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Abstract

This study examines if the Swedish stock market adheres to the weak form efficient market
hypothesis using Fourier analysis on past stock prices to identify possible cyclic returns.
Fourier analysis is well suited for finding seasonalities which would violate the weak-form
efficiency. 10 firms were randomly selected from stock market index OMX30 to represent
the Swedish stock market.

All firms investigated showed signs of periodic behaviour in the long term but adhered
to the weak form efficiency in the short term. Some of the cycles found supports some
already known calendar effects, such as the U.S presidential election cycle, January effect
and ”Sell in May” strategy. However, the transforms were of poor resolution due to short
data sets, making it difficult to differentiate potential cycles from white noise. In addition,
this paper does not account for risk and assumes that all price mechanism are accurate.
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1 Introduction

1.1 Background

A calendar effect refers to any effect or anomaly that is related to the calendar or the
season and are very prevalent in most time series data. It is present in unemployment
rates, fatality rates at hospitals and even influences divorce rates among married couples
(Bach 2016; Labor statistics 2001; Rogers 2012). While it may come as a surprise initially,
with some reflection the observed behaviour is quite expected. Certain jobs are only
available on specific seasons, most medical students graduate at a certain time of the year
and certain seasons are often associated with different moods.

One would therefore expect to find seasonal behaviour on the stock market. People
might be more optimistic during a certain time of the year or have more disposable income
to invest with. However, the presence of calendar effects in stock markets would violate one
of the very most central financial economic theorems, the efficient market hypothesis. The
hypothesis in essence claims that all asset prices on the market fully reflect all available
information and therefore impossible to consistently beat the market. If there was a
way to exploit the market, all investors would join in until there no longer would be any
potential gains. Eugene Francis Fama who developed the theorem eventually ended up
receiving a Nobel prize in economics for his work.

Under recent times, the efficient market hypothesis has come under much scrutiny. It
has failed to explain multiple market anomalies and some even claiming that blind faith
in efficient markets caused the financial crisis of 2007 (Nocera 2009). Whether or not
the efficient market hypothesis holds true or not would have big implications. If markets
adhere to the efficient market hypothesis, hedge fund managers would only be an expense
and not yield higher returns. The price the stock is traded at would always be its’ fair
value. But if the markets would not adhere to the efficient market hypothesis, investors
could be making excess returns without any extra risk. Any calendar effect would imply
that investors can simply earn money by buying and selling at the right time rather than
buying the right stock. Information that could potentially save people from making bad
investments or make really good ones.

1.2 Problem discussion

”Ships will sail around the world but the Flat Earth Society will flourish.
There will continue to be wide discrepancies between price and value in the
marketplace...”

-Warren Buffet (Hagstrom 1999)

For a long time the efficient market hypothesis had been the dominating school of
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thought1. Based on the main principle of rational expectations where on average, every
investor knows the model. However, the efficient market hypothesis has failed to describe
multiple market anomalies around the world and has even been blamed for being the cause
of some. Consequentially, behavioural economics has lately gained traction, contradicting
the efficient market hypothesis’ idea of rational investors. Fama has even conceded that
misinformed investors could cause inefficient markets (Hilsenrath 2004).

A paper published by Grossman and Stiglitz (1980) argued that gathering informa-
tion, processing and analyzing it is a time consuming and costly process for an investor.
Therefore, prices can not reflect all available information. Since if it did, the investor who
spent resources gathering information would receive no compensation. Concluding that
an efficient market is effectively impossible.

Whether it is possible to obtain fully efficient markets or not is perhaps a question best
left for philosophers. Whether markets are efficient or not is perhaps a more compelling
question to answer, which has often resulted in mixed results. Basu (1977) found that
stocks with low price to earnings ratio often outperform stocks with higher ratios, which
would violate the efficient market hypothesis while others such as Chan, Gup, and Pan
(1997) found that many markets adheres to the hypothesis. Many of these papers test
for market efficiency using statistical tests of independence or time series data. Meaning
investors look for some property or attribute a stock or firm has or how something changes
over time. There is inherently nothing wrong with this approach by treating time linearly.
After all, that is how time works. However, it neglects the repetitive attribute time usually
has. Things tend to happen in regular time intervals. Earth rotates along its own axis
once every 24th hour and around the sun approximately once every 365 days. Therefore,
another approach to determine whether a stock market is efficient or not is to look for
calendar effects. If a stock price moves up and down in a predictable fashion, investors
could exploit it to make excess returns without taking more risk. This is where Fourier
analysis excels. Fourier analysis is a method to quickly identify any periodic behaviour
within any signal. By using Fourier analysis any repetitive movement in stock prices can
be identified.

Ten stocks are randomly chosen from the Stockholm stock market with the only criteria
required being listed on the index OMX30 to determine whether or not Sweden’s stock
market is efficient. The Swedish market was chosen since it is the most interesting and
relevant one from a Swedish perspective.

1Chicago school of economics to be more precise. The faculty has spawned many notable scholars
such as Milton Friedman and Ronald Coase, all with the same basic principle of rational expectations.
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1.3 Purpose

The purpose of this paper is to investigate if the Stockholm stock market adheres to the
weak form efficient market hypothesis utilizing Fourier analysis on past stock prices.

