractor for many relations.

Another approach could be to train multiple models for different types of relations in
parallel and then combine the models when doing the extractions.

Furthermore, because our dataset is so large, we use a cluster to train the model. To
enable training in parallel we use parameter averaging. While this speeds up computa-
tion it can impact model accuracy negatively (Su and Chen, 2015). Experiments to train
a model on a single powerful computer could be done to investigate the effects of the pa-
rameter averaging. In case the effects are substantial the hyperparameters controlling the
parameter averaging should be tweaked carefully to ensure minimal model degredation.

Finally, during the course of this thesis, we have both gained a lot of experience with

48

5.3 DiscussioN

technologies such as processing large amounts of data with the help of cluster computing.
This has been a very rewarding experience and has taught us a lot, while it has forced us
to apply our skills learnt during the course our education. We firmly believe that given
more time this system could yield very good results but due to thesis time constraint we
will limit ourselves to listing some of these improvements in the following section.

5.3.5 Future work

Since the result varies by relation and language it would be beneficial to have varying
thresholds for each combination. This would allow the overall extractions to have a more
even quality.

The current iteration of the system uses a relatively shallow network. Increasing the
depth of the network, while requiring more computation, could possibly improve the per-
formance of the model. In the field of computer vision there exists a trend of adding more
layers, from around 16 in AlexNet (Krizhevsky et al., 2012) to more than 150 in ResNets
(He et al., 2015) resulting in an increased performance. Current research by LeCunn et al.
shows that there exists potential for using very deep networks in natural language process-
ing as in computer vision (Conneau et al., 2016).

When it comes to neural network it is not only the depth of the network that is an
important factor. Tweaking hyperparameters such as the number of neurons in each layer
and which activation functions are contributing factors. Even more interesting would be to
experiment with more complex layers than the simple feed-foward layers used by the cur-
rent model. There exists promising research on using convolutional networks for natural
language tasks (Conneau et al., 2016).

Furthermore it would be interesting to experiment with other features and feature rep-
resentations, such as comparing the results of using GloVe word embeddings to using
Word2vec embeddings (Pennington et al., 2014). Retraining and tweaking the word em-
beddings may also increase the model performance.

A common problem with using neural network in natural language processing is that
neural networks require a fixed input size and sentences of course vary in length. There
exists a new encoding format, FOFE, that projects sentences into a feature space of fixed
dimension (Zhang et al., 2015). Experimentation with this format for the window features
would be very interesting since it would allow for arbitrarily long windows.

Since the result of the program output is highly dependent on the quality and cor-
rectness of the underlying annotations on the input corpora, switching to another named
entity recogniser and disambiguator with better precision and recall would automatically
improve our results as well. This would probably not incur a significant amount of ex-
tra work either; as long as the new tool can produce Docforia-annotated documents the
pipeline would not need to change.

Furthermore it should be noted that Deeplearning4j was quite problematic to setup for
usage on Spark and since it uses oft-heap memory for the matrix computations. That meant
fine tuning the amount of memory allocated to the Spark process and to the Deeplearn-
ing4j process. The authors would look into the possibility of using another deep learning
framework for future versions of the system.

Finally we ran all our training on CPUs since the Semantica cluster does not have
GPUs. For further development it would be very good to use GPUs for the deep learning

49

5. EvALUATION

training to significantly speed up the training.

50

Chapter 6

Conclusion

This thesis has described the process of creating as well as the results of a multilingual
relation extraction system.

Our results show that the system performs well for select relations, especially on input
data with a very rigid structure. The system outperforms the Mintz et al. (2009) system on
the single relation that they share.

For the future we recommend looking at another named entity disambiguation system,
adding features such as FOFE encoding, as well as testing another deep learning frame-
work. With these changes and further hyperparameter tweaking we firmly believe the
system can yield even better results.

51

6. CONCLUSION

52

Bibliography

Bishop, C. M. (2009). Pattern recognition and machine learning. Springer.

Conneau, A., Schwenk, H., Barrault, L., and LeCun, Y. (2016). Very deep convolutional
networks for natural language processing. CoRR, abs/1606.01781.

Dean, J. and Ghemawat, S. (2008). Mapreduce: Simplified data processing on large clus-
ters. Commun. ACM, 51(1):107-113.

Deeplearning4j Development Team (2017). Deeplearning4j: Open-source distributed
deep learning for the jvm, apache software foundation license 2.0. https://
deeplearning4j.org/. Accessed: 2017-08-07.

Dong, X., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Murphy, K., Strohmann, T., Sun,
S., and Zhang, W. (2014a). Knowledge vault: A web-scale approach to probabilistic
knowledge fusion. In Proceedings of the 20th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’14, pages 601-610, New York, NY,
USA. ACM.

