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Abstract 

As an increasing number of species drift onto the IUCN’s list of endangered species, it has 

become increasingly important to understand the fundamental aspects that are essential in 

maintaining the fitness of these threatened species. One such species, Milvus milvus or 

commonly known as the Red Kite, has seen its populations and geographic extent reduced, 

primarily through human persecution, direct and indirect poisoning and habitat degradation. 

For this thesis, juvenile kites were tagged in Switzerland and then undertook a winter migration 

to Spain. During the months of December 2016 and January 2017 the data received was 

analysed and fuzzy membership functions were created based on 75% of the data, the training 

set, using different bioclimatic predictors that were deemed potentially important to species 

habitat choice. These functions were then combined using various weighted linear 

combinations (WLC), with both the combinations of predictors and their respective weights 

being altered in to best explain the habitat choice of the training set, the best result then being 

validated against the remaining 25% of the data, the validation set. Although the training set 

was well explained by the resulting WLC’s, the model failed to explain the validation set’s 

habitat choice with any statistical success. The model showed that no single predictor had the 

ability to explain the habitat choice and could be partially attributed to the absence of 

potentially significant predictors, such as a food source, which for the red kite, mostly consists 

of small mammals. This, along with the generally elevated species plasticity, could have been 

responsible for the shortcomings in the model’s predictive abilities.  

 

 

 

 

 

 

 

 

 



 

 

Acknowledgements 

I would like to extend my thanks to a number of people who have assisted me along the way. 

Firstly, to my supervisor, Micael Runnström, thank you for the time, help and input you have 

given me along the way. A thank you to Patrick Scherler and the Swiss Ornithological Institute 

for the valuable data, to Karin Larsson and Ola Hall for your assistance. To Kristoffer Aalstad 

and Bastian Berlin, you have both been invaluable.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table of Contents 
1.0 Introduction ..................................................................................................................... 1 

1.1 Aims and Hypothesis ....................................................................................................... 2 

2.0 Literature review .................................................................................................................. 3 

2.1 Milvus, milvus ................................................................................................................. 3 

2.2 Current population and distribution ................................................................................. 3 

2.3 Ecology ............................................................................................................................ 5 

2.3.1 Habitat ....................................................................................................................... 5 

2.3.2 Diet ............................................................................................................................ 5 

2.4 Population Crash .............................................................................................................. 6 

2.4.1 Poisoning................................................................................................................... 6 

2.4.2 Human Persecution ................................................................................................... 7 

2.4.3 Habitat Degradation .................................................................................................. 7 

2.4.4 Reduction of prey species ......................................................................................... 7 

3.0 Methodology ...................................................................................................................... 10 

3.1 Study site ........................................................................................................................ 10 

3.2 Experimental Design ...................................................................................................... 11 

3.2.1 GPS Data ................................................................................................................. 11 

3.2.2 Home Range............................................................................................................ 12 

3.2.3 Bioclimatic Predictors ............................................................................................. 15 

3.2.4 Weighted Linear Combination ................................................................................ 31 

3.2.5 Evaluation ............................................................................................................... 37 

4.0 Results ................................................................................................................................ 38 

4.1 Single BCMP extract ..................................................................................................... 38 

4.2 Kolmogorov-Smirnov Test of the BCMPs .................................................................... 39 

4.3 WLCs ............................................................................................................................. 39 

4.4 Validation of WLC models ............................................................................................ 44 



 

 

4.5 Validation home ranges vs Psudo home ranges ............................................................. 46 

5.0 Discussion .......................................................................................................................... 48 

5.1 Model construction ........................................................................................................ 48 

5.2 WLC weight combinations ............................................................................................ 49 

5.3 Validation of resulting WLC’s ....................................................................................... 50 

5.4 Limitations ..................................................................................................................... 53 

6.0 Conclusion ......................................................................................................................... 55 

7.0 References .......................................................................................................................... 57 

8.0 Appendix ............................................................................................................................ 61 

8.1 Conditional Statements .................................................................................................. 61 

8.2 Birldlife International basemap...................................................................................... 62 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

List of abbreviations 

BCMP – Bioclimatic predictors 

CORINE - Coordination of information on the environment 

DEM – Digital elevation model 

EEA – European Environmental Agency 

HSM – Habitat suitability model 

KDE – Kernel density estimator 

K-S – Kolmogorov Smirnov 

NDVI - Normalised Difference Vegetation Index 

RMSE – Root-mean-square error 

RS – Relative spread 

WLC – Weighted linear combination 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 

 

 

Introduction 

Due to the ever-increasing number of species that find themselves on the International Union 

for Conservation of Nature’s red list of threatened species, isolating and understanding the 

bioclimatic limits that affect distribution is critical when undertaking and implementing 

meaningful conservation efforts. Both direct and indirect threats have resulted in heavy 

declines of the Red Kite (Milvus. milvus) populations across the extent of its fundamental niche 

and there is little understanding of the factors that explain its current distribution (Heuck et al., 

2013). 

Fuzzy models have been widely applied to create various environmental models and unlike 

previous models using crisp boolean values, the integration of varying degrees of membership 

has allowed for the inherent uncertainties to be taken into account as there is rarely a specific 

value which defines the bioclimatic limits of a species. This application makes different 

variables and predictors spatially inter-relatable, thus allowing for the construction of species 

habitat suitability or distribution models. One of the main constraints of applying fuzzy logic 

is the need for “expert knowledge”, previous studies or input that defines the species-specific 

bioclimatic limits of said species in order to classify a predictor or variable into its subsequent 

fuzzy suitability value. This method is often subject contrasting values, specifically for species 

who exhibit a high level of plasticity or adaptability to biogeographic factors, such as the Red 

Kite (Vismara et al., 2001; Heuck et al., 2013). Being an allopatric species, its species-specific 

niche might vary across the extent of its fundamental niche and therefor adapted values for its 

bioclimatic limits might be necessary for different locations (Newton et al., 1994). To account 

for this, the use of data-driven fuzzy membership functions can potentially allow for the 

isolation of the local bioclimatic limits of a species in order to generate a more reliable 

suitability model and refine the understanding of the species needs to ultimately implement 

effective local conservation efforts. 
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1.1 Aims and Hypothesis 

How a species prioritises habitat choices can be down to a variety of drivers, being a highly 

plastic species, Red Kites could display a strong preference for a specific underlying variable 

or parameter or a specific combination that might not be apparent at first glance could be the 

key to understanding habitat suitability. To test this the following hypothesis were formulated: 

 

H1: The use of data driven fuzzy membership functions will allow the construction 

of a habitat suitability model that performs above the noise of species plasticity. 

H2: The best performing model derived from the training data will best explain 

the distribution of the validation data. 

H0: Species plasticity will not allow for the isolation of habitat preference and 

therefore little to no habitat preference will be found. 
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2.0 Background 

2.1 Milvus, milvus 

The Red kite (Milvus, milvus) and Black kites (Milvus, migrans) are the two main species of 

kites belonging to the genus, Milvus. Both species are opportunistic raptors who will usually 

favour open habitats for hunting purposes, but are usually located near fragmented forests or 

tree patches for roosting and breeding (Mougeot et al., 2011). The focus of this thesis will be 

on the former species, Milvus milvus, endemic to the western Palaearctic, which despite 

physical similarities, is currently much less successful than the more numerous and wildly 

distributed sister species, Milvus migrans (Mougeot and Bretagnolle, 2006). The population is 

now at just a fragment of its former state as a result of human persecution and habitat 

degradation, mostly throughout the 19th century, where it was considered a pest species due to 

being mistakenly considered a threat to livestock and game species (Seoane et al., 2003; Smart 

et al., 2010; Pain et al., 2007) . 

2.2 Current population and distribution 

As previously noted, Black kites are currently widely distributed around the world and are 

regarded as one of the most abundant and successful birds of prey (Kumar et al., 2014). In 

contrast, the Red kite is currently listed as an endangered species worldwide under the Red List 

of the International Union for Conservation of Nature, Annex II of the Bern convention (Berny 

and Gaillet, 2008) and listed as a species of European conservation concern (BirdLife 

International, 2015). The Red Kite is a raptor species that is characterised by a largely European 

distribution (95% of population within European borders) extending only around 2 million 

km2. Additionally, small populations are found dotted around the Mediterranean and sparse 

locations in Africa but their breeding status is uncertain (Seoane et al., 2003). 

Germany, Spain and France currently host the majority of Red Kite populations, boasting 

around 75-85% of the current world population (Mougeot and Bretagnolle, 2006). Although 

the population stabilised in the 1970-1990, it has declined by almost 20% from 1990 to 2000 

and up to 30% in the last 34.5 years (BirdLife International, accessed 2017), leading to the 

inclusion of the Red Kite on the previously stated European Red List.  The population is 

currently deemed to be in decline as already decimated populations are shown to be dwindling 

across the majority of territories. In Spain the breeding population has been marked by a 46% 
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decline from 1994 to 2004 and surveys from 2004 estimate a reduction of the wintering 

population by 50% since 1994 and has continued to do so since (Mougeot et al., 2011; Mougeot 

and Bretagnolle, 2006). 

Particularly heavy persecution led to the extinction of Red Kites within the UK and Scotland 

by the end of the 19th century (Pain et al., 2007). Only a small isolated remnant of the formally 

widespread population remained in Wales but due to genetic bottlenecking resulting from a 

restricted gene pool in conjunction with unfavourable climatic conditions and continued 

persecution, numbers struggled to increase (May et al., 1993; Smart et al., 2010). In addition 

to these issues, the Red Kite is  a philopatric species therefore natural expansion of small 

populations is somewhat unlikely (Newton et al., 1994). In 1989 a re-introduction program 

using juveniles from other European countries was undertaken to try and reinstate a breeding 

population and through the controlled release of the juvenile kites and reduced persecution, a 

breeding population was able to take a foothold and now account for some 4-5% of the global 

population (Wotton et al., 2002). As a result of this program, the United Kingdom, along with 

Switzerland and Sweden, are the exception to the global declining trend and boast rising 

population numbers (Evans and Pienkowski, 1991; Schaub, 2012). Should the population 

trends in these countries be sustained, a reduction in the rate of decline and possibly outweigh 

the decline observed in Iberia and ultimately, a population increase could be observed (BirdLife 

International, 2015).  