1.4 Delimitations

Since this paper is geared towards undergraduates in economics, many mathematical
aspects of the Fourier transform will be left out or only briefly mentioned. Instead, this
paper will try to give the reader a more intuitive understanding of Fourier analysis2. In
addition, due to time constraints the whole Swedish stock market can not be analyzed
and therefore the number of firms will be restricted to 10 and no indices will be analyzed.

1.5 Disposition

The theoretical background will be presented in chapter 2 and is the foundation for the
rest of the thesis. Chapter 3 will describe some of the calendar effects of interest that have
some empirical evidence. Chapter 4 presents the empirical data obtained from the data
source. The methodology is presented in chapter 5 with the results presented in chapter
6. At last the results will be analyzed in chapter 7 and concluded in chapter 8.

2 Theory

2.1 Efficient Market Hypothesis

The efficient market hypothesis (often abbreviated as EMH) is a theory in financial eco-
nomics developed by E. F. Fama (1970) and implicates that it is impossible for any investor
to consistently beat the market. Meaning that no amount of knowledge, computing power
or market timing results in a consistently higher return than the market. Suggesting that
the only possibility of obtaining higher returns is purely by chance or riskier investments.
The model builds on certain assumptions3, those being:

• Every investor is rational

• No information asymmetries and that all investors have homogeneous beliefs

• Markets are friction-less, i.e. no transaction costs, no short sale constraints, no
distortions by the tax systems.

2For a more complete mathematical understanding of Fourier analysis, Firth (1992) is highly recom-
mended.

3While these are the assumptions Fama makes, they are sufficient but not necessary. Meaning that
the assumptions can be only partly fulfilled and there can still be an efficient market.

3



EMH is often stated in three different forms, weak-form efficiency, semi-strong-form ef-
ficiency and strong-form efficiency. Each of them has different ramifications for how
markets work.

In weak-form market efficiency future prices cannot be predicted by analyzing
past information. Asserting that stock prices already reflect all information that can
be obtained by examining the history of the market. Excess returns are impossible to
achieve using any algorithm or any special technique since share prices show no pattern or
tendencies. If any tactic would reliably predict the future of the stock market, investors
would exploit the tactic until it would become useless.

The semi-strong-form market efficiency incorporates the weak market efficiency
and asserts that all publicly available knowledge regarding a firm and its prospects must
also already be reflected in the stock price. Such information includes quality of manage-
ment, balance sheet composition, patents held, fundamental data on the firm’s product
line, earning forecasts and accounting practices.

The strong-form efficiency asserts that, price and price changes reflect all informa-
tion. Meaning that prices should follow a completely random walk and insiders are not
able to beat the market since their knowledge is also public knowledge. In this thesis,
Fourier analysis will be a test on the weak-form market efficiency since the analysis will be
based on historic stock prices and no information about a firms balance sheet composition
or similar will be regarded.

2.2 Stock prices and random walks

According to the EMH, stock prices should follow a random walk. However, it does
not mean that prices move randomly, it only entails that new information should be
unpredictable. Given that no new vital information regarding the firm is released, the
stock prices tend to move in a certain direction. Stocks are expected to increase in value
by a set percentage by the investors, independent of the stock’s price (Hull 2012, p. 287).
This means that the expected value of a stock is given by:

E(ST ) = S0e
µT (1)

where E is the expected value operator, ST is the expected stock value at time T , where
{T} := t1, t2, ..., tT and µ is the expected daily rate of return. Consequently, the stock
price is expected to increase exponentially over time. While the relative expected return
might stay constant over time, the absolute value of the changes in stock valuation will
grow larger.

Note that these equations assumes non-dividend paying stock. For dividend paying
stock, pricing is a bit trickier. In theory, on the pay out day, the price of the stock should
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fall with the same amount equal to the dividend pay out. However, step functions are
difficult to model and is outside the scope of this thesis. In addition, it is often assumed
that the dividends are spent on reinvesting in the same stock. Therefore, all stock will be
treated as non dividend paying stock4.

2.3 Risk adjusted returns and testing EMH

As stated by E. F. Fama (1970) it is impossible to earn more than the market unless
taking on more risk. Therefore, if returns are adjusted for risk, it should not be possible
to consistently beat the market. However, this poses a problem. From equation 1 the
expected stock price is dependent on another stochastic variable, the expected return rate.
The expected rate of return varies over time depending on another stochastic variable,
the level of risk, hence

µt+1,t = E(µt+1,t|Φt) + zt+1,t (2)

where E(µt+1,t|Φt) is the expected rate of return for period t to t+1.Φt represents informa-
tion available to the investor, which under the EMH should imply all possible information
and zt+1,t is any possible deviation from the observed return. For the EMH to hold, then:

E(zt+1,t|Φt) = 0 (3)

The deviations has to be random. However, risk is difficult to measure and predict. It is
known to be time dependent even though it is often incorrectly assumed to be constant5

and can often unpredictably surge upwards, as can be shown in figure 1. The problem
occurs when testing for market efficiency that adheres both to equation 2 and equation 3
simultaneously. This is a joint-hypothesis problem which means it is impossible to test for
market efficiency. Because if stocks deviate from what they are expected to be valued at,
it could reflect that the market is inefficient or that the pricing models used are inaccurate
due to flawed risk management, it is impossible to know which.

