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Abstract

The surge in revenue from real-time auctions for online display advertisement has spurred

great research interest into how to design optimal mechanisms for these auctions, with re-

spect to both buyers and sellers. This thesis focuses on some recent proposals on how to

modify the Vickrey auction, which has been dominating the world of real-time auctions for

the past decade, in order to better accommodate for the dynamics of this speci�c auction

environment while also increasing the revenue of the seller. Speci�cally, this thesis aims to

evaluate the so-called boosted second-price auction on a dataset provided by Adform, which

is a global advertisement technology company based in Copenhagen. In this speci�c case,

the implementation of the boosted second-price auction does not seem to be justi�ed. The

changes in allocation as a result of implementing the mechanism are unstable and hard to

constrain, while there doesn't seem to be a reason to assume that the Vickrey auction does

not already achieve an e�cient allocation. All of the code used is provided in the following

GitHub repository: https://github.com/Ostigland/econ-rtb

Key words: real-time bidding, Vickrey auction, second-price auction, modi�ed second-price

auction, boosted second-price auction, adverse selection
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Abbreviations

RTB Real-time bidding

DSP Demand-side platform

AdX Ad exchange

CTR Click-through rate

FP First price

SP Second price (i.e. Vickrey)

MSP Modi�ed second price

BSP Boosted second price

OMN Omniscient

CDF Cumulative distribution function

BSP-AM BSP alternating minimizer

BSP-MC BSP Monte Carlo
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Chapter 1

Introduction

Auctions and competitive bidding account for economic activity across markets of all kinds,

spanning both public and private transactions, including tobacco, treasury bills, �sh, elec-

tromagnetic spectrum, and tracts for oil �elds (Krishna, 2010; Milgrom and Weber, 1982).

Since the early 2000s, auctions have also dominated the growing market of online display

advertisement, with early pioneers such as Google and Yahoo! (Varian, 2009; Edelman, Os-

trovsky and Schwarz, 2007; Yuan et al., 2014). The value of goods and services allocated

through di�erent kinds of auctions is immense. Hence, it has been of great interest to the �eld

of economics to study auctions and competitive bidding during the last decades (Krishna,

2010). This area of study, broadly referred to as auction theory, was initiated in 1961 by the

pioneering work of William Vickrey (Krishna, 2010; Vickrey, 1961).

Since then, the �eld of auction theory has been the subject of many interesting results

and signi�cant publications, such as the revenue equivalance theorem, initially discussed by

Vickrey (1961) and subsequently developed by the seminal works of Myerson (1981) and

Riley and Samuelson (1981). More broadly, important questions in auction theory concern

strategic behavior on behalf of buyers and sellers given certain environmental conditions. For

example, what is the optimal choice of strategy for a certain bidder given a speci�c auction
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format? How can a seller achieve maximum revenue from selling an item through an auction?

These kinds of questions open up a vast research landscape, a small part of which will be

discussed in this thesis.

There are many kinds of auction formats, some of the most common being the Dutch auction,

the English auction, the sealed-bid �rst-price auction and the sealed-bid second-price auction,

which is also referred to as a Vickrey auction or a Vickrey-Clarke-Groves auction when gen-

eralized to auctions for multiple items (Krishna, 2010; Clarke, 1971; Groves, 1973). The

Vickrey auction is one of the major auction formats and has been dominating the aforemen-

tioned case of online display advertisement (Krishna, 2010; Edelman, Ostrovsky and Schwarz,

2005). See Varian (2007, 2009), Edelman, Ostrovsky and Schwarz (2007), and Yuan et al.

(2014) for great overviews on the process of auctioning out slots for online display advertise-

ment, which is often referred to as real-time bidding (RTB).

RTB auctions are interesting for a number of reasons. For example, there is signi�cant

asymmetry amongst bidders, which means that the aforementioned revenue equivalence the-

orem is not applicable (Maskin and Riley, 2000). Rather, the Vickrey auction has become

the dominating auction format due to its simplicity and nice behavioral properties (Edelman,

Ostrovsky and Schwarz, 2005; Golrezaei et al., 2017). However, recent research by Arnosti,

Beck and Milgrom (2016) suggests that the Vickrey auction can lead to suboptimal out-

comes, with respect to both revenue and allocative e�ciency. They propose a modi�cation

to the Vickrey auction which aims to reduce adverse selection for speci�c types of bidders,

with the e�ect of improving overall allocative e�ciency and revenue. Golrezaei et al. (2017)

propose a similar modi�cation with the explicit aim of increasing revenue. Both methods use

data-driven approaches to allocate the item depending on the behaviors of di�erent bidders.

Other methods to increase revenues in auctions for online display advertisement include the

use of dynamic �oor prices in Vickrey auctions, discussed by e.g. Ostrovsky and Schwarz
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(2016) and Rong et al. (2017).

Due to the increased prevalence of RTB auctions, the research interest in the RTB ecosys-

tem has grown signi�cantly (Yuan et al., 2014). The purpose of this thesis is to add to the

auction theoretical analysis of the RTB ecosystem by considering the modi�cations to the

Vickrey auction proposed by Arnosti, Beck and Milgrom (2016) and Golrezaei et al. (2017).

Speci�cally, I will be implementing and testing the approach suggested by Golrezaei et al.

(2017) on a dataset provided by Adform, which is a global advertisement technology com-

pany. In testing the approach, I will be comparing the resulting allocation and revenue to

the corresponding outcome in a normal Vickrey auction.

Real-time bidding

In an RTB auction, a bidder, or advertiser, receives a request to bid on display advertise-

ment slots for speci�c users as they access or are browsing on a website, often referred to as a

publisher (Yuan et al., 2014 ). Showing an ad to a user is often referred to as an impression.

Hence, we talk about buying and selling impressions. The whole process of auctioning out

the ad slots from the moment the user starts loading the website takes less than 100 mil-

liseconds; hence the name "real-time bidding". First, the publisher hosts an auction through

a so-called advertisement exchange (AdX), which sends out bid requests to a number of so-

called demand-side platforms (DSP). The role of a DSP is to use algorithmic know-how to

participate in RTB auctions on behalf of advertisers. After the DSPs have received the bid

requests, they submit bids to the AdX, and whoever posts the highest bid wins the auction

and gets to display their advertisement on the website. This somewhat simpli�ed example

of the RTB ecosystem is illustrated in �gure 1.1.

In this thesis, 'bidder' and 'advertiser' will be used interchangeably when referring to par-
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ticipants in an auction, i.e. DSPs. There are two main reasons why an advertiser enlists a

DSP in order to buy ad slots. First, the DSP has the statistical tools and data-management

skills necessary to valuate di�erent impressions. This is often done by di�erent performance-

related metrics, of which one of the most common is the so-called click-through rate (CTR),

i.e. the probability that a certain user, given their demographic information and other char-

acteristics, will click on a given ad (Zhang, Yuan and Wang, 2014). Secondly, a normal DSP

can participate in billions of RTB auctions per day (Yuan et al., 2014). There are thousands

of websites selling ad slots every second. Hence, simply participating in auctions and �nding

valuable impressions is a task in its own right. All of these procedures are, of course, strictly

algorithmic. Adform is active both as a DSP and an AdX. The data used in this thesis is

generated from auctions held in their AdX.

