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Abstract
During this thesis, work has been done towards realizing a short-wave infrared (SWIR) laser source
based on optical parametric amplification. It is planned that this setup should be able to produce
few-cycle laser pulses at 2 µm with a stable carrier-envelope phase (CEP). This will be done by
using various nonlinear processes to convert the output from a 1030-nm, 200 kHz laser source,
based on Yb-doped rod-fiber amplifiers.

During my work, the first part of the envisioned SWIR source has been implemented: A super-
continuum has been generated, to provide a broadband seed for a non-collinear optical parametric
amplifier (NOPA). The NOPA also requires a pump beam, which was produced using second-
harmonic generation to obtain light at 515 nm. Finally, the NOPA was implemented using the
supercontinuum seed and the pump beam.

The supercontinuum was generated through spectral broadening in a YAG crystal. The focusing
conditions and the length of the crystal were adjusted to obtain a flat and stable spectrum in the
wavelength range of interest (620 - 750 nm). The NOPA utilized a BBO crystal as a nonlinear
medium. Phase-matching simulations of the NOPA process was carried out to design an optimal
geometry for the amplification of the white light in the range of 640 - 750 nm. The NOPA
was subsequently implemented using the optimal parameters obtained from the simulations. The
resulting NOPA produced an output of 440 mW, using an input of approximately 5 - 6 mW of
supercontinuum power. The spectrum of the amplified supercontinuum stretched between 640 -
695 nm. The gain of the NOPA is satisfying, however, the bandwidth is narrower than desired.
Further improvements can be done to the amplifier such as removing residual chirp from the
supercontinuum to further increase the bandwidth.

In future work, a stage performing difference frequency generation will be implemented, which
will provide CEP-stable SWIR pulses.
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Popular science summary
Optical amplification of white light as a first step towards ultrashort laser pulses

In this master thesis, an infrared, pulsed laser was used to produce colorful, so called "white
light", of which a part of was amplified using an optical amplifier. This is the first part of a planned
larger setup (shown below), which can be used to, for example, produce ultraviolet light and possi-
bly X-rays. Laser pulses at these wavelengths can be extremely short, which can be used to study
extremely fast events, like the motion of electrons. Ultrashort laser pulses can also be used for such
different things as the study of dissociation of molecules and eye surgery.

Ultrashort laser pulses are the shortest event in time created by humans. Currently it is
possible to generate laser pulses in the timescale of attoseconds, which also is the timescale of
electron motion. An attosecond is 10−18 s, or 0.000000000000000001 seconds. To put this into
perspective, a really fast blink of the eye takes 0.1 s. This means that there is literally 100 million
billion attoseconds during the blink of an eye. I suggest you blink right now to really get the idea.

In order to generate such short laser pulses, the wavelength of the light must also be very
short. For attosecond laser pulses the light must at least be in the extreme ultraviolet (XUV).
Unfortunately, there are no lasers today that can produce light with such a short wavelength, so
alternative methods are required. A popular method is to take the light from an existing laser
(usually an infrared laser) and convert this into light with much shorter wavelength (XUV).

My master thesis is the very of the first step of this process. We have taken infrared light at
a wavelength of 1030 nanometers (nm, 10−9 m) from an existing laser and used it to produce so
called white light. The light is in fact not necessarily white, it rather has a green/yellow color,
but just like white light it has a very broad spectrum of colors. The white light was produced
by sending intense infrared light through a crystal. Part of the white light, with an orange/red
color, was then amplified using an optical parametric amplifier. This kind of amplifier works by
using strong light to amplify weaker light. This is done by sending both beams of light through a
suitable crystal. In this case, we used very intense green light to amplify the white light. The goal
was to obtain amplified light between 620 - 750 nm.

The result is that a working amplifier was implemented. The amplifier provided an output
power of 440 mW, which is a very good number. Unfortunately, the spectrum of the amplified
light only covered 640 - 695 nm. This should however be possible to improve with further work.

The journey towards very short wavelength light and attosecond pulses will be continued by
converting the amplified light back to infrared, but this time with a wavelength of 2000 nm. So the
purpose of the whole process of creating white light and then amplifying it with green light, is to
eventually end up with light that has roughly twice the wavelength of what we started with. This
light can then finally be used for new and exciting investigations of generation of XUV light in
gases as well as solid materials. The reason to why we want a longer wavelength, is that the process
that we use to produce XUV light, called high-harmonic generation, depends on the wavelength.
Rather counterintuitively, it produces light with a shorter wavelength, the longer wavelength
light you put into it. The generated light can both be used to obtain information of the properties
of the material and to produce ultrashort, attosecond laser pulses.

Schematic drawing of the process of how infrared light can be used to create ultrashort laser pulses.
The laser itself produces pulsed light, but the pulses are much longer than what is desirable. The
infrared light from the laser is first split up. One part is used to generate white light, which a part
of is then amplified using the green light. The amplified light is then converted back to infrared at
2000 nm (2 µm) and amplified again. Finally the light is used to generate XUV light (and possibly
even X-rays).
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Physical constants
c = 299792458 m/s - speed of light in vacuum
ε0 = 8.8542 · 10−12 F/m - permittivity of free space
e = 1.6022 · 10−19 C - electron charge
me = 9.1094 · 10−31 kg - electron mass
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1 Introduction
Ultrashort laser pulses are currently the shortest events in time made by humans. They are
commonly used to study fast-evolving physical phenomena, such as electron motion in atoms and
molecules [1] and electric field oscillations of other laser pulses [2]. At the time of writing, the
shortest laser pulse ever created had a duration of 43 attoseconds (as, 10−18 s) [3]. In order
to create such short pulses, the light must also have a short wavelength. This can be explained
through the time-bandwidth product. As it turns out, the product of the time duration ∆τ and the
bandwidth ∆ν of a laser pulse is limited by a constant C, that is, ∆τ∆ν ≥ C [4]. The constant C
depends on, for example, the pulse shape. In order to support a pulse with a short time duration,
a large bandwidth is thus needed. Since the spectrum of the pulse is centered around the carrier
frequency, a high carrier frequency is thus needed to support the wide bandwidth. This corresponds
to a short carrier wavelength. For the case of few-cycle pulses with a duration on the timescale of
attoseconds, it turns out that the carrier wave should be at least in the extreme ultraviolet (XUV)
[4].

A method of creating coherent light with such short wavelengths is through the process of high
harmonic generation (HHG). This is a non-linear process where intense laser light interacts with
a medium, which results in the upconversion of the fundamental light into the extreme ultraviolet
or even soft X-ray regime [5]. An atomic gas is usually used as the non-linear medium, although
HHG has been reported in solids as well [6]. HHG in gases can be described with a three-step
model [7], which is explained in a more simple way by reference [8]: First, atoms in the medium
are tunnel-ionized by the driving field, leading to free electrons. Secondly, the free electrons are
accelerated by the electric field of the laser light. Lastly, the electrons recombine with the atoms,
and photons are emitted, whose energy is the sum of the ionization energy and the accumulated
kinetic energy. The three-step process repeats for each half cycle of the fundamental field. Hence,
the process is periodic in time. The periodicity translates via Fourier transformation into frequency
space and modulates the spectrum. There will only be distinct harmonic peaks with a separation
of twice the driving frequency, the "harmonics". The frequency spectrum of the resulting light
has a distinct shape: Its intensity decreases exponentially for the first couple of harmonics, after
which a plateau is formed. At this point the intensity of the spectrum stays constant for a large
number of harmonics. Eventually a cutoff is reached and the amplitude drops rapidly [9]. In the
single-atom picture, the maximum photon energy Emax corresponding to the cutoff is given by [7]

Emax = Ip + 3.17Up = Ip + 3.17
E2

4ω2
, (1)

where Up = E2/4ω2 is the ponderomotive energy of the driving field, E is the electric field
strength of the laser, ω is the angular frequency of the laser light and Ip is the atomic ionization
potential.

As equation (1) shows, Emax increases for a decreasing ω. This means that for driving pulses
with a longer wavelength, the photons created in the HHG process will be more energetic, which
corresponds to a shorter wavelength of the resulting light. HHG is routinely performed in the
near-infrared (NIR), so increasing the wavelength of the driving field towards the mid-infrared
(MIR), will thus make it possible to obtain more energetic photons. There do exist lasers in the
mid-infrared, but due to scalability difficulties with power, pulse duration and repetition rate [10]
this is not a preferable solution for HHG. It is not possible to obtain short pulses with high power
and stable CEP from such MIR lasers.

An increasingly popular approach is to use nonlinear processes of frequency conversion and
amplification to acquire short, high-power pulses at the frequency of interest. This is also the
approach used in this thesis. The laser light that will be used for this is taken from a laser system
based on Yb-doped fiber rod amplifiers (a schematic drawing of this system is shown in figure
1). This system produces femtosecond pulses at 1030 nm at a repetition rate of 200 kHz, with a
maximum power of 40 W.

The light from this source will be converted and amplified through a variety of nonlinear
processes, and the plan is to obtain very short, few-cycle pulses centered at 2 µm. This is in the
short-wave infrared (SWIR) wavelength range, which stretches between 1.4 - 3 µm. The resulting
light will have twice the wavelength of the light from the 1030-nm source. High photon energies
can thus be obtained through HHG, in accordance with equation 1. Furthermore, by generating
few-cycle pulses, it will be possible to obtain only a few (ideally one) attosecond pulse after HHG.
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Figure 1: The light for the SWIR setup is taken from a Titanium-Sapphire (Ti:Sa) oscillator. Part
of the spectrum from the oscillator around 1030 nm is picked and amplified. The amplification is
done with a preamplifier and two Ytterbium-doped rod fiber amplifiers.

It would actually probably be possible to generate high harmonics from the 1030-nm source as well,
however, due to the long pulses it produces (more than 100 cycles per pulse), the HHG would also
result in many pulses, which is undesirable. The high repetition rate of 200 kHz will also be useful,
since, although the maximum energy of the HHG increases for long wavelengths, the efficiency of
the process drops as approximately λ−6.5 [11]. A high repetition rate is therefore needed to obtain
a suitable photon flux or to realize good statistics, for example in photoemission experiments. The
high repetition rate will however require a very dense gas target [12], which will be challenging
from an engineering point of view.

For few-cycle pulses the carrier-envelope phase (CEP) becomes important. The concept is
illustrated in figure 2. The CEP of a laser pulse, denoted by φCEP, is the offset between the peak
of the pulse envelope and the strongest half cycle of the carrier wave.

Figure 2: Definition of the carrier-envelope phase (CEP). The CEP (φCEP) is the offset between
the peak of the pulse envelope and the strongest half cycle of the carrier wave.

The CEP has a large influence on the shape of few-cycle pulses. Figure 3 compares a few-cycle
pulse with a multi-cycle pulse for two different CEPs. The change in shape is very clear for the
few-cycle pulse, while for the multi-cycle pulse it is hard to distinguish. This means that the
electric field strength in different half cycles of the pulses has a strong dependence on the CEP for
few-cycle pulses.

HHG is strongly dependent on the electric field strength E through the ponderomotive energy.
This will result in an HHG spectrum that is strongly dependent on the CEP [13, 14]. As can be
seen in figure 3, the maximum field strength of pulse a) is larger than the maximum field strength
of pulse b). Pulse a) should then be capable of producing more energetic photons. For the multi-
cycle pulses in c) and d), however, there is far less difference in the maximum field strength, so the
CEP is less important. It is also important to note the effect the CEP has on the symmetry of the
amplitude of the pulses. In HHG, the electric field of the pulse accelerates the ionized electrons,
causing a recollision event. Since the pulse in figure 3 b) has inversion symmetry, there are two
half cycles that give similar recollision dynamics. However, the recollision also depends on the
previous half cycle. The previous half cycle is what causes the tunnel-ionization (which is a highly
nonlinear process). The pulse in figure 3 b) will therefore produce two pulses of different intensity.
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Figure 3: Comparison of the CEP effect on the pulse shape for few- and multi-cycle pulses. The
difference is much greater for few-cycle pulses (a and b) than for multi-cycle pulses (c and d).

The pulse in figure 3 a) has on the other hand only one strong half cycle, so it is likely that this
pulse will only produce one attosecond pulse. Because the CEP has such a great impact on the
HHG process, control of the CEP is very important.

The CEP generally varies from pulse to pulse and must therefore be stabilized. Both active and
passive CEP stabilization is possible [13]. In an active stabilization scheme the CEP is measured
and a feedback loop is used to stabilize the CEP. A passive scheme, for example, employs difference
frequency generation (DFG). DFG is a nonlinear process in which light at angular frequencies ω1

and ω3 combine to create light at angular frequency ω2 = ω3 − ω1, where ω3 > ω1 [15]. What is
important is that the CEP of the wave at ω2 will be the difference between the CEP of the waves
at ω1 and ω3 [13], if the waves at ω1 and ω3 both are taken from the same source. Then, both
waves will have the same phase fluctuations, and any variation in their phases will be cancelled
in the DFG process and the wave at ω2 will therefore have a constant CEP. It is the passive
CEP-stabilization scheme that will be used for the laser presented here.

Figure 4: Schematic block diagram of the proposed final setup. SCG - supercontinuum generation,
SHG - second-harmonic generation, NOPA - non-collinear optical parametric amplifier, DFG -
difference-frequency generation. A supercontinuum is generated and part of it will be amplified
in the NOPA. SHG is used to produce the pump for the NOPA. DFG is then performed between
the amplified supercontinuum and the fundamental light at 1030 nm. Finally the output from the
DFG will be amplified in a second NOPA. The black box indicates the parts that were implemented
during the work of this thesis.

The setup that has been proposed to generate CEP-stable SWIR pulses is shown in figure
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4. A compressor (not shown) is first used to compress the 1030-nm pulses to minimal duration
(approximately 400 fs). The pulse is split several times and guided to the different stages of the
SWIR source. The first stage is the supercontinuum generation (SCG), where the pulse is spectrally
broadened in a YAG crystal. A previous master thesis [16], performed at the same research group
as this thesis, investigated supercontinuum generation in a variety of materials. It was found that
YAG was a particularly suitable medium, hence the choice of a YAG crystal for supercontinuum
generation. The supercontinuum is then amplified using a noncollinear optical parametric amplifier
(NOPA). In this process energy is taken from a pump beam and transferred to a signal beam (the
supercontinuum). Here, second-harmonic generation (SHG) is used to create the pump beam. In
the SHG process, the frequency of the fundamental light is doubled in a nonlinear crystal. This
will result in light at a wavelength of 515 nm. The corresponding photon energy is sufficient to
pump the NOPA, which amplifies the supercontinuum between 620 - 750 nm. The first NOPA
stage provides a suitable pump beam for the DFG process with the 1030-nm radiation. The pulse
is then finally amplified in a second NOPA, using the 1030-nm radiation as pump.

The proposed setup has been made by the team working in the lab where the setup will be
used, and is based on similar, existing setups, such as the one described by reference [17]. This
is a large, complex system, and during the work of this thesis, only the first part, as indicated
by the black box in figure 4, was implemented (SHG, SCG and NOPA). I also followed the work
during the setup of the compression and evaluated the measured data, so the compression will
be covered as well. I have made all the calculations in this thesis. Building smaller set-ups for
testing, for example for second-harmonic generation or supercontinuum generation, was done under
supervision. The acquisition and analysis of the data was performed independently. Each of the
parts of the setup will be presented in succession, since the results from the different parts will
affect the implementation of the following parts. First the compression is discussed. Then the two
inputs to the NOPA are covered, the SHG and the SCG. The results from these sections will then
be used in the section about the NOPA. Finally, the future implementation of the rest of the setup
will be discussed and also possible applications.
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2 Ultrafast optics and pulse compression
The laser source that will be used for this setup (as shown in figure 1), employs a technique
called chirped-pulse amplification, for which the Nobel prize in physics has been awarded in 2018.
The idea is that dispersion is used to stretch the pulses in time, by rearranging the frequency
components temporally (adding "chirp" to the pulse, in analogy to acoustics). The increased
pulse duration leads to less intense pulses, which can then be amplified without risking non-
linear effects or possibly even damage to the amplifier. This however means that the pulses must
be compressed after the amplification in order to reach minimum time duration and maximum
intensity. Although in this example dispersion is purposefully introduced to the pulses, dispersion
is usually an unwanted, but omnipresent side effect in an optical system, resulting from propagation
through optical components. For this reason, this first section will discuss the phenomena of
dispersion, chirp and compression. The concept of chirp will also appear when discussing the
supercontinuum. A method called interferometric autocorrelation that characterizes the pulse
structure temporally and was used to minimize the pulse duration will also be covered. This
section will, however, begin with discussing some basics of ultrafast optics, which will be useful
throughout this thesis.

2.1 Basic ultrafast optics
Ultrafast pulses are composed of several frequencies, so that they have a broad spectrum. Fur-
thermore, the temporal shape of the pulses depends on how the frequency components are phased
with respect to each other. Different optical components have different effects on laser pulses as
well. It is therefore necessary to discuss the basic principles of ultrafast optics. This will be done
in the following sections, closely following reference [15].

Consider a light pulse U(t) at central frequency ω0 with the envelope A(t), as described by [15]

U(t) = A(t) exp (i(ω0t+ φ(t))), (2)

where φ(t) is a phase factor. The phase of the electromagnetic wave U(t) is therefore ω0t+φ(t).
The intensity of the pulse is given by I(t) = |A(t)|2 [15]. Usually, Gaussian pulses describe laser
pulses very well. They have an intensity given by I(t) ∝ exp (−2t2/τ2) [15], where τ is a time
constant describing the width of the function.

The spectrum of the pulse is described by its Fourier transform V (ν) [15]:

V (ν) = |V (ν)| exp (iψ(ν)), (3)

where S(ν) = |V (ν)|2 is the spectral intensity and ψ(ν) is the spectral phase. The temporal
and spectral width of the pulse are the width of the intensities I(t) and S(ν). As criterion for the
width, the full-width at half maximum (FWHM) is used, and the widths are denoted τFWHM and
∆ν, respectively. Since V (ν) is the Fourier transform of U(t), the widths of V (ν) and U(t) are
inversely proportional [15]. For a Gaussian pulse, with a constant frequency carrier-wave (that is,
a pulse without chirp), the relation is given by the time-bandwidth product [15]:

τFWHM∆ν = 0.44. (4)

Equation (4) can be used to estimate the pulse duration from the spectral width, and vice
versa.

The frequency ν and the wavelength λ of an optical wave in vacuum are related by [15]

c = λν, (5)

where c is the speed of light in vacuum. This equation is useful for converting between wave-
length and frequency, since both will be used throughout this thesis.

The width in wavelength ∆λ and the width in frequency ∆ν can also be related to each other.
However, these are differential variables and subsequently the expression is more complex. The
relation is given by [15]

∆λ =
λ20
c

∆ν

1− (∆ν/2ν0)2
. (6)
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The instantaneous angular frequency ωi is obtained by taking the derivative of the phase of
U(t), which gives [15]:

ωi = ω0 +
∂φ

∂t
. (7)

The angular frequency ω is related to the frequency ν by ω = 2πν [15]. Note that if ∂φ
∂t = 0,

the instantaneous frequency will simply equal the central frequency. If instead ∂φ
∂t has a time

dependence, so that the second derivative of the phase φ′′ 6= 0, the instantaneous frequency will
change in time [15]. This is called chirp. If the frequency is increasing at the pulse center, so
that φ′′ > 0, the pulse is up-chirped [15]. If the frequency on the other hand is decreasing, the
pulse is down-chirped. More specifically, if the phase is a quadratic function φ(t) = at2/τ2, the
instantaneous frequency will change linearly over time and the pulse is therefore called linearly
chirped. The constant a is called the chirp parameter and is given by [15]

a =
1

2
φ′′τ2, (8)

which is obtained by differentiating the quadratic phase function twice.
Figure 5 shows one up-chirped and one down-chirped pulse. Note that the unit on the x-axis

is time, so that the leading edge of the pulse is the leftmost part in the plot, since this part will
arrive earlier in time.