Therefore, to test for efficient markets, risk will be ignored. All asset pricing models
will by assumption be accurate and correct. For the weak-form market efficiency to hold
there should not be any reliable way of earning more than the expected return of the
stock. Any deviations of the expected return must then be countered by the same offset
in the opposite direction. If one month yields 2% more than the expected return, there
should be one month that yields 2% less than the expected return since equation 3 must
hold. In addition, there ought to be no patterns in the deviations either as this would lead
to possible exploitation. For it to be impossible to exploit through market timings, the

4The step functions will result in a frequency spectrum. Giving rise to multiple frequency peaks
equidistant from each other called ”harmonics” in the Fourier transform, further complicating the analysis.

5Most notably assumed in the Black-Scholes formula (Black and Scholes 1973).
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deviations should not possess any periodical patterns. One of the most common means
of testing for periodic patterns is using Fourier analysis.

Figure 1: Shows the VIX index - A measure of implied volatility of the index SP500

2.4 Fourier analysis

2.4.1 Fourier transformations

Fourier analysis, named after the french mathematician Joseph Fourier who first inves-
tigated the phenomenon, is the study of how all general functions can be rewritten as a
sum of trigonometric functions. This includes non-continuous wave forms such as a square
wave or a saw tooth wave. Initially, Fourier analysis was used as a way to considerably
simplify the study of heat transfer problems. However, the applications have now spread
to many other scientific areas, including financial economics (Firth 1992).

The process of deconstructing a function to its’ trigonometric functions is called a
Fourier transform. The reverse process, by taking trigonometric functions and rebuilding
the function, can also be done and is sometimes referred as Fourier synthesis. However,
both operations are usually referred to as a Fourier transformation and Fourier analysis
is often referred to the study of both operations.

2.4.2 Terminology

There are many technical terms that will be frequently used in this thesis, having a basic
understanding of them will be necessary to understand the theory behind it.

• Periodic function/sequence (Sometimes referred to as cycle) - Any periodic func-
tion is a function that repeats its values in regular intervals or periods. Typical
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periodic functions are sine and cosine.

• Oscillation - An oscillation is a repetitive motion or pattern. If something oscillates
at 10 times per second, it is said to repeat the same pattern 10 times per second.

• Period - The time required to complete a single cycle or oscillation.

• Frequency - Number of oscillations completed per unit time. Often given in the
unit Hertz (Hz) which is number of repetitions per second.

More key concepts will be introduced in this chapter using the terminology above.

2.4.3 Advantages with Fourier analysis

A periodicity is a cyclic behaviour, a pattern that repeats itself in regular intervals.
Usually, a function is represented how it changes over time. Instead, it can be represented
as the presence of frequencies (or lack thereof) using Fourier transforms, as shown in the
following figure. When Fourier transforming, the signal is transformed from the time
domain to the frequency domain, the inverse of time domain.

Figure 2: Fouriertransform of a simple sine signal

From figure 2, a simple oscillating signal is shown with 20 oscillations per second. A
Fourier transform quickly picks out the frequency present. Fourier analysis is well suited
to investigate if it is possible to earn returns by timing the market since the transformation
will show any cyclic behaviour in stock returns. This is particularly advantageous because
some cyclic behaviour can be difficult to spot when data is shown as a function of time.
From figure 2 the oscillations are easy to spot and the frequency is also easy to calculate.
However, signals often consist of multiple frequencies and disrupted by random noise.
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Figure 3: Fouriertransform of a noisy periodic signal

The signal in figure 3 consists of three different periodic functions oscillating at 5, 20
and 60 times per second, corresponding to 5, 20 and 60 Hertz. In addition, white noise is
also added to further corrupt the signal. Despite this, the Fourier transform is still able
to pick out the correct frequencies present. The presence of smaller peaks covering the
entire frequency spectrum is the result of white noise added to the signal.

2.4.4 Discrete Fourier transform

While there are many different mathematical methods to Fourier transform a signal, the
most popular and practical method of transforming is the Discrete Fourier transform
(Spanne 1995, pp. 282–284) . A discrete Fourier transform converts a data set, {sN} :=
s0, s1, s3, ..., sN−1, from the time domain to the frequency domain using the following
equation:

Sk =
N−1∑
n
s[n]e−2iπ k

N
n

=
N−1∑
n
s[n] · [cos(2πkn/N)− i · sin(2πkn/N)],

(4)

where Sk is the transformed data set and k the sinusoids periodicity. The reverse opera-
tion, a Fourier synethesis, is also possible using the discrete fourier transform method:

sN = 1
N

N−1∑
k=0

Sk · e2iπ k
N
n (5)
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2.4.5 Sampling rate and period

Two important aspects to understanding discrete Fourier transforms are the sampling
period and sampling rate. The sampling rate refers to the number of times a measurement
is recorded for every unit of time. While the sampling frequency can be quite large, such
as audio recordings (often around 100 000 times per second or more), most historical data
of stock prices are sampled once per day. To resolve any signal, it has to be sampled
more than twice per cycle, also known as the Nyqvist sampling criterion. In the case
of stock prices, the Fourier transform would not be able to find cyclic periods that are
shorter than two days, due to the sampling restriction of once per day. Figure 4 shows
a signal with 120 repetitions per second (shown in red) but is only sampled 40 times per
second (shown in black asterisk). Due to the low sample rate relative to the true signal
frequency, the Fourier transform shows a frequency that does not occur in the true signal.
This phenomena is called aliasing.