Website AdX

DSP 1

DSP 2

DSP 3

b1

b2

b3

User
info

Winner

Figure 1.1: A simpli�ed RTB ecosystem
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Chapter 2

The second-price auction(s)

The Vickrey auction is the dominating auction mechanism in real-time auctions for online

display advertising. As previously mentioned, the reason for this, as well as for the general

popularity of the Vickrey auction mechanism, is its simplicity and desirable theoretical prop-

erties, which incentivizes bidders to always bid their true valuations for whatever item is up

for auction. This thesis is mainly concerned with a variant of the Vickrey auction, a so-called

modi�ed second-bid auction. In this thesis, we will use "second price", rather than "second

bid", and hence refer to this mechanism as MSP.

In this chapter, we will start by discussing the theoretical properties of the Vickrey auc-

tion. Then, we will consider a general framework for MSP auctions and to what extent the

theoretical properties of the original Vickrey auction are retained in an MSP auction. This

framework will rely on the recent work by Arnosti, Beck and Milgrom (2016). We will also

consider a speci�c MSP-type mechanism, called the boosted second-price (BSP) auction and

discuss how it relates to the framework developed by Arnosti, Beck and Milgrom (2016). The

BSP auction was introduced in 2017 by Golrezaei et al. The main focus of this thesis is to

implement the BSP auction on a dataset provided by Adform.
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Finally, the chapter will also brie�y consider the sealed-bid �rst-price (FP) auction and

its historical role in online display advertisement, as well as why its revenue and allocative

e�ciency is not being compared along with the Vickrey auction and the BSP auction.

2.1 Vickrey auctions

Let's consider an auction where we have n bidders, i = 1, 2, . . . , n, who are all submitting

sealed bids for one item. The bidders' valuations, vi, are independent of each other and

drawn from continuous distributions, vi ∼ Vi(·), i = 1, 2, . . . , n. Each bidder has some bid-

ding strategy, such that their bid is formulated as a function of their valuation, i.e. bi = Bi(vi).

Assuming that all bids are ordered from largest to smallest, b1 will be the winning bid

with the winner paying b2. Then, it is a weakly dominant strategy for each bidder to always

bid their valuation, i.e. such that Bi(vi) = vi for i = 1, 2, . . . , n. This means that the strategy

earns the bidders a payo� at least as high as for any other strategy, regardless of what the

other bidders do. The payo� is de�ned as the di�erence between the valuation, vi, and the

payment, pi, i.e. vi − pi.

It is a weakly dominant strategy for any bidder, i, to bid their true valuation, vi because they

cannot a�ect their payo� positively by not bidding their true valuation. Let's consider bidder

i employing some bidding strategy, Bi(·), such that Bi(vi) > vi. We denote the highest bid

for all of the other bidders by b∗, i.e. maxj 6=i bj = b∗. Then, there are three possible cases:

(i) b∗ > bi and b∗ > vi

(ii) bi > b∗ > vi

(iii) bi > b∗ and vi > b∗

In case (i), bidder i will not win the item regardless. In case (ii), bidder i will win the item,
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but at the cost of a negative payo�, since b∗ > vi. Finally, in case (iii), bidder i will win the

item with a positive payo�, since b∗ < vi. However, the payo� would be equally positive if

bi = vi, since bidder i would still win the auction and pay b∗. Hence, in all three cases the

bidder would have been at least equally well o�, with the notable exception of (ii), where

the bidder would actually have been better o� not bidding such that bi > vi. We can show

that the same result holds for a bidder employing a bidding strategy such that Bi(vi) < vi

by following the same logic.

We say that the Vickrey auction is truthful, e�cient and inidividually rational. The �rst

is due to the incentive for bidders to always reveal their true valuations. The second, e�-

ciency, means that the bidder with the highest valuation will always win the auction, which is

clearly the case if all bidders bid their true valuations. Finally, individual rationality means

that no bidder ever pays more than the bid they have posted. This will be the case for all

auction mechanisms discussed in this thesis. Hence, it will not be discussed further.

It is important to bear in mind the truthfulness of the Vickrey auction, since the data

we will be using is taken from Vickrey auctions, meaning that the empirical distribution of

bids for each advertiser, i, reveals their actual value distribution, Vi(·). However, it should

be noted that it's di�cult to accurately assess the value of an impression in RTB. Hence,

even if the advertisers have no reason to bid anything else than what they perceive to be the

value of the impression, it doesn't mean that this perception is correct. On the other hand,

we're working with a large dataset, often with millions, and in some cases tens of millions,

of historical bids for di�erent advertisers. Consequently, we will assume that the historical

bid distributions are an accurate estimation of the bidders individual value distributions.
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2.2 Modi�ed second-price auctions

Arnosti, Beck and Milgrom (2016) discuss the problem of an AdX where there are two types

of advertisers, performance advertisers and brand advertisers, who have positively correlated

valuations for impressions, but where performance advertisers can estimate the value of indi-

vidual impressions accurately while brand advertisers can't. A performance advertiser could

be, e.g., an online store looking to sell items to speci�c customer segments, in which case the

advertiser has some information on the CTR, which is often, in practice, used as a proxy for

the true value. CTR estimations are not accessible to brand advertisers, who are concerned

with, e.g., advertising an event or spreading a campaign message.

This environment might lead to brand advertisers being exposed to adverse selection, i.e.

winning disproportionately many low-value impressions, and thus leading to an ine�cient

allocation in the AdX. The authors suggest that the value of any impression can be charac-

terized by a common value component and a match value component. The common value

represents generally desirably qualities in a user, such as high income, high susceptibility to

online display advertisement, and so on. The match value, on the other hand, might repre-

sent information that is speci�c to a certain advertiser, such as if the user recently visited

the advertiser's website. That is, due to the positive correlation of bids, the Vickrey auction

may not be e�cient with respect to the math value component when employed in an RTB

setting.

The authors present the MSP auctions as the group of auction mechanisms that overcome

the disadvantages of using Vickrey auctions in RTB, i.e. being free of adverse selection, while

still maintaining full strategy-proofness. This means that there is no reason for bidders to

shade their bids or employ strategies to increase their payo�. The MSP auction is formally

de�ned by the authors as the mechanism parameterized by α, z, and p, where

• α is a constant, α ≥ 1,
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• zi(b) is the probability of advertiser i winning the auction given some bid, b and

• pi(b) is the expected payment of advertiser i given some bid, b,

such that for performance advertisers, i = 1, 2, . . . , n, and a brand advertiser, i = 0, we have

that

(i)

zi(b) = P

(
b ≥ αmax

j 6=i
bj

)
(ii)

pi(b) = zi(b)× αE
[
max
j 6=i

bj

]
(iii)

z0(b) =
n∏

i=1

P

(
bi < αmax

j 6=i
bj

)
The �rst conditions say that the winner has to bid higher than and pay the second-highest bid

multiplied by the constant α. The third condition says that the brand advertiser only wins

the auction when no performance advertiser wins the auction. The idea is that this happens

if no performance advertiser matches a lower bid multiplied by α. The authors describe this

mechanism as being deterministic, anonymous, fully strategy-proof, and adverse-selection free.

We're primarily interesting in the two latter properties and how they relate to the Vickrey

auction. Strategy-proofness is another word for truthfulness, meaning that the authors are

saying that the MSP auction is truthful. In the rest of this thesis, 'truthful' and 'strategy-

proof' will be used interchangeably. The BSP auction is, however, clearly not e�cient.

The MSP auction mechanism is compared to the so-called omniscient (OMN) mechanism,

which always achieves the optimal allocation by allocating the impression to the bidder with

the highest match value, i.e. disregarding the common value component. In practice, it's

obviously not feasible, or even possible, for an AdX - and even less so for an individual ad-

vertiser - to know the individual match value components for all advertisers. However, the
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authors argue that the MSP auction, as opposed to the Vickrey auction, comes very close

to the upper bound of allocative e�ciency posed by the OMN auction, by choosing some

optimal α. Further, they argue that the MSP auction outperforms the Vickrey auction in an

RTB setting in terms of revenue.