Figure 5: Chirped pulses. Pulse a) is up-chirped and pulse b) is down-chirped.

2.1.1 Gaussian pulse

If a pulse is transform-limited, the time-bandwidth product of the temporal and spectral widths is
minimum [15]. This occurs when the Gaussian pulse has a constant phase factor φ and therefore
no chirp. Equation (4) then gives the time-bandwidth product of a transform-limited Gaussian
pulse. A transform-limited Gaussian pulse has the complex envelope and intensity as given by
equations (9) and (10) [15].

A(t) = A0 exp (−t2/τ2) (9)

I(t) = I0 exp (−2t2/τ2) (10)

The time constant τ is related to the FWHM width of the intensity I(t) by τFWHM =
√

2 ln 2τ
[15]. An interesting property of the Gaussian pulse is that the Fourier transform of the Gaussian
pulse is also a Gaussian pulse [15]. The spectral intensity of an unchirped Gaussian pulse is given
by [15]

S(ν) ∝ exp (−2π2τ2(ν − ν0)2), (11)

which indeed has a Gaussian shape.
As will be explained in the next section, chirp can be added to a pulse through dispersion;

this will result in the rearrangement of the frequency components of the pulse. This will lead to a
temporal broadening of the pulse, so that the intensity will be given by
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I(t) = I0 exp (−2t2/τ2(1 + a2)). (12)

The amount of broadening thus depends on the amount of chirp through the chirp parameter
a. However, adding chirp to a pulse will only redistribute the frequency components over time,
not add any new frequencies. The spectral intensity, as given by equation (11), will therefore be
unchanged for a chirped pulse.

Comparing equation 10 and equation 12 shows that the temporal width of the chirped pulse is
increased by a factor

√
1 + a2. Equation 4 will therefore be modified for a chirped Gaussian pulse,

so the time-bandwidth product will be given by

τFWHM∆ν = 0.44
√

1 + a2, (13)

according to reference [15].

2.1.2 Dispersion

As previously mentioned, dispersion can cause an optical pulse to become chirped. This section
will introduce dispersion and show how this can result in a chirped pulse. Dispersion can however
also be used to remove chirp, as will be explained in the following section about compression.

Dispersion is the wavelength dependence of the refractive index of the material, so that the
phase velocity v of the wave in the material depends on the wavelength according to equation
(14) [15]

v =
c

n(λ)
. (14)

The phase velocity is the speed at which a point of constant phase on the wave travels. This
point can for example be a peak of the electric field. This peak will then travel at a speed of the
phase velocity.

Dispersion also affects the group velocity. The group velocity is the speed at which a change
in amplitude of the wave travels, that is, for a pulsed wave it is the speed at which the envelope
travels. The group velocity vg is given by [15]

vg =
c

n− λdndλ
. (15)

Equation (15) is of the same form as equation (14), except that the term −λdndλ is added to
the refractive index. Most optical materials in the visible and infrared range have an increasing
refractive index with decreasing wavelength [15], so that dn

dλ < 0. In this case, the denominator in
equation (15) is larger than in equation (14), so that vg < v. The effect of the difference between
v and vg is illustrated in figure 6, where a laser pulse is depicted at three moments in time.

Figure 6: A laser pulse depicted at three moments in time, where vg < v. The central half cycle
of the electric field will arrive progressively earlier in time than the pulse envelope due to the
higher velocity of the electric field. Note that the pulses are depicted in space, where z is the space
coordinate.

Just like the phase velocity, dispersion also affects the group velocity, since the group velocity is
dependent on the refractive index. For pulsed light, the wavelength of the carrier wave will therefore
determine the speed at which the pulse travels. However, because the pulse actually comprises a
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spectrum of wavelengths, the different spectral components of a pulse will travel at different speeds.
This phenomenon is called group velocity dispersion (GVD), and results in a temporal broadening
of the pulse. The amount of broadening caused by GVD will naturally depend on the derivative
of the group velocity with respect to the wavelength. A large derivative means a large change in
group velocity with wavelength, which will cause a large broadening of the pulse. In reference [15],
the amount of broadening is quantified by the dispersion coefficient Dλ, as given by

Dλ = −λ0
c

d2n

dλ20
, (16)

where λ0 is the central wavelength. The broadening for a Gaussian pulse is given by

στ = |Dλ|σλz, (17)

where στ is the temporal broadening, σλ is the spectral width of the pulse and z is the propa-
gation distance. Note that equation (17) is an approximation; it only holds when the broadening
is much larger than the initial pulse duration.

Group velocity dispersion is what causes the chirp of the pulse, due to the temporal redistribu-
tion of the frequency components of the pulse. The amount of chirp depends on the magnitude
of the dispersion coefficient Dλ, as equation (17) shows. The sign of Dλ will on the other hand
determine whether the pulse will be up- or down-chirped (that is, the sign of the chirp). In the
case when the dispersion coefficient Dλ < 0, longer wavelengths will travel faster than shorter
ones, which is called normal dispersion [15] (since this is the normal case in most materials in
the visible and near-infrared). This will result in an up-chirped pulse. The opposite case, when
Dλ > 0, is called anomalous dispersion and causes shorter wavelengths to travel faster than longer
ones [15]. This will result in a down-chirped pulse. The process of how normal dispersion leads to
an up-chirped pulse is illustrated in figure 7.

Figure 7: A laser pulse depicted before (left) and after (right) experiencing GVD. In this case the
high frequencies are delayed more than the low frequencies (normal dispersion), which causes the
chirp and subsequent temporal broadening.

2.1.3 Pulse compression with a chirp filter

As has just been shown, dispersion can be used to add chirp to a pulse. One or more dispersive
optical elements can be combined into what is called a chirp filter [15]. A chirp filter can be used
to both add or remove chirp. Removing chirp can be accomplished if the chirp introduced by the
chirp filter has the opposite sign of the chirp of the pulse [15]. This means that a chirp filter can
be used to compress a chirped pulse, since the unchirped pulse will have a shorter time duration
than the chirped one (compare the time-bandwidth products of an unchirped and chirped Gaussian
pulse in equations (4) and (13)).

Pulse compression is an essential first step of the envisioned SWIR setup, since the 1030-nm
laser source is based on chirped-pulse amplification and therefore produces pulses with a significant
chirp. Reversing the chirp of the pulses through compression will therefore provide much shorter,
much more intense pulses. Compression may also be needed at other positions in the SWIR setup
as well, since the pulses will gain some chirp by travelling through the various optical components
of the setup.

As previously mentioned, most materials exhibit normal dispersion in the visible and near-
infrared. The compressor must therefore introduce anomalous dispersion. This can be accom-
plished by using optical components exhibiting angular dispersion, for example prisms and grat-
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ings. These can be arranged so that they introduce negative chirp, which can then compensate for
the usually positive chirp caused by the normal dispersion of an optical system.

Figure 8 shows how two gratings can act as a chirp filter. This is what will be used in the
SWIR setup. Due to the wavelength dependence of the deflection angle of the grating, the red
light has to travel a longer distance than the blue light and will therefore be delayed more. That
is, the path PACR of the red light in figure 8 is longer than the path PABQ of the blue light. This
indicates that this setup would possibly be able to introduce the desired negative chirp. This is
indeed the case, which is shown in great detail in reference [18]. The most important results of
that paper will be summarized in the following, and the reader is referred to the paper for the
complete derivation.

Figure 8: A grating compressor using the angular dispersion of the two gratings. Negative chirp
is introduced since the path PABQ is shorter than PACR. Adapted from [18].

The phase shift of an optical wave that travels through the compressor is denoted by ϕ. The
corresponding time delay τ is given by

τ =
∂ϕ(ω)

∂ω
= τ0 −

ω − ω0

µ
+O(ω − ω0)2, (18)

which is a linear expansion around the central frequency ω0, so that τ0 and µ−1 are the values τ
and −∂τ/∂ω, evaluated at ω = ω0.

The first term, τ0, is the group delay at ω0. The second term, µ−1(ω − ω0), is the change in
group delay at the frequency ω compared to the group delay at the central frequency. This term
accounts for the linear chirp introduced by the gratings, since µ depends on the second derivative
of the phase shift ϕ. It may, however, be needed to include higher-order terms as well in order to
treat broader bandwidths, which is indicated by the last term. The constants τ0 and µ−1 are given
by

τ0 =
b

c
(1 + cos θ) (19)

and

µ−1 = − ∂τ
∂ω

=
4π2cb

ω3d2(1− ((2πc/ωd)− sin γ)2)
, (20)

where d is the grating constant, c is the speed of light in vacuum, and b = AB = g· sec(γ − θ)
is the distance between A and B in figure 8.

Equation (18) can be used to determine the output B(t) from the compressor. Assume that the
input is a wave A(t) exp (iψ(t)) exp [−iω0t]. The output of the compressor can be found by taking
the Fourier transform of the input wave, multiplying it with the phase shift exp (iϕ(ω)) introduced
by the compressor and then take the inverse transform. The phase shift ϕ is obtained through
integration of equation (18). This results in the output

B(t′ + τ0) = (
µ

2π
)1/2 exp [i(ϕ0 −

π

4
− ω0(t′ + τ0))]

∫
A(t) exp (iψ(t)) exp [i

µ

2
(t− t′)2]dt. (21)
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To obtain the output of a chirped pulse, equation (21) will first be rewritten slightly:

B(t′ + τ0) exp [iω0(t′ + τ0)] = (
µ

2π
)1/2 exp [i(ϕ0 −

π

4
)]

∫
A(t) exp (iψ(t)) exp [i

µ

2
(t− t′)2]dt. (22)

A chirp ψ(t) = − 1
2µt

2 is then introduced to the input pulse, resulting in a total input of
A(t) exp [−i(ω0t+ 1

2µt
2)]. This results in a phase with a quadratic dependence, which is consistent

with a linearly chirped pulse with a frequency that changes at a rate −µ. Note that the assumed
chirp parameter−µ of the input pulse is the same, but of opposite sign as the linear chirp introduced
by the grating pair. Insertion of the chirped pulse into equation (22) will result in the output

B(t′ + τ0) exp [iω0(t′ + τ0)] = (
µ

2π
)1/2 exp [i(ϕ0 −

π

4
)] exp [i(µ/2)t′2]

∫
A(t) exp (iµt′t)dt. (23)

Note the factor exp [i(µ/2)t′2] before the integral. This factor will add a chirp that is exactly
the opposite of the input pulse, which shows that the grating pair indeed works as a compressor.
The geometry of the gratings determines the value of µ (equation (20)), so the geometry can be
adjusted to obtain the correct factor µ to reverse the chirp of the input pulse. However, this is
only true for narrow bandwidths, due to the linear expansion of the group delay in equation (18).
Furthermore, it is assumed that the input pulse is Gaussian.

2.1.4 Interferometric autocorrelation

The previous section discussed the need for pulse compression in the setup and how this can
be achieved with a grating compressor. As was noted, the geometry of the compressor must be
adjusted to obtain the greatest compression. A method to characterize the chirp after compression
is thus needed. A straight-forward way to achieve this goal is to make use of an interferometric
autocorrelator. An implementation of this is shown in figure 9.

Figure 9: The autocorrelator consists of an interferometer and a nonlinear crystal. The incoming
pulse is split into two identical pulses. One of the mirror pairs can be moved, in order to change the
delay between the pulses. Both pulses are recombined and focused into a nonlinear crystal, creating
light at the second-harmonic frequency (515 nm). Because of the nonlinearity, substantially more
light will be created when the delay is adjusted so that the pulses overlap. A bandpass filter is
used to remove the fundamental light at 1030 nm so that only the second harmonic reaches the
spectrometer. SHG - second-harmonic generation.

The pulse is sent into an interferometer and then focused into a nonlinear crystal (more about
nonlinear optics and second-harmonic generation in section 3 and appendix 1). In the interfero-
meter the incident pulse is split equally into two pulse copies using a beamsplitter. The two pulse
copies are guided by two mirrors each and then recombined. One of the mirror pairs can be moved
in order to change the delay of one pulse copy with respect to the other. The pulses are then
recombined and focused into the nonlinear crystal, which essentially performs a squaring opera-
tion, which results in light at 515 nm. A bandpass filter is used to filter out the fundamental
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light, and the spectrum from the autocorrelator is measured with a fiber spectrometer. Normally,
interferometric autocorrelation is performed with a photodiode, however, due to the availability of
measurement equipment, a spectrometer was used. To obtain the total intensity of the second har-
monic, the spectral intensity can simply be integrated around the wavelength of interest (515 nm).
Furthermore, it is also possible to use the shape of the second-harmonic spectrum as an indicator
for the compression as well.

The idea behind interferometric autocorrelation is to use the interference pattern that is pro-
duced to estimate the chirp and duration of a pulse (the pulse will in this case come from the
compressor). When the delay of the interferometer is adjusted so that both arms have equal path-
length, the pulse copies will perfectly overlap in the nonlinear crystal and the interference will be
constructive, resulting in the largest amount of second-harmonic light. Changing the delay just
ever so slightly, will cause the interference to go from constructive to destructive and in principle
no light will be obtained. However, the greater the delay between both pulse copies get, the less
they will overlap. This will reduce the contrast of the interference pattern, until the point at which
the pulses no longer overlap and thus no interference can be observed. This also shows that the
width of the interference pattern is related to the width of the pulse.

The interference pattern is given by [15]

R
(2)
U (κ) =

∫
|(E(t) + E(t− κ))2|2dt, (24)

where κ is the time delay and E is the electric field of the pulse. Note the two squaring
operations within the integral expression. The first one is due to the squaring operation of the
nonlinear crystal. The second one is due to the fact that it is the intensity that is measured, which
depends quadratically on the electric field [15]. This shows that if both pulse copies are perfectly
overlapping in the nonlinear crystal, the electric field will be twice that of a single pulse, 2E. This
will be squared twice, giving a measured intensity of 16E4. In contrast, if the delay κ is adjusted so
that the pulse copies are not overlapping in the crystal, each pulse will only result in the intensity
E4. After integration this gives 2E4. The contrast will therefore be 16E4/2E4, or 1:8 [4]. Note
that, without a nonlinear crystal, the contrast would only be 1:2, due to the loss of one of the
squaring operations in equation (24). The nonlinear crystal is also necessary to obtain information
about the spectral phase [15], which means that it will be possible to estimate the chirp from the
interference pattern, as will be shown in the following.

For a Gaussian pulse with time constant κ0 and chirp parameter a, the integral in equation
(24) computes to [15]

R
(2)
U (κ)

R
(2)
U (∞)

=1 + 2 exp(−κ2/κ20)+

4 exp(−(3 + a2)κ2/4κ20) cos(aκ2/2κ20) cos(ωκ)+

exp(−(1 + a2)κ2/κ20) cos(2ωκ),

(25)

when normalized with the asymptotic value R(2)
U (∞). The resulting autocorrelation trace from

equation 25 is plotted in figure 10, for a pulse with λ = 1030 nm, τFWHM = 20 fs and a = 0, 2, 4.

Figure 10: Interferometric autocorrelation trace for a 20 fs, 1030 nm pulse for chirp parameters
a = 0, 2, 4.
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As the figure shows, the ratio of the amplitudes of the autocorrelation trace between perfect
pulse overlap and no overlap is indeed 1:8. However, the width of the trace is narrower the more
the pulse is chirped, even though the pulses for which the traces in figure 10 are plotted for have
the same length (in reality, when the autocorrelator is used in conjuction with pulse compression,
the chirped pulses will in fact have a longer duration). Using the width of the trace is therefore
deceptive when compressing a chirped pulse. However, the profile of the trace where the oscillation
stops also depends on the chirp. The more the pulse is chirped, the more the trace is bent upwards
at these points as can be seen from the figure. It is therefore better to use the profile of the trace
to deduce the magnitude of the chirp. It is not possible to determine the sign of a from the profile,
as indicated by equation (25), which is an even function of a. So for example, both a = 2 and
a = −2 will result in the same trace.

2.2 Compression of narrowband amplified pulses at 1030 nm
2.2.1 Setup

The compression setup is shown in figure 11. The pulses from the laser source (as shown in figure
1) are guided to the grating compressor. The compressor consists of two transmission gratings.
The compressor was previously discussed for reflection gratings, but the principle is the same for
transmission gratings. The beam is dispersed by the first grating, after which it hits the second
grating. The gratings are parallel to each other and the distance between them can be adjusted
to maximize the compression. The beam is then reflected back using a retro reflector, which also
lowers the beam so that it travels along the same path as the first beam but can be picked up by a
mirror at a lower height after the compressor. As figure 8 shows, there will be a spatial separation
of the different frequency components after the two gratings, which leads two a spatial chirp. The
use of a retro reflector will let the beam travel back along the same path in the compressor, thus
removing the spatial chirp. After the compressor the beam is guided to the autocorrelator and the
spectrum of the second harmonic is measured with a fiber spectrometer.

Figure 11: Setup for the compression. P - periscope.

2.2.2 Results and discussion

Figure 12 shows the autocorrelation trace for the compression that gives the shortest pulse duration.
The width of the trace is 594 fs.

As can be seen in figure 12, the autocorrelation trace does not look like the ideal one (compare
to figure 10). Most notably, the amplitude of the oscillation reaches a minimum (at around -500 fs
and 500 fs, respectively) but increases again after this. This can be the result of noise and possibly a
multi-pulse structure. The trace in figure 12 has been normalized so that the maximum amplitude
is 8. The contrast between the maximum and the baseline (the amplitude of the trace at which
the oscillation is ideally zero) is ideally 1:8. Although the oscillation is not zero, it can be seen
that the right endpoint of the trace is well centered around 1, but the left endpoint is centered
somewhat above 1. The reason for this may be that the autocorrelator is not perfectly aligned.

Studying the profile of the trace at the points where the oscillations are minimum shows that
the trace is relatively flat, it does not "bend up" like it does for a chirped pulse. This would suggest
that the pulse has relatively little chirp and therefore is well compressed. It is therefore reasonable
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to approximate the width of the pulse from the autocorrelation trace. This, however, requires the
knowledge of the pulse shape, which is not possible to deduce from the trace. The trace does have
a shape that is reminiscent of a Gaussian pulse, but the shape of the trace and the pulse are two
different things and does not necessarily have to be similar. For example, in a properly aligned
autocorrelator the trace is always symmetric, even though the pulse may not be so [4]. Since it
is not possible to determine the pulse shape from the trace, it is assumed that the pulse has a
Gaussian profile, since this is a common and not unreasonable assumption. Since the chirp of the
pulse is relatively small, the width of the trace can therefore be used to approximate the pulse
duration. For a Gaussian unchirped pulse the width of the autocorrelation trace is

√
2 times wider

than the actual pulse [15]. The width of the trace is 594 fs, so this gives a pulse duration of 420 fs.
The pulse duration will be approximated as 400 fs throughout the rest of this thesis, and will be
used to e.g. do various estimations of intensity.