There are variations in the estimates for the current total number of breeding pairs, ranging 

from 10,800 upwards (Ferguson-Lees and Christie, 2001). A review of available data in 2009 

concluded the population of Red kites to be around 21,000 to 25,500 breeding pairs, but more 

recently assessed by the European Red List of Birds to be closer to 25,200 to 33,400 breeding 

pairs (Birdlife International 2015). The variation in the estimations most likely stems from the 

difficulties in estimating raptor population sizes. Although there are several methods for 

estimating population sizes, these census techniques are somewhat inadequate for measuring 

groups of raptors. Many indirect estimation techniques are used for other groups of vertebrates, 

but few are developed for raptors and current methods such as direct counting, specifically the 

detection of nests or occupied territories are techniques that prove to be labour intensive, often 

inadequate and unsuitable for the red kite due to the wide distribution, high variety in habitats 

and low delectability of nests. This problem is seen to escalate during winter time as the raptors 

are not tied to a territory and may be categorised as mobile depending on meteorological and 

food-related factors (Viñuela, 1997). 
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2.3 Ecology 

2.3.1 Habitat 

Because of its generalist nature, specifying a general habitat template for the Red Kite is 

somewhat challenging. An agreed upon specification within literature is the presence of open 

areas within which to search for food (Seoane et al., 2003). 

2.3.2 Diet  

The Red kite exhibits perhaps the best example among raptors if a high level of dietary 

plasticity and is both predator and scavenger alike (Mougeot et al., 2011; Blanco et al., 1990; 

Hiraldo et al., 1993). Its diet has been documented to consist of small mammals, birds, reptiles, 

amphibians, insects and species of fish. Being a highly opportunistic species, the consumption 

of carrion can justify its frequent classification as a scavenger (Viñuela, 1997; García et al., 

1998). Because of this documented plasticity within the species, there is no specific “dietary 

template” which can best describe the species. Dietary variations within same locations have 

been documented through pellet (regurgitated material) retrieved from nesting sites and 

evidence suggests that variations in diet are related to temporal and geographical differences 

in the availability of food sources (Mougeot et al., 2011). Additionally, it is suggested by 

Mougeot & Bretagnolle (2006) that the diet is related to specialisation and is shown to vary 

seasonally. This is supported Coeurdassier et al. (2012) who stipulate that kites show 

tendencies of local diet specialisation depending on food availability, particularly during 

outbreaks of certain prey species of small mammals. This occurrence was observed during 

outbreaks of the common vole in Spain where they accounted for 47% of the total biomass 

found in pellets (Sunyer and Viñuela, 1994). Similarly, Red Kites in Corsica showed an 

increase in breeding success when an abundant rabbit population was present (Mougeot and 

Bretagnolle, 2006). 

Being highly opportunistic, the Red Kite is known for its exploitation of carrion found at 

livestock dumping sites at designated locations or simply close to livestock farms (Blanco, 

2014; Viñuela, 1997; Mougeot et al., 2011). As previously noted, dietary composition seems a 

direct result of food availability. This is supported by Blanco (2014) who states that there are 

major dietary differences in Red Kites who are situated in wintering locations that do not have 

access to livestock carcasses. In these instances, there is evidence of the consumption of a large 

proportion of lagomorphs (European Rabbit) which supports findings of Mougeot el al. (2011).  
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2.4 Population Crash 

2.4.1 Poisoning 

Due to its highly opportunistic nature and dietary plasticity, the Red Kite is particularly 

susceptible to “accidental poisoning” (Berny and Gaillet, 2008). There is a significant amount 

of literature which deals with the poisoning of Kites from legal and illegal toxins used to target 

other species. The sources of the poisoning can be divided into two categories: 

(i) Primary poisoning:  

A study undertaken by Smart et al. (2010) found through post mortem examination that up to 

55% of the illegally killed individuals in their sample died as a result of direct poisoning, most 

likely delivered in the form of carrion baits laced with poison. Direct poisoning is used to kill 

livestock and game predators, but the use of carrion baits will affect any species who happens 

across the bait.  

(ii) Secondary poisoning. 

The use of AKV treatments (anticoagulant rodenticides) are considered one of the most 

prominent threats and sources of secondary poisoning for Red Kites and other wildlife species 

(Coeurdassier et al., 2012; Gómara et al., 2008). The use of the AKV treatments for controlling 

pest species population outbreaks proves particularly detrimental to Red Kites due to the fact, 

as previously stated, Red Kites can be prone to local prey specialisation based on prey 

availability which will lead to extended stays within areas subject to outbreaks (Ntampakis and 

Carter, 2005). None-lethal accumulation of these toxins by prey species inevitably results in a 

weakened state increasing the chance of being caught. This will inevitably lead to prolonged 

exposure of the Red Kite to rodenticides, which can lead to a trickledown effect causing a 

build-up of toxins, thus resulting in internal haemorrhaging. Additionally, the accumulation of 

toxins as a result of the exposure to pesticides has also been observed to have adverse effects 

on predator species (Berny, 2007).  

Another important source of secondary poisoning results from the consumption of un-retrieved 

game, leading to the ingestion of shot or lead (Pb) fragments. Pb dissolves at a rapid rate due 

to the high stomach acidity and a significant amount of Pb is dissolved between ingestion and 

regurgitation leading to high or lethal levels of Pb within the soft tissues (Mateo et al., 2007). 

Although statutory bans regarding the use of lead shot have been introduced in the United 
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Kingdom, the use lead ammunition remains an issue  for a wide range of terrestrial birds (Pain 

et al., 2007). 

2.4.2 Human Persecution 

The European Rabbit (Oryctolagus cuniculus) has sharply declined over its historical range 

due to both myxomatosis in the 1950s and the haemorrhagic disease in 1988 (Villafuerte et al., 

1998; Delibes-Mateos et al., 2007). Consequently, the red kite has experienced a decline in a 

major prey source. As previously stated, one of the main hypothesised reasons for the decline 

of the Red Kite has been the continued persecution by humans, specifically in the late 19th 

century under the pretext that the presence of the predator will have a negative impact on the 

local game species.  

2.4.3 Habitat Degradation 

As is quite common with many species occurring across agricultural lands, the Red Kite has 

been affected by the transformation of landscapes over time. Habitat fragmentation can both 

affect the kites but also the diversity and plenitude of prey sources (Roques and Negro, 2005). 

There is a significant amount of literature that documents the importance of livestock carrion 

for Red Kites (Blanco, 2014; Blanco et al., 1990; García et al., 1998; Mougeot et al., 2011). 

Recent changes to the legislation involving the disposal of dead livestock have limited the use 

of ruminants as a source of food. Following the outbreak of the Bovine Spongiform 

Enceohalopathy (colloquially known as mad cow disease) in 2001, strict sanitary legislation 

was implemented which heavily reduced the availability of livestock carrion. In 2011, the 

legislation was relaxed again but is now an unpredictable source of carrion due to the 

implementation and continued use of carrion destruction plants (Blanco, 2014). 

2.4.4 Reduction of prey species 

As previously stated, the distribution of the European Rabbit is of note as the decline in 

populations of the rabbit are of particular concern to raptor conservation efforts (Delibes-

Mateos et al., 2007). It has been argued that the decline of the rabbit has played a role in the 

decline of predator species, including the Red Kite, both as a source of food and a point of intra 

and extra species conflict (Fernandez, 1993). 
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2.5 Habitat Suitability Modelling 

Species are expected to be nonrandomly distributed as a result of their environmental 

preferences. A species with an optimal existential range for a certain variable (e.g. temperature 

for optimal photosynthesis) are expected to occur in areas that match or almost match this 

optimum (Hirzel et al., 2002).  

Habitat suitability models (HSMs, also referred to as Habitat Suitability Index or Species 

Suitability Models) are a means of producing a continuous surface that relates the suitability 

of a certain area derived from the bioclimatic preferences, with the distribution of a species of 

interest. These relationships can be derived from expert knowledge or the statistical analysis of 

bioclimatic predictors or variables derived from the known distribution of said species.  These 

models are used in the ecology field for land-management, decision making for habitat 

conservation and the identification of suitable reintroduction habitats (Lauver et al., 2002).  

When the data regarding the species is limited due to a small sample set or the rarity of a 

species, a varied approach must be taken that contrasts from the standard comparison between 

observed presence data and absence data. This calls for the use of profile techniques that 

contrast with group discrimination approaches that require presence-absence or abundance data 

(Robertson et al., 2001). 

Simple rendition of these models are made by using datasets containing the distributions of a 

certain species and deriving values for each bioclimatic predictor or variable relevant to 

suitability. These predictors are analysed to obtain the minimum and maximum values through 

cross referencing them with the known distribution records. These values are assumed to be 

the existential limits of the species (however these values are purely based of observed sample 

occurrences and can only represent the empirical limitations of the employed dataset). Each 

variable is then reclassified to produce a Boolean map, indicating areas where (1) values fit 

within max and min of species, therefore predicted presence or (0) value falls outside of max 

and min values, therefore predicted absence of said species. Following this, maps are then 

superimposed and multiplied using a Boolean AND function, producing an overlap of all the 

“survival ranges” of said species. In essence, any area of any variable which had a value of (0) 

will then produce a resulting value of (0) in the final overlay, stipulating that not all predictors 

were deemed satisfactory and will therefore indicate a lack of suitability for the species in 

question (Robertson et al., 2004). 



9 

 

Although this method provides a rough idea of a potential distribution of suitable areas, 

multiple issues can arise from the use of this simplistic binary classification technique. For the 

most part species bioclimatic thresholds are never crisp and absolute. When this assumption is 

made using Boolean logic, the loss of information and the propagation of error can occur. 

A method used which serves to reduce the error generated by binary assumptions is the 

implementation of fuzzy classification. This technique is an extension of the simple Boolean 

logic in respect to the fact that it abides to the climactic limitations set by expert knowledge or 

data analysis but is characterised by continuous grades of suitability ranging from 0 to 1 (not 

suitable and most suitable respectively) allowing the quantification of suitability without being 

bound to the binary classification of defining a bioclimatic predictor or variable by suitable or 

not suitable (Store and Jokimäki, 2003; Robertson et al., 2004).  