Next, we turn to the BSP auction, in which we will drop the anonymity of the general

MSP auction and instead assign an individual multiplier to each advertiser. For discussion

purposes and conceptual understanding, the distinction between brand and performance ad-

vertisers, as well as common value and match value, and the idea of an OMN auction as a

benchmark will be retained throughout this thesis.

2.3 The boosted second-price auction

We consider the same auction environment as before, where we have n bidders who all

submit sealed bids for one item. All of the bidders have valuations drawn from continuous

distributions and each has some bidding strategy. However, each bidder is also assigned

an individual boost value, βi, corresponding to an individual α in the general MSP auction.

Similarly to the MSP auction, the winner of the auction is not the bidder with the highest

bid, but the bidder with the highest bid multiplied by their individual boost value, i.e.

winner = arg max
i
βibi, i = 1, 2, . . . , n

The payment of the winner is the second-highest boosted bid, scaled by the inverse of the

boost value of the winner. If the bidders are ordered by the size of their boosted bids, the

payment is

p = max

(
b2,

β2b2
β1

)
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However, bidders can never pay more than their initial bid, such that if p > b1, we get

RBSP = b1. Hence, for any BSP auction, the revenue is

RBSP = min(b1, p) = min

(
b1,max

(
b2,

β2b2
β1

))

Golrezaei et al. (2017) also consider a set of reserve prices, r, such that the auction is

parametrized by β and r, but we will set r = 0 and hence only be concerned with β. Let's

consider the key distinctions with the general BSP presented in the previous section. We

assume that we have n performance advertisers and one brand advertiser. Then, the BSP

auction is parametrized by β, z, and p, such that

(i)

zi(b) = P

(
βib ≥ max

j 6=i
βjbj

)
(ii)

pi(b) = zi(b)× E
[
max
j 6=i

βjbj
βi

]
(iii)

z0(b) = P

(
β0b ≥ max

j 6=0
βjbj

)
The authors also distinguish between brand advertisers and performance advertisers, calling

the latter retargeting advertisers rather than performance advertisers. However, the BSP

auction only di�erentiates between them by their boost values. Rather than choosing an

α such that a proportionate amount of valuable impressions will be awarded to the brand

advertiser by more or less making the performance advertisers forfeit the impression, the BSP

auction can favor brand advertisers by assigning them higher boost values. Considering the

framework by Arnosti, Beck and Milgrom (2016), we could think of this as that whenever

a brand advertiser posts a relatively high bid, the AdX tries to capture the match value by

assigning more weight to the brand advertiser's bid.
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In contrast to Arnosti, Beck and Milgrom (2016), who, at best, give a very vague descrip-

tion of how they imagine their α should be calculated, Golrezaei et al. (2017) give a more

detailed account of how they calibrate β. They employ a data-driven algorithm they call

BSP alternating minimizer (BSP-AM). First of all, their description of BSP-AM is somewhat

lacking in practical details. Secondly, they admit themselves that BSP-AM aims to solve an

NP-complete, non-convex optimization problem, where the algorithm does converge to a co-

ordinate maximum but without guaranteeing that this is in fact an optimal solution. The

approach is simple: iterate through a large number of randomized, historical auctions and

compute the optimal boost value for each advertiser with respect to overall revenue in each

auction, until the algorithm converges to a set of boost values. While the BSP-AM approach is

intuitive and seemingly simple to implement, it can become complicated when working with

a larger dataset. This will be discussed further in the method chapter.

In the previous section, we noted that Arnosti, Beck and Milgrom (2016) argue that MSP

auctions are deterministic, anonymous, fully strategy-proof and adverse-selection free. The

BSP auction is straightforward in the �rst two characteristics: it's certainly deterministic

and de�nitely not anonymous. The interesting question is how we can characterize the BSP

auction in terms of strategy-proofness and adverse selection. Golrezeai et al. (2017, p. 6)

mention the paper by Arnosti, Beck and Milgrom (2016) brie�y:

"Arnosti et al. (2016) study the adverse selection in online ad markets for the

impressions that are sold via auctions vs. guaranteed-delivery contracts, where

the valuations of the buyers are correlated via a common value component. They

show that to address the adverse selection, the platform should sometimes allocate

the impression to the guaranteed-delivery contracts, even when the bids from the

auction are higher. This is similar to assigning higher boosts to those advertisers.

In our private-value setting, we do not encounter the adverse selection problem.

Nevertheless, we show that assigning boosts, based on the bidding patterns of the
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advertisers, can increase revenue".

In addition to failing to mention that their own approach is very much similar to that of

Arnosti, Beck and Milgrom (2016), the authors vaguely dismiss the notion of adverse se-

lection with the argument that it "does not appear" in their private-value setting. The

substance of this argument is unclear. Arnosti, Beck and Milgrom (2016), also consider a

private-value setting. At least, Golrezaei et al. (2017) should show that there is no positive

correlation between bids submitted by brand and performance advertisers in order to dismiss

the existence of adverse selection. The point is not that the common value is individual and

not disclosed in a private-value setting, but that if it exists, it represents a portion of any

bidder's private valuation, such that it might be reasonable to assume that some bidders are

exposed to adverse selection.

Intuitively, it seems reasonable that the BSP auction should also decrease adverse selec-

tion by assigning higher boost values to brand advertisers. Golrezaei et al. (2017) do not

show or discuss what happens with the allocation of impressions in their data when the boost

values are introduced. That is, while they report revenue increases, they do not show where

this increased revenue actually comes from. In our dataset, we will see that unconstrained

boosting leads to signi�cant re-allocation of impressions, in which brand advertisers do seem

to be heavily favored. However, it's hard to make conclusive statements on adverse selec-

tion as in Arnosti, Beck and Milgrom (2016), since they suggest to explicitly pick an α such

that the brand advertiser(s) does get a proportionate share of valuable impressions. The BSP

auction, on the other hand, does not consider the allocative e�ciency in such detail when cal-

ibrating boost values. Hence, while it certainly decreases adverse selection by the same logic

as the general MSP decreases adverse selection, we can not say that it is adverse-selection free.

This leaves us with, perhaps, the most important characteristic: strategy-proofness. If the

BSP auction is not strategy-proof and if truthfulness is not a weakly dominant strategy, our
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results are less legitimate as we would have to consider changes in bidding strategies when

testing. This is also why the lack of discussion from Golrezaei et al. (2017) is somewhat

disappointing; the results and the discussion su�er from lack of dimensionality since poten-

tially severe e�ects of introducing a boosting mechanism are not discussed properly. While

Golrezaei et al. (2017) formally propose at the outset that the BSP auction mechanism is

truthful, they never attempt to prove this proposition and more or less dismiss it at the end

of the �nal discussion, where they suggest that the BSP auction mechanism may incentivize

bidders to change their behavior in an attempt to increase their payo�. However, it's not

clear that this is the case; again, there's a lack of scope and dimensionality.

Going forward, lacking the capacity to complete a more rigorous theoretical exposition, we

will follow the proposition of Golrezaei et al. (2017) and assume that the BSP auction is,

in fact, a truthful auction mechanism. The authors show that there's a correlation between

boost values and certain parameters describing bidder behavior. Speci�cally, they show a

signi�cant relationship between volatile bidding behavior and low boost values. In other

words, the BSP auction favors stable bidders, such as brand advertisers, while giving less

favor to performance advertisers who are more prone to volatile bidding behavior because of,

e.g., retargeting advertisement, more accurate estimation of CTR, and so on.