Dong, X. L., Gabrilovich, E., Heitz, G., Horn, W., Murphy, K., Sun, S., and Zhang, W.
(2014b). From data fusion to knowledge fusion. Proc. VLDB Endow., 7(10):881-892.

Google (2017). Freebase data dumps. https://developers.google.com/
freebase. Accessed: 2017-08-07.

Google Research (2013). 50,000 lessons on how to read: a relation ex-
traction corpus. https://research.googleblog.com/2013/04/
50000-1lessons—on—-how-to-read—-relation.html. Accessed: 2017-03-
28.

Girtner, E. and Larsson, A. (2017a). Prometheus. https://github.com/
Prometheus-Extractor/prometheus. Accessed: 2017-08-26.

Girtner, E. and Larsson, A. (2017b). Prometheus chrome plugin. https://github.
com/Prometheus—-Extractor/prometheus—-chrome-plugin. Accessed:
2017-08-26.

53

https://deeplearning4j.org/
https://deeplearning4j.org/
https://developers.google.com/freebase
https://developers.google.com/freebase
https://research.googleblog.com/2013/04/50000-lessons-on-how-to-read-relation.html
https://research.googleblog.com/2013/04/50000-lessons-on-how-to-read-relation.html
https://github.com/Prometheus-Extractor/prometheus
https://github.com/Prometheus-Extractor/prometheus
https://github.com/Prometheus-Extractor/prometheus-chrome-plugin
https://github.com/Prometheus-Extractor/prometheus-chrome-plugin

BIBLIOGRAPHY

Gdirtner, E. and Larsson, A. (2017¢c). Prometheus fact checker. https://github.
com/Prometheus—-Extractor/prometheus—fact—-checker. Accessed:
2017-08-26.

Hastie, T., Tibshirani, R., and Friedman, J. H. (2013). The elements of statistical learning:
data mining, inference, and prediction. Springer.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep residual learning for image recogni-
tion. CoRR, abs/1512.03385.

Holton, G. (2016). Albert Einstein, historical and cultural perspectives. Princeton Uni-
versity Pres.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. CoRR,
abs/1412.6980.

Kirby, E. J. (2016). The city getting rich from fake news. BBC News. Accessed: 2017-08-
10.

Klang, M. and Nugues, P. (2016a). Docforia: A multilayer document model. Proceedings
of SLTC.

Klang, M. and Nugues, P. (2016b). Langforia: Language pipelines for annotating large
collections of documents. In COLING (Demos), pages 74-78.

Krizhevsky, A., Sutskever, 1., and Hinton, G. E. (2012). Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems,
pages 1097-1105.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of word
representations in vector space. CoRR, abs/1301.3781.

Mintz, M., Bills, S., Snow, R., and Jurafsky, D. (2009). Distant supervision for relation
extraction without labeled data. In Proceedings of the Joint Conference of the 47th
Annual Meeting of the ACL and the 4th International Joint Conference on Natural Lan-
guage Processing of the AFNLP: Volume 2 - Volume 2, ACL °09, pages 1003-1011,
Stroudsburg, PA, USA. Association for Computational Linguistics.

Nugues, P. M. (2006). An introduction to language processing with Perl and Prolog:
an outline of theories, implementation, and application with special consideration of
English, French, and German. Springer.

Pennington, J., Socher, R., and Manning, C. D. (2014). Glove: Global vectors for word
representation. In Empirical Methods in Natural Language Processing (EMNLP), pages
1532-1543.

Quirk, C. and Poon, H. (2016). Distant supervision for relation extraction beyond the
sentence boundary. CoRR, abs/1609.04873.

Russell, S. and Norvig, P. (2009). Artificial Intelligence: A Modern Approach. Prentice
Hall Press, Upper Saddle River, NJ, USA, 3rd edition.

54

https://github.com/Prometheus-Extractor/prometheus-fact-checker
https://github.com/Prometheus-Extractor/prometheus-fact-checker

BIBLIOGRAPHY

Su, H. and Chen, H. (2015). Experiments on parallel training of deep neural network using
model averaging. CoRR, abs/1507.01239.

Sodergren, A. and Nugues, P. (2017). A multilingual entity linker using pagerank and
semantic graphs. In Proceedings of the 21st Nordic Conference on Computational Lin-
guistics, NoDaLiDa, 22-24 May 2017, Gothenburg, Sweden, number 131, pages 87-95.
Linkoping University Electronic Press, LinkOpings universitet.

The Apache Software Foundation (2017a). Apache hadoop. http://hadoop.
apache.orqg. Accessed: 2017-08-08.

The Apache Software Foundation (2017b). Apache spark. https://spark.apache.
org/. Accessed: 2017-08-07.