 

 

 

 

 

 

 

 

 

 

 

 



10 

 

3.0 Methodology 

3.1 Study site 

The focus on this thesis will be limited to within the Spanish boarders, which is home to the 

largest numbers of wintering birds in Europe and is the site of one of those rapid population 

declines in Europe (García et al., 1998). Spain occupies a majority share of the Iberian 

Peninsula with a total area of ~504,700 km2. The majority of the region consists of highland 

plateaus, broken up by various mountain ranges situated across the country. The country is 

broken up into 17 regions (fig 1) and mainly has a semiarid climate.

 

Figure 1 –  The GPS data provided by the juvenile kites used for the study all occurred within the 

borders of Spain (yellow area),  host to one of the largest breeding population of Red Kite  
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3.2 Experimental Design 

As previously noted, simple Boolean models perhaps capture the bioclimatic limits of a species 

range but the simplicity in turn hinders the assessment of elements where the thresholds for 

suitability are not clearly defined. The fuzzy classification method not only allows the 

application of grades of suitability to areas that would be rejected using binary logic but also 

allows for the grades of suitability to highlight areas that are most suitable across the surface. 

This is specifically of interest to analysis that attempt to define a suitable range for an 

endangered species as it will allow the focus of funding and appropriate legislation to be 

directed to areas of maximal suitability thus maximising the conservation efforts chances of 

success. 

Through the application of fuzzy logic, this paper aims to isolate the predictor(s) that best 

explain the distribution of the Red Kite (Milvus milvus) and to apply it across the extent of 

Spain to attempt to highlight areas that would be of consequence to the success of the species. 

3.2.1 Bird position data 

GPS Data was provided by the Swiss Ornithological Institute in Sepach, a non-profit 

foundation specialising in research and conservation efforts to support native species. The data 

provided was derived from the tagging of a total of 60 individuals (2 adults, 13 subadults born 

in 2015 and 45 juveniles born in 2016) tagged in Switzerland as fledglings which then migrated 

to Spain where the GPS data indicating their movements was logged from December 2016 to 

January 2017. These months were chosen as they can be considered “wintering months” where 

no migration from the Iberian Peninsula could be observed. Data on bird positions was logged 

up to every hour but a lot of variation was observed in the consistency of information received 

from the transponders due to unknown sources of interference. A total of 43,403 positions was 

logged over these two months. Data from 4 individuals was removed from the data set as they 

occurred within Portugal which was outside the area which was subject to analysis. In order to 

create training data from which the membership functions could be derived, 75% or 42 out of 

56 individuals were selected at random to form the sample group, with the remaining 14 

individuals left aside for model validation.  
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3.2.2 Home Range 

In order to analyse what bioclimatic Predictors can be used to describe Red Kite distribution, 

an analysis of the operating area frequented by the training group was required. This area can 

be described as the home or wintering range and is defined as; area traversed by the individual 

in its normal activities of food gathering, mating and caring for young. An important element 

of the definition is the “occasional sallies outside of the areas should not be considered to be 

part of the home range” (i.e. outliers) (Seaman and Powell, 1996). For the purpose of 

conservation, it is imperative that the home range is not overestimated in order to provide a 

conservative estimate on the suitability of habitats. This allows the isolation of the areas that 

are indicative of the highest suitability and therefore provide the best grounds for successful 

species conservation efforts (Rayment et al., 2009). Previously, home ranges have been based 

on observations which proves problematic due to the fact that sequential observations of an 

individual prove challenging and repeated observations within an area are not indicative of the 

true utilization or home range and it becomes necessary to estimate where an individual has 

been found between observations. Multiple methods for the estimation of homes ranges have 

been devised but one of the most successful is the kernel density estimator (KDE) (Worton, 

1989; Silverman, 1986). This method was first introduced by Worton (1989) for the estimation 

of home ranges. Being nonparametric, KDE has the ability to estimate densities of any shape 

providing an adequate smoothing predictor is selected (Seaman and Powell, 1996). To apply 

KDE a univariate kernel is applied over each observation point in the sample. Within the scope 

of this paper, each recorded GPS point within an individual kite’s dataset had a circular kernel 

applied, with the surface value of the kernel highest above the point, diminishing with increased 

distance from the point.  

As mentioned, KDE requires the integration of an appropriate smoothing predictor or 

“bandwidth”. Within GIS this element is referred to as the “search radius”. Having a narrower 

kernel applied to a point will allow proximal GPS points to have more influence than more 

distant points whilst a more broad kernel will allow for the encompassment of more distant 

values giving a more general image of the distribution (Silverman, 1986). Because of the 

movement variation within the data and the variation of GPS pings available from each 

individual, each kite needed a specific bandwidth to encompass the point density. Derived from 

Worton (1989) and adapted to GIS the formula for optimal bandwidth was selected according 

to equation 1. 
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ℎ𝑜𝑝𝑡 = [
2

3𝑛
]
1
4⁄

𝜎, Equation 1. 

where (n) is the sample size (i.e. number of GPS points) and (𝜎) is the standard distance within 

GIS. The Standard distance, similar to standard deviation, measures the degree to which 

features are concentrated or dispersed around the geometric mean of the GPS points. 

ℎ𝑜𝑝𝑡  was applied to each dataset as the “Search radius”. As described before, KDE applies a 

kernel to each GPS point. A raster layer is then produced (figure 2, left) whereby each cell is 

given a value derived by adding the values of all the kernel surfaces found at the specific point. 

Cells with a higher number of overlapping kernels will inevitably produce higher values and 

will be indicative of a higher density of GPS points.   

By using this method, clusters of GPS points could be isolated. As can be noted from fig 2, not 

all GPS points should be taken into account as this will result in an overestimation (light blue) 

of the area where the individuals spent the majority of their time. 

To remove data points that were considered to be “outliers” only the top 95% percentile of 

values were taken into account for further analysis. By removing the lowest 5% of values, GPS 

points with little to no overlap were isolated and could be excluded on with the assumption that 

these represent exploratory stints and not pertinent to habitat choice. The resulting areas and 

would henceforth representative of the “home range”. 
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Figure 2 - Kernels are applied to each point. Points with overlapping kernels are  a darker shade of blue 

and indicative of higher densities  and therefore a higher cell value . By taking 95% of values the 

resulting black area is that of significant kernel overlap and therefor indicative of more time spent 

within that area allowing for the creation of the “home range” .  

Employing  ℎ𝑜𝑝𝑡 to compute the area of each home range by using both standard distance and 

the number of observed GPS points meant that for several individuals, where the data was 

somewhat more sparse, a high spread in conjunction with a low number of data points meant 

that in some cases, the consideration of 95% of cell values vastly overestimated the homes 

range of the Kite. The  computed areas (fig 2) were analysed and based on a study by Hiraldo 

et al. (1991), any range that exceeded the maximum value of 100km2 was re-considered. The 

overestimation of the kernel provided results of a home ranges running from 130km2 up to 

4900km2 Using visual guidance, cell values were taken into account based on a suitable 

standard deviation.  This is a best-case approximation and as stipulated by Seaman and Powell 

(1996), “Since the true home range cannot be known for free-ranging animals, there is no way 

to determine the accuracy of these estimates”.  

The result of these reclassified kernels was then assumed to be representative of the operating 

or home range of the individuals and would be the area (mask) within which the distribution, 

occurrence and percentage covers of different bioclimatic predictors would be derived. 

 

95% of cell values 
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3.2.3 Bioclimatic Predictors 

In order to create training data which would best explain the distribution of the 25% remaining 

individuals, Bioclimatic predictors (BCMP) were selected based on previous studies and 

literature on the Red Kite.  

Table 1 - A l ist of the bioclimatic predictor that were taken into considerat ion for the creation of the 

model. Each predictor was computed into a continuous raster of values covering the whole of the 

Iberian Peninsula.  

BCMP Description Source 

NDVI Normalised difference vegetation index MODIS satellite imagery a 

TEMP Interpolated temperature values (°C) Meteorological Stations b 

WIND Interpolated wind values (m/s) Meteorological Stations b 

FOR Percentage Forest cover  Modified from CORINE c 

OPEN Percentage Open Land cover  Modified from CORINE c 

CROP Percentage Crop cover  Modified from CORINE c 

GRA Percentage Grass cover  Modified from CORINE c 

SLO Slope (degrees) Digital Elevation Model d 

ALT Altitude (m) Digital Elevation Model d 

RAB Distribution of rabbit populations in boolean Atlas of Spanish Mammals e 

a  Raw data obtained from MODIS MOD13Q1at a resolution of 250m on 17.08.2016 

b Raster interpolated using data provided by various stations distributed across Spain, obtained from the 

Spanish meteorological inst itute, Agencia Estatal de Meteorologica, averag ed over December 2016 and 

January 2017 at a 250m resolution.   

c  Four raster layers obtained by aggregating different land cover types (table 2)  from CORINE land 

cover, obtained from the European Environmental Agency (2012) at a 250m resolution.  

d  Predictors derived from a DEM of Spain, obtained from the European Environmental Agency at a 50m 

resolution.     

e  Data recreated and based on a PDF from the Atlas of Spanish Mammels, Atlas de los Mamiferos 

Terrestres de Espana, Muñoz et al.  (2002)  using a 10km2  grid system 

Using various methods defined in each of their respective subsections, raster layers were 

obtained or created for each of the above BCMP. Areas within the home ranges had their values 

extracted and plotted. This allowed for the analysis of the values for each BCMP found within 

the home ranges in order to best assign linear functions and thus construct an appropriate fuzzy 

membership function representative of each specific BCMP. 
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NDVI 

Normalised Difference Vegetation Index is increasingly used in ecological studies and has been 

highlighted as a useful tool thanks to links made between this index and animal performance, 

whereby it is theorised that a higher NDVI value will by indicative of a higher biological 

production of the area (Pettorelli et al., 2005). The NDVI is derived from the red : near-infrared 

reflectance ratio (Eq 2) whereby the satellite sensor will capture the amounts of these 

wavelengths reflected by the surface. 