These results do seem to lend credence to the proposition of truthfulness. That is, we're

not considering truthfulness with respect to a single bid, but with respect to entire bid-

ding strategies. If the boost values are directly related to the behavior of bidders, broadly

characterized by brand advertisers and performance advertisers, any bidder would have to

change their long-term behavior in order to a�ect their boost value, which seems like an

unlikely scenario. This will, of course, also depend on the length of the time period used to

calibrate the boost values. However, it does seem likely that a bidder would change their

short-term participation rates in response to sudden changes in the allocation of impressions,
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e.g. because one advertiser might end up with more impressions than accounted for in the

short-term budget. These are the types of issues that are not discussed by Golrezaei et al.

(2017).

In conclusion, we consider the BSP to be a non-anonymous, deterministic, and strategy-

proof form of MSP. It does seem, both from the results reported by Golrezaei et al. (2017)

and from the results presented later in this paper, that the BSP mechanism results in an

allocation of impressions that should decrease adverse selection in the AdX. However, we

cannot state that it's adverse-selection free. In terms of the desirable properties of the Vick-

rey auction, we have assumed, and there seems to be some reason for this assumption, that

the BSP auction is truthful. However, like the MSP auction, the BSP auction is clearly not

e�cient. Obviously, if the mechanism changes the allocation given in an Vickrey auction, it

cannot be e�cient.

Example

Let's consider a simple example. We have three bidders, of which two, 1 and 2, are perfor-

mance advertisers and one, 3, is a brand advertiser. They all post bids for an impression,

such that

b1 = 6, b2 = 4, b3 = 2.5

In a normal Vickrey auction, these would be truthful bids and advertiser 1 would win the

auction, paying b2, such that RSP = 4. Now, let's consider a BSP setting with boost values

β1 = 1, β2 = 1, and β3 = 2. The winner is again advertiser 1, since

max
i
βibi = max {1× 6, 1× 4, 2× 2.5} = 6

and the payment is

RBSP = min

(
6,

2× 2.5

1

)
= 5
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which means that RSP < RBSP. This is, of course, a silly, albeit not entirely unrealistic,

example. However, it can be useful for illustrating another important point. Let's instead

assume that β3 = 3. Then, the winner of the auction is bidder 3, since β3b3 = 7.5 and the

payment is

RBSP = min

(
2.5,

1× 6

3

)
= 2

which means that RSP > RBSP. Hence, the BSP generates less revenue than the Vickrey

auction. However, while we might have less revenue, it might also mean a better overall

allocation if the brand advertiser is exposed to adverse selection. At the same time, for a

one-o� auction, this is clearly not an e�cient mechanism. Bidder 1 has the highest valuation,

but bidder 3 wins the auction. More interestingly, it illustrates how a change in allocation is

actually a spill-over e�ect from trying to increase revenues. As we're attempting to close the

gap between the highest bids, we will necessarily assign higher boost values to lower bidders,

e.g. brand advertisers, meaning that they will often win impressions for which they post

relatively high bids. Essentially, this is exactly the function of the anonymous MSP, where an

α is chosen such that the gap between the highest bidders is narrowed, while simultaneously

leading to the brand advertiser getting a larger portion of valuable impressions.

2.4 The shift from �rst price to second price

Edelman, Ostrovsky and Schwarz (2005) detail the institutional history of markets for online

display advertisement. The FP auction had a brief stint of popularity from 1997 to 2002 due

to its ease of use, low entry costs and transparency. However, both publishers and advertisers

realized that it was prone to instabilities. The FP auction encouraged excessive gaming and

bid shading since the bidder that was fast in reacting to other bidders' bidding strategies had

an advantage. This also caused allocative ine�ciencies. To remedy these problems, Google

was the �rst publisher to turn to the Vickrey auction, which, as we know, is a truthful mech-

anism. Since then, the Vickrey auction has been the dominant auction format in RTB.
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Golrezaei et al. (2016) also comment on the historical lack of popularity for FP auctions

in RTB. They focus on the heterogeneity of bidders in RTB and how this leads to bid shad-

ing in FP auctions, as well as the fact that it's hard for the AdX to understand the bidders'

behaviors and strategies. Thus, instabilities and insecurities have led to the Vickrey auction

dominating RTB for almost two decades. These are also the reasons why we will not be

focusing on the FP auction when considering revenue and allocation of the Vickrey auction

and the BSP auction. In addition, the highest bid in a Vickrey auction doesn't really say

anything about the revenue from an FP auction with the same bidders, since we have to

consider the interplay of bidding strategies and bid shading that would've occurred in an FP

auction.

While it would be interesting to consider how an FP auction would play out in terms of

revenue and allocation given the data we have, it is simply too demanding and outside the

scope of this thesis to attempt such simulations. Even if we know all of the bidders' true

valuations, it's di�cult, if not impossible, to accurately simulate how a number of intelligent

bidders would've behaved to maximize their respective payo�s simultaneously.
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2.5 Summary

We have considered how both revenue and allocative e�ciency can be improved in an RTB

setting where there are two types of advertisers, brand advertisers and performance adver-

tisers, who have positively correlated valuations of impressions. We have looked at general

MSP auctions, which can potentially increase both revenue and allocative e�ciency while

still retaining some of the nice theoretical properties of the Vickrey auction, especially with

respect to bidder behavior. We have also considered a speci�c application of MSP, the BSP

auction, for which the retainment of certain properties is not clear. If there exists adverse

selection, both the general MSP and the BSP auction can increase revenue and allocative

e�ciency by, directly or indirectly, favoring brand advertisers.

The existence of adverse selection depends on the whether bid from brand and performance

advertisers are positively correlated, i.e. if there exists a signi�cant common value compo-

nent which primarily determines a bidders valuation. That is, the degree of adverse selection

should depend on the degree of dominance of the common value component. Conversely, if

the common value component is insigni�cant and di�erences in bidder behavior are depen-

dent on the so-called match value component, i.e. idiosyncratic valuations speci�c to each

advertiser, then there is no reason to assume the existence of adverse selection. At the ex-

treme end, if the common value component does not exist at all, the Vickrey auction should

result in the same outcome as the OMN mechanism, since valuations are idiosyncratic and

the Vickrey auction always awards the item to the bidder with the highest valuation.

Going forward, we want to investigate the correlation of bids from di�erent advertisers and

the performance of the BSP auction in relation to the Vickrey auction. In the latter investi-

gation, we will, as noted above, assume that the BSP auction is indeed truthful and that an

implementation of boost values on a dataset with historical RTB auctions would not have

altered the bidders' value distributions. It is interesting to explore other auction mechanisms
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than the Vickrey or FP auction, which seem to result in suboptimal outcomes in terms of

revenue, allocation and stability, since RTB is a dynamic auction environment with hetero-

geneous bidders. MSP and BSP are attempts to amend the drawbacks of the traditional

auction mechanisms by employing data-driven methods that aim to exploit the heterogene-

ity of bidders by understanding and adapting to the behavior and value distribution of each

bidder.

20



Chapter 3

Method

As mentioned in the previous chapter, I haven't followed the approach by Golrezaei et al.

(2017) when attempting to simulate the e�ects of introducing a BSP auction mechanism in

an AdX. This is due to the fact that I have used a much larger dataset, spanning a longer

time period and including more items (i.e. di�erent ad slots). Not only does this mean that

the algorithm they proposed is more cumbersome to use due to runtime, but it also means

that the data preprocessing necessary for their algorithm becomes more complicated. This

chapter is broadly dedicated to describing this problem and how I've attempted to deal with

it.