Figure 4: Fourier transform of a badly sampled (black) signal (red)

While the Nyqvist sampling criterion sets the upper bound for detectable frequencies,
the sampling period sets the limit for how long a cycle can be for it to be detected.
The sampling period refers to the time period a signal is being measured. If any cyclic
behaviour lasts for a long period time, for example 4 years, the data set needs at least 4
years of stock prices for the transformation to be able to detect that cycle. More samples
leads to better resolution of the transform and allows for longer periods to be detected.
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Figure 5: Fourier transform of a signal with insufficient sampling period

Figure 5 shows a signal oscillating at 10 times per second with a very high sample rate
at 10 MHz. However, it is sampled for an insufficient period of time, red line representing
the sampled part and the black dotted line showing the remaining period. Due to the
insufficient sampling period, the Fourier transform shows aliasing (incorrect frequency
being present). In addition the resolution of the transformation is very poor, with every
distinct data point in the transform being 40 Hz apart from each other.

2.4.6 Weaknesses with the Fourier transform

Apart from the restrictions set by the sampling rate and sampling period there are some
limitations due to the resolution of the transform. Resolution is the ability to distinctly tell
two frequencies apart from each other, which is directly affected by the sampling period.
It can be difficult to make distinctions between the frequency peaks if the oscillations are
close to each other or if the observed peak is caused by white noise with short sampling
periods. If the sampling period is short, two peaks close to each other will merge together
due to the lower resolution of the transform, making it difficult to distinguish between two
different peaks and their exact frequency. Aggravating the problem, there can be peaks
hidden between two peaks but is drowned out due to the relatively larger amplitudes6 of
the other frequencies as seen in figure 6.

6Amplitude refers to the ”size” of the oscillation
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Figure 6: Fourier transform of a signal with 3 periodic functions

The signal transformed in figure 6 consists of three frequencies, 15, 20 and 25 Hz with a
respective amplitude of 10, 3 and 15. However, from the transform it is easy to incorrectly
draw the conclusion that there are only two frequencies present. The signal is sampled
for a short time. Enough to let all three frequencies complete multiple oscillations so it
satisfies the sampling period criteria, but short enough to leave the resolution unsatisfying.
From the transform graph, the peaks are very wide and just slightly off (shifted to right)
due to the short sampling period. With proper sample period, the transform should
resemble the one at the bottom of figure 6.

When white noise is present in the signal it further complicates identifying relevant
peaks. Figure 7 shows the exact same signal as before but with added white noise. From
the transform, the smallest amplitude at 20 Hertz could easily be mistaken for being white
noise. Vice versa, the peak occurring above 50 Hertz due to presence of white noise, could
now be mistaken for being a frequency present in the signal.
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Figure 7: Fourier transform of a signal with 3 periodic functions

However, even if a clear frequency is presented by the transform there is still one fun-
damental problem with the transform. The Fourier transform can only pick out periodic
behaviour and not much more. While the cycle can be identified and its period can be
calculated, it is difficult to tell when the cycle starts. Since it is impossible to tell only
from the transform when the cycle begins, it is also impossible to tell when to buy or sell.
Information that is vital to investors if they wish to beat the market.

3 Previous research in calendar effects

There are plenty of strategies that tries to exploit allegedly present calendar effects on
the stock market. While many strategies may lack conclusive evidence and is mostly
speculation, there is empirical research that has found calendar effects in the stock market
that could give some of the known tactics legitimacy, which would violate the weak-form
efficiency.

3.1 January effect

There is empirical evidence suggesting that stock prices surge during the month of January,
first documented by Wachtel (1942). In addition to Wachtels discovery, Banz (1981)
documented that small firms portfolios consistently had higher returns than portfolios
consisting of larger firms. Later studies on Banz paper found that the effect occurs
virtually entirely in the month of January (Keim 1983; Reinganum 1983). This suggests
that stock prices go up in the month of January, especially on small firm stock.
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A plausible explanation for the January effect is that investors sell off stocks that have
performed badly to offset potential capital gains for tax purposes. Then as the year ends,
investors buy back the stocks. This would explain why small-firm stock prices fluctuate
more since their prices are more prone to fluctuations caused by investors selling and
buying (Ciccone 2013).

3.2 ”Sell in May”

The strategy ”Sell in May” is based on the belief that the stock market has significantly
stronger growth during the months November to April compared to the rest of the year.
When May rolls around an investor should sell their stock and invest in bonds until
November (Twin 2008).

There has been research that support this strategy, which has found that several stock
markets performs significantly stronger during seasons where temperature are lower, with
Sweden being one of the countries examined (Cao and Wei 2015).

3.3 United States presidential election cycle

Data shows that for over four decades the stock market followed the presidential election
closely. A paper published by Wong and McAleer (2009) found that the US stock market
in general underperforms the initial two years of the presidential term before reaching
a local minimum and then turning around the last two years. Showing that political
uncertainty can affect the market and its’ sentiment. While it is unclear whether the
American election cycle affects the Swedish stock market, one would perhaps still expect
a 4 year cycle since elections are also held every fourth year in Sweden.