NDVI = 
(𝑁𝐼𝑅−𝑅𝐸𝐷)

(𝑁𝐼𝑅+𝑅𝐸𝐷)
  Equation 2 

This theory is based upon the fact that for healthy plants, chlorophyll absorbs radiation in the 

red wavelengths (around 650nm) whilst the mesophyll will scatter radiation in the near infrared 

wavelengths (around 850nm). As can be seen in the figure below, NDVI has values that range 

from -1 to 1, where negative values are indicative of the absence of vegetation and positive 

values indicate vegetation, increasing up to a maximum value of 1. 

Figure 3 –  NDVI across Spain from a clear day 01/2017. Higher values are indicative of higher levels 

of vegetative cover and negative values mark the absence of vegetation.  
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The NDVI values derived from the home range mask were then plotted in terms of frequency 

of occurrence at 0.01 intervals.  

The data was separated up into three segments at points where the cell count increased, 

plateaued and decreased again in a significant manner. Linear trendlines were applied to each 

segment respectively and the x values for the intercepts were derived in order to create 

thresholds for the two-sided suitability function.  

𝜇𝑥 =

{
  
 

  
 
0     
𝑥 − 𝑎

𝑏 − 𝑎
 

𝑑 − 𝑥
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         𝑎 < 𝑥 < 𝑏
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𝑥 > 𝑑

 

𝑎 = 0.13 𝑏 = 0.32 𝑐 = 0.6 𝑑 = 0.9 

 

 

Figure 4 –  Resulting fuzzy function for NDVI dataset. The d ata was divided into three sections based 

on thresholds where the data trend was seen to change. Trend line intercepts with each other and the x 

axis were then derived and x values were used to create the suitability function.    
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Wind and Temperature 

In order to obtain continuous values for both wind speed and temperature, meteorological 

station measurements provided by the Spanish meteorological database had to be interpolated. 

As can be seen in figure four, values were obtained from 47 meteorological stations across 

Spain. Because data provided by meteorological stations is in the form of point locations, 

spatial interpolation is required to provide a surface of continuous values. Luo et al. (2008) 

concluded that ordinary kriging is one of best methods of interpolation for measuring 

windspeeds, only excelled by cokriging. Ordinary kriging was chosen due to restrictions 

imposed by the sparse nature of the meteorological sites. 

 

Figure 5 –  Distribution of weather stations across Spain used for interpolating both wi nd and 

temperature values. A single weather station was selected from each  province to ensure a wholesome 

distribution of points from which to interpolate temperature and windspeed.  

Kriging is a method of spatially interpolating data between known points attributed weights 

based on spatial autocorrelation between these points in order to obtain unknown values (Krige, 

1966). 
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The semi-variograms of wind speed and temperature was characterised by 12 lags with a size 

of 16.9kms and 27.9km respectively and created using a spherical models. 

For both windspeed and temperature, a second order polynomial trend was detected and 

removed prior to interpolation and re-added to the result. 

Visual inspection of wind speed data within the home ranges indicated no obvious pattern 

which was confirmed by a P-value of 0.76 and an R2 value of 0.0019 and was therefore rejected 

as a relevant BCMP. 

Regression analysis on temperature data resulted in a P-value of 0.0028 and was therefore 

accepted as BCMP of significance. A linear trend was fit to the data resulting in an R2 value of 

0.24 and was therefore used to create the function stipulating that lower temperatures yielded 

a higher suitability value.  

𝜇𝑥 = {

 1                     𝑥 < 𝑎                                  
𝑏 − 𝑥

𝑏 − 𝑎
            𝑎 < 𝑥 < 𝑏                         

0                     𝑥 > 𝑏                                  

   

𝑎 = 4.3 𝑏 = 8.64 

Altitude and Slope 

These two topographical predictors were derived from a Digital elevation model (DEM) that 

was sourced from the European Environmental Agency (EEA) with a resolution of 50m. As 

with the other BCMP’s, the area within the “home ranges” were extracted and subject to 

analysis.  
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Figure 6 –  DEM showing alt itude variat ions across Spain.  DEM obtained from the EEA provided 

attitude values across the extent of the study area . Lighter values are indicati ve of higher areas and 

darker lower.  

Altitude was speperated into 10m bins. The number of cells within the home range falling into 

each 10m bin was analysed. The plotted data (fig 5) indicated a peak at around 780m. This was 

used as the threshold value for to create a double-sided function using trend lines applied to 

each segment of the data. Here again, (b) and (c) were derived from the intersect of both 

trendlines (𝑥 = 797). 
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Figure 7 –  Plotted values for cell count at each 10m interval within home ranges. Y=0 for trendline 1 

and 2 represent (a) & (d) respectively and (b,  c) was derived from linear (1 s t) = linear (2 nd).  The 

resulting R2  Value for the trendlines 1 and 2 were 0.28 and 0.5 respectively.  

In addition to elevation, the DEM also provided the data needed to derive the slope in degrees. 

The slope function within ArcGIS allows for the quantification of the topographical change 

from one cell to its neighbours. The resulting layer is a continuous surface of gradient values. 

Values within the “home ranges” were plotted. Due to the sheer number of values with low cell 

count a 1% exclusion treatment was applied to values whereby any value with a cell count 

below 1% of total count was excluded from the dataset. The resulting plot was fit with a linear 

trendline with a R2 value of 0.68. 

Corine Land Cover data:  

Land cover data was obtained from CORINE (Coordination of Information on the 

Environment). CORINE was a project initiated in the 1980’s producing continuous land cover 

use for most of Europe. The layer used was the fourth instalment of the series, produced in 

2012 with a resolution of 100m. Initially, Corine land cover is composed of 44 separate land 

cover categories. These were analysed and in accordance with literature by Seoane et al. (2003) 

and expert knowledge provided by the Swiss Ornithological Institute, the land covers were 

homogenised into 7 categories based on their characteristics and singular importance to Red 

Kites in the following fashion:  
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Table 2 –  Categories by which land cover classes were homogenised based on their  individual 

importance and characterist ics  

 

The Home ranges were then used as masks to isolate the areas where the kites will have spent 

the majority of the two months and the cell values were then extracted and provided the 

information about what the specific land cover types that could be found within the homes 

ranges. 

 

Figure 8 –  Land cover across Spain, divided up into their respective type. Only a small amount of 

variation can be observed between the  land cover composition for the whole of Spain (left) and  that of 

the land cover within the home ranges (r ight).  
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From the homogenised land cover sets, four primary land cover types (Forest, Grassland, Crop 

and Open land) were identified (fig 8) and were extracted from the layer, the other land types 

were excluded from analysis due to their poor values and consistency. These layers were then 

isolated and extracted by attribute, resulting in four distinct Boolean layers pertaining to their 

respective types (fig 9)  
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Figure 9 –  The four primary land-cover types found within the home ranges,  derived from CORINE 2014
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Because there was no obvious specific land cover preference, analysis of the home range of 

each individual Kite of the training dataset was needed to isolate preferences and trends on 

which to base functions. 

The composition of each individuals home range was broken down into a percentage value for 

the four major landcover types (open habitat, grassland, cropland and forest). The resulting 

land cover percentage values were then combined with those of the same class and categorised 

into 5% increments with the aim of isolating a notable general preference for land cover 

composition.  
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Figure 10 –  Plotted values for land cover composition of each home range split into their respective 

categories and compressed into 5% increments to observe preference along with minimum and 

maximum values.  

By isolating each individual land cover percentage value, patterns pertaining to preference 

emerged along with the maximum and minimum thresholds allowing for the implementation 

of fuzzy values based on the number of Kites within each 5% increment.  

For the above plots, (a) to (c) exhibited similar trends whereby smaller percentages of the 

respective land cover results in a higher rate of choice, diminishing with an increase in the 

value. The figure relating to Crop cover (d) indicated a higher occupancy of areas with 

increased crop cover. Values were assumed to be indicative of species preference. 
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Table 3 –  Thresholds for conditional statements stipulat ing max imum and minimum suitability as 

derived from the linear trends in fig 7.  

(a) Grassland Cover (b) Forest Cover 

Predictor Percentage cover Predictor Percentage cover 

a 0 a 0 

b 47 b 78 

(c) Open Cover (d) Crop Cover 

Predictor Percentage cover Predictor Percentage cover 

a 0 a 0 

b 19 b 100 

 

In order to apply the functions to the landcover, each of the four land cover types were 

converted from simple Boolean to percentage-based values. This was achieved using the focal 

statistics tool within ArcGIS to assign each cell a percentage value. A 5x5km grid was used to 

assign the cell values based on the number of cells within that grid that were either of the 

specified land cover or not which were then divided by the total number of cells within the 

grid, resulting in a percentage value for each cell within the raster (fig 8). 
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Figure 11 –  The four relevant land cover types, with each cell value recalculated to create a 

percentage cover based on the number of surrounding cells of a that specific land cover  type. 

Covers ranging from 0 percent, indicative of the absence of said cover to 100, indicative of 

complete cover.  
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Rabbit distribution data 

Derived from the Spanish Mammals atlas, this data was digitised but unfortunately proved too 

coarse to derive any real distribution and was considered as detrimental to the model as too 

many areas would be taken into account and this was confirmed by extracting the Boolean 

values within the home ranges where no discernible pattern was present.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12 –  Rabbit distribution across Spain recreated and based on a distribution map depicted in the 

Atlas de los Mamiferos.  - Although a potentially viable BCMP  given the importance of food sources, 

described to by literature found in section one , the coarse resolution meant no real results could be 

derived from using the rabbit distribution layer and had to be disregarded as a dataset .  
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Figure 13 - The resulting fuzzy suitability raster layers produced by applying the fuzzy membership functions for each respective B ioclimatic 

Predictors. This data was henceforth used in the subsequent W eighted Linear Combinations
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3.2.4 Weighted Linear Combination 

As aforementioned, converting data into fuzzy values allows for data to converted from a “crisp 

set” where values are, or are not, into varying values of membership. Once the distribution of 

the various bioclimatic predictors was established, the data was “fuzzified” in order to make 

the values inter-relatable allowing for multi-criteria/predictor evaluation. This was achieved by 

applying the functions from 3.2.3 to their respective data sets resulting in continuous values 

ranging from 0 to 1 corresponding with non-membership to complete membership, in this case 

corresponding to a complete suitability (Robertson et al., 2004), indicating the preferred values 

of the sample group within each respective BCMP (fig 9).   