The �rst section will describe the data used and how it di�ers from the data used by Golrezaei

et al. (2017). Then, I will describe some of the bidders in the dataset in terms of their par-

ticipation rate, bid average, and bid variance, as well as their estimated value distributions.

Finally, the last sections will be devoted to describing the method I've used to calibrate the

boost values, as well as how I've attempted to calibrate boost values for di�erent advertisers

when incorporating a constraint on their budget spending.
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3.1 Data

The data consists of auctions for ad slots held by Adform on behalf of a single website in

Denmark. The website is one of the largest in Denmark and has approximately 2.1 million

unique visits per week, i.e. something like 300 thousand unique visits per day on average.

There are a large number of ad slots on the website. These are characterized by height, width,

and position. Summary statistics across the training dataset for some of the most popular

ad slots are displayed in table 3.1. The dataset is split up into six di�erent periods, of which

the �rst �ve are used for calibrating the boost values while the last period is used for testing

the revenue when using the boost values. There is a total of 116 million bids in the raw

training data. When I have �ltered out all auctions with only one bidder and with multiple

ad slots, there are 8 million bids in 2.9 million auctions. When the testing data has been

�ltered for single-bid auctions and auctions with several ad slots, there are 634201 auctions

left with 2 million bids. Summary statistics for the di�erent periods are displayed in table 3.2.

Many of the auctions in the dataset only have one bidder. I have �ltered out all of these

auctions from the testing dataset, since applying boost values doesn't make any di�erence

in terms of revenue when there's only one bidder. There are also many cases of the same

bidder posting multiple bids. This is likely due to the fact that DSPs often run multiple

advertisement campaigns at the same time, posting bids on behalf of several di�erent ad-

vertisers depending on their speci�c budgets, targeting criteria, and so on. In the testing

dataset, I've only considered the highest bid from an advertiser that has posted several bids.

The main reason why the approach suggested by Golrezaei et al. (2017), i.e. iterating

through a number of historical auctions until the boost values converge, is problematic is

that the large amounts of data make it di�cult to randomize and shu�e the training data.

Ideally, we want to shu�e the training data since RTB is a highly nonstationary environment,

meaning that the "market price" of an ad slot can change drastically during a week, or even

22



Table 3.1: Ad slots
Slot ID Width Height Position ID # Bids

A 930 180 2 5033814
B 160 600 2 4896650
C 160 600 2 4839611
D 930 180 1 4498701
E 320 160 1 3260809
F 320 320 2 2984862
G 320 160 2 2566887
H 728 90 2 2485026

Table 3.2: Data periods
Period Type Start End # Bids # Auctions

1 Training 2018-10-10 2018-10-17 25879377 10025222
2 Training 2018-10-17 2018-10-24 22878984 9117532
3 Training 2018-10-25 2018-11-01 27834936 10240755
4 Training 2018-11-02 2018-11-09 15843723 4533186
5 Training 2018-11-12 2018-11-19 23985352 6355267
6 Testing 2018-11-27 2018-12-04 24439817 7852427

during a day. Hence, if we calibrate boost values on a chronologically ordered set of auctions,

the boost values may be �tted speci�cally to the last share of auctions, and may not be

representative of the earlier auctions. This also highlights the major di�erences between the

dataset used by Golrezaei et al. (2017) and the one I have used. First of all, I'm training

and testing over much longer periods (several days, rather than just one day). Secondly, I'm

considering bids for an number of di�erent ad slots rather than for just one ad slot. As shown

in table 3.1, the ad slots are in fact distinguishable. Hence, there is less granularity and more

generality in my approach.

Obviously, I could focus on just one day and come closer to replicating Golrezaei et al. (2017).

However, there is another important feature to consider which separates the datasets. They

use data from Google's AdX, which is the largest in the world. Hence, it has a large number

of frequent bidders with high participation rates. Adform does not have as many auctions

with as many bidders during one day for this particular website. This is not necessarily a
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problem, but conducting a thorough analysis of the seasonality in the participation of di�er-

ent bidders is de�nitely a problem considering the scope of a Bachelor's thesis. Thus, I've

chosen to use the entire dataset from Adform and create more general estimates of the boost

values. I will show that this also leads to converging boost values and increased revenue, by

the same evaluation method as Golrezaei et al. (2017).

3.2 Bidders

I have followed the approach of Golrezaei et al. (2017) in focusing on the largest bidders.

This is sensible, since applying boost values to smaller bidders will have a negligible e�ect on

the revenue. Some bidders participate in less than 0.1 % of the auctions. Essentially, among

the 8 bidders with the highest spending, of which the two smallest have a participation rate of

approximately 0.2 %, there is one brand advertiser and seven performance advertisers. This

section will provide statistics on these bidders, including estimations of the distributions of

their impression valuations. Summary statistics on the di�erent bidders are presented in

table 3.3.

There are some interesting points to be made from looking at the bidders. It's clear that

bidder 2 is a typical brand advertiser, with a very high participation rate and relatively low

bid mean and variance. The participation rate is de�ned as the number of auctions in which

the bidder has posted at least one bid, divided by the total number of auctions. When con-

sidering all auctions (i.e. including all the auctions with only one bidder), bidder 2 has an

even higher participation rate relative to the other bidders. At the other end of the spectrum,

bidders 6 and 7 seem to be typical performance, or retargeting, advertisers, with extremely

low participation rates but considerable spending due to a high bid mean and (especially for

bidder 7) a very high bid variance. Obviously, this structure of bidders' characteristics will

determine the possible revenue increase. For example, if we only would have had brand ad-
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vertisers, with low bid variances and similar bid means, the possible revenue increase would

be limited by the similarity of bidding strategies. In this sense, my results are not entirely

comparable to those by Golrezaei et al. (2017). That is, even if I replicated their algorithm

completely and limited the experiment to only one ad slot during one day, the results would

still not be comparable since there is a fundamental di�erence in the bidders participating

in the auctions. While Golrezaei et al. (2017) are not as transparent about their bidders, it

seems like they have a more "complete" spectrum of bidders, including more brand advertis-

ers.

Table 3.3: The eight largest bidders, ordered by number of bids
Bidder Type Participation rate Number of bids Bid mean Bid var

1 Performance 0.71 4017328 1.89 2.10
2 Brand 0.90 2594512 0.60 1.06
3 Performance 0.22 631380 1.35 1.92
4 Performance 0.11 318965 1.66 0.91
5 Performance 0.08 229228 1.40 1.21
6 Performance 0.04 124821 2.22 4.61
7 Performance 0.02 63483 4.45 85.11
8 Performance 0.02 52920 2.07 0.57

The density estimates in �gure 3.1-3.8 are purely for illustrative purposes. I have used a

less granular bandwidth to give them a smoother appearance. The estimated cumulative

distribution functions (CDFs) are, however, used in calibrating the boost values. However,

when plotting the inverse CDFs I have used fewer bins in the underlying histograms. Hence,

the �gures should be understood primarily as a tool to illustrate the behavior and strategies

of the di�erent bidders.
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Figure 3.1: Bidder 1

Figure 3.2: Bidder 2

Figure 3.3: Bidder 3
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Figure 3.4: Bidder 4

Figure 3.5: Bidder 5

Figure 3.6: Bidder 6
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3.3 Boosting by sampling

As described in the previous sections, I've been working with a dataset that is much larger

than the one used by Golarezaei et al. (2017), spanning a longer time period and several

di�erent ad slots. Hence, a more general and dynamic approach is required to compute boost

values which are representative of bidding behavior across all auctions. The large amounts

of data also make it di�cult to shu�e and iterate through the historical data. I've solved

this by instead creating a stylized, randomized auction which is iterated a large number of

times.