The Apache Software Foundation (2017c). Apache spark, linear methods,
logistic regression. https://spark.apache.org/docs/1.6.1/
mllib-linear-methods.html#logistic-regression. Accessed:
2017-08-07.

Timberg, C. (2016). Russian propaganda effort helped spread ‘fake news’ during election,
experts say. Washington Post. Accessed: 2017-01-31.

W3C Foundation (2014). Resource description framework. https://www.w3.0org/
RDF /. Accessed: 2017-08-08.

Wikidata (2017a). Wikidata. https://www.wikidata.org/wiki/Wikidata:
Main_Page. Accessed: 2017-04-03.

Wikidata (2017b). Wikidata. https://www.wikidata.org/wiki/Wikidata:
List_of_properties/all. Accessed: 2017-04-03.

Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin, M. J.,
Shenker, S., and Stoica, I. (2012). Resilient distributed datasets: A fault-tolerant abstrac-
tion for in-memory cluster computing. In Proceedings of the 9th USENIX Conference
on Networked Systems Design and Implementation, NSDI’ 12, pages 2-2, Berkeley, CA,
USA. USENIX Association.

Zeng, D., Liu, K., Chen, Y., and Zhao, J. (2015). Distant supervision for relation extrac-
tion via piecewise convolutional neural networks. In EMNLP, pages 1753—-1762. The
Association for Computational Linguistics.

Zhang, S., Jiang, H., Xu, M., Hou, J., and Dai, L.-R. (2015). The fixed-size ordinally-
forgetting encoding method for neural network language models. In Proceedings of
ACL, pages 495-500.

55

http://hadoop.apache.org
http://hadoop.apache.org
https://spark.apache.org/
https://spark.apache.org/
https://spark.apache.org/docs/1.6.1/mllib-linear-methods.html#logistic-regression
https://spark.apache.org/docs/1.6.1/mllib-linear-methods.html#logistic-regression
https://www.w3.org/RDF/
https://www.w3.org/RDF/
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://www.wikidata.org/wiki/Wikidata:List_of_properties/all
https://www.wikidata.org/wiki/Wikidata:List_of_properties/all

BIBLIOGRAPHY

56

Appendices

57

"classificationProbability": 0.9999973773956299,
"filterProbability": 0.8461826559000445,
"obj": "Q2119",

"predictedPredicate": "P19",
"probability": 0.8461804366977133,
"sentence": "Christopher Gang (born 10 May 1988 in Mannheim) is a

German football goalkeeper who currently plays for
SG Sonnenhof GroBaspach.",

"source": "dynamic",

"subject": "Q474877"

Listing 3: Example response from Prometheus running in demo
mode.

59

"pred": "\/people\/person\/place_of_birth",
"sub": "\/m\/02gv15t",
"obj": "\/m\/0345h",
"evidences": |
{
"url": "http:\/\/en.wikipedia.org\/wiki\/Emmanuel_Scheffer",
"snippet": "Emmanuel Scheffer (, born 1 February 1924 in
Germany) 1is an Israeli football coach."
}
1,
"Judgments": |
{
"rater": "16651790297630307764",
"Judgment": "yes"
Yy
{
"rater": "2050861176556883424",

"Judgment": "yes"

"rater": "1855142007844680025",
"jJudgment": "yes"

"rater": "11595942516201422884",
"Judgment": "yes"

"rater": "16169597761094238409",
"Judgment": "yes"

Listing 4: An example of a "place of birth" relation from the
Google Dataset

"evidence": |

{

"link": "https://en.wikipedia.org/wiki/Christopher_Gang",
"object": "Mannheim",

"predicate": "place of birth",

"probability": 0.8813400910969328,

"snippet": "Christopher Gadng (born 10 May 1988 in Mannheim)

is a German football goalkeeper who currently
plays for SG Sonnenhof GroBaspach.",

"source": "Wikipedia',
"subject": "Christopher Gang"
}
]I
"object": {
"link": "https://www.wikidata.org/wiki/Q2119",
"name": "Mannheim"
}l
"predicate": {
"link": "https://www.wikidata.org/wiki/P19",
"name": "place of birth"

by

"probablity": 0.8813400910969328,

"sentences": |
"Christopher Gang (born 10 May 1988 in Mannheim) is a German
football goalkeeper who currently plays for SG Sonnenhof
GroBaspach."

] ’

"subject": {

"link": "https://www.wikidata.org/wiki/Q474877",
"name": "Christopher Gang"

by

"type": "verified"

Listing 5: Example response from Prometheus Fact Checker.