In multi-parameter analysis within GIS there are two methods which are commonly applied. 

The first uses a Boolean overlay, used for crisp values, where different parameters are 

combined with a selected logical operator such as (OR) or (AND) to yield a binary layer. The 

second and more applicable method uses Weighted Linear Combination (WLC), with which 

standardised or fuzzy values with varying degrees of membership can be combined or 

multiplied using pre-determined weights, yielding a continuous surface resulting from the 

weighted average of the combined parameters (Jiang and Eastman, 2000). This can be summed 

up as  

𝑆 =  ∑𝑤𝑖𝜇𝑖   Equation 3 

where S is the suitability, 𝑤𝑖 is the weight of parameter (or in this case predictor) 𝑖 and 𝜇𝑖 is 

the criterion or fuzzy value of 𝑖 (Drobne and Lisec, 2009). To apply WLC to establish the most 

suitable habitat based on the sample group, two elements had to be taken into consideration: 

What combination of BCMP’s should be used and the importance or “weight” that each one 

will carry.  

There are multiple techniques that can be used to predetermine weights ranging from arbitrarily 

attributing equal weights to all parameters, prior expert knowledge which utilises experience 

and observations or the Analytical Hierarchy Process which cross compares pairs of parameters 

within a square reciprocal matrix. In this thesis, the weights will be deduced by assessing the 

performance of several predictors in how well they manage to explain the training data and 

ultimately the validation data. 
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To quantify the result of each WLC, fuzzy values were extracted from the resulting 

combinations and masked off using the areas found within the kernels indicative of home range 

extent (fig 2). Following this, the fuzzy values were exported and tabulated into 0.05 

increments as 0.1 bins were deemed too large and threatened to overly smooth out the data. 

The values were then made into a cumulative frequency distribution.  Subsequently, the 25th 

percentile, median, 75th percentile and Interquartile range (IQR) were calculated. These 

statistics were combined to form the relative spread (RS) (IQR/median) of the fuzzy values in 

order to assign a single metric for the performance of each trial. This metric was used over 

other measures of spread as it is considered to be a method that is less sensitive to outliers. The 

overall aim of the exercise was to attempt to isolate the combination of weights and BCMPs 

within a WLC that would yield the lowest RS, signifying a high median and a little data spread.  

 

Development Process 

a) Single BCMP extract 

To isolate the singular importance (if any) of the eight BCMPs, the fuzzy values 

within the home ranges were extracted from their respective layers to assess if and 

how well the fuzzy membership functions for each BCMP had captured the 

bioclimatic preferences of the kites. The inverse relative spread was then deduced 

and normalised to convert them into weights, ensuring that a lower RS will carry a 

higher weight. 

 

b) Kolmogorov-Smirnov test 

The K-S test was used to ensure that no single predictors performance was a mere 

reflection of the data as a whole. The K-S is a nonparametric test that allows the 

comparison of the probability distribution of two samples. In this specific case it 

was used to test the null-hypothesis that the fuzzy values within the home ranges 

match those from the distribution across the whole of Spain with a confidence of 

95%. This can be surmised as D > Dα , where D is the biggest difference between 

both cumulative probability distributions and Dα is the critical D value that must be 

exceeded in order to confirm that the two samples are from statistically different 
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distributions. The purpose of this was to identify BCMPs that appear to be good 

explanatory predictors when extracted from the home ranges but are also 

representative of the rest of Spain and consequently most likely a product of an 

abundance of high fuzzy values across the Spain in contrast to high fuzzy values as 

a result of habitat choice.  

 

i) WLC – All BCMPs with equal weights (Benchmark WLC) 

This is the first and most basic WLC in which all BCMPs are considered to be of 

equal importance in habitat choice resulting in eight BCMPs, each carrying a weight 

of 𝑤𝑖= 0.125. This would be used as a benchmark on which to base the performance 

of all subsequent WLCs. 

 

ii) WLC – R2 Weights 

WLC using all of the BCMPs and the weights from the mean R2 values derived 

from original fuzzy membership functions as normalised weights. The R2 value is 

a direct measure of  how well the function represents the data it is trying to explain 

Therefore, it is assumed that the strength of how well the function fits the data will 

directly influence how well the WLC will capture species preference. Weights are 

as follows: 

Table 4 –  R2  Vales derived from each of the respective membership functions from section 3.2  

and normalised to represent  relat ive weights.  

FUNCTION MEAN R2 NORMALISED 𝒘𝒊 

NDVI 0.692 0.1761 

TEMPERATURE 0.24 0.0610 

FOREST 0.233 0.0593 

OPEN 0.678 0.1726 

CROP 0.246 0.0626 

GRASS 0.763 0.1942 

SLOPE  0.687 0.1748 

ALTITUDE 0.389 0.099 
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iii) WLC – Minus one BCMP 

A sensitivity test where eight separate WLCs were run, each time removing a 

BCMP from the combination resulting in a WLC with 7 BCMP’s with equal of 𝑤𝑖= 

0.1429. The relative spread of each product was then calculated to allow for the 

isolation of any BCMP which diminishes the performance of the habitat suitability 

model to be isolated. If the removal of a single BCMP significantly reduces the 

performance of the suitability model this is indicative of the importance of that 

predictor in explaining the overall suitability, and vice versa. 

 

iv) WLC – K-S test D > Dα with equal weights 

The predictors that rejected the K-S test’s null hypothesis were compiled into a 

WLC with equal weights. Those that that failed to reject the null-hypothesis that the 

BCMP values within the home ranges and that of those across the whole of Spain 

were from the same distribution were removed. 

 

v) WLC- K-S test D > Dα using single predictor weights 

The predictors that rejected the K-S test’s null hypothesis were compiled into a 

WLC using the weights derived from the inverse RS for each value from the Single 

Predictor Extract as relative weights. 

 

vi) WLC - K-S test  

Following the K-S test, several WLC’s were composed from the results. The first 

was using the D-values (Cumulative probability distribution whole of Spain – 

Cumulative probability distribution within home ranges) from all 8 predictors 

respectively to create weights relative to D. This was done to assess if the difference 

between the two distributions was indicative of the relative importance of the 

predictor. The resulting weights were as below, with temperature carrying the 

highest relative weight and NDVI and grass land cover carrying the lowest of the 

set. 
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Table 5 –  Maximum Difference from Komogorov-Smirnov test  from each bioclimatic 

parameter, normalised and used as relative weights  for use as weights  

BCMP MAX D-VALUE NORMALISED 𝒘𝒊 

NDVI 0.1985 0.0803 

TEMPERATURE 0.5205 0.2106 

FOREST 0.3038 0.1229 

OPEN 0.2676 0.1083 

CROP 0.3318 0.1343 

GRASS 0.1822 0.0738 

SLOPE  0.3755 0.152 

ALTITUDE 0.2909 0.2909 

 

vii) WLC – Single predictor * Dvalue 

A WLC using all eight BCMPs, where the inverse RS of the single predictor extract 

was calculated for each BCMP and normalised in order to be representative of their 

performance (lower RS=higher relative weight), defined as (𝑠𝑝𝑖) and multiplying 

them with the respective normalised D-value K-S test. The resulting suitability can 

be represented as follows: 

𝑆 =  ∑(𝑠𝑝𝑖 ∗ 𝑚𝑎𝑥𝐷𝑖)𝜇𝑖       Equation 4 

Table 6 –  The respective resultant weights for each bioclimatic parameter  when taking into  

consideration both Relative Spread and the Max Difference value from the Kolmogorov-

Smirnov test  

BCMP (𝒓𝒔𝒊 ∗ 𝒎𝒂𝒙𝑫𝒊)
 NORMALISED 𝒘𝒊 

NDVI 0.1985 0.0803 

TEMPERATURE 0.5205 0.2106 

FOREST 0.3038 0.1229 

OPEN 0.2676 0.1083 

CROP 0.3318 0.1343 

GRASS 0.1822 0.0738 

SLOPE  0.3755 0.152 

ALTITUDE 0.2909 0.2909 
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viii) WLC – RS of Single Predictor 

A WLC including all eight predictors with weights derived from the RS of fuzzy 

values from the initial single predictor extract (a) 

 

ix) WLC – All equal - Minus one BCMP 

A WLC using all predictors and taking the RS for each predictor during the 

sensitivity test, WLC (iii) and subtracting the RS of WLC (i), 0.3131 therefore 

resulting in a weight which is representative of the relative decrease in performance 

between the baseline WLC and that of removing a predictor from it. 
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3.2.5 Evaluation 

The hypothesis H1 “The use of data driven fuzzy membership functions will allow the 

construction of a habitat suitability model the performs above the noise of species plasticity” 

was evaluated by running each of the WLCs aforementioned and comparing the resulting RS 

of fuzzy values with that of the benchmark, WLC (i). The WLCs that produced layers whose 

RS of fuzzy values managed to outperform those of the benchmark WLC was then used to 

assess how well these managed to explain the distribution of the validation set. This was 

achieved by extracting the fuzzy values within the validation set’s home ranges, resulting in a 

RS which would be indicative of each of the WLCs performance. This in turn will allow for 

the hypothesis H2 “The best performing suitability model derived from the training data will 

best explain the distribution of the validation data” to be accepted or rejected. For this 

hypothesis to be accepted, the WLC that best explained the distribution of the training set’s 

home range will subsequently also best explain the distribution of the validation set, producing 

the lowest RS of fuzzy values when extracted. 