First, I extract all of the bidding data for each included advertiser. Then, I estimate all

of the participation rates and bid distributions. This makes for a representation of any ad-

vertiser's "average" bidding behavior across all historical auctions. Hence, we can consider

a simulated, average auction, more or less representative of all of the historical data. For

each iteration, I sample from a uniform distribution for each advertiser to determine if they

will participate in the auction. Then, if more than two advertisers are participating, I take

a random sample from each of their bid distributions and hold a BSP auction. Finally, each

boost value is updated incrementally with respect to maximizing the revenue from the auc-

tion. The whole procedure is described in more detail in the following subsections.

It is not entirely clear how Golrezaei et al. (2017) update the boost values in their algo-

rithm, i.e. if they use incremental updates for every auction and, if so, how they scale the

increments. The update rule I've suggested is heavily in�uenced by Monte Carlo methods

and the idea that we want to move in the direction of an optimal set of boost values, which

is assumed to exist. However, Golrezaei et al. (2017) do specify that they initialize the

calibration of boost values by setting βi = 1 for all i = 1, 2, . . . , n. I will be following this

way of initializing the simulation.
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3.3.1 Estimating bid distributions

First, we need to create an empirical distribution function for each bidder. Let's consider

bidder i. If we de�ne bi = (b
(1)
i , b

(2)
i , . . . , b

(n)
i ) to be all bids by bidder i, we de�ne the empirical

CDF as

F̄i(x) =
1

n

n∑
j=1

1
b
(j)
i ≤x

such that F̄i : R→ [0, 1]. We create a histogram and calculate the probability of some value x

by considering the cumulative value of all the bins up to and including the one containing x.

Speci�cally, I've used 500 bins in the range [0, 5]. This excludes some extreme bids for some

of the performance advertisers. However, the algorithm converges quickly as a result, and

it can be argued that there is no great loss with respect to revenue in using this restriction

since the bidders with some extremely high bids also have very low participation rates.

3.3.2 Participation sampling

For each advertiser, we have a historical participation rate. Again, let's consider bidder i.

We denote this participation rate as ρi and de�ne it as

ρi =
numer of auctions in which bidder i has posted a bid

total number of auctions

Then, in each auction we sample from the uniform distribution between 0 and 1, such that

we get u ∼ Uniform(0, 1). If u ≤ ρi, bidder i will participate in the auction, and if u > ρi,

bidder i will not participate. There are cases where is only one bidder or no bidders. In this

case, there is no auction and hence no change to the boost values.

3.3.3 Bidding by inverse transform sampling

Whenever we have two or more bidders participating, we use so-called inverse transform

sampling to get the bid from each bidder. This means that we take the inverse of the
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aforementioned empirical CDF, i.e. F̄−1i (x). I've done this by interpolating a curve over the

cumulative values and the bin edges, i.e. for {(F̄i(xj), xj) | j = 1, 2, . . . , n}. Thus, we get

a continuous approximation of the inverse CDF for each bidder. Then, we sample another u

from the same uniform distribution as before, i.e. u ∼ Uniform(0, 1). Since F̄−1i : [0, 1]→ R,

this means that we can get random samples from bidder i, bi, by bi = F̄−1i (u).

3.3.4 Boost calibration

For each advertiser, I've chosen to update the boost values using a rule inspired by the method

of gradient descent. We consider the optimal boost value for bidder i, βi, with respect to

maximizing the revenue in a given auction. We have two possibilities: either i is the winner

of the auction or i is not the winner of the auction. In any case, bidder i will never pay more

than the given bid, i.e. bi. Let's consider another bidder, j. We have case (i), in which i

is the winner of the auction and j is the second-highest (boosted) bidder, and case (ii), in

which j is the winner of the auction.

(i) If i is the winner of the auction, we want a low βi, since the payment is scaled in

inverse proportion to βi. In any case, Rmax = bi, such that the optimal beta, β∗i , for

that particular auction can be found by

Rmax =
βjbj
β∗i

⇐⇒ bi =
βjbj
β∗i

⇐⇒ β∗i =
βjbj
bi

(ii) If j is the winner of the auction, we want a high βi, since the payment is now scaled in

proportion to βi. Now, we have that Rmax = bj, such that the optimal beta β∗i , for this

particular auction is given by

Rmax =
β∗i bi
βj
⇐⇒ bj =

β∗i bi
βj
⇐⇒ β∗i =

βjbj
bi
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Then, we update βi by

β
(k+1)
i = β

(k)
i − α×

(
β
(k)
i − β∗i

)
= β

(k)
i − α×

(
β
(k)
i −

β
(k)
j b

(k)
j

b
(k)
i

)

where α is the learning rate and where j is either the highest or second-highest bidder, de-

pending on whether i won the auction. After each auction and subsequent calibration, all

the boost values are divided by the smallest boost value, such that the smallest boost value

is 1.0. In �gure 3.7, I have plotted the tuning of the boost values using α = 1 · 10−4 for the

largest advertisers by spending and iterating 500000 times. It is worth noting that the result

is consistent with Golrezaei et al. (2017), since they report that typical brand advertisers are

heavily favored by the BSP auction. This is clearly the case here as well.

Rather than letting the boost values converge to some exact value, I let the simulated auc-

tions iterate for a �xed number of times. In order to get the �nal boost values, I take the

average of the last 400000 iterations, i.e. after the boost values settle in some interval. The

reason the boost values do not converge to exact values is probably due to the nonstationarity

of the auction environment and the variations in bidding behavior, including the di�erences

in participations rates. For example, a performance advertiser that has a typical retargeting

behavior will not participate very often, but will likely have a large impact on the boost

values when it does participate. As we're increasing the number of bidders, the calibration

of the boost values gets increasingly unstable. One way of decreasing instability is to have a

smaller α, but this will also mean longer times for calibration. For example, in the case of 4

advertisers with α = 1 · 10−5, it takes something like 1.5 million iterations before the boost

values settles in some interval. Hence, we will be using α = 1 · 10−4.
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Figure 3.7: Calibration of boost values over 500000 iterations.
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3.4 Summary

I have been working with a much larger and more extensive dataset than the one used by

Golrezaei et al. (2017), even after �ltering and preprocessing, which has required a di�erent

approach. Looking at the calibration of boost values in �gure 3.7, the algorithm I've proposed

does seem to produce a behavior similar to that reported by Golrezaei et al. (2017). That

is, bidders with low variation in their bidding behavior, i.e. primarily brand advertisers, are

favored and assigned high boost values. Additionally, the algorithm is fast and calculates

a set of boost values in 1 − 2 minutes, which allows for large-scale simulations. Since the

algorithm is inspired by Monte Carlo methods and is relying heavily on random sampling,

I've chosen to call the procedure BSP-MC.

I've included the pseudocode in an appendix to give a better overview of the whole pro-

cedure. However, this procedure (and, seemingly, the method employed by Golrezaei et al.

(2017)), is not entirely unproblematic. As we will see in the next chapter, it's important

to consider exactly what happens when we start applying boost values and where the addi-

tional revenue actually comes from. We saw a brief example of this in the theory section.