4 Empirical data

All empirical data found and used were retrieved from Wharton Research Data Services.
10 stocks were selected at random from OMX30, these are presented in the table below
along with their associated business sector.
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Table 1: Firms selected to be analyzed with their respective business sector

Firm Sector
Astra Zeneca Pharmaceuticals
Atlas Copco Industrial
Electrolux Appliances

Hennes & Mauritz Retail - Clothing
Investor Investment banking
Kinnevik Investment banking
Sandvik Industrial

Swedbank Banking
Tele2 Telecommunication Operator
Telia Telecommunication Operator

Astra Zeneca’s stock price as a function of time is presented in the following figure.
The remaining firms’ stock prices can be found in appendix A

Figure 8: Astra Zenecas stock price obtained from WRDS

The data obtained contains multiple duplicate prices for most dates and does not
account for stock splits. The duplicates are due to the stock splitting up into A stock
and B stock. In all cases, the stock that was chosen was the one that would give rise
to the most continuous price growth, as step functions would complicate the analysis of
the transform. Unfortunately, the time period where data is available also differs for each
stock. Instead of confining the time period where data is available for all stocks selected,
all data points will be utilized for each stock to increase the resolution of the transform.
The stock price of Astra Zeneca adjusted for stock splits and removal of duplicates is
presented in the following figure. Remaining firms’ stock prices adjusted for stock splits
and duplicates can be found in appendix B.
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Figure 9: Astra Zenecas stock adjusted for stock splits and duplicates

5 Method

5.1 Linearizing data

The expected returns for each firm has to be calculated since the efficient market hy-
pothesis concerns only excess returns and not in absolute prices. By taking the natural
logarithm of both sides in equation 1 the following equality is obtained:

lnST = lnS0 + µT (6)

Since the logarithm of the initial stock price is a constant, equation 6 can be likened with
the straight line equation. y = c+mx

lnST = lnS0 + µT
(7)

The gradient, m is the equivalent of µ. By fitting a best fit linear line on the logarithmed
stock prices, the gradient of said best fit line will be the expected return of the firms
stock.

In addition, linearizing data is necessary for the Fourier transform to give any mean-
ingful results. Had one not linearized the data, the Fourier transform would be dominated
by the latest observations due to the exponential growth nature of stock prices.
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5.2 Residuals

A residual is any deviation from the observed data and the expected value and is given
by:

et = St − Ŝt (8)

where et is the residual, Ŝt is the expected stock price and St is the observed stock price. If
et > 0 then the stock is overperforming since stock value is higher than expected. If et < 0
then the stock is underperforming due to stock value being lower than expected, might
even be a loss in stock value. Keep in mind that these stock values are all logarithmed.

5.3 Fourier transform

Fourier transforming utilizing the DFT-method is done using the fft-command in Matlab.
From the transform, relevant peaks are picked out.

T = 1
f

(9)

The period length, T, for any cyclic peak is the inverse of the frequency, f, obtained.
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6 Results

Linearizing Astra Zeneca’s stock value and fitting a linnear trend is shown in the following
figure.

Figure 10: Astra Zenecas stock linearized with best fit line shown (dashed line)

Residuals calculated are represented in the following figure. Graphs for remaining
firms can be found in appendix appendix C.

Figure 11: Astra Zenecas residuals between observed and expected stock prices.

The Fourier transform obtained from the residuals is shown in the following figure.
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Figure 12: Fourier transform of Astra Zeneca residuals

Due to the relative differences in spectral density, it is easier to identify the first peaks
by zooming in.

Figure 13: Fourier transform of Astra Zeneca residuals, zoomed in
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Peaks with relative large amplitudes were picked out and the frequency noted. Table
2 shows a summary of all companies with their frequencies with relative large amplitudes
with their corresponding periods. The period is also given in calendar years, calendar
months and calendar weeks. Graphs for the remaining firms can be found in appendix D.

Table 2: Frequency presence for each firm and their corresponding period, given in number
of working days, calendar years, calendar months and calendar weeks.

Firm:
Peak

/ Freq
Period in

working days
Calendar

Years
Calendar

Months
Calendar

Weeks
Sampling
period

Astra
Zeneca

0.0003053 3275.5 13.1 157.2 681.3

3277

0.0009158 1091.9 4.4 52.4 227.1
0.001221 819.0 3.3 39.3 170.4
0.003663 273.0 1.1 13.1 56.8
0.004884 204.8 0.8 9.8 42.6
0.008852 113.0 0.5 5.4 23.5

Atlas
Copco

0.0003695 2706.4 10.8 129.9 562.9

8119

0.0007391 1353.0 5.4 64.9 281.4
0.0009855 1014.7 4.1 48.7 211.1
0.001355 738.0 3.0 35.4 153.5
0.001971 507.4 2.0 24.4 105.5
0.003326 300.7 1.2 14.4 62.5
0.004435 225.5 0.9 10.8 46.9
0.01244 80.4 0.3 3.9 16.7
0.01478 67.7 0.3 3.2 14.1

Electrolux

0.0002455 4073.3 16.3 195.5 847.3

8149

0.0007364 1358.0 5.4 65.2 282.5
0.0009818 1018.5 4.1 48.9 211.9
0.001595 627.0 2.5 30.1 130.4
0.001964 509.2 2.0 24.4 105.9
0.00405 246.9 1.0 11.9 51.4
0.007609 131.4 0.5 6.3 27.3
0.01595 62.7 0.3 3.0 13.0

HM

0.0001945 5141.4 20.6 246.8 1069.4

7712

0.0005836 1713.5 6.9 82.2 356.4
0.0008430 1186.2 4.7 56.9 246.7
0.0009726 1028.2 4.1 49.4 213.9
0.001621 616.9 2.5 29.6 128.3
0.00214 467.3 1.9 22.4 97.2
0.004085 244.8 1.0 11.8 50.9
0.006549 152.7 0.6 7.3 31.8
0.01731 57.8 0.2 2.8 12.0