Figure 12: Autocorrelation trace of the compressed pulse.
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3 Nonlinear optics and second harmonic generation
Part of the 1030 nm light will be frequency doubled and used as a pump for the NOPA. The reason
for the frequency doubling is that the photons of the pump must have a higher energy than the
photons of the light to be amplified. This section begins by discussing nonlinear optics in general,
which will be useful throughout this thesis. Second-order nonlinear effects will be discussed in
particular, which will be needed throughout this section, but for the parts about the NOPA and
DFG as well. Phase-matching will be discussed very rapidly (the whole discussion can be found in
appendix 1). Lastly, it will be shown how the SHG was implemented in the setup.

3.1 Nonlinear optics
An electric field E incident on a medium will introduce an electric flux density D as given by [15]

D = ε0E + P. (26)

The polarization density P characterizes the polarization response of the medium to an exter-
nal electric field. Generally, the polarization density depends on the electric field. Usually, the
polarization density P is approximated to be linear to the electric field, in which case the relation
is given by [15]

P = ε0χE, (27)

where χ is the electric susceptibilty of the material.
The polarization density P is a measure of the total displacement of all electrons due to the

electric field. At low electric field strengths, the displacement is small and the binding potential
of the electrons can be approximated with a quadratic, harmonic potential, which shows a linear
response. When the external field becomes reasonably large, however, the electrons are displaced
so far that they experience deviations from a harmonic potential and anharmonicities play into
their motion. At this point, the linear response approximation is no longer valid and higher-order
terms have to be included into the polarization density [19]. The nonlinear polarization density
can be written as a series given by [19]

P = ε0(χE + χ(2)E2 + χ(3)E3 + · · · ) = ε0χE + PNL, (28)

where χ(2) and χ(3) are the strength of the second and third order term of the electric suscep-
tibility. The coefficients χ(2) and χ(3) are usually very small, so it is often not necessary to include
more terms in the expansion. The coefficients χ(2) and χ(3) are actually tensors, so they depend
on the crystal orientation and/or polarization.

3.1.1 Second-order nonlinear effects

In this section, higher-order effects will be neglected and only second-order nonlinearities will be
discussed. The nonlinear polarization can then be written as

P
(2)
NL = ε0χ

(2)E2. (29)

It will here be of interest to see the effect of an electric field consisting of two harmonic com-
ponents:

E(t) =
1

2
[E(ω1) exp (iω1t) + E(ω1)∗ exp (−iω1t)] +

1

2
[E(ω2) exp (iω2t) + E(ω2)∗ exp (−iω2t)]. (30)

By inserting equation (30) in equation (29), five different frequency components of P(2)
NL will be

obtained at angular frequencies 0, 2ω1, 2ω2, ω1 +ω2 and ω1−ω2. These components are given by:

PNL(0) = χ(2)(|E(ω1)|2 + |E(ω2)|2), (31)

PNL(2ω1) = χ(2)E(ω1)E(ω1) cos(2ω1t), (32)

PNL(2ω2) = χ(2)E(ω2)E(ω2) cos(2ω2t), (33)
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PNL(ω1 + ω2) = 2χ(2)E(ω1)E(ω2) cos((ω1 + ω2)t), (34)

PNL(ω1 − ω2) = 2χ(2)E(ω1)E∗(ω2) cos((ω1 − ω2)t). (35)

Equations (32) and (33) describe the case where one wave is doubled in frequency. This is
called second-harmonic generation (SHG). The creation of a wave with angular frequency ω3 =
ω1 +ω2 (equation (34)) is called sum-frequency generation (SFG). Emission of a wave with angular
frequency ω3 = ω1 − ω2 (equation (35)) is called difference-frequency generation (DFG).

The nonlinear process takes place throughout the length of the crystal, which means that
light with the new frequency is continuously created as the fundamental light propagates through
the crystal. It is clear that the waves created at each point must have the same phase as the
previously generated waves, so their interference is constructive. Otherwise the interference would
be destructive and no light with the new frequency would be obtained. To maintain the right
phase, a phase-matching condition needs to be satisfied. If waves with angular frequencies ω1 and
ω2 efficiently generate a wave with angular frequency ω3, then the angular frequencies are related
by equation (36)

ω3 = ω1 + ω2. (36)

Equation (36) can be interpreted as an energy conservation condition, since the energy of a
photon is given by h̄ω [15]. The condition for energy conservation is then given by h̄ω3 = h̄ω1+h̄ω2.

The phase-matching condition is given by [15]

k3 = k1 + k2, (37)

where k are the corresponding wavevectors. The length of k is given by |k| = 2πn
λ (this is also

denoted k and termed the wavenumber) and the direction of k is perpendicular to the wavefronts.
The momentum of a photon is given by h̄k [15]. Equation (37) then gives the momentum conserva-
tion relation h̄k3 = h̄k1 + h̄k2 (similar to the energy conservation condition). The phase-matching
condition in equation (37) ensures that the polarization created by waves 1 and 2, which propagates
with the wave vector k1 +k2, remains in phase with the emitted wave 3 featuring the wave vector
k3.

3.2 Calculation of phase matching for SHG in BBO
The phase-matching calculations for the second-harmonic generation can be found in appendix 1.
In short, the phase-matching condition (equation (37)) will result in a condition on the refractive
indexes of the fundamental wave and the second harmonic. This condition can only be satisfied
using the birefringent properties of the BBO crystal that will be used for the second-harmonic gen-
eration. This will result in a phase-matching angle θ, which determines the propagation direction
of the light with respect to the crystal’s optic axis. Perfect phase-matching can however only be
obtained for one single wavelength, which leads to the SHG process being less efficient for other
wavelengths. Since phase matching is a propagation effect, this will put a limit to how thick crystal
that can be used.

The result of this is that the phase-matching angle is θ = 23.39◦, and a suitable crystal thickness
is 4 mm.

If the reader is unfamiliar with this kind of calculations, it is suggested to read appendix 1
before continuing any further. The concepts discussed in appendix 1 will also be needed for the
discussion of the NOPA (section 5).

3.3 Setup for SHG
Figure 13 shows the setup for the second-harmonic generation. The incoming beam is focused with
a 500 mm focal length lens into the BBO. The purpose of the focusing is to increase the intensity
of the light, in order to maximize the second-harmonic generation. As previously mentioned the
nonlinear effect is quite weak and becomes stronger with a stronger electric field (equation (29)).
Since the intensity is proportional to the square of the electric field [15], increasing the intensity
will give better conversion at the second-harmonic frequency. Naturally, there is a limit to how
intense the light can be before the crystal is damaged. That is why a rather long focal length is
used, to make sure that the intensity does not become to high.
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Figure 13: Setup for second-harmonic generation. The infrared light is focused into the nonlinear
crystal. A dichroic mirror is used to filter out the remaining infrared light and guide the generated
green light along. A second lens is used to collimate the green light, and a concave mirror is used
to focus the light into the crystal for the NOPA.

The BBO crystal produces green light at 515 nm. The light is guided with two mirrors to
another 500 mm focal length lens, which collimates the light. One of these mirrors is a dichroic
mirror. A dichroic mirror has a wavelength dependent reflectance [4]. The dichroic mirror used
here has a high reflectance below 900 nm, and a high transmittance above 900 nm. The infrared
light will then pass straight through the mirror, while the green light will be reflected. After
collimation the beam is guided to a 500 mm focal length concave mirror, which is used to focus
the beam into the NOPA crystal.

The efficiency of the SHG was maximized by optimizing the orientation of the crystal and the
position relative to the focus. The angle of incidence was adjusted so that the maximum amount
of green light was obtained. Since the crystal is cut so that the optic axis already is at the phase-
matching angle, the incidence should be normal, or at least very close to normal. The position
of the focus was then optimized by moving the BBO crystal along the propagation axis of the
beam. The optimal position of the focus has been investigated in reference [20]. It was found
that the maximum amount of light at the second-harmonic frequency was obtained with the focus
close to either the input or output face of the crystal, although not necessarily exactly at the face.
Therefore, the crystal was simply placed at different positions close to the focus until the optimum
position was found. At the optimum position the efficiency of the SHG was 53 %, using an input
power of 5.5 W.
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4 SCG - Supercontinuum generation
Part of the 1030-nm light is spectrally broadened through supercontinuum generation. A part of
the supercontinuum will then be amplified in the NOPA. The wide spectrum is necessary to obtain
the shortest possible pulses, and to choose the correct spectral content in order to obtain the desired
SWIR wavelength via DFG. This section begins by discussing third-order nonlinear effects, which
are the main cause of SCG. Then, the theory of SCG will be covered, and intensity calculations
will be performed (to prevent damage to the crystal). After this, results of the investigations of
SCG will be presented, and finally the setup for guiding the supercontinuum towards the NOPA.

4.1 Third-order nonlinear effects
As will be shown, SCG is mainly the result of third-order nonlinear effects. A medium without
a second-order nonlinearity should therefore be used, so that the χ(3)-tensor will be the leading
nonlinearity. The nonlinear polarization density PNL(t) of a third order nonlinear medium is given
by

P
(3)
NL = ε0χ

(3)E3. (38)

If a monochromatic wave E(t) = 1
2 [E(ω) exp(iωt) + E∗(ω) exp(−iωt)] travels through the ma-

terial, two components of PNL(t) at frequencies ω and 3ω will be obtained, as given by equations
(39) and (40) [15].

PNL(ω) = 3χ(3)|E(ω)|2E(ω) (39)

PNL(3ω) = χ(3)E3(ω) (40)

What is of interest here is the component at ω, PNL(ω). Equation (39) is of the same form as
equation (27), P = ε0χE, which is a linear relation. The nonlinear response is therefore seemingly
linear, with the coefficient 3χ(3)|E(ω)|2, where |E(ω)|2 is proportional to the intensity. This can
be interpreted as an intensity-dependent change in the susceptibility of the material, due to the
third-order nonlinear effect. Since the refractive index is related to the susceptibility χ, this means
that the nonlinear response will modify the refractive index. This can be shown by noting that
equation (39) corresponds to a change in susceptibilty ∆χ, as given by [15]

ε0∆χ =
PNL(ω)

E(ω)
= 3χ(3)|E(ω)|2 = 6χ(3)ηI, (41)

where η is the impedance of the medium.
The susceptibility is therefore dependent on the intensity I = |E(ω)|2/2η of the wave [15].

Since the refractive index n is related to the susceptibility as n =
√

1 + χ [15], it results in an
intensity-dependent refractive index, as given by [15]

∆n =
3η

ε0n
χ(3)I = n2I, (42)

where n2 is the nonlinear refractive index. The intensity-dependent refractive index can then
be expressed as [15]

n(I) = n+ n2I, (43)

which shows that the third-order nonlinear effect indeed modifies the refractive index, and this
change is dependent on the intensity. This is called the optical Kerr effect [15].

Another third-order nonlinear effect is four-wave mixing (FWM). Similar to the second-order
nonlinear case, consider an electric field that is the sum of three harmonic components:

E(t) =
1

2
[E(ω1) exp (jω1t) + E(ω1)∗ exp (−jω1t)]+

1

2
[E(ω2) exp (jω2t) + E(ω2)∗ exp (−jω2t)]+

1

2
[E(ω3) exp (jω3t)) + E(ω3)∗ exp (−jω3t)].

(44)
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Inserting equation (44) into equation (38) gives the the nonlinear polarization density due to the
three harmonic components. This will just as for the second-order nonlinear effect (equations (31) -
(35)) give a sum of different frequency components. One of these components is [15]

PNL(ω1 + ω2 − ω3) = 6χ(3)E(ω1)E(ω2)E∗(ω3) cos((ω1 + ω2 − ω3)t). (45)

A fourth wave is therefore created at the frequency ω4, as given by equation 46. The corre-
sponding phase-matching condition is given by equation 47 [15].

ω4 = ω1 + ω2 − ω3 (46)

k1 + k2 = k3 + k4 (47)

As will be explained later in section 6.1, a CEP-stable laser usually produces a CEP-stable
supercontinuum. This will be shown using the four-wave mixing process.

4.2 Supercontinuum generation
A supercontinuum is used as the signal for the NOPA. A supercontinuum is created when an intense
laser pulse passes through a crystal exhibiting the Kerr effect [21]. The Kerr effect causes several
modifications to the beam propagation, which, all together, lead to a significant spectral broadening
of the fundamental pulse. Initially, the pulse is spectrally broadened mainly through self-phase
modulation (SPM). According to equation (43), the refractive index is intensity dependent in a
material with a third-order nonlinearity. The change in phase ∆φ when propagating a distance z
through a medium is given by ∆φ = k∆z, assuming a linear medium. What is important here is
that the change in phase depends on the refractive index through the wavenumber k. Since the
refractive index of a Kerr medium depends on the intensity, this means that the change in phase
will also depend on the intensity. The instantaneous frequency ω, which is the time derivative of
the phase, will therefore depend on the derivative of the intensity according to [22]

ω = −∂φ
∂t

= ω0 − n2
ω0

c
L
∂I(t)

∂t
, (48)

where ω0 is the initial frequency and L is the propagation distance in the medium.
The instantaneous frequency will therefore be shifted, depending on the derivative of the in-

tensity. The intensity increases for the leading part of the pulse, so the leading part will be shifted
towards red frequencies, while the trailing part is shifted towards blue frequencies due to the de-
creasing intensity. The SPM will in this way create a chirped pulse with a broadened spectrum.
This is shown in figure 14. The broadening will generally be greater for a shorter pulse, since the
intensity changes more rapidly.

Figure 14: Illustrative figure of self-phase modulation (not to scale). The blue line is the intensity
envelope of the pulse and the orange line is the resulting frequency shift.
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Since there is also a spatial variation of intensity across the beam profile, the Kerr effect will
result in a refractive index that varies spatially. Since the beam is most intense in the center, the
refractive index will be larger at the center, and thus the index profile will be that of a positive
lens. The material will therefore act as a lens under the influence of the strong beam, which causes
the beam to experience self-focusing (SF) as it propagates through the material. There is a critical
power Pcr for SF to occur, as given by [21]

Pcr =
3.77λ20
8πn0n2

, (49)

for a Gaussian beam. If the power is less than Pcr, the focusing effect will not overcome the
diffraction of the beam and the beam will diverge [21]. On the other hand, if the peak power is
much greater than Pcr the pulse may break into several filaments [22]. Too high power may also
cause the pulse to be ripped into two pulses due to dispersion [16].

The critical power describes the extreme case of an infinitely large medium and the collapse
of the incoming beam at infinity [21]. In reality the power used is always higher than the critical
power and the beam is also focused into the crystal (the focusing will be explained in the following),
in order to have the theoretical collapse point at a realistic distance, on the scale of mm [21]. Also,
Pcr is in practice larger than what is predicted by equation (49). This is a result of group velocity
dispersion (equation (17), στ = |Dλ|σλz). The pulse is stretched as it propagates through the
medium, and this causes a reduction of the power of the pulse, since the energy is distributed over
a longer time. The power therefore needs to be higher than Pcr to compensate for this. Shorter
pulses have a wider bandwidth σλ according to equation (4), so the stretching becomes more severe
and thus the power needs to be higher the shorter the pulse is [21]. However, for the 400 fs pulses
and the few mm thick YAG crystal that will be used here, the pulse stretching due to dispersion
is negligible.

The collapse point (where the beam theoretically collapses to a singularity) due to self focusing
is given by [21]

zf (P ) =
0.367ka20

((
√
P/Pcrit − 0.852)2 − 0.0219)1/2

, (50)

where a0 is the beam waist at the 1/e-level at the input of the medium. The beam is assumed
to be collimated, with the waist at the input, and the distance is the distance into the medium,
starting from the input face.

As it turns out, this distance is rather long. Assuming a wavelength of 1030 nm, a beam waist
of 200 µm, and P/Pcrit = 1.1 gives a distance of zf (P ) = 69 cm. Such a long crystal would be
highly impractical, introduce severe dispersion and be tremendously expensive. A thinner crystal
can be used if the beam is focused beforehand with a lens. The collapse point will then be located
at the point z′f as given by [21]

z′f =
zff

zf + f
, (51)

where f is the focal length of the lens. This means that z′f ≤ zf and z′f ≈ f if f � zf .
Because of self-focusing the intensity of the beam will increase. The intensity will eventually be

high enough for multi-photon ionization (MPI) to occur, where several photons are simultaneously
absorbed to ionize an atom or molecule, even if the bandgap is significantly larger than the photon
energy. The creation of free electrons will cause the refractive index to decrease, as given in the
Drude approximation by [21]

∆ne = − 2πe2Ne
n0me(ω2

laser + ν2)
, (52)

where Ne is the electron density, ωlaser is the angular frequency of the laser and ν is the electron
collision frequency (the frequency at which the free electrons collide). The decrease in refractive
index due to free electron generation will counteract the effect of self-focusing and at some point
multi-photon ionization and self-focusing will balance each other. At this point, the beam will be
self-guiding, that is, the diameter of the beam will be constant. This process is visible as a very thin,
colorful filament in the crystal. The beam will suffer a decrease in power during filamentation, due
to the pulse being temporally stretched by dispersion, and also, to a lesser degree, light absorption
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by the free electrons generated by MPI. Eventually the power will be lower than the critical power
Pcr, at which point the beam will start to diverge due to diffraction. This will stop the filamentation
process. The filament typically is a few millimeters long. The process of self-focusing, filamentation
and finally diffraction is illustrated in figure 15. As previously mentioned, if the power is too high,
the pulse will break up into several filaments. This is called multifilamentation.

Figure 15: Illustrative figure of the supercontinuum generation process. The focused beam first
experiences self-focusing until the intensity is high enough for filamentation to occur. During the
filamentation, power is absorbed by free electrons caused by MPI, until the intensity is too low for
self-focusing, which causes the beam to diverge.

Yet another result of the Kerr effect is self-steepening. Since the group velocity also depends
on the refractive index (equation (15)), the most intense part (the central part) of the pulse will
also travel the slowest. That means that the leading edge of the pulse will stretch out, whereas
the trailing part of the pulse will run into the central part, resulting in self-steepening of the
trailing (blue) edge of the pulse. This will contribute to the broadening of the pulse towards blue
frequencies [16]. Self-steepening is illustrated in figure 16.

Figure 16: Illustrative figure of self steepening (not to scale). The peak of the pulse will experience
a larger relative delay than the edges of the pulse, which causes a rapid change in amplitude
towards the trailing edge of the pulse.

It has been shown [21] that most of the broadening occurs in the filament, and is the result of
self-phase modulation in combination with multi-photon ionization. While self-phase modulation
contribute to broadening towards both longer and shorter wavelengths (figure 14), multi-photon
ionization will mostly give broadening towards shorter wavelengths. The broadening due to multi-
photon ionization is a result of the reduction in refractive index it causes (equation (52)), which will
affect the rate at which the phase changes, ∂φ∂t . The broadening by multi-photon ionization and self-
phase modulation is therefore both caused by the same mechanism, and depends on the phase. Note
that, according to equation (48), self-phase modulation leads to an increase of the instantaneous
frequency when the time derivative of the intensity of the pulse is negative. A decrease in intensity
causes a decrease in refractive index as well (equation (43)), so the broadening by SPM towards
higher frequencies is caused by a decreasing refractive index. Since multi-photon ionization also
causes a rapid drop in refractive index, this shows that MPI will lead to broadening towards higher
frequencies as well. The broadening by MPI is quite significant, since the generation rate of free
electrons due to MPI is proportional to IN , where N is the required number of photons to overcome
the ionization potential [21]. This will cause a rapid increase in free electrons Ne around the peak
of the pulse, which will, according to equation (52), cause a rapid drop in refractive index and
thus significant broadening towards shorter wavelengths. Since multi-photon ionization, and self-
steepening as well, mainly cause broadening towards higher frequencies, the broadening will be
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asymmetrical. Indeed, typical supercontinua exhibit an intensity plateau at their high-frequency
edge [23].