When some boost value is su�ciently high, speci�cally for the brand advertiser, we might see

changes in the allocation of impressions. While this might be desirable to some extent, i.e. if

some bidders are exposed to adverse selection, the algorithm does lack a naturally encoded

constraint which prevents boost values from converging to levels where the resulting change

in allocation might cause problems.
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Chapter 4

Results

This chapter is divided into two sections. We will start by looking at the correlation between

bids from the brand advertiser and two performance advertisers. Then, we will look at

the changes in revenue and allocation from applying boost values calculated by the BSP-MC

algorithm to the testing dataset. As mentioned previously, the results found by Golrezaei

et al. (2017) and those presented here might be more or less incomparable. Hence, such

comparisons will be held to a minimum. Rather, we will consider how our results relate more

broadly to the discussions held in the theory section.

4.1 Bid correlation

In proposing the MSP, Arnosti, Beck and Milgrom (2016), discuss the positive correlation

of bids from brand and performance advertisers as the main reason for the supposed exis-

tence of adverse selection in an AdX. Hence, this seems like an interesting aspect to consider

when proposing to implement an auction mechanism which clearly changes the allocation of

impressions. I've used the testing dataset and compared the brand advertiser, bidder 2, to

two performance advertisers, bidder 1 and bidder 3. I looked at all auctions in which both

bidders participate. If a bidder has posted multiple bids, I have taken the average of those

bids. When comparing bidder 2 with bidder 1, there are 462 thousand auctions, and when
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comparing bidder 2 with bidder 3 there is a thousand auctions.

In the �rst case, the correlation coe�cient is −0.05 and in the second case the correla-

tion coe�cient is −0.06. Hence, there's very little correlation, and no positive correlation,

in the valuations of impressions in the auctions where the bidders participate. One could

argue that it's also interesting to consider auctions in which one bidder participates and the

other doesn't, in which case the bid, and valuation, of the bidder not participating could be

considered to be zero. This would of course a�ect the correlation and possibly make it even

smaller (due to the high participation rate of bidder 2 relative to the other bidders). However,

as clari�ed by the discussion by Arnosti, Beck and Milgrom (2016), what we're interested

in is the possible existence of a common value component, which should be captured by the

current analysis. In contrast to their discussion, the small correlation coe�cients suggest

that there is little evidence of a common value component.

This result is of course not representative of RTB in general, only of auctions held by Ad-

form for a speci�c website in Denmark. Nevertheless, the results are interesting and suggest

that the proposed existence of a common value component is not entirely uncontroversial.

One could also argue that due to the inability of brand advertisers to estimate the value of

di�erent impressions, they are less willing to post relatively high bids. However, looking at

table 3.3, bidder 2 has signi�cant variance, meaning there is also variation in the valuations

of bidder 2. Hence, if a common value component did exist, any variations in the common

value component should be captured by the bidding behavior and the correlation between

the di�erent bidders.

It's important to note that this result is underpinned by the truthfulness of the Vickrey

auction. That is, attempting to capture the existence of a common value component only

makes sense if the bids are wholly representative of the bidders' actual valuations. Given
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the truthfulness of the Vickrey auction, there doesn't seem to exist a signi�cant common

value component or a positive correlation between bids submitted by brand and performance

advertisers in our dataset.

4.2 Results from simulations

We want to consider the distribution of revenue increases for a number of simulated sets of

boost values. Initially, I have deviated slightly from the method and run 100 simulations each

when assigning boost values for 2, 3, 4, 5, and 6 bidders, which have been chosen randomly

from the 8 top-spending bidders. In total, I ran 500 simulations. For each simulation, I've

used 1000000 iterations and taken the average of the last 500000 iterations as the �nal boost

values, with α = 1 · 10−4. This is due to the fact that if we choose bidders randomly, we

will sometimes end up only with bidders with low participation rates, meaning that we will

have relatively few simulated auctions to calibrate boost values from. Each of the 500 sets

of boost values are evaluated on the �rst 100000 auctions in the test data. The results are

shown in �gure 4.1 and table 4.1. The average revenue increase across all simulations is 84

%, while the maximum revenue increase is 220 %. As a comparison, Golrezaei et al. (2017)

achieve revenue increases from 16.55 % to 29.28 %. However, it should be noted that even

though the evaluation methods are comparable, the results are not necessarily comparable

since the auction environments analyzed seem to be very di�erent.

Table 4.1: Revenue increase
# Bidders Avg. increase Avg. β β var

2 86.4 % 1.42 1.22
3 68.4 % 1.36 1.03
4 119.5 % 3.57 85.59
5 126.9 % 4.21 106.10
6 20.5 % 4.97 125.56

We get the largest average revenue increase, 120 % and 127 %, when assigning boost values

to 4 and 5 bidders, respectively. We look closer at the case of 4 bidders and run a simulation
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Figure 4.1: Histogram with revenue increases from unconstrained boosting

with the 4 top-spending bidders, using α = 1 · 10−4 for 500000 iterations, evaluating on the

entire test dataset, in order to get a better understanding of where the revenue comes from.

In �gure 4.2, I've plotted the change in the distribution of payments (i.e. what the bidder

with the winning bid actually pays) for the auctions in the test data, using the original Vick-

rey auction format and the BSP mechanism. There is a heavy shift to the right, which can

be interpreted as the boost values "closing the gap" between the highest and second-highest

bids. This is even clearer when looking at �gure 4.3, in which I've plotted the di�erence in

prices paid in the last 100 Vickrey and BSP auctions. The right �gure illustrates the extra

revenue in the BSP auction.

We also want to look at the changes in the allocation of impressions when implementing

the boost values. As mentioned before, it's possible that these are signi�cant since the boost

values are calibrated without considering more or less realistic budget constraints on behalf

of the bidders. That is, even if the auction is strategy proof, we should consider the fact that

bidders can't be expected to be entirely �exible with respect to the amount of impressions

they gain or loose as a result of using the boost values. In �gure 4.4, I've plotted the changes

in the allocation of impressions.
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Figure 4.2: Change in price of impressions

Figure 4.3: Di�erence in price of impressions

We're clearly dealing with an unrealistic scenario. The increase in revenue is 130 %, but

the brand advertiser, 2, absorbs a lot more impressions, while bidders 1, 3 and 4 likely pays

a lot more for fewer impressions. It seems unlikely that bidder 2 would maintain a high

participation rate when implementing the boost values. The number of impressions won in-

creases from 34939 to 297401, which clearly has serious budget implications. It's important

to understand why this shift in allocation doesn't necessarily decrease the revenue. At �rst

sight, it might seem like a bidder with a lower average bid winning more auctions would lead
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to a lower average revenue. However, the point is that in the normal Vickrey auction, bidder

2 often has the second-highest bid such that the highest-bidder will pay b2, while bidder 2

will often be the winner in the BSP auction and pay its own bid, i.e. such that the revenue

is still b2, due to its high boost value. The extra revenue then comes from the cases where

bidder 2 does not win the impression despite its high boost value, meaning that the gaps

between the highest bid and the other bids are narrowed.

Figure 4.4: Change in allocation of impressions

Considering table 4.1, it's clear that while simulations with 4 and 5 bidders generate the

largest average revenue increase, the calibration of boost values is very unstable. This is

also clear from �gure 3.7. Hence, while the average revenue increases from assigning boost

values to 2 and 3 bidders are lower, we want to consider these cases as well since the cali-

bration of boost values is more stable and might give a better representation of the results

from implementing boost values in general and the BSP-MC algorithm in particular. I have

chosen the 2 and 3 top-spending bidders, respectively, and have applied the boost values to

the entire testing dataset. The revenue increases are 109 % and 116 % for assigning boost

values to 2 and 3 bidders, respectively. The change in allocation is illustrated in �gure 4.5.
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Again, the change in allocation seems problematic. There is some change for bidders 3 and

4 in comparison to the previous case, but the allocation of impressions to bidder 2 is still

extreme.