61

INSTITUTIONEN FOR DATAVETENSKAP | LUNDS TEKNISKA HOGSKOLA | PRESENTATIONSDAG 2017-08-25

EXAMENSARBETE Constructing a Multilingual Relation Extraction System

Using Neural Networks
STUDENT Erik Gartner & Axel Larsson

HANDLEDARE Pierre Nugues (LTH) & Hékan Jonsson (Sony Mobile)

EXAMINATOR Jacek Malec (LTH)

Teknik bekampar falska nyheter

POPULARVETENSKAPLIG SAMMANFATTNING Erik Gartner & Axel Larsson

Falska nyheter ar ndgot som cirkulerar pa Internet i allt hogre grad och orsakar stor
skada mot samhallet. Vi har byggt ett system som kan anvandas for att motverka
denna trend genom att automatiskt extrahera pastdenden fran texter som sedan kan

kontrolleras mot kand fakta.

Faktakontroll av nyheter ar i sig inget nytt men
idag konsumerar allt fler ménniskor sina nyheter
via sociala medier och undkommer hérvid kallkri-
tik och faktakontroll som utférs av journalister.
Den stora méngden nyheter gor det idag omojligt
att manuellt kontrollera allt. Sjdlvklart vore det
bra om dessa nyheter automatiskt kunde kontrol-
leras med datorer men dessa har svart att forsta
vanliga texter. De beh6ver mer strukturerad data.

Vi har skapat ett system som kan extrahera och
strukturera pastaenden fran vanlig text och som
dessutom gor det mycket snabbt. Att g& igenom
hela engelska Wikipedia, med mer &n 5 miljoner
artiklar tar bara 20 minuter med vart system. Sy-
stemet kor pa ett tiotal datorer samtidigt for att
kunna uppna denna prestanda.

Det béasta med systemet dr att det ar sjalvla-
rande. Genom maskininldrning och sprakteknologi
kan vi ldra systemet att kdnna igen olika typer
av pastaenden. Vi visar systemet exempel pa hur
pastdenden brukar se ut och utifran det lar sig
systemet att kdnna igen nya pastdenden. Internt
anviander systemet ett neuralt ndtverk for att skil-
ja mellan olika typer av pastaenden, t.ex. om ett
pastdende beskriver var en person ar fodd eller
vem denna ar gift med.

Vi larde systemet genom att lata det bearbeta
Wikipedia, vilket i detta fall 4r en ldmplig kélla da
den &r gratis och innehaller flera miljoner artiklar

inom alla &mnensomraden. Till sin hjdlp anvinde
systemet Wikidata som ar en Oppen databas av
fakta — fakta som gav systemet ledtradar till vilka
fakta som systemet kunde férvéinta sig att hitta i
Wikipedia.

Vara resultat visar att systemet ar palitligt for
vissa typer av pastaenden. Givet tid ar det mdoj-
ligt att expandera systemet for andra typer av pa-
stdenden. Som demonstration konstruerade vi ett
plugin till webblésare som automatiskt kontrolle-
rar pastaenden pa en hemsida mot tidigare etable-
rade fakta.

Systemet ar dessutom flersprakigt vilket bety-
der att fakta och pastdenden fran olika sprak kan
kontrolleras och sammanfogas till en enhetlig da-
tabas. Detta ar viktigt da det i vissa ldnder finns
en stark inhemsk propaganda pa det egna spraket
och inte engelska.

I nuléget ar systemet pa forskningsstadiet men
i framtiden lar denna typ av system komma att
anvandas i manga olika sammanhang. Dels for att
kontrollera fakta i texter, men dven for att bygga
databaser till virtuella assistenter och liknande sy-
stem dér informationen framst finns i vanliga tex-
ter. Kanske kommer din doktor om 50 &r att vara
ett system som lart sjalv fran medicinsk kurslitte-
ratur.

	Motivation
	Introduction
	Background
	Knowledge bases
	Information Extraction
	Resource Description Framework

	Previous work
	Contributions
	Problem
	Scope of This Work
	Work Division

	Approach
	Theory
	Machine Learning
	Features
	NLP Features
	One-Hot Encoding
	Coreferences
	Word2vec Word Embeddings
	Evaluation
	Logistic Regression
	Neural Networks
	Cluster Computing

	Method

	Implementation
	Prometheus
	Architecture
	Corpus Reader
	Feature Transformer
	Model Training
	Predictor Stage
	REST API

	Prometheus Fact Checker
	Prometheus Chrome Plugin

	Evaluation
	Experimental Setup
	Google Dataset
	Manual Evaluation
	Wikidata Evaluation

	Results
	Google Dataset
	Manual Evaluation
	Wikidata Evaluation

	Discussion
	Google Dataset
	Manual Evaluation
	Wikidata
	General Discussion
	Future work

	Conclusion
	Bibliography
	Tom sida
	Tom sida