The WLC which produced the lowest RS of fuzzy values within the home ranges of the 

validation set then had its performance evaluated. This was done by creating 14 randomly 

distributed hypothetical or pseudo home ranges with an extent of 100km2, corresponding to the 

number of individuals in the validation set. The extracted values were then tabulated and the 

cumulative probability of both the validation set and the pseudo homes ranges were assessed 

using the K-S test at 95% confidence, to verify how and if their distributions differed. This 

would allow for the acceptance or rejection of hypothesis H1 

Lastly, the best performing habitat suitability model would be compared to the known 

distributions of Milvus, milvus from Birdlife international’s Red Kite distribution. 
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4.0 Results 

4.1 Single BCMP extract 

This was done as a preliminary evaluation to assess the performance of each BCMP. The cell 

count from the resulting fuzzy values allowed for an idea of how well the functions established 

in the methodology managed to capture the bioclimatic preferences of the training set itself by 

extracting the fuzzy values for each BCMP respectively. The extracted cell counts were plotted 

into cumulative probability functions with 𝜇0.05 bins. A good explanatory BCMP should have 

a high median fuzzy value whilst having very little spread around this value. As aforementioned 

this would be represented by a low RS. 

Table 7 –  The resulting relative spread of fuzzy values from within the training set’s home ranges for 

each individual Bioclimatic predictor, again, the relative spread indicating how the severity of the 

data’s spread.  

BCMP IQR MEDIAN 𝝁𝒊 RS 

NDVI 0.1357 0.9606 0.1412 

TEMPERATURE 0.2117 0.7166 0.2954 

FOREST 0.4966 0.8594 0.5778 

OPEN 0.3954 0.8662 0.4055 

CROP 0.6622 0.6164 1.0741 

GRASS 0.2944 0.8726 0.3374 

SLOPE  0.2811 0.8007 0.3510 

ALTITUDE 0.3954 0.7297 0.5419 

 

From this extract was very apparent that NDVI (in bold) was the strongest explanatory 

predictor on its own, having both high highest median and the smallest IQR. Crop cover 

however, performed relatively poorly, only scoring a median value of 𝜇0.61. 

Although NDVI scores well, it is to be expected due to the high amount of “very suitable” 

NDVI values that are present across Spain (fig 13, NDVI). 75% of the NDVI values across the 

whole of Spain yield a suitability value of 𝜇0.6 or above and 50% of the exceed a suitability 

score of 𝜇0.95.  
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4.2 Kolmogorov-Smirnov Test of the BCMPs 

Only taking into account the RS of NDVI within the home ranges, it appears to be a good 

explanatory BCMP so it is therefore important to assess if this is the result of the Bioclimatic 

preferences and limits of the species being well explained by the fuzzy membership function 

from 3.2.3 or if the fuzzy values within the home ranges is representative of the distribution of 

those across the whole of Spain. The K-S test was used deduce if the BCMPS were from the 

same distribution as the general data with a 95% confidence using 20 increments of 0.05 for 𝜇. 

In order to reject the null hypothesis that both datasets were from the same distribution, a 

critical value of D𝛼 = 0.294 had to be exceeded. As can be deduced from table 8, NDVI, 

Altitude, Open cover and Grass land cover (in bold) all failed to reject the null hypothesis. 

Although these results suggest that the fuzzy values from these BCMPs are from the same 

distribution as the rest of Spain, they could still potentially be good explanatory variables and 

their influence would have to be deduced in subsequent WLC’s. 

Table 8 –  Maximum Difference values representing the highest difference between the two cumulative 

frequency data sets. Four predictors yielded a Critical Difference value of < 0.294 and therefore had a 

95% similar distribution.  

PROBABILITY DENSITY FUNCTIONS 

BCMP NDVI Temp Forest Open Crop Grass Slope Alt 

Max D-value 0.1985 0.5205 0.3038 0.2676 0.3318 0.1822 0.3755 0.2909 

 

4.3 WLCs 

The following WLCs were run each time using their respective predictors and the resulting 

fuzzy values were extracted from within the training set’s home ranges in order to assess how 

well each WLC affected these values. 

 (i) All predictors with all weights equal  

The resulting statistics (table 9) from the probability density function were considered the 

benchmark on which to base subsequent WLC performances.   
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Table 9 –  Values derived by converting fuzzy values probability density table. Henceforth, values will 

be measured by their respective relative spread in order to assess their performance.  

WLC i)  

STATISTIC 𝝁𝒊25% 𝝁𝒊50% 𝝁𝒊75% IQR RS 

𝝁𝒊 0.5904 0.7405 0.8223 0.2318 0.3131 

 

 (ii) WLC – R2 Weights 

The results from using the R2 values to create the weights resulted in both the median and the 

IQR improving relative to WLC i) and therefore yielded a relative spread which was 6.31% 

lower than the benchmark. 

Table 10 –  Resulting values from using the respective R 2  values as relative weights from each 

bioclimatic predictor membership function .  

STATISTIC 𝝁𝒊25% 𝝁𝒊50% 𝝁𝒊75% IQR RS ∆%  

WLC ii)  0.6206 0.7703 0.8465 0.2258 0.2931 - 6.31 

 

iii)  WLC – Minus 1 predictor  

Removing one predictor each time to see how this affected the model resulted in each predictor 

being confirmed as having a positive effect in explaining the distribution of the training dataset 

and by removing them, caused an overall decrease in the resulting performance. Although four 

predictors failed to reject the K-S null hypothesis, they are still shown to have a positive impact 

on the model performance and are therefore suggests that although the distributions are 

statistically similar at a 95% confidence level to the rest of Spain, they all play an integral part 

in explaining the overall distributions of the training data. Removing NDVI proved to have the 

most marked effect on the model performance, increasing the RS by 36% in relation to WLC 

(i). The least impactful BCMP but still beneficial to the model was crop cover, whose removal 

increased the RS by 11.46%. 

Table 11 –  Resulting relative spread value and subsequent percentage change based on WLC (i) as a 

result of sequentially removing one bioclimatic predictor.  

BCMP 

REMOVED  

𝝁𝒊25% 𝝁𝒊50% 𝝁𝒊75% IQR RS ∆% 

NDVI 0.5542 0.7179 0.8602 0.3059 0.4261 +36.09 
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TEMP 0.5847 0.7440 0.8830 0.2983 0.4009 +28.03 

FOREST COVER 0.6011 0.7387 0.8727 0.2716 0.3676 +17.41 

OPEN COVER 0.5996 0.7366 0.8659 0.2663 0.3615 +15.45 

CROP COVER 0.6182 0.7544 0.8815 0.2633 0.3490 +11.46 

GRASS COVER 0.6016 0.7281 0.8663 0.2647 0.3636 +16.12 

SLOPE 0.5876 0.7424 0.8738 0.2862 0.3855 +23.10 

ALTITUDE 0.5573 0.7577 0.8558 0.2985 0.3940 +25.82 

 

iv) WLC – Removing predictors where K-S test = D < D𝜶 with equal weights 

In order to confirm the results of the previous WLC and confirm that although four home range 

BCMP distributions are from the same distribution as the rest of Spain, they still play an 

integral role in explaining the distribution of the training data, a WLC was run using only the 

predictors that successfully rejected the null hypothesis of the K-S test. The resulting change 

relative to the RS showed that removing the BCMPs degraded the model’s performance by 

49.93% relative to WLC (i). 

Table 12 –  Resulting percentage change in relation to WLC (i) where bioclimatic paramerters  that 

failed to reject null hypothesis were removed and  the remaining few assigned equal weights  

STATISTIC 𝝁𝒊25% 𝝁𝒊50% 𝝁𝒊75% IQR RS ∆%  

WLC vi)  0.4969 0.7116 0.831 0.3340 0.4694 + 49.93 

 

v) WLC – Removing predictors where K-S test = D < D𝜶 with using normalised respective 

RS from a) weights. 

As previous examples have shown, each predictor has a different impact relative to its weight 

so the four BCMPS from the WLC (iv) were used with their weights derived from the RS of 

the single predictor extract of each respective BCMP. A significant increase in performance 

was noted although it still failed to out-perform the RS of WLC (i). 

Table 13 –  Resulting percentage change in  the relative spread based on WLC (i) where bioclimatic 

predictors that failed to reject null hypothesis were removed and had their weights assigned based on 

their respective relative spread.  

STATISTIC 𝝁𝒊25% 𝝁𝒊50% 𝝁𝒊75% IQR RS ∆%  

WLC v)  0.5723 0.7277 0.8206 0.2483 0.3412 + 8.97 
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vi) WLC – All BCMPs with weights derived from the MaxD value from the K-S test  

The weights derived from the MaxD value produced during the K-S test yielded a very slight 

increase in model explanatory performance, improving on WLC (i) by 0.29% due to a slightly 

lower IQR which outweighed its slightly lower median value. 

Table 14 –  Resulting percentage change of relative spread by using maximum difference value from 

Kolmogorov-Simonov test to assign weights .  

STATISTIC 𝝁𝒊25% 𝝁𝒊50% 𝝁𝒊75% IQR RS ∆%  

WLC vi)  0.5863 0.7236 0.8122 0.2259 0.3121 - 0.29% 

 

vii) WLC – Single predictor RS * Dvalue from K-S test 

As a standalone statistic, the D-value from the K-S test did not significantly improve the models 

explanatory performance but in an attempt to acknowledge that some predictors did not vary 

from the distribution of the fuzzy values throughout the area outside of home ranges, the inverse 

relative spread  each of the predictors was multiplied by the D-value from the K-S test in order 

to combine the performance of each predictor with how that performance varied from the 

general distribution of fuzzy values. The resulting RS value proved to be 16.19% more 

effective at explaining the distribution of the training set. 

Table 15 –  Resulting percentage change in relation for WLC (i)  using the relative spread from the 

single predictor extract multiplied by the difference value derived from the Kolmogorov-Smirnov test.  

STATISTIC 𝝁𝒊25% 𝝁𝒊50% 𝝁𝒊75% IQR RS ∆%  

WLC vii)  0.6396 0.76 0.8391 0.2483 0.2623 - 16.19% 

 

viii) WLC – RS value of single predictor extract 

Using the RS of the single predictor extract and converting them into normalised weights was 

modelled to see if the RS could be used as an indication of the weight that a BCMP might carry 

in explaining the distribution. A 21.53% increase in explanatory performance was noted.  
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Table 16 - Resulting percentage change when using the relat ive spread value of single predictor extract 

to assign weights.  