Supercontinuum generation requires high powers, which may cause damage to the crystal.
Whether or not damage occurs depends on e.g. the intensity, the repetition rate and the medium
that is used. The intensity is given by I = P/A = E/τ/A, in the simplifying assumption that the
energy E is constant during the pulse duration τ and over the beam area A. That means that
even a pulse with a seemingly low pulse energy in the µJ range may have a huge intensity, if the
duration is in the fs range and the area is in the µm2 range (which is a common situation at the
focus). This will result in the generation of a large amount of free electrons through multi-photon
ionization. If a very large number of free electrons is generated, a large amount of energy will also
be released as the electrons recombine, which can lead to rapid expansion, disruption, melting, etc.
This is how damage may be caused by a single laser shot. Damage may also be the accumulative
effect of several shots, which is especially a problem at high repetition rates. In this case it is
often a thermal effect, since a high intensity, high repetition rate laser will also have a high average
power. This will heat the crystal. As previously stated, there is a critical power Pcr at which self
focusing occur, but it is the intensity that determines whether or not the crystal will be damaged.
As long as the power is greater than Pcr, the supercontinuum will be generated, regardless of the
intensity (to a certain extent). The damage is then determined by how tightly the beam is focused
into the crystal.

To summarize: A supercontinuum is generated when a strong laser pulse enters a Kerr medium.
SPM will start to broaden the pulse spectrally, while self-focusing will decrease the beam waist
leading to an increase in intensity. The continuous increase in intensity will provide a gradually
stronger SPM, but eventually also cause multi-photon ionization of the dielectric. Hence, the gen-
erated plasma decreases the refractive index and counteracts self-focusing. During supercontinuum
generation, both effects balance each other and result in a self-guiding of the beam in a narrow
plasma channel (the filament) for several millimeters. Self-steepening and the refractive index
modulation due to MPI lead to an overall asymmetric broadening towards short wavelengths.

4.3 Damage threshold estimations
This paragraph presents considerations of the damage threshold of YAG and the peak intensity in
the envisaged experiment, in order to avoid crystal damage. There are two parameters that must
be determined, the average power Pavg and the focal length f of the focusing lens. The average
power must be chosen so that the peak power of the pulse is higher than the critical power but not
so high that multifilamentation occurs. From this the peak power will be used to find a suitable
focal length of the focusing lens. The focal length should be chosen to give a short distance inside
the crystal before filamentation occurs, but an intensity that is not high enough to cause damage.

As touched upon in the introduction, reference [16] found that YAG is a suitable material for
supercontinuum generation. Of the different materials that were tested, it had a relatively low
critical power of 2.0 - 3.2 MW. At powers above 3.2Pcr, fringes appeared in the spectrum, most
likely due to the pulse being split into two due to dispersion. For the other materials that were
investigated, fringes appeared for powers much closer to Pcr. Furthermore, the spectrum of the
supercontinuum generated in YAG had a plateau at around 600 - 900 nm, which is suitable for
the 620 - 750 nm range that is desired. YAG also has a high damage threshold. In reference [16]
it was found that the damage threshold of YAG was > 10Pcr. All these properties makes YAG a
suitable choice.

The power used in the experiment should be higher than the critical power, in order to reduce
the distance before filamentation. For this reason, a peak power of Ppeak = 7.5 MW is chosen. The
1030-nm light source that is used has a pulse duration of τFWHM ≈ 400 fs and a repetition rate of
Frep = 200 kHz. The desired average power Pavg can be calculated as Pavg = PpeakFrepτFWHM.
This gives Pavg = 600 mW.

The next step is to find a suitable focal length. The shorter the focal length, the more tightly
the beam will be focused. This will make the beam waist narrower at the focus, which will increase
the intensity. For a collimated beam, the beam waist w′0 at the focus is given by [15]

w′0 ≈
λ

πw0
f, (53)

where w0 is the waist of the incident beam. The collimated incident beam has a diameter of
approximately 2w0 = 3 mm. Using equation (53) with focal lengths 40 mm and 80 mm gives
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the waists w′0 = 8.8 µm and 17.5 µm at the focus, respectively. The focal lengths are chosen since
they are in the range that is commonly used for supercontinuum generation. This can be used to
calculate the effective area Aeff of the beam, which is given by [4]

Aeff =
πw2

2
, (54)

where the factor of 2 is due to the assumed Gaussian profile. The intensity at the focus can
then finally be calculated as

I =
Ppeak
Aeff

, (55)

according to [4]. For this Ppeak = 7.5 MW (corresponding to 600 mW of average power) was
used. For f = 40 mm the result is I = 4.75 · 1012 W/cm2 and for f = 80 mm the result is
I = 1.27 · 1012 W/cm2.

The surface damage threshold of YAG was investigated in [24], where a wavelength of 800 nm
was used. At a pulse duration of 297 fs, the damage threshold is 4.31 J/cm2 at a single shot.
That corresponds to an intensity of 1.45 · 1013 W/cm2. That is about 10 times higher than the
intensity obtained with an 80-mm focal length lens, and about 3 times higher than with the 40-mm
focal length lens. This threshold was however obtained at a shorter wavelength than what will be
used here, so it may not be entirely accurate. It is probable that the damage threshold for longer
wavelengths is even higher (since their photon energy is further away from the band gap). This
shows that both an 80-mm or a 40-mm focal length lens would probably be safe to use. The 40-mm
focal length lens would be the better choice, since it will provide a tighter focusing and therefore
the filamentation will start earlier in the crystal.

The bulk damage is much harder to calculate. Because of the nonlinear effects in the crystal,
the pulse is significantly focused and deformed. These changes can not be estimated very well by
hand calculations, and the entire process must be simulated which is rather complicated. However,
supercontinuum generation in a YAG crystal has been reported repeatedly [17, 23, 25]. If a careful
approach is used, where the power is slowly increased, starting below Pth, it should be possible to
avoid any damage.

4.4 Experimental investigations of supercontinuum generation
The power levels and focal lengths that were found in the previous section can now be used to
experimentally investigate supercontinuum generation. For this part I worked together with my
supervisors. I aligned optics, tested various lenses and crystals and made measurements. The
setup for investigating supercontinuum generation is shown in figure 17. The light was guided
from the compressor using two mirrors (not shown). An iris was then used to reduce the power
and a lens focused the light into the YAG crystal. An f = 50 mm lens collimated the resulting
supercontinuum. Two dichroic mirrors (with a cut-off wavelength at 900 nm) were used to filter
out the much more intense infrared light. The spectrum was studied with a fiber-coupled compact
spectrometer.

Figure 17: Setup for generation of supercontinuum. An iris is used for power attenuation and a lens
focuses the beam into the YAG crystal. The supercontinuum is collimated and the fundamental
light at 1030 nm is filtered out with two dichroic mirrors.
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In reference [25], it is noted that for a wavelength of 1030 nm and 200 - 400 fs pulses, a 4 - 6-mm
thick YAG crystal is a suitable choice for supercontinuum generation. It is stated that this will
provide a stable spectrum without damaging the crystal. Therefore, to find the optimum focal
length of the focusing lens, a 4-mm-thick YAG crystal was used. Three different focal lengths
were tested: 50 mm, 75 mm and 100 mm. To try a different material a piece of 5-mm-thick
BK-7 glass was also tested with the 75 mm focal length lens. The BK-7 glass was anti-reflection
coated, whereas the YAG crystal was uncoated. The input power and the position of the focus
was adjusted to obtain the optimum (flattest) spectrum. The result is shown in figure 18.

Figure 18: Spectra of the supercontinuum from a 4-mm-thick YAG crystal and 5-mm-thick BK-7
glass. The power and focusing was adjusted to optimize the spectrum.

Supercontinuum spectra are generally presented on a logarithmic scale, since the supercon-
tinuum is much weaker than the fundamental light. However, in this case the fundamental is
filtered out. Nevertheless, the logarithmic scale will still be used, since it simplifies comparison
with spectra from other sources. The supercontinuum also varies considerably in magnitude over
the spectrum, so the logarithmic scale will also show the weaker parts of the spectrum. As can be
seen from figure 18, the spectrum shifts slightly towards longer wavelengths when the focal length
decreases. A shorter focal length also seems to widen the spectrum slightly. BK7 shows more
broadening towards longer wavelengths and produces a spectrum that is wider than that for YAG.
This may however be down to the fact that the BK-7 glass is 1 mm thicker than the YAG crystal
and therefore can support a longer filament. A short focal length lens seems to be the best choice
for this application, since the 50-mm focal length lens gives the longest central wavelength and the
widest spectrum. None of these spectra are satisfactory however. The desired wavelength range of
the supercontinuum is around 620 - 750 nm. As will be shown later, this will result in a spectrum
in the SWIR range after the DFG. The spectra shown here are centered at 550 - 600 nm, which is
too short. Also, the spectra are not as flat as desired.

The average input power (the power after the iris) and the average power of the supercontinuum
was measured with a powermeter. The result is listed in table 1. It is clear from the table that the
50-mm focal length lens requires the least amount of power and also has almost as good conversion
efficiency PSC/Pin as the f = 75 mm case. However, in all of the cases the conversion efficiency is
very low. Note also that the optimal input power is higher than the expected 600 mW. The 50-mm
focal length lens requires the least amount power, but it is still at 900 mW and that is too much
in contrast to the expected power requirement.

It is possible that a thicker crystal would provide a more ideal spectrum, since such a crystal
can support a longer filament. The spectrum of the 5-mm-thick BK7 glass in figure 18 would
suggest this. Therefore, the spectra from 4- and 8-mm-thick YAG crystals were compared under
the same conditions. The result is shown in figure 19. For both YAG crystals a 75-mm focal length
lens along with 1.27 W of input power was used. The 8-mm-thick crystal generates a much flatter
spectrum than the 4-mm-thick crystal in the region of interest (620 - 750 nm). Furthermore, the
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f Pin PSC PSC/Pin
50 mm 0.9 W 0.66 mW 0.073 %
75 mm 1.09 W 0.84 mW 0.077 %
100 mm 1.4 W 0.66 mW 0.047 %

Table 1: Measured average powers and conversion efficiency.

peak of this part of the spectrum is located at a longer wavelength than the peak of the same part
of the spectrum from the 4-mm-thick crystal. The spectrum was also stable. The power of the
supercontinuum was 2.5 mW for the 8-mm-thick crystal and 1.2 mW for the 4-mm-thick crystal
(which is higher than for the previous measurement, but the input power is also higher). Therefore,
an 8-mm-thick YAG crystal seems like a good choice for the supercontinuum generation.

Figure 19: Spectra of the supercontinuum from 4- and 8-mm-thick YAG crystals, using 1.27 W of
power and a 75 mm focal length lens.

The 8-mm-thick YAG crystal was also tested with focusing lenses with focal lengths 50 mm,
75 mm and 100 mm. One of the dichroic mirrors in the setup shown in figure 17 was removed,
since it was not necessary to attenuate the fundamental light that much. The result is shown in
figure 20.

Figure 20: Spectra of the supercontinuum from an 8-mm-thick YAG crystal for different focal
length lenses. The power was adjusted to optimize the spectrum.
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For f = 50 mm the flattest spectrum is obtained, with a peak at around 700 nm. If this is
compared to the spectrum from the 4-mm-thick YAG crystal (figure 18), the spectrum is now far
wider and also centered at the desired wavelength. The flattest spectrum is obtained when the
crystal is placed roughly with the input face at the focus of the lens. When the crystal is moved
towards the lens so that the geometrical focus is located inside the crystal, a peak is created in the
spectrum (resulting in a less flat spectrum). As the focus is moved further inside the crystal the
peak is shifted towards shorter wavelengths. When the spectrum has a peak it is also the most
stable and the supercontinuum will have a green or yellow color. On the other hand, when the
supercontinuum is red, it flickers and becomes unstable. Since red light has a longer wavelength,
this indicates less self-phase modulation than when the supercontinuum is green or yellow. This
would correspond to a shorter, less stable, filament that is aborted by the end facets before it
can reach a stable configuration. This is not optimal, since the red supercontinuum has the most
desirable spectrum. For the reliable operation of a NOPA, it is, however, more important to
generate a stable seed source. The input power to obtain the optimal spectrum was 1 W. The
conclusion would be that for this application, an f = 50 mm lens, 8-mm-thick YAG crystal and
1 W of power is the optimal choice to obtain the best spectrum.

However, 1 W of input power is more than what is expected from theoretical considerations.
The preferable choice is 600 mW. As it turns out, when studying the beam profile of the pump
beam, the beam quality was less than optimal. The degradation of the spatial properties of the
pump pulses resulted from a misalignment of the compressor configuration. The mode was spatially
chirped, which had a negative effect on the generation of a supercontinuum. Any residual chirp
was removed from the pump pulses by re-aligning the compressor gratings. The improved beam
quality allows for stable continuum generation at the expected average power of approximately
0.6 W. Note that the spectra in figures 18 - 20 were measured before the correction of the grating
compressor was made. The spectra that will be presented in the following were however obtained
after the correction.

Since the YAG crystal was uncoated, the continuum generation might suffer from reflection
losses. It is therefore of interest to minimize these losses. This can be done by placing the crystal
at the Brewster angle, which is an angle of incidence at which p-polarized (electric field parallel to
the plane of incidence) light is completely transmitted [15].

Figure 21: Setup for supercontinuum generation at Brewster angle. The λ/2-plate is used to rotate
the polarization, so the YAG can be placed at the Brewster angle in a safe way.

To investigate the effect of placing the crystal at the Brewster angle, the setup in figure 21 was
used. It is the same as for the investigations of the 8-mm-thick YAG crystal, but the iris is replaced
with a half-wave plate (λ/2), in order to rotate the polarization by 90◦. The rotated polarization
will then eliminate reflections when the crystal is placed at the Brewster angle, since the light from
the laser is supposedly linearly polarized (a polarizer can be used to check the polarization of the
light, which will also be done later). If the polarization had not been rotated the crystal would
have to be angled upwards, which is dangerous since any reflection would not be contained to the
plane of the table. The iris would not be needed to attenuate the light, since the laser source was
set directly to the desired power of 600 mW for these investigations. Higher input power than
600 mW was used for the previous experiments without any damage, so 600 mW of input power
should be safe to use. The crystal was also placed at normal incidence for comparison.

Because of the relatively large Brewster angle of 61.5◦ [26] the mounting of the YAG crystal
had to be placed in such a way that it was not possible to fit the 50-mm focal length lens. Figure
22 shows the spectra at Brewster angle. It shows as before that a shorter focal length lens gives a
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Figure 22: Spectra at Brewster angle using 600 mW of power.

flatter, wider spectrum. However, with a lower power of 600 mW and an improved beam quality,
there is very little difference between the spectrum of the 4- and the 8-mm-thick YAG crystals. It
was also noted that when the crystal was rotated from normal incidence to the Brewster angle,
a ring-like pattern emerged in the beam profile. The beam profile was therefore worse at the
Brewster angle than at normal incidence. The power of the white light at Brewster angle with
600 mW of input power and a 75-mm focal length lens was 2.2 mW, for both 4-mm and 8-mm-thick
YAG crystals. For the same conditions, but at normal incidence, the power of the white light was
2.3 mW for a 4-mm-thick crystal and 2.4 mW for an 8-mm-thick crystal. Compared to the previous
case (when the beam had a spatial chirp), the average pump power is reduced by a factor of two and
the output power is increased by a factor of 3-4. The conversion efficiency is now much higher, and
there is much less difference in supercontinuum power between the different thicknesses. However,
the power was higher at normal incidence, even though there would be more reflections. Part of
the reason for this may be that the beam was not perfectly linearly polarized. When the half-wave
plate was adjusted by minimizing the power of the beam through a polarizer, it was not possible to
achieve zero power. Some power was therefore still reflected at Brewster angle. Another possibility
could be that the refraction due to the angled surface with respect to the focus deteriorates the
mode profile in the focus slightly, or influences self focusing (one side of the beam enters the crystal
"earlier" at lower intensity than the other side). This may be the reason for the ring-like pattern
in the beam profile that was previously noted. The power reflectance at normal incidence was also
not more than 0.084 [26], so the gain in power would be quite small anyway.

Because of the higher power and better beam profile, it was decided to put the YAG crystal
at normal incidence. Figure 23 shows the spectra for 4- and 8-mm-thick crystals using a 50-mm
focal length lens. In complete contrast to before the spatial chirp was removed (figure 19), the
spectra now look very similar. Both thicknesses produce very similar spectra at the same power.
Subsequently, it is chosen to work with the thinner 4-mm-thick crystal, since it will introduce less
dispersion and hence minimizes the chirp. The reason for the now very similar spectra is most
likely due to the removed spatial chirp. Before the improvement, the spectrum from the 4-mm-thick
crystal was much narrower than the spectrum from the 8-mm-thick crystal. This would suggest
a shorter filament in the 4-mm-thick crystal which is interrupted at the end facet of the crystal,
resulting in less broadening. After the improvement, however, the spectra were much more alike.
The filament in both crystals would therefore be equal in length. This means that the filamentation
process starts earlier in the crystal with the improved beam quality, and that the filament is short
enough to fully fit in the 4-mm-thick crystal as well as in the 8-mm-thick crystal.

An important aspect of the supercontinuum is the stability. Throughout all measurements it
could be noted that the spectrum fluctuated the most when the beam had a red color. Changing the
focusing conditions so that the spectrum became yellow or green, made it look more stable. There
were no visible fluctuations. A stability measurement was also made. This was done by measuring
the supercontinuum spectrum consecutively 5000 times, using an 8-mm-thick YAG crystal and
a 50-mm focal length lens. The result is shown in figure 24. The blue line shows the average
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Figure 23: Spectra for 4-mm and 8-mm-thick YAG crystals at normal incidence using 600 mW of
power and a 50-mm focal length lens.

number of counts at each frequency, and the orange line the average deviation from the average
number of counts. The average deviation was calculated by determining the average number of
counts at each wavelength, and then finding the magnitude of the deviation of the instantaneous
number of counts, relative to the average number, at each wavelength, for each of the 5000 time
points. The average of the deviations over time for each wavelength were then taken. As the figure
shows, the average deviation is at least 1 order of magnitude lower than the average number of
counts. It was however noted when studying the spectrum of the laser that the laser itself was
fluctuating somewhat. Therefore, it is difficult to tell how much of the fluctuations are the result of
an instability of the supercontinuum. Nevertheless, the fluctuations in figure 24 are not too severe.
One of the reasons to why the spectrum of the laser was fluctuating, is that the laser source was
operated at a lower power. The laser source is designed to provide up to 40 W of power, and
running at these powers will give a more stable output. However, 40 W is a significant amount
of power, so due to safety reasons the power was reduced when investigating the supercontinuum
generation.

Figure 24: Stability of supercontinuum over 5000 measurements, using an 8-mm-thick YAG crystal
and a 50-mm focal length lens. The blue line is the average counts and the orange line the average
deviation from the average counts.

The conclusion of this section is that the best choice for this application is to use a 4-mm-thick
YAG crystal at normal incidence, along with a 50-mm focal length lens. It is also very important
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for the efficiency of the supercontinuum generation process to have a good beam quality.