Investor

0.0002209 4526.9 18.1 217.3 941.6

6790

0.0005155 1939.9 7.8 93.1 403.5
0.0008101 1234.4 4.9 59.3 256.8
0.001252 798.7 3.2 38.3 166.1
0.002136 468.2 1.9 22.5 97.4
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Table 2 continued from previous page

Firm:
Peak

/ Freq
Period time

/ working days
Calendar

Years
Calendar

Months
Calendar

Weeks
Sampling
period

0.004051 246.9 1.0 11.8 51.3
0.01083 92.3 0.4 4.4 19.2
0.0148 67.6 0.3 3.2 14.1

0.02644 37.8 0.2 1.8 7.9

Kinnevik

0.0008026 1246.0 5.0 59.8 259.2

2493

0.001204 830.6 3.3 39.9 172.8
0.002408 415.3 1.7 19.9 86.4
0.004013 249.2 1.0 12.0 51.8
0.008828 113.3 0.5 5.4 23.6
0.01605 62.3 0.2 3.0 13.0

Sandvik

0.0001249 8006.4 32.0 384.3 1665.3

8009

0.0007493 1334.6 5.3 64.1 277.6
0.001124 889.7 3.6 42.7 185.1
0.001499 667.1 2.7 32.0 138.8
0.001998 500.5 2.0 24.0 104.1
0.002747 364.0 1.5 17.5 75.7
0.003996 250.3 1.0 12.0 52.1
0.01061 94.3 0.4 4.5 19.6
0.01523 65.7 0.3 3.2 13.7

Swedbank

0.0005968 1675.6 6.7 80.4 348.5

5866

0.001279 781.9 3.1 37.5 162.6
0.00162 617.3 2.5 29.6 128.4
0.002813 355.5 1.4 17.1 73.9
0.003663 273.0 1.1 13.1 56.8
0.004518 221.3 0.9 10.6 46.0
0.001066 938.1 3.8 45.0 195.1
0.01731 57.8 0.2 2.8 12.0

Tele2

0.0004429 2257.8 9.0 108.4 469.6

5646

0.0007972 1254.4 5.0 60.2 260.9
0.000973 1027.7 4.1 49.3 213.8
0.002037 490.9 2.0 23.6 102.1
0.0132 75.8 0.3 3.6 15.8

0.02205 45.4 0.2 2.2 9.4

Telia

0.0002162 4625.3 18.5 222.0 962.1

4627

0.0006485 1542.0 6.2 74.0 320.7
0.0008647 1156.5 4.6 55.5 240.5
0.001081 925.1 3.7 44.4 192.4
0.001729 578.4 2.3 27.8 120.3
0.002594 385.5 1.5 18.5 80.2
0.003459 289.1 1.2 13.9 60.1
0.01362 73.4 0.3 3.5 15.3
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7 Analysis

The fact that the transform is able to pick out frequencies that are present from the
residuals suggests that the Swedish stock market is not weak-form efficient. However,
some of the frequencies obtained from table 2 are most likely incorrect due to low sampling
period and poor resolution. Peaks that corresponds to a period that is in the same order
of magnitude as their sampling period is most likely aliasing (See Astra Zeneca, Sandvik
and Telia). None of the firms’ Fourier transformation had a satisfying resolution due to
the low sample period, meaning the cycle periods presented in table 2 should only be
taken as an approximation of the period. Granger and Hatanaka (1964) maintains that
data needs at least a length of seven times the length of the longest periodic cycle present
to properly determine the cycles. Which is certainly not the case of any of our firms
selected.

Whilst there is a presence of peaks, the methodology neglects risk and have not ad-
justed the returns accordingly. It could be very much so that the frequency peaks observed
are caused by periodic behaviour in market risk. If risk is higher one would expect that
in general the stock market would perform subpar usual levels. Many of the firms inves-
tigated share price cycles which could be an indicator that the whole market in general
moves up and own in sync. Some of these cycles could still adhere to the weak-form EMH,
which will be discussed.

7.1 Four and five year cycle

Nearly all 10 firms investigated share a price cycle of around 4 years with the exceptions
being Investor and Kinnevik (note that these two companies are in the investment banking
sector). This supports the idea that political uncertainty seem to have an affect on stock
markets that was discussed in section 3.3. The national parliament elections are not
the only political elections held in Sweden. Every fifth year the European Union holds
elections to its own parliament. Many of these firms also show some sort of periodic
behaviour occurring every fifth year. However, not as many firms seems to show this
behaviour. Indicating that the European Union elections are perhaps not as consequential
to the Swedish stock market as the national elections are, or simply not as unpredictable.
While other factors could be the cause behind the four and five year cycles, the political
variable seems to be the most plausible one since it supports earlier research.

Whether or not it is possible to exploit this pattern and if this cyclic pattern violates
the EMH is difficult to determine from the transform alone. The outcome of an election
could be seen as random new information being disclosed. However, one could argue that
the outcome of an election may not be sufficiently random7 and the fact that elections

7Elections can be seen as fairly predictable because of polls. With that comes a somewhat expected
set of policies.
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occur at a regular interval removes the aspect of randomness. While Wong and McAleer
(2009) found that the market consistently underperformed the following two years after an
election, the Fourier transform does not provide that information. It is unclear whether
the markets go up or down after an election. It is reasonable to assume that market risk
follows a pattern based on the time remaining until next election. Meaning the fluctuating
price is not necessarily caused by a calendar effect, but a periodic volatility caused by the
political uncertainty. If this was the case, then exploiting the market would prove to be
difficult and would not necessarily violate EMH. Nevertheless, it does not explain why
firms in the financial sector seem to be unfazed by the political landscape.