STATISTIC 𝝁𝒊25% 𝝁𝒊50% 𝝁𝒊75% IQR RS ∆%  

WLC viii)  0.6644 0.7807 0.8562 0.1981 0.2456 - 21.53% 

 

ix) WLC – RS of WLC All equal – RS of Minus one BCMP 

Here the assumption was that the change between the two WLCs could represent the impact 

that each BCMP would have on explaining the distribution of the training set. The resulting 

change between the RS of both predictors was normalised and used as weights. This was the 

best performing WLC out of the set, yielding a 22.53% reduced RS of fuzzy values within the 

training set. Although the median value was slightly lower than that of WLC (viii), the 

improvement in the IQR produced an overall lower RS value. 

Table 17 –  Resulting percentage change of  the relative spread when using the difference between the 

relat ive spread where all bioclimatic predictors carried equal weights and the respective relative spread 

where each bioclimatic predictor was sequentially removed  

 

 

 

 

 

 

 

 

 

STATISTIC 𝝁𝒊25% 𝝁𝒊50% 𝝁𝒊75% IQR RS ∆%  

WLC ix) 0.6437 0.7490 0.8264 0.1827 0.2439 - 22.08% 
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4.4 Validation of WLC models 

The benchmark WLC and all those that managed to outperform its explanatory result from the 

training dataset were then taken and evaluated by how well they managed to explain the 

validation set. WLC i), ii), v), vi), vii) and ix) were used and by extracting the fuzzy values 

found within the validation set’s home range’s, the following statistics were calculated. 

Table 18 –  Resulting percentage change of the relative spread  when pitting each of the following 

weighted linear combinations against the result of the benchmark, WLC (i)  

STATISTIC 𝝁𝒊25% 𝝁𝒊50% 𝝁𝒊75% IQR RS  ∆% 

WLC i)  0.4217 0.5476 0.6625 0.2408 0.4397 --------- 

WLC ii)  0.4805 0.6125 0.7261 0.2457 0.4011 - 8.79 

WLC vi)  0.3796 0.5163 0.6514 0.2717 0.5263 + 19.68 

WLC vii)  0.4604 0.5892 0.6888 0.2284 0.3876 - 11.86 

WLC viii)  0.5121 0.6318 0.7152 0.2030 0.3214 - 26.91 

WLC ix)  0.4622 0.5758 0.6963 0.2341 0.4066 - 7.53 
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Figure 14 - The resulting suitability map produced by WLC (viii).  The extracted values from the validation set (black) were tabulat ed in the above table . The 

distribution of the training set depicted for reference (white).  
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4.5 Validation home ranges vs Pseudo home ranges 

As previously mentioned, 14 areas of 100km2 were generated at random within Spain (fig 15) 

to see how well best performing WLC managed to explain the habitat choice of the validation 

set in comparison to how well it would explain randomly generated points. 

 

 

 

 

 

 

 

 

 

 

 

Figure 15 –  Each point represents 1 of 14 randomly generated circular pseudo home ranges across the 

extent of Spain. Cell values were ext racted from within these areas  and calculated into a probability 

distribution table to compare with the probability distribution of WLC (v iii)  

 

Table 19 –  Resulting relative spread of fuzzy values within pseudo home ranges  (fig 15) and the 

resulting relative spread of fuzzy values using WLC vii i) within the validat ion set.  

SET 𝝁𝒊25% 𝝁𝒊50% 𝝁𝒊75% IQR RS  

RANDOM POINTS 0.447186 0.549792 0.669083 0.221897 0.403601 

WLC viii) 0.512105 0.631813 0.715155 0.20305 0.321377 
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Figure 16 –  Cumulative probability of WLC (viii) (weights derived from the relative spread of the 

single predictors compared to the cumulative probability of the pseudo home ranges. ( MaxD) represents 

the maximum difference between the two data sets.  

 

The maximum D-value was derived from comparing the two datasets in order to assess if D < 

D𝜶 to, in turn, reject or accept the null hypothesis.  Resulting maximum D-value was at  𝜇0.6, 

D = 0.1882 which failed to exceed the critical D value of 0.294 therefore confirming that the 

two datasets are not from statistically different distributions. 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
U

M
U

L
A

T
IV

E
 P

R
O

B
A

B
IL

IT
Y

𝝁

Psudo home range vs WLC (viii)

Psudo Home Range WLC (viii)

(MaxD) 



48 

 

5.0 Discussion 

This study showed that the use of simple linear functions to create BCMP degrees of 

membership does not allow for the construction of a habitat suitability model which statistically 

outperforms Red Kite species plasticity. The constructed functions are shown to explain the 

distribution of the training set relatively well but fall short when attempting to explain the home 

ranges of the validation set, confirmed by the KS test showing that the distribution of fuzzy 

values within the validation are not statistically different to those of a randomly generated set 

of hypothetical home ranges. 

5.1 Model construction 

The main objective of the study was to assess if it was possible to capture the species preference 

using the readily available data considered pertinent to habitat choice as dictated by the species 

literature. By isolating the fuzzy values for each single predictor, insight into their respective 

explanatory abilities was provided. NDVI proved to be good explanatory BCMP on its own 

but this was attributed to the fact that the majority of all NDVI values across Spain fall within 

the “highly suitable” category, confirmed through its failure to reject the K-S test null 

hypothesis, along with altitude, open land cover and grass land cover. Following these results, 

it was considered that these poor results might mean that these BCMPS were poor 

representations of species habitat choice and therefor a sensitivity test was constructed to 

analyse the impact that each BCMP had on the WLC. This was done by removing each 

predictor from the WLC to try and isolate BCMPS which potentially reduced the model’s 

explanatory success. Each iteration of the WLCs showed that by removing any one BCMP, the 

model’s explanatory power was weakened, ranging from 11.5% increased RS by removing 

crop cover to an increase of 36.1% when NDVI was removed, thus confirming that each BCMP 

played a relatively significant role in explaining the training sets extent.  

This was also supported during WLC (iv) and (v) where predictors that failed to reject the null 

hypothesis for the KS test were removed. This was done in an attempt to remove the predictors 

that might be considered as noise as opposed to a BCMP that might have an impact on the 

habitat choice of Red Kites. Directly removing them and attributing equal weights the 

remaining predictors resulted in a significant degradation 49.9% in the model’s explanatory 

ability. To ensure a fair test, WLC (v) was also run to take into account that not all remaining 

BCMP’s would carry the same importance and thus adjusting the weights by using the 
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normalised RS values from the single predictor extract. Although this was shown to improve 

upon the result of WLC (iv), it also failed to exceed the baseline result, exhibiting a loss of 9% 

explanatory success.   

Furthering this result the exercise was limited to “what importance or weight does each BCMP 

carry to best explain the distribution set and ultimately the validation set. 

5.2 WLC weight combinations 

In deriving what weight to assign each BCMP, the initial step in attempting to outperform the 

baseline WLC (i) for the training data, was to consider how well each membership function 

represented its respective data, represented here by the R2 value. It was correctly assumed that 

the functions which were least representative of their respective cell counts would in turn have 

poor explanatory BCMP’s. Adjusting the weights in proportion to this value allowed for a slight 

improvement of the model’s explanatory success of 6.3% and in turn creating a new benchmark 

to improve upon. 

WLC vi) was constructed on the basis that D-values for each predictor from the KS test might 

give some insight into the potential importance of each BCMP as one might assume that should 

this distribution have a strong variation then it could be the product of Kites actively seeking 

out or avoiding this BCMP. Although four predictors failed to exceed the critical D-value, 

differences were still notable between their distributions within the home ranges and that of 

those across Spain. The degree that the distribution of each BCMP within the home ranges 

varied from the overall distribution across Spain was used for the creation of normalised 

weights. This resulted in an unexpectedly low increase of 0.3% in relation to the baseline 

WLC’s RS value. This could potentially be attributed to the fact that although some BCMP’s 

distributions may vary significantly from those of the rest of Spain, they may still be a poor 

explanatory variable and this variation may be a bi-product of the relationship between 

BCMP’s or an BCMP that has not been considered and is something that might be captured 

using multivariate linear regression within generalised additive models.   

Although WLC (vi) proved only marginally more successful than the baseline, the fact that 

some BCMPs varied quite significantly suggests that some level of habitat selection is 

occurring. In an attempt to capture the importance of this without disregarding the fact that this 

high level of variation is due to the relationship with another factor or BCMP, WLC (vii) was 

undertaken, resulting in the 16.2% increase in explanatory ability. The improvement in the 
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explanatory ability compared to that of WLC (vi) can probably be attributed to factors like 

NDVI. Just taking into account the D-value results in NDVI carrying the lowest weight and 

temperature carrying significantly higher weight. As can be seen by analysing the extent and 

distribution of the high-end fuzzy values produced by temperature, one can deduce that this 

will result in the extremities of Spain being potentially underestimated and the upper central 

values overestimated. By combining the two results, both the success of single predictors 

habitat explaining potential and how much of this is due to a high or low spread of values across 

Spain can be taken into account.  

A comparison was also made with the RS of the single predictor extract as a stand alone to see 

how including the D-value would change the explanatory power. The adverse effect occurred 

and WLC (vii) showed that taking into account the D-value actually decreased the model’s 

ability to explain the training data. Taking the RS value of the single predictor extract alone as 

normalised weights proved to be the second most effective WLC, only outdone by the final 

WLC, WLC ix). The final WLC was constructed to investigate if the difference between the 

performance of WLC (i), where all BCMPS were weighted equally and the relative difference 

of removing said BCMP from the model. This proved to be the most effective way of weighting 

the BCMP’s and would be presumed to be the most effective at explaining the remaining 25% 

of kites, put aside for validation purposes. 