4.5 Collimation and guiding of the supercontinuum
It has been noted that when a supercontinuum is generated, the divergence of the beam drasti-
cally increases [23]. The supercontinuum is therefore quite divergent, and must subsequently be
collimated. Collimation of the supercontinuum is done by placing a lens at a distance equal to the
focal length away from the YAG crystal. A shorter focal length lens will thus result in a narrower
collimated beam, since the beam will have less distance to diverge. The beam should then be
further reduced in size with a telescope, to roughly match the mode diameter of the SHG pump
beam in the NOPA crystal. Finally, the beam is guided towards and focused into the crystal for
the NOPA. Figure 25 shows the setup for this. An achromatic 30-mm focal length lens was used
for collimation. The telescope consisted of an f1 = 200 mm focal length concave mirror and one
f2 = -37.5 mm focal length convex mirror. The mirror separation in the telescope should be the
sum of the focal lengths: 200 − 37.5 = 162.5 mm. The magnification of the telescope is then
f2/f1 = −37.5/200 = −0.1875 [27]. The beam is guided from the telescope to a delay stage. This
consists of two mirrors at 90◦ angle, mounted on a translational stage. The mirror pair can be
moved forward and backward, which makes it possible to adjust the path length of the supercon-
tinuum. This is necessary since the pathlength of the signal and the pump must be the same in
order for them to overlap in the NOPA. After the delay stage a dichroic mirror is used to remove
much of the infrared light. The light is then guided by a mirror and a focusing mirror with f =
250 mm to the NOPA crystal.
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Figure 25: Final setup of WLG to NOPA. The infrared light is focused into the YAG crystal and
the supercontinuum is collimated with the 30-mm focal length lens. A telescope is used to further
reduce the beam size. The delay stage features a mirror pair, mounted on a translational stage,
that can be used to adjust the pathlength of the supercontinuum to the NOPA. A dichroic mirror
is used to remove the remaining infrared light. Finally, a 250-mm focal length concave mirror is
used to focus the supercontinuum into the NOPA crystal.
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5 NOPA - non-collinear optical parametric amplifier
Both the signal and the pump for the NOPA have now been generated. The NOPA will be
implemented by focusing both beams into a nonlinear crystal, where an energy transfer occurs,
which results in the supercontinuum being amplified. This section begins by presenting the theory
of the NOPA, followed by simulations of the amplifier gain. Then the experimental results of the
implemented NOPA are presented. To finish the section, an overview of the entire setup is shown.

5.1 Optical parametric amplification
Optical parametric amplification (OPA) is a second-order nonlinear effect, where an intense beam
with angular frequency ω3 (the pump) distributes some of its energy to a weaker beam with angular
frequency ω1 (the signal), as both beams travel through a second-order nonlinear medium [15].
To satisfy frequency and phase-matching conditions, a third beam (the idler) is also generated
at angular frequency ω2. The angular frequencies of the waves are related by equation (36),
ω3 = ω1 + ω2. The idler is therefore generated through difference-frequency generation between
the pump and the signal. Just as for the SHG, the phases will also need to be matched according
to the phase-matching condition k3 = k1 + k2 (equation (37)).

The process can be thought of as a pump photon of angular frequency ω3 being split into two
photons with angular frequencies ω1 and ω2. The energy of the pump must be higher than that
of the signal and idler for this to be possible, which means that the wavelength of the pump must
be shorter than that of the signal. This is the reason why the pump beam in the NOPA setup is
frequency doubled: It is not possible to amplify the white light with the 1030-nm light, since the
white light has a shorter wavelength.

In a collinear geometry, all the wavevectors of the beams are parallel. This is what was used for
the SHG. If instead the wavevectors are not parallel, the geometry is noncollinear and the process
is hence called non-collinear OPA (NOPA). This means that the signal and the pump beam cross
inside the crystal under a certain angle α, usually denoted as the non-collinear angle. As will be
shown later, the NOPA geometry can provide a wider phase matching bandwidth, and therefore,
it is the NOPA geometry that will be used here.

Just as for the SHG, the birefringent properties of the nonlinear medium can be used to satisfy
the phase-matching condition. If appropriate polarizations of the signal and pump beams are
chosen, the refractive index of the extraordinary beam ne(θ) can be tuned according to [15]

1

ne(θ)2
=

cos2 θ

n2o
+

sin2 θ

n2e
, (56)

by choosing a suitable phase-matching angle θ (no and ne are the ordinary and extraordinary
refractive indexes, respectively). As will be shown subsequently, θ depends on the chosen α, so the
non-collinear geometry adds an extra degree of freedom. The NOPA will be designed for Type I ooe
phase matching, where Type I means that the signal and the idler have the same polarization, and
ooe indicates the polarization of the signal, idler and pump, respectively.

Figure 26: Non-collinear phase matching configuration. k1 - signal wavevector, k2 - idler wavevec-
tor, k3 - pump wavevector, α - non-collinear angle

In order to phase match a NOPA, the condition k3 = k1 + k2 must be fulfilled. Because of
the non-collinear geometry, this is less straightforward than for the SHG. The geometry is shown
in figure 26. The angle between k1 and k3 is the non-collinear angle α. This angle will remain
fixed. Since the signal and idler are ordinary, the refractive index does not change with θ and
consequently the length of the vectors k1 and k2 is therefore fixed. The length of k2 is obtained
from the wavelength of the signal and the pump through equation (36). When θ is changed, the
refractive index of the pump changes and therefore also the length of k3. This means that the
phase-matching problem can be understood intuitively by looking at figure 26: When the phase
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matching angle θ is adjusted, the length of k3 changes, while k1 remains stationary. The goal is
then to find the length of k3 so that the distance between the tips of k3 and k1 equals the length
of k2. The direction of k2 will then be set by the phase matching. Note that the direction of k2

will change depending on the wavelength of the signal, so for a broadband signal the idler will be
angularly dispersed.

Mathematically, the condition on the wavevectors is k2 = k3−k1. The components of k2 must
therefore fulfill {

k2x = k3x − k1x = |k3| − |k1| cosα

k2y = k3y − k1y = 0− |k1| sinα
(57)

From these two equations the length of k2 is

|k2|2 = k22x + k22y = (|k3| − |k1| cosα)2 + (|k1| sinα)2 (58)

Finally, this can be rewritten to find the desired length of k3:

|k3| =
√
|k2|2 − (|k1| sinα)2 + |k1| cosα (59)

When |k3| has been determined, the relation |k3| = 2πne(θ)/λ3 can be used to find the desired
refractive index ne(θ). The angle θ can then be determined from equation (56), just as for the
SHG. It is still difficult to find an explicit expression for θ from this equation, so it has to be
solved numerically. From this, phase-matching curves for different non-collinear angles α can be
calculated. A number of these curves for BBO with the pump wavelength λ3 = 515 nm are shown
in figure 27.

Figure 27: Phase-matching curves in BBO for 515 nm pump for different noncollinear angles α.
The red line indicates the phase-matching angle.

These curves serve as an introduction to the concept of the phase-matching bandwidth. Since
an ultrashort pulse has a wide bandwidth, it is important to also have a broadband amplifier. But
as figure 27 shows, the required phase-matching angle θ at a certain non-collinear angle α changes
with the wavelength λ. It is therefore not possible to have perfect phase-matching over the entire
signal wavelength range. The idea is then to choose a curve that is as flat as possible in the
desired wavelength range so that the wave vector mismatch ∆k = k3−k1−k2 is minimized. This
gives a good initial estimate of the required θ and α. Figure 27 also shows why the non-collinear
configuration is used: The curve at α = 2◦ is much flatter than the curve at α = 0◦ (collinear
case), so the non-collinear configuration can provide a wider bandwidth. Note that the desired
bandwidth is 620 - 750 nm. The phase-matching curve for α = 3◦ may be flatter than the one for
α = 2◦, but it is flatter in the wrong range, so the phase-matching curve at α = 2◦ would be better
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suited for this application (the exact value of α will be calculated later). The red line indicates a
good phase-matching angle for α = 2◦. Perfect phase matching is obtained at two wavelengths.

The gain G of the NOPA depends on more parameters than just ∆k. It is therefore better to
calculate the gain in order to estimate the resulting bandwidth of the amplified pulses. In reference
[25], the gain for a medium of length L is given by

G =
I1out
I1in

= 1 + (
Γ

g
sinh(gL))2, (60)

where

g =

√
Γ2 − |∆k|2

4
(61)

and

Γ2 =
2d2

effω1ω2I3
c3ε0n1n2n3

. (62)

Note that the gain predicted by equation (60) assumes that the pump is not depleted during the
interaction. Other effects, such as light absorption in the crystal, are also ignored. The effective
nonlinear coefficient is given by deff = d31 sin θ−d22 cos θ sin 3φ in BBO [25], where d31 = 0.04 pm/V
and d22 = 2.2 pm/V [15]. The angle φ depends on how the beam is rotated with respect to the
surface normal of the crystal. This angle should simply be chosen so that deff is maximized. For
the Type I interaction used here, the optimum angle is 90◦ [25]. The effective nonlinear coefficient
deff corresponds to χ(2)/2 in PNL = ε0χ

(2)E2 (equation (29)), where χ(2) indicates the strength
of the second order interaction. However, as previously mentioned, in an anisotropic medium χ(2)

is a tensor, since each component of the polarization vector P depends on the components of the
electric field vector E. An effective value deff of χ(2)/2 can then be found which depends on the
direction of the electric fields [15].

Apart from the angles θ and α the length L of the crystal must also be decided. There are two
important measures: Coherence length and pulse splitting length. The coherence length Lc is the
length at which the phase difference between two interacting waves has become π. It is given by
[15]

Lc =
2π

|∆k|
. (63)

Lc is a measure of how far into the crystal the nonlinear process is efficient [15]. If the crystal
is longer than Lc the generated waves will start to interfere destructively and the gain will actually
be reduced. Furthermore, sum-frequency generation may also occur between the signal and the
idler, resulting at radiation at the pump frequency. This will also reduce the gain.

The pulse splitting length [25] is a result of the difference in group velocities of the signal, idler
and pump. In order for the nonlinear process to take place, the signal and the idler must overlap
with the pump not only spatially, but also temporally. Because they have different group velocities
they will, however, separate after a certain distance, and the amplification will cease. The pulse
splitting length is given by [25]

lj3 = |τ/(1/vgj − 1/vg3)|, (64)

where τ is the FWHM length of the pump and j=1,2. Note that it is very important for
the amplification process that the idler does not separate from the pump. The reason for this is
that the idler, with an angular frequency of ω2, will also be amplified. That is, the beam with a
frequency of ω2 will now act as the signal. Amplification of this beam will, just as before, result in
an idler, but this time at ω1. This is in fact the same frequency as the initial signal, which shows
that the amplification of the idler at ω2 will provide positive feedback and add to the signal [25].

Because a birefringent crystal is used as a nonlinear medium, the extraordinary wave will be
refracted even at normal incidence. In this case (ooe), the pump beam will be refracted, as shown
in figure 28. Before the pump enters the crystal, the Poynting vector S and the wavevector k are
parallel. Upon entering the birefringent crystal the Poynting vector S will change direction, but
the wavevector k will be unaffected. According to reference [25], the walkoff angle is given by
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ρ(θ) = arctan((no/ne)
2 tan(θ))− θ, (65)

when no > ne, as is the case for example in BBO.
Since the phase-matching angle is the angle between the optic axis and the wavevector, not the

Poynting vector, the walkoff angle does not affect the phase matching angle. The walkoff is still
an issue, however, since the pump and signal beam must overlap spatially to be able to exchange
energy. To minimize the effect of angular walkoff, the crystal should be rotated so that the signal
beam and the pump beam both are refracted to the same side of the normal (so if the beam in
figure 28 is the pump beam, the signal beam should be refracted to the right and therefore enter
the crystal from the left). This will minimize the angle between the pump and the signal beam.

Figure 28: Refraction of the extraordinary beam in a birefringent material. The beam is refracted
but the wavefronts will still have the same direction. OA - optic axis, S - Poynting vector

5.2 Simulation of NOPA
Suitable values of θ and α can be found from figure 27. The desired wavelength range is 620 -
750 nm. As the phase matching curves show, it is not possible to find a curve that is flat enough over
that range. The range 640 - 750 nm, however, looks promising. To determine the optimal curve,
the wave vector mismatch ∆k was numerically integrated over the desired wavelength range. This
was done by summing ∆k for 500 wavelength points between 640 - 750 nm, for different choices
of α and θ. The result is denoted Σ|∆k|. The combination of α and θ that gives the smallest
Σ|∆k| over the desired wavelength range should therefore give a good starting point for finding
the optimal phase-matching and non-collinear angle. The result is shown in figure 29.

Figure 29: The result of integrating the wave vector mismatch for 500 wavelength points between
640 - 750 nm. The combination of θ and α that minimizes this should give a good starting point
for finding the optimal values.

The figure shows that Σ|∆k| is minimized for α = 2◦ and θ = 23.53◦. This was rounded to
θ = 23.6◦. Note that the value of α is the internal angle. Because the signal will be refracted as it
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enters the crystal, the external angle needs to be larger than α.
The intensity of the pump I3 and the length of the crystal L is also needed to calculate the gain.

The power of the pump light was measured to be approximately Pavg = 2.7 W. Following the same
procedure as for the intensity calculation for the white light gives a peak power of Ppeak = 34 MW,
once again assuming a 400 fs pulse duration. The beam diameter of the green light at the focus,
at which the BBO crystal was to be placed, was measured with a beam profiler, and found to
be approximately 200 µm. This gives according to equation (54) an area of 1.57 · 10−8 m2, and
using equation (55), this results in the intensity 210 GW/cm2. In reference [25], it is mentioned
that typical intensities for the pump are 100 - 150 GW/cm2 in BBO. The intensity may therefore
be too high. However, the pulse length is only roughly approximated from the autocorrelation
trace (figure 12) and also the pulse structure is not known. This means that the calculated peak
intensity possibly is slightly inaccurate and the actual intensity at the focus will be lower.

The thickness of the crystal was determined by plotting the coherence length and the pulse
splitting length. The coherence length is shown in figure 30 a).

(a) Coherence length (b) Pulse splitting length

Figure 30: Coherence and pulse splitting length in BBO for θ = 23.6◦.

The two peaks in the figure show that perfect phase matching is achieved for two wavelengths
(664 and 705 nm). The coherence length then drops very rapidly when moving away from these
wavelengths. The coherence length, however, is greater than 1.5 mm over the entire range, which
means that a 1.5-mm-thick crystal is within the limits of acceptable length.

The pulse splitting length is shown in figure 30 b) for both the signal and the idler. Both
of these are greater than 1.5 mm as well, but it is interesting to note that the length is actually
limited by the idler. If the length is longer than the pulse splitting length of the idler, there would
still be amplification (if the coherence length is long enough), but it would be much lower since the
positive feedback from the idler is lost. The conclusion is that the maximum length of the crystal
is 1.5 mm. However, from figure 30 a) it is noted that this is very close to the coherence length
around 640 nm. For this reason, a 1-mm-thick crystal will be chosen for the simulations.

Now, the gain can be calculated. The length is L = 1 mm and the pump intensity is assumed to
be 150 GW/cm2 (since 210 GW/cm2 as previously calculated is too much). Three different θ are
investigated: θ = 23.6◦, θ = 23◦ and θ = 24◦. The first angle gives the smallest Σ|∆k|, and the two
other ones are chosen to investigate the effect of choosing slightly smaller and larger angles. For
each θ, four different gain curves, corresponding to 4 different non-collinear angles α, are plotted.
The result is shown in figures 31 - 33.

All these curves are very similar in the wavelength region of interest. It can be noted that
for larger angles θ, the bandwidth increases, but the spectrum shifts towards longer wavelengths.
Judging from these graphs, θ = 23◦ would be the optimal choice, since it has sufficient bandwidth
but covers shorter wavelengths better. What is striking, however, is the gain. For all gain curves
the simulated gain is around 104. This is a very high and more than what can be expected from
the implementation. Therefore, a lower intensity is chosen in order to obtain a more realistic
simulation. Figure 34 - 36 shows the gain using a reduced intensity of 50 GW/cm2

The gain curves now have a significantly different shape, and furthermore, the gain is reduced
by two orders of magnitude. This is quite remarkable, since the intensity was only reduced by a
factor of three. Just as for the higher intensity, it can be seen that choosing a larger θ will give

34



Figure 31: Gain curves for θ = 23◦, L = 1 mm and pump power 150 GW/cm2.

Figure 32: Gain curves for θ = 23.6◦, L = 1 mm and pump power 150 GW/cm2.

Figure 33: Gain curves for θ = 24◦, L = 1 mm and pump power 150 GW/cm2.
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Figure 34: Gain curves for θ = 23◦, L = 1 mm and pump power 50 GW/cm2.

Figure 35: Gain curves for θ = 23.6◦, L = 1 mm and pump power 50 GW/cm2.

Figure 36: Gain curves for θ = 24◦, L = 1 mm and pump power 50 GW/cm2.

36



more gain towards longer wavelengths and a wider bandwidth as well. This is consistent with
figure 27. The phase-matching curves that corresponds to a smaller θ are flatter towards shorter
wavelengths, but the overall bandwidth is reduced. Increasing θ gives a longer flat range, but it
is located towards longer wavelengths. The simulated gain is now closer to what can be expected,
it is somewhere around 100 - 200 over most of the desired range. But do note that, as previously
mentioned, pump depletion and other effects are ignored when plotting these curves. The actual
gain may therefore be substantially smaller and subsequently, a pump intensity of 150 GW/cm2

would not be unreasonable to use.
For the simulations at 50 GW/cm2, the curves at θ = 23.6◦ are indeed the best for this ap-

plication, as predicted. At θ = 23◦ the gain does not cover the longer wavelengths as well as at
θ = 23.6◦, and at θ = 24◦ the shorter wavelengths are not covered as well or the gain profile has
a dip in the middle. However, there is not much difference between the curves at θ = 23.6◦ and
θ = 24◦ in the wavelength region of interest, so both choices would likely work for this application.
The optimal α at θ = 23.6◦ can be found from figure 35 to be α = 2.05◦. For this angle, the
simulation shows that the gain is fairly flat over most of the desired range and the bandwidth is
reasonably wide. As figure 35 shows, improving the bandwidth gives a less flat gain curve and vice
versa. The optimal trade-off is therefore at α = 2.05◦. This is the internal angle. The external
angle αext can be calculated with Snell’s law, n1 sinαext = n2 sinα [15]. The crystal is in air so
n1 can be approximated as 1, while n2 ≈ 1.67 over the desired wavelength range (see figure 47 in
appendix 1). This gives the external angle αext = arcsin(1.67 sin 2.05◦) = 3.42◦

The implementation of a NOPA has been shown in previous publications, for example by
reference [17], on which the envisioned SWIR source described in this thesis is based upon. In
that case, a 4-mm-thick BBO crystal was used with a phase-matching angle of θ = 23.3◦ and
non-collinear angle of α = 1.8◦. This is quite close to the findings from the simulations in this
section.

Figure 37 shows the walkoff angle ρ due to the extraordinary refraction, as function of the
phase matching angle θ. The walkoff angle is quite small (around 3.27◦ at θ = 23.6◦) and quite
close to the noncollinear angle, so it is possible to compensate for some off the walkoff by proper
alignment of the nonlinear crystal.

Figure 37: Walkoff angle as function of the phase matching angle θ.

It can be shown [15] that the efficiency of the NOPA process is given by

I ∝ sinc2(
∆k

2π
), (66)

where sinc(x) = sin(πx)
πx . Equation (66) is plotted in figure 38 with the optimal parameters

θ = 23.6◦ and α = 2.05◦, for a 1 mm thick crystal. This shows the efficiency of the NOPA as a
function of wavelength. Perfect phase-matching is achieved at two wavelengths, neither of which is
the central wavelength. To obtain a large bandwidth, the phase-matching angle θ should therefore
be chosen somewhere in the middle of the range of angles for the desired bandwidth. Figure 38
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shows that the efficiency decreases particularly rapidly at shorter wavelengths (at 640 nm it is
< 0.1).