Figure 4.5: Change in allocation of impressions for 2 and 3 boost values

While the revenue increases are impressive, the change in the allocation of impressions shows

a more problematic aspect of the boosting approach. It would be interesting too see the

change in allocation for Golrezaei et al. (2017). Unfortunately, this information is not avail-

able. However, given that they also report signi�cant increases in revenue, it's likely that

their simulations also resulted in signi�cant changes in allocation. While some changes in

allocation might be desirable if the brand advertiser is in fact exposed to adverse selection

and is willing to pay for more impressions, the BSP-MC algorithm does not incorporate a

constraint on how much the allocation is allowed to change as a result of applying the boost

values.

This is likely true for Golrezaei et al. (2017) as well. However, it might be the case that their

dataset is better suited for this type of implementation, i.e. if there is a better disposition of

advertisers which prevents the resulting changes in allocation to become problematic. That

is, it should be mentioned that even though the results presented here are consistent across

the number of bidders that are assigned boost values, it might not be representative of the
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performance of the boosting procedure in general. While it is obvious that implementing

boost values will change the allocation of impressions, the extreme degree to which it hap-

pens in our results might be speci�c to this dataset and the disposition of bidders in the

auctions hosted by Adform for a speci�c Danish website.

4.3 Summary

We found that there is no positive correlation between the bids posted by the brand adver-

tiser and the two largest performance advertisers. This is an interesting result, since it should

imply that there is in fact no signi�cant adverse selection in the AdX, which in turn means

that implementing a BSP is not entirely justi�ed on behalf of the bidders. As mentioned in

section 2.2, Arnosti, Beck and Milgrom (2016) discuss the positive correlation of valuations

between brand and performance advertisers as the reason for brand advertisers being exposed

to adverse selection. This does not mean that it is incorrect to assume a positive correlation

in valuation for di�erent types of advertisers; it means that their general discussion does not

apply to the speci�c case we're dealing with in this thesis.

The lack of a positive correlation in bidding behaviors sheds another light on the changes

in allocation from implementing boost values for the AdX represented in our dataset. That

is, we can not justify the changes in the allocation of impressions by attempting to reduce

adverse selection, since there doesn't seem to be any adverse selection to begin with. Thus,

implementing boost values is only bene�cial for the publisher's revenue. With that said, the

BSP-MC clearly does a very good job in increasing revenue. It should, however, be noted

that the large revenue increases reported may be a virtue of the dataset, i.e. because of the

gap between the bids posted by the most frequent participants, rather than a virtue of the

algorithm.
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Chapter 5

Discussion and conclusion

Perhaps the most interesting result is the lack of positive correlation in bids from brand

and performance advertisers. First of all, it undermines the justi�cation for implementing a

modi�ed second-price auction on behalf of the advertisers. If there is no positive correlation,

there is no adverse selection in the AdX. Hence, neither is there any justi�cation for the

changes in allocation with respect to fairness or e�ciency. Secondly, this means that the

Vickrey auction already achieves an e�cient outcome in our RTB setting, with no adverse

selection. More speci�cally, this should mean that the Vickrey auction actually achieves the

same allocative e�ciency as the aforementioned OMN mechanism. Then, the only reason for

implementing boost values is to increase the publishers revenue.

If there is no adverse selection, such that the Vickrey auction achieves an e�cient out-

come on par with the OMN mechanism, any allocative changes imposed by the BSP auction

should make the outcome less e�cient. Hence, implementing boost values actually repre-

sents a trade-o� between allocative e�ciency and revenue; the greater the positive impact

on revenue is, the less e�cient the allocation will be. This is only true for the seller. In this

case, it would seem that the seller is actually the only winner from implementing a BSP, or

even an MSP, auction. The question is then how the seller can manage the trade-o� between
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revenue and allocative e�ciency, i.e. how to increase revenue to a point where the changes

in allocation are acceptable for the bidders.

Given that it's even possible to �nd such a balance, the boosting procedure would have

to be improved to encode a natural constraint on the allocative changes. This is complicated

and de�nitely outside the scope of a Bachelor's thesis. It doesn't seem like Golrezaei et al.

(2017) incorporate such a constraint in their method either. At this point, it is reasonable to

question the usefulness of a BSP auction in our case; it seems to only bene�t the seller, and

trying to reduce the adverse e�ects from implementing it is complicated. Considering these

aspects of implementing the BSP, it seeems like we could perhaps get a better outcome by

considering a di�erent approach.

Due to the extreme changes in allocation, the revenue increases from implementing the

BSP-MC algorithm are obviously unrealistic. We assume that a more conservative boosting

algorithm could achieve a more modest increase in revenue, along with a more modest change

in the allocation of impressions. However, this still has the drawback of not being e�cient

in terms of not awarding the impression to the bidder with the highest valuation, and since

there is no adverse selection, this is a less appealing outcome than the Vickrey auction with

respect to overall allocation. Hence, the natural question is if there is a mechanism that can

achieve a modest increase in revenue while still retaining the e�ciency of the Vickrey auction.

We already have a lot of information on the bidders' value distributions and their expected

willingness-to-pay. Thus, we could use this information to compute and implement optimal

�oor prices to extract surpluses from the bidders. This is, of course, also dependent on the

disposition of bidders and their valuations. However, if the disposition of bidders is such that

it is possible for the seller to capture some of the bidders' surpluses with a �oor price, we can

increase revenue while still retaining the e�ciency and truthfulness of the Vickrey auction.
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This is an example of a so-called Bayesian-optimal mechanism. As with the BSP auction,

this is possible due to the information we have on the bidders' valuations.

In conclusion, implementing the BSP auction is problematic in our case. First of all, the

disposition of bidders requires a more complete algorithm which incorporates constraints on

the possible allocative changes resulting from the implementation. Secondly, even if such

an algorithm was available, it's not clear what the justi�cation for it would be, other than

increasing the revenue of the seller. There doesn't seem to be reason to consider the existence

of adverse selection. Third, if there is no adverse selection, it seems a Bayesian-optimal mech-

anism employing data-driven �oor prices could achieve a better overall outcome than both

the Vickrey auction and the BSP auction by possibly increasing revenue while still retaining

the e�ciency and truthfulness of the Vickrey auction. That is, we would achieve the same

allocative outcome as the OMN mechanism, but with higher revenue. However, in order

to get a better understanding of the nature of RTB auctions in terms of adverse selection

and the possibility of implementing other auction mechanisms than the Vickrey auction, we

would have to look at more cases and, e.g., verify the lack of adverse selection across auctions

from a wide selection of di�erent publishers.
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Appendix A

Pseudocode

Algorithm - BSP-MC

Estimate ρi and F̄
−1
i (·) for i = 1, 2, . . . , n

Set β
(0)
i = 1 for i = 1, 2, . . . , n

for k = 1 to K do
for i = 1 to n do

Sample ui ∼ Uniform(0, 1)
if ui ≤ ρi then

Sample vi ∼ Uniform(0, 1) and compute bi = F̄−1i (vi)
else

bi = 0
end if

end for
Set winner = arg maxi β

(k−1)
i bi

for bi > 0 do
if i = winner then

j = arg maxt6=i β
(k−1)
t bt

β∗i = β
(k−1)
j bj/bi

else
j = winner
β∗i = β

(k−1)
j bj/bi

end if
β
(k)
i = β

(k−1)
i − α× (β

(k−1)
i − β∗i )

end for
β
(k)
i = β

(k)
i /βmin for i = 1, 2, . . . , n

end for
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