7.2 One year cycle

All firms except for Tele2 shows a cyclic pattern with a period of one calendar year.
The January effect suggests a peak in price once per year during said month which the
transform supports. However, as discussed in section 3.1, the strategy should mostly
affect smaller firms. All firms analyzed are listed on OMX30 and should not really qualify
as a small firm. However, the strategy does not exclude the effects on large firms, only
said to be more pronounced on smaller firms. The second strategy discussed that should
exploit a cycle of once per year is the ”Sell in May” tactic. With both support from the
Fourier transform8 and Cao and Wei (2015) findings, it is most likely that this periodicity
is exploitable (if not already being exploited), violating the weak form efficiency.

Having said that, firms in Sweden have historically only given out dividends on an
annual basis. While most firms have recently switched over to a semi-annual pay out
scheme, most of the sampled data should show the dividend effects on an annual basis. It
is unclear to determine the significance of these pay outs, as they can be very small relative
to the stock price. A pay out of 1 SEK from a 100 SEK stock will likely not be detected
by the transform since a 1% decrease in stock value can easily attributed to daily trading
fluctuations. Without knowing the dividend yield it is difficult to say that the dividends
are the cause of the periodic behaviour. However, E. Fama et al. (1969) concluded in
their study that dividends adhered to the efficient market hypothesis. Assuming this is
true, then the large periodic behaviour must be caused by a calendar effect9.

8The presence of both January effect and ”Sell in May” strategy should exploit the same periodicity
but with different phases. Meaning they share the same cycle length but the peaks occur at different
times. The Fourier Transform can still tell that only one frequency is present and is unaffected by the
phase shift.

9We know this to be true since a step function causes multiple frequency peaks and not one singular
with harmonic frequencies. Since no harmonic frequencies are observed, no step function can be detected.
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7.3 Quarterly cycle

Most of the investigated firms show a cycle with a period of around 3 months. This could
be attributed to quarterly reports released by the firms. The quarterly reports can be
seen as new information being presented to investors. However, the presence of peaks
suggests that the information released may not be of random character, but somewhat
predictable therefore not following a random walk. The peaks identified corresponding
to a quarterly cycle do posses a very small amplitude in the Fourier transform compared
to other cycles identified. From section 2.4.6 the weaknesses with the transform was
discussed where the issue with identifying real frequency peaks from white noise was
highlighted. The quarterly cycles in this case might just as well be white noise from the
transform mistakenly identified as a calendar effect.

7.4 Cycles by sector

The investment banking firms not sharing the 4 year cycle like the other firms could be
evidence of different industry sectors having their own cyclical behaviours. The lack of
shared periodicity could be a potential method to earn excess returns. Investors could
potentially hedge against risk caused by the political landscape which otherwise seems
to affect everybody else on the stockmarket. Both Kinnevik and Investor show a period
between 3.2 - 3.3 years, which is strikingly close considering the poor resolution of the
Fourier transform.

Atlas Copco and Sandvik (industrial) share a peak almost identical to each other at
5.4 and 5.3 years. In addition, Telia and Tele2 (telecommunications operator) also more
or less have identical peaks with a period of 73-75 days. It is plausible that these shared
peaks between firms in the same sector is pure coincidence and that the rest of the sector
does not show the same periodicity. These peaks have a seemingly arbitrary period which
would suggests a plausible source of exploitation of the whole industry itself. Regardless,
further research into firms within the same industry sector is required to validate any
findings since two firms in each sector is an extremely small sample.

7.5 Long term and short term

There is a clear trend in the Fourier transforms for all firms investigated when considering
the long term prices versus the short term prices. There are no clear frequency peaks for
any stock at high frequencies10 with the transform looking like white noise, which means
that short term prices do seem to follow a random walk. Most cyclic behaviour are found
at long term, often with a period time around a year or more. There are peaks present at

10While there is no definite definition of ”High frequency”, the highest frequency identified among any
stock comes in at 0.02644 times per day. Anything higher than that could be considered high frequency
in this study.
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higher frequencies with periods of a couple of months, but far fewer and less pronounced.
This would suggest that prices in the short term follow a random walk, adhering to the
weak form of the efficient market hypothesis. Granger and Morgenstern (1963) found that
the New York stock market also displayed the same characteristics of being efficient in
the short run but having cyclic behaviour at longer time periods.

With the market being effective only in the short run could be due to investors in-
vestment horizon. Investors may just lack the required investment horizon to be able to
exploit the longer calendar effects and therefore only exploit the shorter calendar effects
until no anomaly can be capitalized on, resulting in an effective market in the short run
but not the long run. Granger and Morgenstern (1963) argued that exploiting the long
term anomalies would be difficult for an investor since it is unclear when any oscillation
starts and the amount of work required to identify the phase of the oscillation increases
the longer the period is.

8 Conclusion

Multiple peaks can be identified for all firms investigated. Assuming all stock price mech-
anism are accurate, the presence of peaks suggests that the Swedish stock market is
inefficient due to possible exploitation through market timings. While the Fourier trans-
form shows the presence of cyclic behaviour, it does not provide information about when
they occur. To exploit the market further analysis has to be performed, but the Fourier
transform does provide a good indicator what patterns to search for. The two strategies,
the January effect and Sell in May are impossible to validate without further research.
However, the presence of a 1-year peak is an indicator that is prerequisite for the strategy
to work, which is present.