Figure 38: Efficiency of the NOPA with a 1 mm long BBO crystal.

5.3 NOPA results
The NOPA was first tested with a 1-mm-thick BBO crystal with θ = 23.6◦, which should be the
optimal choice according to the simulations. A phenomenon called parametric fluorescence can be
used to set up the NOPA. Parametric fluorescence is caused by fluctuations in the electric field
(noise) that enters the crystal. These fluctuations are amplified and appear in the directions where
phase matching is obtained [4]. The fluorescence takes the form of a circular structure in the far
field. This is useful when aligning the NOPA. When the fluorescence is observed, it means that
the crystal is oriented in a correct way to be phase matched for the nonlinear interaction. There
will also be a spot in the ring in the far field which shows where to aim the seed pulse, i.e. it
shows the approximate noncollinear angle. However, the fluorescence could not be observed with
the 1-mm-thick crystal. This is probably a sign of low intensity. Note that when the intensity of
the pump beam was estimated previously, a value of 210 GW/cm2 was obtained, assuming 400 fs
pulse duration. The actual intensity of the pump beam is therefore probably lower than this, which
means that either the approximated pulse duration is inaccurate, or that the pulse indeed consists
of several pulses, as was suggested before.

The 1 mm thick crystal was replaced with a thicker, 3-mm-thick BBO crystal with θ = 23.4◦.
This phase matching angle is not optimal, but it should only be a small difference. With this
thicker crystal, the parametric fluorescence could be observed. This was used to align the crystal,
and amplification of the supercontinuum could be achieved.

The spectrum of the amplified light was measured using 2.5 and 3 W of pump power. The
result is shown in figure 39. The spectrum using 2.5 W of pump power is quite wide, but also
spikey and has a low power. This structure will translate into the time domain as well. The
spectrum using 3 W of pump power is on the other hand narrower, but has a decent power and is
overall more well-behaved. The difference between the two spectra in figure 39 may be caused by
a change in temporal overlap when the pump power is changed. The bandwidth of the spectrum
obtained with 3 W of pump power is around 640 - 695 nm (FWHM), which is narrower than
what is desired (including the shoulders as well gives a bandwidth between 630 - 720 nm). The
main reason for this is that the supercontinuum has a significant chirp, due to dispersion in the
YAG crystal, as well as the various nonlinear processes that generate the supercontinuum, such
as self-phase modulation. The output spectrum of the NOPA will then depend on which part of
the supercontinuum-pulse overlaps with the pump pulse in the NOPA crystal, since the frequency
components of the supercontinuum will be temporally distributed over the pulse. Indeed, varying
the temporal overlap (using the delay stage) made it possible to alter the spectrum, depending on
which frequencies of the supercontinuum that the pump pulse overlapped with. In order to improve
the bandwidth, the supercontinuum pulses must therefore be compressed. This will lead to shorter
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(a) 2.5 W (b) 3 W

Figure 39: Amplified supercontinuum using 2.5 W and 3 W of pump power.

pulses, which will result in better overlap with the pump pulses and therefore amplification of a
larger part of the supercontinuum spectrum.

To a lesser degree, the thicker crystal also makes the spectrum narrower. Equation (72) shows
that the efficiency drops faster with ∆k when L is larger, leading to a narrower efficiency curve in
figure 38. The use of a thinner crystal may therefore also increase the bandwidth slightly.

The power of the supercontinuum was approximately 5-6 mW before amplification, and after
amplification 440 mW, using 3 W of pump power. At 2.5 W pump power, the power of the amplified
supercontinuum was 130 mW, which is much less than what was achieved with the higher pump
power. This is consistent with what the gain curves in figures 31 - 36 predicts, where a smaller
reduction in pump power gave a much larger reduction in gain.

If the gain of the NOPA is defined as Gtot = (total output power)/(total input power), the gain
using 3 W of pump power will be Gtot = 440 mW / 5.5 mW = 80. However, only a small part
of the total supercontinuum power is amplified. Therefore, the gain G, as was simulated before,
will be larger than 80. It is however not possible to estimate how much spectral power that is
contained between 640 - 695 nm from the supercontinuum spectrum in figure 23, so the gain G
can not be calculated.

It was previously touched upon that the simulated gain does not take into account pump
depletion. A simple estimation of the depletion can be made by noting that with 3 W of pump
power, 440 mW of output power was obtained. Since only a small part of the 5 - 6 mW of
supercontinuum was amplified, one can assume that about 440 mW of pump power has been used
to amplify the signal (assuming that, for example, absorption can be neglected). However, for
each generated signal photon, one pump photon is required. Since the pump photons are more
energetic than the signal photons, the total pump power used will be higher than the power of the
amplified signal (the remaining energy is lost to the idler). The energy of a photon is given by
E = h̄ω [15], and therefore depends on the frequency. The frequency of the idler is 5.82 · 1014 Hz,
while the frequency of the signal (between 640-695 nm) is 4.32 · 1014 − 4.69 · 1014 Hz. The pump
photons therefore have about 1.3 times the energy of the signal photons, which means that the
total pump power that has been used for the amplification process is 440 mW · 1.3 = 570 mW.
The pump power would therefore have dropped to 3 - 0.57 W = 2.43 W. This is approximately a
19 % drop in power. Although this will reduce the gain, the pump is most certainly not depleted.
In this simple approximation, any temporal stretching of the pump is neglected. Temporal effects
will lead to a further drop in power, however, this is more difficult to approximate.

5.4 Overview of the complete setup
The amplification of the generated supercontinuum was achieved using a NOPA geometry. It
was possible to generate a sufficiently flat and stable supercontinuum between 620 - 750 nm, as
desired. The NOPA had a satisfying gain, however the resulting bandwidth between 640 - 695 nm
is narrower than what is expected. However, the bandwidth can be further improved by adding
compression to the supercontinuum.

The entire setup is shown in figure 40. The wide black/grey beam coming out of the NOPA is
the idler, which is angularly dispersed and not used.
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6 Reflection and outlook
This section will begin with a short reflection on the work that was done during this thesis. After
this, it will be shown how the output from the NOPA can be used in a setup that produces
CEP-stable SWIR pulses. For this, CEP-stabilization is first covered, and then how this can be
implemented in the final setup, along with some simulations of the gain and bandwidth of the final
setup. Lastly, some possible applications are presented.

6.1 Reflection on my work
During my time working on this thesis, I have performed both theoretical and practical work.
First of all, I have learned a huge amount about ultrafast and nonlinear optics: How dispersion
affects an optical system and how this can be compensated for with pulse compression, how non-
linear processes can be used to both generate light at a new frequency, as well as amplify already
existing light, etc. I have followed the alignment procedure of a grating compressor, as well as
taken measurements. The autocorrelation traces obtained during the alignment procedure were
evaluated and I estimated the pulse duration from this. I have learned about the theory of second-
harmonic generation, supercontinuum generation and the NOPA. I have used this to perform
various simulations to determine e.g. suitable phase-matching angles and thicknesses, and also
damage estimations. This was applied in the lab, where I, under supervision of my supervisors,
built smaller test-setups to evaluate my theoretical findings. This also allowed me to get hands-on
experience with a high-power laser system. I have learnt how to plan a setup as well as practical
aspects, such as mounting and aligning optics. Measurements have been made in the lab, which
were then evaluated and compared to the findings from the simulations. I have also made simula-
tions of the remaining parts that are required to finalize the SWIR setup, in order to estimate the
final performance of the system (which will be presented later in this section). Finally, I have also
studied some possible applications of the envisioned SWIR source, such as solitons, high-harmonic
generation and pump-probe spectroscopy (which will be covered in the last part of this section).

6.2 Stabilization of CEP
The carrier envelope phase was already briefly discussed in the introduction. It will be discussed
in more detail here.

The SWIR source is intended to be a high-intensity, few-cycle source that can be used for strong-
field light-matter interaction experiments like high-harmonic generation. For such interactions,
which utilize the electric field of a light pulse, the carrier-envelope phase plays a fundamental role
influencing the outcome of experiments. Consequently, a phase-stabilization scheme has to be
implemented. This is done intrinsically by the DFG process itself. As it turns out, not only the
frequencies of the participating waves in a nonlinear optical process are tied to one another, but
also their phases [13].

For DFG, where ω3 = ω1 − ω2, the CEP of the resulting pulse is given by [13]

φCEP3 = φCEP1 − φCEP2 − π/2. (67)

Equation (67) is the basis for the passive CEP stabilization. Consider two pulses at ω1 and
ω2 that are phase-locked, i.e. two pulses that originates from the same source. The CEP of the
pulse at ω1 is denoted φ and the CEP of the pulse at ω2 is denoted φ+φ0, where φ0 is a constant.
Due to propagation the CEP of the pulses will also change by constants c1 and c2, respectively. In
total, the CEP of the pulses is φCEP1 = φ+ c1 and φCEP2 = φ+ φ0 + c2. Equation (67) will then
give φCEP3 = φ+ c1 − φ− φ0 − c2 − π/2 = c1 − φ0 − c2 − π/2, which is constant. This means that
a CEP-stable output can be obtained from the DFG process, even if φ drifts from shot to shot, as
long as both input pulses have the same drift [13]. Even though this creates a passively stabilized
source, the constants c1 and c2 might vary from shot to shot if the environment is not controlled
sufficiently well (fluctuations in the setup, long distances etc.). On the other hand, c1 and c2 also
provide means to control the CEP of the SWIR source. This can be done by simply changing one
path length slightly, since this will change the value of c1 or c2 and therefore also the CEP. This is
not really easily done with active stabilization (where dispersive elements like insertion of a wedge
pair are usually used).

For four-wave mixing, where ω4 = ω1 − ω2 + ω3, the CEP is given by [13]
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φCEP4 = φCEP1 − φCEP2 + φCEP3 − π/2. (68)

Equation (68) is of particular interest for the supercontinuum generation. The main reason
for the spectral broadening is SPM, which can actually be thought of as an four-wave mixing
process between three frequencies ω1, ω2 and ω3, all belonging to the spectrum of the pulse. These
frequencies will create a new frequency, which can even lie outside the fundamental spectrum. The
newly created frequency will in turn create even more new frequencies and so on, subsequently
broadening the spectrum. Since all the initial frequencies belong to the same pulse, they will also
have the same CEP φ. According to equation (68) the resulting CEP will therefore be φCEP4 =
φ− φ+ φ− π/2 = φ− π/2. This shows the very important property of the supercontinuum, that
the supercontinuum will be phase-locked to the input pulse [13].

The CEP stability of the DFG process and the preserved CEP in the supercontinuum can then
be utilized to obtain a CEP-controlled output of the SWIR source.

6.3 The planned setup

Figure 41: Block diagram of the final setup. The remaining stages are highlighted by the dotted
box

The final setup of the SWIR source is shown in figure 41, highlighting the remaining parts by
the dotted box. What remains is to do the DFG between the amplified supercontinuum and the
1030-nm light and then to amplify the resulting light. It is planned to use BBO for both the DFG
and the amplification. The DFG between the desired 620 - 750 nm supercontinuum light and the
1030-nm light will result in a maximum spectrum between 1558 - 2628 nm, assuming the entire
spectrum can be converted. The phase matching curves for the DFG are shown in figure 42 (a).
Just as for the NOPA, a non-collinear setup gives flatter phase matching curves and therefore a
wider bandwidth. However, a non-collinear geometry will also introduce an angular chirp. To
avoid this, a collinear geometry (α = 0◦) is chosen. To obtain the widest bandwidth, the phase
matching angle θ should be chosen between the largest and smallest for the desired range. For the
desired range (620 - 750 nm), this gives θ = 20.3◦ and for the range obtained from the NOPA (640
- 695 nm) θ = 20.2◦. Figure 42 (b) shows the coherence length for the DFG when θ = 20.3◦. As
can be seen, the coherence length is at least 1 mm over the entire range between 620 - 750 nm.
This is a reasonable value, which means that fairly efficient conversion can be obtained over the
entire desired range. This also means that the spectrum from the NOPA can be optimized and
extended towards longer wavelengths without being restricted by the DFG.

After creating the difference frequency, the radiation needs to be amplified to reach sufficient
peak intensities to drive strong-field processes. This will be done in a second NOPA, using the
light generated in the DFG as the signal and the 1030-nm light as the pump. In this case, the
pump beam does not need to be frequency doubled since the 1030-nm light already has a shorter
wavelength than the entire output from the DFG process. Figure 43 (a) shows the phase matching
curves for the second NOPA.

In contrast to the first NOPA (figure 27), the phase matching curves are actually flatter for
noncollinear geometries with small noncollinear angles. For small noncollinear angles the phase
matching curves are also better centered at 2 µm. Therefore, the best choice here seems to be a very
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(a) Phase matching curves for the DFG in a BBO
crystal

(b) Coherence length for the DFG for θ = 20.3◦.

Figure 42: Phasematching curves and coherence length for DFG in a BBO crystal between the
amplified supercontinuum and the 1030-nm fundamental beam.

(a) Phase matching curves (b) Gain curves for θ = 21.7◦, L = 1 mm and pump
power 100 GW/cm2.

Figure 43: Phase matching and gain curves for the second NOPA with 1030-nm pump in a BBO
crystal.

small noncollinear angle. A collinear configuration should be avoided in order to be able to separate
the idler from the signal (the idler will be degenerate with the signal for some frequencies). Based
on the curves, a choice of θ = 21.7◦ seems reasonable. Gain curves for this choice are shown in figure
43 (b), where the length of the crystal is 1 mm and the intensity of the pump beam is 100 GW/cm2.
A higher intensity is needed here compared to the first NOPA to obtain a similar amount of gain.
As mentioned in the previous section, this is a usual intensity for nonlinear processes, so the BBO
should be able to handle it. Also, remember that the actual gain of the implemented NOPA may
be lower than what is predicted by figure 43 (b), due to the simplifying assumptions made (no
pump depletion, no absorption, etc.). In this case the yellow curve, corresponding to α = 1◦, has
the best profile. The gain curve stretches from 1700 - 2600 nm, which gives a bandwidth of 900 nm
centered at 2150 nm. This is narrower than the maximum ideal bandwidth of the DFG (1558 -
2628 nm), which shows that the final bandwidth of the system is more likely to be limited by the
second NOPA than the DFG.

The final pulse length can be estimated from the bandwidth of the output from the second
NOPA (clearly some compression after the NOPA is needed to obtain the shortest pulse length).
Currently the output from the first NOPA is between 640 - 695 nm, which gives 1690 - 2127 nm
after the DFG. This gives a bandwidth of ∆ν = 36.5 THz. Using equation (4), this gives a pulse
length of τFWHM = 12.1 fs. Note that the bandwidth in this case is not limited by the second
NOPA. On the other hand, if the entire desired spectrum from the first NOPA can be obtained
(620 - 750 nm), the bandwidth is limited by the second NOPA. This would give a bandwidth of
1700 - 2600 nm, which gives a pulse length of 7.20 fs. Light with a wavelength of 2 µm has a period
time of 6.67 fs, so in either case the transform limited pulse duration is less than two optical cycles.
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The output will also be CEP-stable because of the DFG. Both the supercontinuum and the
1030 nm light in the DFG process are taken from the same source and will therefore have the same
CEP, except for a constant due to propagation. As previously shown, the DFG will produce a
CEP-stable output, and the final NOPA will just like the first NOPA not affect the CEP.

6.4 Applications
6.4.1 Anomalous dispersion and optical solitons

In the visible region, most optical materials exhibit normal dispersion. In this case, longer wave-
lengths travels faster than shorter ones through the material. The group velocity dispersion is
characterized by the dispersion coefficient Dλ, as given by equation (16). In the case of normal
dispersion, the dispersion coefficient is negative. However, for longer wavelengths, such as what
will be produced by the SWIR source, the dispersion is often anomalous. Figure 44 shows the
refractive index of BK-7 glass. The dispersion coefficient Dλ depends on the second derivative of
the refractive index, and is negative (normal dispersion) when the refractive index curve is convex.
Figure 44 shows that BK-7 glass exhibits normal dispersion at short wavelengths. At 1322 nm,
however, the curve has an inflexion point, where the dispersion coefficient changes sign. The dis-
persion is subsequently anomalous for long wavelengths. More specifically, it is anomalous at the
wavelength of the SWIR-source.

Figure 44: Refractive index of BK-7 glass (data from [26]). Below 1322 nm the dispersion is normal
and above it is anomalous. At 1322 nm there is in fact no dispersion.

The anomalous dispersion can be utilized to create an optical soliton. An optical soliton is a
laser pulse that travels throughout a material with an unchanged shape [15]. Normally a pulse is
subject to group velocity dispersion, which will cause the pulse to be stretched out and chirped.
In order to create a soliton, the dispersion is counteracted using SPM. As previously explained,
the Kerr effect leads to an intensity dependent refractive index, n(I) = n+ n2I. If n2 is positive,
which it usually is, equation (48) shows that SPM will result in a chirped pulse whose leading
edge is red-shifted and trailing edge is blue-shifted. This will reduce the effect of the anomalous
dispersion, since shorter wavelengths (which travels faster with anomalous dispersion) will now be
at the trailing edge of the pulse. The dispersion will therefore move the trailing edge closer to the
center of the pulse. The leading edge will on the other hand travel slower, so it is also moved closer
to the center of the pulse. If the strength of the dispersion and the SPM is balanced properly, the
pulse can travel through the material with an unaltered shape. A soliton is thus achieved. In order
to obtain a soliton, the pulse shape must be correct. The simplest shape a soliton can have is an
unchirped sech2 [4]. The pulse energy must also be chosen correctly, since this will determine the
strength of the SPM.

Naturally, if the dispersion and the SPM does not cancel each other, the duration of the pulse
will change as it propagates through the material. This means that the pulse can either be stretched
or compressed, depending on how the shape and energy of the pulse is chosen. This means that
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with properly chosen parameters, the pulse can be made to self-compress.

6.4.2 High-harmonic generation

As already mentioned in the introduction, the SWIR source can be used for high-harmonic gen-
eration. This will create ultrashort, attosecond pulses, which, for example, can be used to study
events with an extremly short time duration.

Due to the long wavelength of the SWIR source, the cutoff of the HHG spectrum can be
extended into the XUV and possibly the soft X-rays as well. A particularly interesting wavelength
region in biology and medicine is the water window. The water window is in the X-ray regime, and
stretches between 284 - 543 eV (4.37 - 2.33 nm). In this region, carbon is highly absorptive, while
water has a very high transmittance. This means that the water window is very useful for imaging
biological samples (due to their carbon content) [28, 29]. Both synchrotrons and free-electron lasers
can produce coherent radiation in the water window, but these are large and expensive facilities
[28]. It would therefore be very useful, if a table-top setup using HHG can be utilized instead.
Emission of soft X-ray radiation using HHG has in fact been demonstrated several times, such as
in reference [28]. Here, a wavelength of 2.1 µm was used to obtain an HHG spectrum from neon,
with a cutoff of almost 450 eV. This is very promising for our envisioned SWIR source, which could
possibly lead to novel imaging possibilities in the water window.