5.3 Validation of resulting WLC’s 

In order to create a subsequent relative benchmark, the extracted values within the home ranges 

of the validation set using WLC (i) were again used as a basis to which all subsequent would 

be compared. As expected, nearly all WLC’s managed to outperform the benchmark, producing 

varying results. WLC (viii) outperformed the benchmark by 26.9%. Falling short of its previous 

performance, WLC (ix) only managed a mere 7.5%. One of the most notable differences 

compared to the training set is that WLC (vi) proved to be less effective than the benchmark at 

explaining suitability, generating a higher RS of fuzzy values within the validation set. As with 

the cell extracts from the training sets, most of the derived WLC results from table 18 showed 

that there was an improvement of the explanatory ability when compared to their respective 

benchmark RS but when cross compared, the resulting RS values from the validation set 

extract, they proved to be all lower than the RS of the training sets benchmark WLC (RS 

0.3131), suggesting that overall,  results were comparatively worse and did not capture with 

any great success, the potential habitat choice of the juvenile Red Kites.  
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Although this was to be expected, to what degree the results captured or failed to capture habitat 

choice was to be determined by comparing how well they explained the validation set versus 

how well they could explain the pseudo home ranges in section 4.5. Once these 14 home ranges 

were generated the cell values were extracted and calculated in the same manner. The 

distributions of both the validation set from WLC (viii) and the pseudo home ranges (fig 15) 

were compared using the K-S test to assess if they were from the same distribution at a 95% 

confidence level. The resulting D-Value failed to exceed the critical D-value, confirming that 

the two datasets were from the same distribution. It can therefore be inferred that the model 

failed to explain the distribution of the validation set any more than the distribution of a random 

set suggesting that based on these results, the habitat suitability model derived from WLC (viii) 

was not a good representation of habitat choice within migrating juvenile Red Kites and 

therefore H2: “The best performing suitability model derived from the training data will best 

explain the distribution of the validation data”, can safely be rejected.  

Based on this specific case, H1: “The use of data driven fuzzy membership functions will allow 

the construction of a habitat suitability model the performs above the noise of species 

plasticity” should also, be rejected. There are multiple potential explanations as to why the 

model failed to capture specific habitat choice but based on a comparison between WLC (viii) 

and the native extent of Milvus milvus in Spain (fig 17), it is discernible that multiple areas 

have been overestimated by the model. An observation that can be made is that the model 

successfully captured that the area that lies at the north-western tip of Spain, was unsuitable, 

confirmed by the lack of individuals from the juvenile group and by the known distribution, 

derived from Birdlife International (see appendix fig S1).  
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Figure 17 - The distribution of the native Red Kites is encompassed by the green line , visually recreated and based on figure S1 (appendix) . Some of the data 

points from the juvenile kites occur well outside of the known distribution of native Red Kites  
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5.4 Limitations 

The simplistic approach taken to attempt to capture species habitat preferences might 

potentially work, but on a less plastic and opportunistic species. There are multiple aspects of 

both the species and the data itself that are potential candidates that could explain the presence 

of high suitability or membership values. 

From a purely visual perspective when comparing the distribution of the home ranges and the 

known distribution of native species there are several discrepancies between the two that could 

in part explain the differences between the who datasets. Within both the training data and the 

validation data 12 (28%) and 4 (28%) respectively were found outside of the “native extent” 

which can be a bi-product of age, lack of experience, lack of local knowledge or simply trial 

and error on the bird’s behalf. Regardless of the reason, this will have contributed towards the 

inclusion of values within each BCMP which may have not been habitually picked by the native 

kites. A workaround that could be considered would be to use “leave one out cross validation” 

to eliminate any bias that the use of randomly chosen validation individuals might generate, 

specifically when using a smaller sample size where the model might be quite sensitive which 

individuals are used to validation. 

Another limitation of this simplistic approach was the functions used to create the memberships 

on which the fuzzy values were derived from. The use of linear functions to capture species 

preference was potentially problematic in two ways. The first being that the low number of 

individuals used to create the functions will inevitably create gaps within the data whereby 

outliers will be taken into account or values which are suitable being disregarded due to there 

not being a sampled individual within that specified range. A good example for the 

shortcomings of this method would be the function that encompassed NDVI values. 

Because of the high amount of suitable values generated by the NDVI membership function it 

proved to be a necessary but somewhat misleading BCMP. It was assumed that NDVI would 

be a good indicator of biological activity which would potentially compensate for the lack of 

“food source data”. A solution to this that could be applicable in subsequent studies would be 

to take into consideration rainfall. Negative correlations were observed between nestling 

growth rate and hatchling success and rainfall in spring. (Viñuela, 1997; Hiraldo et al., 1993), 

information that was originally disregarded when selecting pertinent BCMPs due to the sample 

kites being juveniles and the fact that the GPS points were recorded in winter. Although this 
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might not apply directly to their survival or habitat selection strategy, it cannot be disregarded 

that the avoidance of rainy areas could be attributed to an innate behaviour as a result of natural 

selection and breeding success. Coupled with a larger sample size it would be potentially 

possible to narrow down the window within which species preference occurs. 

It is important to note that functions created out of data such as temperature are purely relevant 

to the dataset being used. In this case the function would only be applicable to temperatures 

within the timeframe of December of 2016 and January of 2017 and therefore most likely do 

not reflect a general preference for lower temperatures throughout the rest of the year. 

Although the derivation of data from interpolated values from climate station data gives 

continuous surfaces this can induce a level or spatial uncertainties due to (i) interpolation errors 

(ii) lack of sufficient climate stations from which to derive data and (iii) these interpolations 

fail to encompass biologically relevant microclimates (Guisan and Zimmermann, 2000). This, 

along with the fact that too few points were included in order to do elevation-sensitive 

cokriging will have contributed towards a certain level or errors concerning both wind and 

temperature data. 

The method by which the home range was devised was challenging in the fact that there is only 

so much one can do to try and isolate the true area of operation with limited samples. The 

overestimation produced using ℎ𝑜𝑝𝑡  meant that the range of cells produced by the kernel density 

estimator that were taken into account were subjective. One individual “Wisk12” had a 

substantial spread of GPS points that an actual hub of operation, even using the density 

estimator, was hard to derive. 

Even taking into account all the limitations related to data, the aspect that could have been the 

main source of error, will be the plasticity of the species in question. As mentioned, food proves 

to be one of the most significant factors when it comes to the habitat choice of Red Kites. 

Although a layer was created to try and capture this by considering the distribution of rabbits, 

a food source which is fairly consistently sought after by Red Kites (Mougeot and Bretagnolle, 

2006; Fernandez, 1993), too little data was available regarding their specific distribution and 

therefore proved to coarse to be useful. This could potentially be modelled in much the same 

way as was attempted within this study but with more individuals for a more solid base.  
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6.0 Conclusion 

The aim of this thesis was to assess the effectiveness of using linear trends to create fuzzy 

membership functions to isolate potential BCMPs that might allow preliminary insight into 

habitat choice.  In this specific case, a highly plastic species was selected, coupled with the 

individuals being migratory juveniles. Although the validation set proved to be relatively 

inconclusive and ultimately resulted in the rejection of H1, “The use of data driven fuzzy 

membership functions will allow the construction of a habitat suitability model that performs 

above the noise of species plasticity”, WLC viii explained the training data quite well showing 

that there are discernible patterns that this exercise could, with a larger sample size and a less 

opportunistic species, be a good preliminary method for assessing the importance of various 

habitats for the conservation of endangered species. 

Considering its apparent importance throughout literature, the results also potentially support 

the importance of food sources as a variable and also suggest that to be able to highlight 

potentially suitable areas for a carnivorous species, one must initially work out the distributions 

of its sources of pray, which in many cases, poses quite a challenge. This specific method of 

attempting to isolate suitable habitats would be best tested with a species that exhibits more 

specific requirements along with a native population, as using juvenile migratory individuals 

will inevitably result in poor short term poor habitat choice without the input of experience. 

Parameters such as NDVI are linked with biological production and therefor can be quite a 

good predictor, but the sheer amount of the suitable datapoints that exceed 𝜇 0.75 highlight the 

importance of absence data that can help to define the bioclimatic limitations of a species 

allowing for a more narrow breadth of NVDI values to be taken into account. Coupled with the 

fact that in nature, things rarely occur in a linear trend, the fundamental key to improving the 

performance of this technique lies in managing to capture the behavioural response to BCMPs 

that deals with the overestimation that this model creates. 

When attempting to isolate if one BCMP could be singled out as more important for habitat 

choice, the WLCs showed that removing any one BCMP degraded model performance, 

showing that each predictor chosen had a role to play. This helps to highlight the importance 

of understanding the complexity of habitat choice and individual species requirements. Models 

such as this show us that, although a species might have a forest to live in, a field to hunt it or 

a sea to swim in, these environments have complex interactions within them that may not be 
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apparent but can be critical when promoting the conservation of species and have an ever-

increasing need for understanding. 
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8.0 Appendix 

 

8.1 Conditional Statements 

- The following condition statements were using within ArcGis to apply the fuzzy membership 

functions created in the methodology. 

NDVI :  

Con((Float("spainndvi") < 0.13) | (Float("spainndvi") > 0.9), 0, Con((Float("spainndvi") >= 

0.13) & (Float("spainndvi") <= 0.32), (Float("spainndvi") - 0.13) / (0.19), 

Con((Float("spainndvi") >= 0.6) & (Float("spainndvi") <= 0.9), (0.9 - (Float("spainndvi"))) / 

(0.3), 1))) 

Crop Cover: 

Con("cropoutput" <= 0, 0, Con(("cropoutput" > 0) & ("cropoutput" <= 100) , ("cropoutput" - 

0) / (100 - 0), 1)) 

Forest Cover: 

Con("forestfloat" > 78, 0, Con(("forestfloat" > 0) & ("forestfloat" <= 78), (78 - "forestfloat") / 

(78), 1)) 

Temperature: 

Con(("tmp" > 8.64), 0, Con(("tmp" <= 8.64) & ("tmp" >= 4.31), (8.64 - "tmp") / (4.33), 1)) 

Altitude: 

Con((Float("dem_int") < 86) | (Float("dem_int") > 1196), 0, Con((Float("dem_int") >= 86) & 

(Float("dem_int") <= 796), (Float("dem_int") - 86) / (796 - 86), Con((Float("dem_int") >= 798) 

& (Float("dem_int") <= 1196), (1196 - (Float("dem_int"))) / (1196 - 798), 1))) 
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8.2 Additional Maps 

 

Figure S1 –  Known native extent of Milvus milvus  across Iberian Peninsula  -  BirdLife International 

(2018) Species factsheet: Milvus milvus .-  BirdLife International  (2018) IUCN Red List for birds.  

Downloaded from http://www.birdlife.org on 19/04/2018.  

http://www.birdlife.org/