Some oscillations might be explained by reoccurring events that could alter the market
risk such as upcoming elections or dividend payouts. As such, the efficient market hypoth-
esis would still hold. However, it is impossible to confirm the underlying factors behind
the periodic price movements since the Fourier transform does not provide information
about when prices go up or down. To validate these findings, further analysis would have
to be performed. The shared cycles between firms in the same industry sector would be
another sign of some sort of inefficiency as well. The accuracy of the frequencies identified
is left undesired. Increased sampling period would clarify each frequency present.

In the end, it is not too surprising that the findings suggests that the Swedish stock
market is inefficient. The three assumptions that the EMH builds on are somewhat
questionable. Sweden’s market is most likely not friction-less due to taxes, regulations
and transaction costs. That all investors have homogeneous beliefs is also a substantial
assumption to make. The number of people being skeptical of the EMH shows that
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investors rarely share the same opinion. However, one should be cautious to draw the
conclusion that the Swedish stock market is inefficient. Only 10 firms were investigated
which is only a third of the firms listed on the OMX30 and even a smaller fraction of the
Swedish stock market. With the small sample size it would be precipitously to assume
the whole stock market behaves in a similar fashion. In addition, the transform does
suggest that prices are efficient in the short term, while the peaks for long term are
poorly resolved and inaccurate due to inadequate sampling period. Since this is a joint
hypothesis problem it is impossible to know if the price mechanism are at fault or if the
market is being inefficient.
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A Figures - Raw data

Figure 14: Atlas Copco stock price obtained from WRDS

Figure 15: Electrolux stock price obtained from WRDS

Figure 16: H&M stock price obtained from WRDS
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Figure 17: Investor stock price obtained from WRDS

Figure 18: Kinnevik stock price obtained from WRDS

Figure 19: Sandvik stock price obtained from WRDS
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Figure 20: Swedbank stock price obtained from WRDS

Figure 21: Tele2 stock price obtained from WRDS

Figure 22: Telia stock price obtained from WRDS

30



B Figures - Removed duplicates and adjusted for
stocksplits

Figure 23: Atlas Copco stock adjusted for stock splits and duplicates

Figure 24: Electrolux stock adjusted for stock splits and duplicates

Figure 25: H&M stock adjusted for stock splits and duplicates
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Figure 26: Investor stock adjusted for stock splits and duplicates

Figure 27: Kinnevik stock adjusted for stock splits and duplicates

Figure 28: Sandvik stock adjusted for stock splits and duplicates
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Figure 29: Swedbank stock adjusted for stock splits and duplicates

Figure 30: Tele2 stock adjusted for stock splits and duplicates

Figure 31: Telia stock adjusted for stock splits and duplicates
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C Figures - Processed data; Linearized and residuals

Figure 32: Atlas Copco stock linearized with best fit line shown (dashed line)

Figure 33: Electrolux stock linearized with best fit line shown (dashed line)

Figure 34: H&M stock linearized with best fit line shown (dashed line)
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Figure 35: Investor stock linearized with best fit line shown (dashed line)

Figure 36: Kinnevik stock linearized with best fit line shown (dashed line)

Figure 37: Sandvik stock linearized with best fit line shown (dashed line)
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Figure 38: Swedbank stock linearized with best fit line shown (dashed line)

Figure 39: Tele2 stock linearized with best fit line shown (dashed line)

Figure 40: Telia stock linearized with best fit line shown (dashed line)

36



Figure 41: Atlas Copco residuals between observed and expected stock prices

Figure 42: Electrolux residuals between observed and expected stock prices

Figure 43: H&M residuals between observed and expected stock prices
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Figure 44: Investor residuals between observed and expected stock prices

Figure 45: Kinnevik residuals between observed and expected stock prices

Figure 46: Sandvik residuals between observed and expected stock prices
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Figure 47: Swedbank residuals between observed and expected stock prices

Figure 48: Tele2 residuals between observed and expected stock prices

Figure 49: Telia residuals between observed and expected stock prices
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D Figures - Processed data; Fourier transform

Figure 50: Fourier transform of Atlas Copco residuals

Figure 51: Fourier transform of Atlas Copco residuals, zoomed in

Figure 52: Fourier transform of Electrolux residuals
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Figure 53: Fourier transform of Electrolux residuals, zoomed in

Figure 54: Fourier transform of H&M residuals

Figure 55: Fourier transform of H&M residuals, zoomed in
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Figure 56: Fourier transform of Investor residuals

Figure 57: Fourier transform of Investor residuals, zoomed in

Figure 58: Fourier transform of Kinnevik residuals
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Figure 59: Fourier transform of Kinnevik residuals, zoomed in

Figure 60: Fourier transform of Sandvik residuals

Figure 61: Fourier transform of Sandvik residuals, zoomed in
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Figure 62: Fourier transform of Swedbank residuals

Figure 63: Fourier transform of Swedbank residuals, zoomed in

Figure 64: Fourier transform of Tele2 residuals
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Figure 65: Fourier transform of Tele2 residuals, zoomed in

Figure 66: Fourier transform of Telia residuals

Figure 67: Fourier transform of Telia residuals, zoomed in

E MatLab code

The Matlab code used for the data processing and analysis can be provided by request.
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