Although HHG was first demonstrated in gases, it has recently been demonstrated in solids
as well [6]. HHG in gases has the disadvantage of requiring large setups with high power lasers
and vacuum chambers, and also the gas needs to be confined to the interaction volume. HHG in
solids has the distinct advantage of the medium being a solid and will therefore stay where it is.
Concerning the performance, the cutoff does not necessarily depend quadratically on the electric
field like equation (1) predicts. It has been shown for HHG in ZnO that the cutoff in fact depends
linearly on E [30].

One difficulty with HHG in solids is the low cutoff energy, due to absorption in the solid. For
comparison, reference [31] used a 1053-nm laser to study HHG in noble gases. In neon the cutoff
was at least at the 135th harmonic (160 eV). Also, as previously mentioned, a cutoff at 450 eV in
neon with a 2.1 µm laser was achieved by reference [28]. Compared to this, HHG in fused silica
gave a cutoff at only 25 eV using a 1700-nm laser [32].

HHG in solids could still be useful for studying material properties, such as charge densities. It
may also be possible to image single atoms in the solid, which could be used to find vacancies and
impurities in semiconductors. Furthermore, HHG depends on the structure of the material, which
means that it could be possible to manufacture nanostructures that can control the properties of
the generated light [6]. The SWIR source described in this thesis is well suited for studying HHG
in solids, and could therefore open up for new, interesting possibilities to study this phenomena.

It is possible to use more than one optical field for HHG. In this case, several waves with different
frequency can be added to the fundamental field. By varying some properties of these waves it is
possible to control the properties of the light generated by HHG. For example, the fundamental
field can be sent through a second-order nonlinear crystal, which will add a second-order harmonic
component to the fundamental [33]. Normally, HHG produces light at each half cycle of the driving
pulse. However, when the pulse is a superposition of different frequency components, the symmetry
of the pulse is broken. This will result in emission of a pulse at only every other half cycle, that is,
one photon for each cycle of the fundamental light. This was shown in for example [33]. There it
was also shown that changing the relative phase between the fundamental and the second harmonic
makes it possible to tune the shape of the spectrum as well as the maximum photon energy. Since it
was previously shown that it is possible for the future SWIR-source to produce less-than-two-cycle
pulses, a two-colour approach can be used to enhance the dominant field maximum even more,
resulting in the emission of single pulses from the HHG.

6.4.3 Pump-probe spectroscopy and PEEM

Pump-probe spectroscopy utilizes the ultrashort pulses created by HHG to study phenomena with
a very short time duration, such as atomic motions, which occur on the time scale of ps, and
electronic processes in the order of as. In pump-probe spectroscopy two laser pulses are used to
study a material. First a pump pulse initializes some dynamic, due to e.g. an excitation. A probe
pulse is then utilized to study this dynamic, by taking a snapshot of the dynamic without altering
it. If this procedure is repeated for different time delays between the probe and the pump, the
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property of interest can be studied over time. However, it is important that the process under
investigation is reversible and the initial conditions are the same from shot to shot.

Clearly, this is a very general description and there are many different ways the scheme can be
realized, with respect to e.g. wavelength of the pulses. There are a multitude of dynamics that
can be studied this way. Some examples are presented in the following:

Vibrational and orientational dynamics of water have been studied, using a mid-IR pump-probe
scheme. For this, 250 fs laser pulses between 2.8 - 3.2 µm were used. An intense pump pulse excited
the water molecules and a probe pulse was used to study the transmittance as a function of time
[34].

A two-colour pump-probe scheme was used in reference [35], where ultrafast wavepacket dynam-
ics in the dissociation of H2 was studied. An XUV pump pulse was used to start the wavepacket
dynamics and an IR probe pulse then made the H2-molecules dissociate.

Reference [1] used a similar scheme, so the pump was in the XUV and the probe in the near-IR.
Here, the time difference in photoemission of electrons in different states in tungsten was studied.
The pump ionized the atoms directly and the probe then affected the momentum of the free
electrons, leading to a streaked momentum distribution.

Naturally, it is necessary to have single pump and probe pulses. If one or both of these pulses
are generated through HHG, the two-colour approach is very useful. This will ensure that a only a
single pulse is created by HHG for each pulse of the driving field. Furthermore, the delay between
the pulses must be controlled. This can be done with an interferometer setup, like the one shown
in figure 9. One IR-pulse is split into two as it enters the interferometer. The HHG is performed
in one of the arms, so that one of the pulses are at XUV. Both pulses are then overlapped at the
output. This can be done e.g. with a mirror with a hole in the middle (due to the lack of beam
splitters at XUV).

The pump-probe scheme can also be used for photoelectron emission microscopy (PEEM), as
proposed in reference [36]. PEEM uses electrons emitted from the surface of a sample in order
to study so-called plasmons. Plasmons are resonant field-driven oscillations of the elctron density.
When an oscillating electric field is incident on a metal surface, plasmons can be created [8]. The
proposed scheme first uses a pump-probe scheme to excite and probe the plasmons. PEEM is then
used to study the plasmons. The pump pulse is in the near-IR and excites the surface plasmons.
An attosecond XUV probe pulse is then used to photo-emit electrons. An ultrashort probe pulse
is required to resolve the rapid dynamics of the plasmons. An attosecond pulse is short enough
to make the emitted electrons escape from the material at a fraction of the driving field (which is
in the near-IR). The energy of the electrons will therefore be a snapshot of the electric potential
at the surface when they escape. The emitted electrons are subsequently imaged with a PEEM,
which employs electron-guiding optics and an electron detector to image the electrons escaping
the surface of the sample. The idea behind this scheme is that it can provide both a high spatial
and temporal resolution. The use of an attosecond probe pulse provides a temporal resolution in
the attosecond range. The imaging, on the other hand, is performed with electrons, which have
a very short wavelength and can therefore provide a very high spatial resolution of 10 nm [37].
Attempts have been made to implement this scheme, [8, 38] for example, but it is challenging and
the scheme proposed in [36], although being very attractive, is yet to be properly implemented.
The SWIR source is however an attractive candidate for this. Due to its high repetition rate, space
charge effects from too many electrons per laser shot can be avoided, boosting the resolution and
reducing exposure time per picture.
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Appendix 1

Calculation of phase-matching for SHG in BBO
For second-harmonic generation, equations (36) and (37) reduces to ω3 = 2ω1 and k3 = 2k1,
respectively. In the experiments of this thesis, the wavelength corresponding to ω1 is λ1 = 1030 nm,
which gives λ3 = 515 nm according to the condition on the frequencies and equation (5). Since
k1 and k3 must be parallel, the phase matching condition can be further reduced to n(λ3)/λ3 =
2n(λ1)/λ1. Here λ3 = λ1/2, which finally leads to the condition n(λ3) = n(λ1). Because of
dispersion it is not straightforward to satisfy this condition, however it is possible. The solution
is to use an anisotropic material. In an anisotropic material, the refractive index depends on the
direction of the electric field of the beam [15]. Here BBO (β-Barium borate) will be used, which is
a common nonlinear crystal. It also exhibits uniaxial birefringence. Birefrigence is a special case
of anisotropy, which is illustrated in figure 45.

Figure 45: Birefringence in a crystal, OA - optic axis, o - ordinary polarized wave, e - extraordinary
polarized wave, k - wavevector, θ - phase-matching angle. The ordinary polarized wave will expe-
rience refractive index no regardless of direction of k. The refractive index for the extraordinary
polarized wave will on the other hand depend on the angle θ between the wavevector and the optic
axis, and take a value between no and ne.

A birefrigent material has an optic axis and the orientation and polarization of the beam relative
to this axis determines the refractive index [15]. If the polarization of the beam is perpendicular
to the plane of the optic axis and the wavevector k, the beam is called ordinary and the refractive
index no (ordinary refractive index) is not dependent on the direction of the beam. This is the
polarization marked as "o" in figure 45. The case when the polarization is in the same plane as
the optic axis and the wavevector k is more interesting. The beam is now called extraordinary
and has the polarization marked as "e" in figure 45. The refractive index of the extraordinary
beam depends on the angle θ between the wavevector k and the optic axis. If k is parallel to the
optic axis the refractive index will still be no, but if k is perpendicular to the optic axis it will
instead experience the refractive index ne (extraordinary refractive index). For any other angle
the refractive index ne(θ) will be somewhere in between no and ne, as expressed by [15]

1

ne(θ)2
=

cos2 θ

n2o
+

sin2 θ

n2e
. (69)

A peculiarity of birefringent materials is that the extraordinary beam will be refracted even at
normal incidence [15]. This is shown in figure 45, where the extraordinary beam is refracted,
whereas the ordinary beam is not. However, it is only the Poynting vector S, which represents the
power flow, that changes direction. The wavevector k of the extraordinary beam will not change
direction and will in fact point in the same direction as it does for the ordinary beam [15]. The
angle θ is the angle between k and the optic axis, so the extraordinary refraction can be ignored
when doing the phase matching. That is, the extraordinary beam should be treated as if it is still
at normal incidence when inside the crystal (since the wavevector still is at normal incidence).
However, since the extraordinary beam will walk off relative to the ordinary beam, the interaction
between the beams will be smaller as the extraordinary beam walks off.

Equation (69) represents the refractive index as an ellipsoid. The refractive index is the distance
to the point at which k intersects this ellipse. This is shown in figure 46.
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Figure 46: The elliptical curve (blue) satisfies equation (69). The refractive index for an extraor-
dinarily polarized beam can be found by the intersection of its k-vector with the curve.

The refractive indexes no and ne can be calculated using the Sellmeier equation, which approx-
imate the wavelength dependent refractive index with a sum. For BBO, no and ne are given by
equations (70) and (71) [15]:

n2o = 2.7359 +
0.01878

λ2 − 0.01822
− 0.01354λ2, (70)

n2e = 2.3753 +
0.01224

λ2 − 0.01667
− 0.01516λ2, (71)

where λ is the wavelength in µm. The equations are valid from 0.22 - 1.06 µm. The refractive
indexes are plotted in figure 47.

Figure 47: Refractive index of BBO at 220 - 1060 nm.

Figure 47 shows something very important: The beam at 1030 nm must be ordinary and the
second harmonic beam at 515 nm must be extraordinary. As can be seen in the figure, no(1030 nm)
is in between ne(515 nm) and no(515 nm). The refractive index of the beam at 515 nm can then
be tuned to equal no(1030 nm), thus fulfilling the phase matching condition. On the other hand,
no(515 nm) is greater than both ne(1030 nm) and no(1030 nm). It is therefore impossible to tune
the refractive index of the 1030-nm beam to be equal to that of the 515-nm beam, if the 1030-nm
beam is extraordinary.

The phase matching angle θ can be calculated using equation (69). The solution to this equation
for a range of wavelengths is called the phase-matching curve and is shown in figure 48. The phase
matching curve shows that the phase matching angle for SHG at 1030 nm is θ = 23.39◦. In
practice, the BBO is cut at the phase matching angle for the desired nonlinear effect. This will let
the input beam be at normal incidence.
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Figure 48: Phase matching curve for SHG in BBO.

As figure 48 shows, the phase matching angle θ depends on the wavelength. This means that it
is not possible to achieve perfect phase matching over the entire bandwidth of the laser. This will
lead to reduced efficiency of the SHG process further from the wavelength at which phase matching
is achieved, and therefore a reduced intensity of the second harmonic.

It can be shown [15] that the intensity I of the second harmonic is given by

I ∝ L2sinc2(
∆kL

2π
), (72)

where sinc(x) = sin(πx)
πx , L is the length of the crystal and ∆k = k3−2k1 is the phase mismatch.

Equation (72) shows that a longer crystal will provide higher conversion but a narrower bandwidth.
For SHG the phase mismatch can be calculated as ∆k = 4π

λ1
(n(λ3)− n(λ1)) [15]. This shows that

the phase mismatch depends on the wavelength λ1 of the fundamental.
Equation (72) will be used to find a suitable thickness of the crystal. The crystal should be as

thick as possible to provide the highest conversion, but thin enough to accommodate the desired
bandwidth. Assuming a Gaussian pulse, equation (4) gives a bandwidth of 1.1 THz for a 400 fs
pulse. The bandwidth in frequency can be converted to wavelength by equation (6), which results
in a bandwidth of 3.9 nm. This means that the second-harmonic will have a bandwidth of 1.95 nm
(assuming a Gaussian profile). To determine ∆k, equations (69) - (71) are first used to find the
refractive indexes over the desired wavelength range. This gives ∆k as a function of wavelength.
The obtained ∆k is then inserted in equation (72), to obtain the efficiency of the SHG process as
a function of wavelength. Equation (72) is normalized and plotted in figure 49 for a 4 mm thick
crystal. This graph shows the efficiency of the SHG process as a function of the wavelength. The
efficiency is at least 0.5 over the desired bandwidth, which shows that 4 mm is a suitable thickness.
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Figure 49: Efficiency of SHG for a 4-mm-thick BBO-crystal.
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Appendix 2

MATLAB code
Script for producing the autocorrelation traces of figure 10:

1 %Autocorrelation of chirped Gaussian pulse with chirp parameter a
and time constant tau0.

2

3 c = 299792458; %speed of light
4 lambda = 1030e-9; %INPUT wavelength
5 omega0 = 2*pi*c/lambda; %angular frequency
6 tauFWHM = 20e-15; %INPUT FWHM width of pulse
7 tau0 = tauFWHM /1.18; %time constant (Gaussian pulse)
8 tau = linspace (-50e-15 ,50e-15 ,5000); %time delay
9

10 %Calculate trace for three different chirp parameters a
11 a = 0; %INPUT first chirp parameter
12 %calculate autocorrelation trace
13 R1 = 1+2* exp(-tau .^2./ tau0 ^2)+4*exp(-(3+a^2).*tau .^2/(4* tau0 ^2)).*

cos(a.*tau .^2/(2* tau0 ^2)).*cos(omega0 .*tau)+exp(-(1+a^2).*tau
.^2/ tau0 ^2).*cos(2* omega0*tau);

14 subplot (1,3,1)
15 plot(tau ,R1)
16 title(’a=0’)
17 xlabel(’t/s’)
18

19 a = 2; %INPUT second chirp parameter
20 %calculate autocorrelation trace
21 R2 = 1+2* exp(-tau .^2./ tau0 ^2)+4*exp(-(3+a^2).*tau .^2/(4* tau0 ^2)).*

cos(a.*tau .^2/(2* tau0 ^2)).*cos(omega0 .*tau)+exp(-(1+a^2).*tau
.^2/ tau0 ^2).*cos(2* omega0*tau);

22 subplot (1,3,2)
23 plot(tau ,R2)
24 title(’a=2’)
25 xlabel(’t/s’)
26

27 a = 4; %INPUT third chirp parameter
28 %calculate autocorrelation trace
29 R3 = 1+2* exp(-tau .^2./ tau0 ^2)+4*exp(-(3+a^2).*tau .^2/(4* tau0 ^2)).*

cos(a.*tau .^2/(2* tau0 ^2)).*cos(omega0 .*tau)+exp(-(1+a^2).*tau
.^2/ tau0 ^2).*cos(2* omega0*tau);

30 subplot (1,3,3)
31 plot(tau ,R3)
32 title(’a=4’)
33 xlabel(’t/s’)

Script for simulating NOPA. Produces plots of phase-matching curves, |∆k|, coherence length,
pulse-splitting length, gain curves and efficiency. Requires the functions nOrd(lambda), nExt(lambda),
vgOrd(lambda) and vgExt(lambda), which follows after the main script.

1 %NOPA in BBO , type 1, signal and idler ordinary , pump extraordinary
2 %All distances are in meters , all times in seconds
3 %Some parts of the script requires the user to evaluate the result

of a calculation and then to manually input the optimal value
afterwards (these parts are indicated in the script with the
word MANUALLY). The script therefore must be run several times.

4

5 %clear all
6 c = 299792458; %speed of light in vacuum
7
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8 %1. lambda1 = signal , lambda2 = idler , lambda3 = pump
9 lambda3 = 515e-9; %INPUT pump
10 lambda1 = linspace (600e-9 ,800e-9 ,500); %INPUT siganl range
11 lambda2 = 1./(1./ lambda3 -1./ lambda1); %idler (set by signal and

pump)
12

13 %2. Phase match.
14 alpha = [0 1 2 3]/360*(2* pi); %INPUT non -coll. angles here
15 k1 = 2.*pi.*nOrd(lambda1)./ lambda1; %All k are magnitudes of

wavevectors
16 k2 = 2.*pi.*nOrd(lambda2)./ lambda2;
17 k30 = 2*pi/lambda3; %k3 in vacuum
18 figure (1)
19 hold on
20 box on
21 for i = 1: length(alpha)
22 %Find the desired k3 for phase -match
23 k3 = sqrt(k2.^2-(k1.*sin(alpha(i))).^2)+k1.*cos(alpha(i));
24 n3 = k3/k30; %Use this to find desired refractive index
25 %Use equation for refractive index in birefringent material to

find the desired theta using n3
26 theta = zeros(1,length(n3));
27 for j = 1: length(n3)
28 thetaFun = @(theta) cos(theta).^2./ nOrd(lambda3).^2 + sin(

theta).^2./ nExt(lambda3).^2 - 1./n3(j).^2;
29 theta(j) = fzero(thetaFun ,20/360*2* pi); %Find theta ,

initial guess 20 degrees
30 end
31 plot(lambda1 *1e9 ,theta /(2*pi)*360)
32 end
33 legend(’\alpha = 0^\ circ’,’\alpha = 1^\ circ’,’\alpha = 2^\ circ’,’\

alpha = 3^\ circ’)
34 xlabel(’\lambda/nm’)
35 ylabel(’\theta [degrees]’)
36 title(’Phase matching angle \theta for different values of \alpha ’)
37

38 %3. Find how alpha and theta affects sum(abs(Deltak)). Minimizing
this sum will give the alpha and theta that minimizes the
integrated wavevector mismatch over the desired wavelength range
. This alpha and theta should then give a good starting point at
which to calculate the gaincurves.

39 birRef = @(theta ,lambda) sqrt (1./( cos(theta).^2./ nOrd(lambda).^2 +
sin(theta).^2./ nExt(lambda).^2));

40 alpha = [0 0.5 1 1.5 2 2.3 2.5 3]/360*2* pi; %INPUT non -coll. angels
41 theta = linspace (20 ,26 ,200) /360*2* pi; %INPUT Range of phase -

matching angles
42 DeltakSum = zeros(length(alpha),length(theta));
43 %sum Deltak for each combination of theta and alpha for all
44 %wavelength points
45 for j = 1: length(alpha)
46 for i = 1: length(theta)
47 %Calculate Deltak as difference between length of k2 and

the distance between the tips of k1 and k3
48 k3 = 2.*pi.* birRef(theta(i),lambda3)./ lambda3;
49 k3k1diff = sqrt((k3-k1.*cos(alpha(j))).^2+( k1.*sin(alpha(j)

)).^2);
50 Deltak = k3k1diff - k2;
51 %Sum for all lambda to get total Deltak
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52 DeltakSum(j,i) = sum(abs(Deltak));
53 end
54 end
55 figure (2)
56 plot(theta /2/pi*360, DeltakSum)
57 legend(’\alpha = 0^\ circ’,’\alpha = 0.5^\ circ’,’\alpha = 1^\ circ’,’

\alpha = 1.5^\ circ’,’\alpha = 2^\ circ’,’\alpha = 2.3^\ circ’,’\
alpha = 2.5^\ circ’,’\alpha = 3^\ circ’)

58 title(’\Sigma\mid\Deltak\mid as function of \theta for different \
alpha’)

59 xlabel(’\theta [degrees]’)
60 ylabel(’\Sigma\mid\Deltak\mid’)
61 %MANUALLY insert here the combination of alpha and theta that gave

the smallest sum(Deltak). Calculate Deltak for these values.
62 alpha = 2.05/360*2* pi;
63 theta = 23.6/360*2* pi;
64 k3 = 2.*pi.* birRef(theta ,lambda3)./ lambda3;
65 k3k1diff = sqrt((k3-k1.*cos(alpha)).^2+( k1.*sin(alpha)).^2);
66 Deltak = k3k1diff - k2;
67

68 %4. Determine lengths
69 %4 a) Coherence length Lc = 2pi/abs(Deltak). Depends on Deltak , so

may need
70 %to be adjusted after calculating the gain curves. However , these

curves will determine the thickness of the crystal , so they must
be plotted before calculating the gain.

71 Lc = 2.*pi./abs(Deltak);
72 figure (3)
73 semilogy(lambda1 *1e9,Lc)
74 title(’Coherence length L_c’)
75 xlabel(’\lambda/nm’)
76 ylabel(’L_c/m’)
77 %4 b) Pulse splitting length. Assume pulse length tau = 400 fs
78 tau = 400e-15; %INPUT pulse length here
79 %Calculate the group velocities
80 vg1 = vgOrd(lambda1);
81 vg2 = vgOrd(lambda2);
82 dndlambda = (birRef(theta ,lambda3 +0.1e-9)-birRef(theta ,lambda3 -0.1e

-9))/0.2e-9;
83 vg3 = c/( birRef(theta ,lambda3)-lambda3*dndlambda);
84 l13 = abs(tau ./(1./vg1 -1/ vg3)); %Split between signal and pump
85 l23 = abs(tau ./(1./vg2 -1/ vg3)); %Split between idler and pump
86 figure (4)
87 plot(lambda1 *1e9 ,l13)
88 hold on
89 plot(lambda2 *1e9 ,l23)
90 title(’Pulse splitting length L_{split}’)
91 xlabel(’\lambda/nm’)
92 ylabel(’L_{split}/m’)
93 legend(’l_{sig -pump}’,’l_{idler -pump}’)
94

95 %5. Plot gain curves.
96 epsilon0 = 8.8542e-12; %Permittivity of free space
97 %Nonlinear coeff. for BBO
98 d22 = 2.2e-12;
99 d31 = 0.08e-12;

100 deff = d31*sin(theta) + d22*cos(theta);
101 %Angular frequencies of signal and idler
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102 omega1 = 2.*pi.*c./ lambda1;
103 omega2 = 2.*pi.*c./ lambda2;
104 %---These are the parameters to change when optimizing the gain --
105 I3 = 50e13; % INPUT Pump intensity 7e13 [W/m^2]
106 L = 1e-3; %MANUALLY input crystal length [m] based on previous

result
107 theta = 23.6/360*2* pi; %INPUT phase -matching angle
108 alpha = [2 2.025 2.05 2.075]/360*2* pi; %INPUT non -coll. angles
109 %-----------------------------------------------------------------
110 figure (5)
111 for i = 1: length(alpha)
112 %Find Deltak , calculate g^2 (g2) and Gamma^2 (Gamma2), use this

to find gain G
113 k3 = 2.*pi.* birRef(theta ,lambda3)./ lambda3;
114 k3k1diff = sqrt((k3-k1.*cos(alpha(i))).^2+( k1.*sin(alpha(i)))

.^2);
115 Deltak = k3k1diff - k2;
116 Gamma2 = 2.* deff .^2.* omega1 .* omega2 .*I3./(c.^3.* epsilon0 .*nOrd(

lambda1).*nOrd(lambda2).* birRef(theta ,lambda3));
117 g2 = Gamma2 - Deltak .^2/4;
118 G = 1+ Gamma2 ./g2.*sinh(sqrt(g2).*L).^2;
119 semilogy(lambda1 *1e9,G)
120 hold on
121 end
122 xlim ([600 800])
123 title(’Gain G at \theta = 23^\circ , I_3 = 50 GW/cm^2’)
124 legend(’\alpha = 2^\ circ’,’\alpha = 2.025^\ circ’,’\alpha = 2.05^\

circ’,’\alpha = 2.075^\ circ’)
125 xlabel(’\lambda/nm’)
126 ylabel(’G [I_{out}/I_{in}]’)
127

128 % Plot sinc ^2( Deltak(lambda)*L) at theta and alpha that minimizes
sum(abs(Deltak))

129 %MANUALLY insert the optimum alpha and theta as found from the gain
curves

130 alpha = 2.05/360*2* pi; %MANUALLY insert optimal alpha
131 theta = 23.6/360*2* pi; %MANUALLY insert optimal theta
132 k3 = 2.*pi.* birRef(theta ,lambda3)./ lambda3;
133 k3k1diff = sqrt((k3-k1.*cos(alpha)).^2+( k1.*sin(alpha)).^2);
134 Deltak = k3k1diff - k2;
135 figure (6)
136 plot(lambda1 *1e9 ,sinc(Deltak *1e -3/(2* pi)).^2)
137 title(’sinc ^2(\ Deltak (\ lambda)L/(2\pi)) at \theta = 23.6^\ circ , \

alpha = 2.05^\ circ and L = 1 mm’)
138 xlabel(’\lambda/nm’)
139 ylabel(’sinc ^2(\ Deltak (\ lambda)L/(2\pi))’)
140

141

142 %6. Calculate walk -off angle rho of k3 due to birefringence.
143 theta = linspace (22 ,24) /360*2* pi; %INPUT desired range of phase -

match angles
144 rho = atan((nOrd(lambda3)/nExt(lambda3))^2.* tan(theta))-theta;
145 figure (7)
146 plot(theta /2/pi*360,rho /2/pi*360)
147 title(’Walkoff angle \rho between signal and pump’)
148 xlabel(’\theta [degrees]’)
149 ylabel(’\rho [degrees]’)

nOrd(lambda):
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1 %no in BBO using Sellmeier equation. Lambda is inputted in m.
2

3 function no = nOrd(lambda)
4 lambda = lambda .*1e6; %convert to um
5 no = 2.7359+0.01878./( lambda .^2 -0.01822) -0.01471.* lambda

.^2+0.0006081.* lambda .^4 -0.00006740.* lambda .^6;
6 no = sqrt(no);

nExt(lambda):

1 %ne in BBO using Sellmeier equation. Lambda is inputted in m.
2

3 function ne = nExt(lambda)
4 lambda = lambda .*1e6; %convert to um
5 ne = 2.3753+0.01224./( lambda .^2 -0.01667) -0.01627.* lambda

.^2+0.0005716.* lambda .^4 -0.00006305.* lambda .^6;
6 ne = sqrt(ne);

vgOrd(lambda):

1 %Determine group velocity of ordinary wave in BBO. Take derivative
of Sellmeier equation and than use the equation for the group
velocity.

2 %Lambda is inputted in m
3

4 function vgo = vgOrd(lambda)
5 c = 299792458; %Speed of light in vacuum
6 %Constants for Sellmeier equation
7 A = 2.7359;
8 B = 0.01878;
9 C = 0.01822;
10 D = 0.01354;
11 lambda = lambda .*1e6; %convert lambda to um
12 DnDlambda = 0.5.*( -2.*B.* lambda .*( lambda .^2-C).^( -2) -2.*D.* lambda)

.*(A+B.*( lambda .^2-C).^( -1)-D.* lambda .^2) .^( -0.5);
13 vgo = c./( nOrd(lambda ./1e6) -(lambda ./1e6).* DnDlambda);

vgExt(lambda):

1 %Determine group velocity of extraordinary wave in BBO. Take
derivative of Sellmeier equation and than use the equation for
the group velocity.

2 %Lambda is inputted in m
3

4 function vge = vgExt(lambda)
5 c = 299792458;%Speed of light in vacuum
6 %Constants for Sellmeier equation
7 A = 2.3753;
8 B = 0.01224;
9 C = 0.01667;
10 D = 0.01516;
11 lambda = lambda .*1e6;
12 DnDlambda = 0.5.*( -2.*B.* lambda .*( lambda .^2-C).^( -2) -2.*D.* lambda)

.*(A+B.*( lambda .^2-C).^( -1)-D.* lambda .^2) .^( -0.5);
13 vge = c./( nExt(lambda ./1e6) -(lambda ./1e6).* DnDlambda);

Script for calculating DFG. Produces plots of the phase-matching curves and the coherence length.
Also makes use of nOrd(lambda) and nExt(lambda).

1 %DFG in BBO
2 %All distances are in meters , all times in seconds
3 %The calculation of the coherence length requires the user to

manually input the optimal phase -matching angle from the
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previous step (indicated by the word MANUALLY in the script).
The script must therefore be run twice.

4

5 %clear all
6 c = 299792458; %Speed of light in vacuum
7

8 %1. DFG between lambda1 and lambda3 gives lambda2
9 lambda3 = linspace (620e-9 ,750e-9 ,500); % INPUT first wave
10 lambda1 = 1030e-9; %INPUT second wave
11 lambda2 = 1./(1./ lambda3 -1./ lambda1); %calculate DFG
12

13 %2. Phase match. k1 and k2 are ordinary waves , while k3 is
extraordinary

14 alpha = [0 0.5 1 1.5]/360*(2* pi); %INPUT non -coll. angle
15 k2 = 2.*pi.*nOrd(lambda2)./ lambda2; %All k are magnitudes of

vectors
16 k30 = 2.*pi./ lambda3; %k3 in vacuum
17 k1 = 2*pi.*nOrd(lambda1)/lambda1;
18 figure (1)
19 hold on
20 box on
21 for i = 1: length(alpha)
22 %Find the desired k3 for phase -match
23 k3 = sqrt(k2.^2-(k1.*sin(alpha(i))).^2)+k1.*cos(alpha(i));
24 n3 = k3./k30; %Use this to find desired refractive index
25 %Use equation for refractive index in birefringent material to

find the desired theta using n3
26 theta = zeros(1,length(n3));
27 for j = 1: length(n3)
28 thetaFun = @(theta) cos(theta).^2./ nOrd(lambda3(j)).^2 +

sin(theta).^2./ nExt(lambda3(j)).^2 - 1./n3(j).^2;
29 theta(j) = fzero(thetaFun ,80/360*2* pi); %Find root to eq

for n3, gives theta
30 end
31 plot(lambda3 *1e9 ,theta /(2*pi)*360)
32 end
33 legend(’\alpha = 0^\ circ’,’\alpha = 0.5^\ circ’,’\alpha = 1^\ circ’,’

\alpha = 1.5^\ circ’)
34 xlabel(’\lambda/nm’)
35 ylabel(’\theta [degrees]’)
36 title(’Phase matching angle \theta for different values of \alpha ’)
37

38 %3. Coherence length
39 %Birefringent refractive index
40 birRef = @(theta ,lambda) sqrt (1./( cos(theta).^2./ nOrd(lambda).^2 +

sin(theta).^2./ nExt(lambda).^2));
41 theta = 20.2/360*2* pi; %MANUALLY input optimal phase -matching angle
42 %Find Deltak
43 k3 = 2.*pi.* birRef(theta ,lambda3)./ lambda3;
44 k3k1diff = k3 - k1;
45 Deltak = k3k1diff - k2;
46 %Use Deltak to find coherence length
47 Lc = 2.*pi./abs(Deltak);
48 figure (2)
49 semilogy(lambda3 *1e9,Lc)
50 title(’Coherence length L_c for DFG’)
51 xlabel(’\lambda/nm’)
52 ylabel(’L_c/m’)
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Script for calculating SHG. Produces plots of refractive index, phase matching curve and efficiency.
Also makes use of nOrd(lambda) and nExt(lambda).

1 %SHG for 1030 nm light in BBO. Fundamental has ordinary
polarization , second harmonic has extraordinary polarization

2 c = 299792458; %speed of light in vacuum
3

4 %1. Plot refractive index no and ne
5 lambda = linspace (400e-9 ,1200e-9 ,500); %INPUT wavelength
6 no = nOrd(lambda); %ordinary refractive index
7 ne = nExt(lambda); %extraordinary refractive index
8 figure (1)
9 plot(lambda *1e9 ,no)
10 hold on
11 plot(lambda *1e9 ,ne)
12 legend(’n_o’,’n_e’)
13 title(’Refractive index of BBO’)
14 xlabel(’\lambda/nm’)
15 ylabel(’Refractive index n’)
16 grid on
17

18 %2. Phase -matching curves
19 lambda1 = linspace (1020e-9 ,1040e-9 ,500); %INPUT fundamental wave
20 lambda3 = lambda1 ./2; %second harmonic
21 n1 = nOrd(lambda1); %refractive index of fundamental wave
22 %Solve for the phase -matching angle theta that makes n3 = n1 for

each lambda
23 theta = zeros(1,length(n1));
24 for j = 1: length(n1)
25 %Find theta so that n(lambda3) = n(lambda1)
26 thetaFun = @(theta) cos(theta).^2./ nOrd(lambda3(j)).^2 + sin(

theta).^2./ nExt(lambda3(j)).^2 - 1./n1(j).^2;
27 %Find root to eq for n3, this gives theta. Initial guess 23

degrees
28 theta(j) = fzero(thetaFun ,23/360*2* pi);
29 end
30 figure (2)
31 plot(lambda1 *1e9 ,theta /(2*pi)*360)
32 xlabel(’\lambda/nm’)
33 ylabel(’\theta [degrees]’)
34 title(’Phase matching angle \theta for SHG in BBO’)
35

36 %3. Plot sinc(Deltak*L), gives efficiency
37 L = 4e-3; %INPUT crystal thickness
38 %define refractive index of extraordinary wave
39 birRef = @(theta ,lambda) sqrt (1./( cos(theta).^2./ nOrd(lambda).^2 +

sin(theta).^2./ nExt(lambda).^2));
40 n3 = birRef (23.39/360*2*pi,lambda3); %refractive index of second -

harmonic
41 Deltak = 4*pi./ lambda1 .*(n3-nOrd(lambda1));
42 eff = sinc(Deltak*L/(2*pi)).^2;
43 figure (3)
44 plot(lambda1 *1e9 ,eff);
45 xlabel(’\lambda/nm’)
46 ylabel(’sinc ^2(\ Deltak (\ lambda)L/(2\pi))’)

The following script produces the plots in figures 3, 2, 5, 6, 7, 14 and 16. Note that the plots
are only intended to illustrate the concepts, they are not based on any calculations related to the
setup that has been described in this thesis.
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1 %SPM
2 x = linspace (-3,3,500);
3 figure (1)
4 hold on
5 box on
6 yyaxis left
7 plot(x ,(0.5* exp(-x.^2)).^2,’-’); %Pulse envelope intensity in time
8 ylabel(’Intensity (arb.u.)’)
9 axis ([-2,2,-0.2,0.4])
10 yyaxis right
11 plot(x ,0.25*x.*exp(-x.^2).*exp(-x.^2)); %Derivative of the

intensity envelope
12 axis ([-2,2,-0.2,0.4])
13 xlabel(’Time (arb.u.)’)
14 ylabel(’Frequency shift (arb.u.)’)
15

16 %self steepening
17 figure (2)
18 hold on
19 box on
20 plot(x,0.5* exp(-log((3-x)./1) .^2),’b’);
21 axis ([-3,3,0,0.6])
22 xlabel(’Time (arb.u.)’)
23 ylabel(’Amplitude (arb.u.)’)
24

25 %CEP
26 figure (3)
27 hold on
28 box on
29 plot(x,0.5* exp(-x.^2).*sin (5*x+pi/8),’b’); %Pulse in time
30 plot(x,0.5* exp(-x.^2),’r--’); %Pulse envelope in time
31 axis ([-3,3,-0.7,0.8])
32 xlabel(’Time arb.u.’)
33 ylabel(’Amplitude arb.u.’)
34

35 %phase vs. group velocity
36 x1 = linspace (-4,2);
37 figure (4)
38 subplot (1,3,1)
39 hold on
40 box on
41 plot(x1 ,0.5* exp(-(x1+1) .^2).*cos (5*(x1+1)),’b’); %Pulse in time
42 plot(x1 ,0.5* exp(-(x1+1) .^2),’r--’); %Pulse envelope in time
43 xlabel(’z (arb.u.)’)
44 ylabel(’Amplitude (arb.u.)’)
45

46 x1 = linspace (-3,3);
47 subplot (1,3,2)
48 hold on
49 box on
50 plot(x1 ,0.5* exp(-x1.^2).*cos (5*x1-pi/4),’b’); %Pulse in time
51 plot(x1 ,0.5* exp(-x1.^2),’r--’); %Pulse envelope in time
52 xlabel(’z (arb.u.)’)
53

54 x1 = linspace (-2,4);
55 subplot (1,3,3)
56 hold on
57 box on
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58 plot(x1 ,0.5* exp(-(x1 -1) .^2).*cos (5*(x1 -1)-pi/2),’b’); %Pulse in
time

59 plot(x1 ,0.5* exp(-(x1 -1) .^2),’r--’); %Pulse envelope in time
60 xlabel(’z (arb.u.)’)
61

62 %chirp by dispersion
63 figure (5)
64 subplot (1,2,1)
65 hold on
66 box on
67 plot(x,0.5* exp(-x.^2).*cos (5*x),’b’); %Pulse in time
68 plot(x,0.5* exp(-x.^2),’r--’); %Pulse envelope in time
69 xlabel(’Time (arb.u.)’)
70 ylabel(’Amplitude (arb.u.)’)
71

72 subplot (1,2,2)
73 hold on
74 box on
75 plot(x,0.5* exp ( -(0.8*x).^2).*cos(5*x+2*x.^2),’b’); %Pulse in time
76 plot(x,0.5* exp ( -(0.8*x).^2),’r--’); %Pulse envelope in time
77 xlabel(’Time (arb.u.)’)
78

79 %CEP for short vs. long pulse
80 figure (7)
81 subplot (2,2,1)
82 plot(x,0.5* exp(-x.^2).*cos (4*x),’b’);
83 box on
84 title(’a) \phi = 0’)
85 xlabel(’Time (arb.u.)’)
86 ylabel(’Amplitude (arb.u.)’)
87

88 subplot (2,2,2)
89 plot(x,0.5* exp(-x.^2).*cos (4*x-pi/2),’b’);
90 box on
91 title(’b) \phi = \pi/2’)
92 xlabel(’Time (arb.u.)’)
93 ylabel(’Amplitude (arb.u.)’)
94

95 subplot (2,2,3)
96 plot(x,0.5* exp(-x.^2).*cos (20*x),’b’);
97 box on
98 title(’c) \phi = 0’)
99 xlabel(’Time (arb.u.)’)
100 ylabel(’Amplitude (arb.u.)’)
101

102 subplot (2,2,4)
103 plot(x,0.5* exp(-x.^2).*cos (20*x-pi/2),’b’);
104 box on
105 title(’d) \phi = \pi/2’)
106 xlabel(’Time (arb.u.)’)
107 ylabel(’Amplitude (arb.u.)’)
108

109 %Up vs. downchirp
110 figure (8)
111 subplot (1,2,1)
112 box on
113 plot(x,0.5* exp(-x.^2).*sin (8*x+2*x.^2),’b’); %Pulse in time
114 xlabel(’Time (arb.u.)’)
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115 ylabel(’Amplitude (arb.u.)’)
116 title(’a)’)
117 subplot (1,2,2)
118 box on
119 plot(x,0.5* exp(-x.^2).*sin (8*x-2*x.^2),’b’); %Pulse in time
120 xlabel(’Time (arb.u.)’)
121 title(’b)’)
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