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Abstract

Classification of surfaces in the near field using millimeter-wave radar com-
monly considers the use of polarization based methods for road condition
monitoring. When a surface consists of larger structures one instead wishes
to monitor the surface topography. Analysis of scattering from rough sur-
faces is highly complex and relies on prior knowledge of surface structure. In
this work a device moving at constant velocity is considered. By construct-
ing a set of slow and fast time based features a machine learning classifier is
used to distinguish grass target surfaces from asphalt, gravel, soil and tiled
surfaces. It is found that using estimated autocovariances and average en-
velope shapes make for efficient features and that a small fully connected
neural network classifier adequately manages to determine the surface type.
The found model is accurate yet parsimonious and could be implemented
with limited hardware requirements. Application of a median filter onto the
sequence of classifier predictions effectively suppresses outlying predictions.
This model can find use in autonomous devices that have tasks performed
on designated surface types, such as in autonomous lawn mowers.
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Chapter 1

Introduction

Radars have several highly attractive properties: commonly, they are ac-
tive systems independent of lighting conditions, are very fast and have high
precision. Furthermore, implemented at millimeter-wave wavelengths, radar
sensors can be designed as low-power devices with no moving parts in a
favorable form factor (Lien et al., 2016).

Radar technology has been around since the 1930s (Watson-Watt, 1945),
and has since developed into a well-established field of engineering. Although
the typical use case in radio frequency (RF) radars regard detection and
tracking of large objects at far distances, such as for air and marine monitor-
ing, new areas of applications have emerged during recent years, posing very
different engineering challenges. Some of these are outlined in (Amin, 2017),
where close-range radars are used for applications such as vital signs moni-
toring (Kuo et al., 2016), gesture recognition (Lien et al., 2016) and tumor
imaging (Klemm et al., 2011), to name a few. Furthermore, millimeter-wave
radars have lately become more inexpensive, largely due to their widespread
adoption in the automotive industry (Frenzel, 2018), making such devices an
attractive option in a wide range of low-cost applications.

In this work, we investigate whether millimeter-wave radar can be used for
surface classification of rough surfaces. Two broad antenna beams illuminate
a target scene, and using a feature extraction procedure and machine learning
techniques, the returning echoes are analyzed to determine the surface type.
This work focuses on the use case of determining if a surface is grassy or not,
but could be extended to other surface types.
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1.1 Motivation and Previous Work

Autonomous robots have found increasing use in numerous devices, from
helping customers navigate stores (McSweeney, 2018) to keeping floors clean
(Sanfacon, 2017) and mowing lawns (Udelhofen, 2018). A common challenge
in such systems is keeping the robot in bounds. This commonly means for the
robot to be aware where on a two-dimensional map it is currently located. In
certain applications staying in bounds rather involves remaining on a set of
allowed surface types, such as for autonomous robot lawn mowers remaining
only on areas covered in grass. In such devices one may be content with
knowing that the robot roams around remaining on its designated surface
type rather than having knowledge of its exact position, and hence a surface
classification method would be of great use.

Surface classification can also be used in autonomous devices as a sup-
porting system. A robot vacuum cleaner could for instance make use of
such a system in numerous ways, such as for avoiding liquid spills or using
surface-dependent cleaning programs. One could easily imagine other use
cases where knowledge of which surface type an autonomous device is on
would be a great convenience.

The task of surface classification can be achieved in many ways. Taking
inspiration from the recent advances in computer vision (Liu et al., 2018),
surfaces could be examined optically and separated by their differences in tex-
ture - their spatial organization of image elements (Do and Vetterli, 2002).
Another method is employing direct surface contact. In (Giguere and Dudek,
2011), surface identification was performed for low velocity mobile robots us-
ing a small metallic rod with an attached accelerometer, capturing motion
signatures when traversing a surface. Researches, perhaps motivated by ex-
periments showing bats capable of distinguishing surface roughness by using
their echolocation (Schmidt, 1988), have also experimented with ultrasonic
methods for use in road condition monitoring (Bystrov et al., 2016), (Mck-
errow and Kristiansen, 2006).

In this work, we are interested in distinguishing grass surfaces from non-
grass surfaces using millimeter-wave radar. The application most closely
resembling this objective is perhaps the use of millimeter-wave radar for
road condition monitoring, where one attempts to determine the state of a
road for safety and driver assistance purposes.

Several methods involving measuring polarizations have been proposed
for this purpose. In (Finkele et al., 1995), an array of radar transmitters and
receivers with different polarities were used sequentially to illuminate the
same surface area. Other bistatic setups (configurations with transmitter and
receiver spatially separated) for road condition monitoring were considered
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in (Kees and Detlefsen, 1994) and (Finkele, 1997). Monostatic experiments,
with transmitting and receiving antenna at the same location, have found
varying degrees of success. In (Viikari et al., 2008) and (Häkli et al., 2013),
a monostatic setup was used to compare returning strengths of differently
polarized radar radiation.

These polarization-based methods are founded on measuring the polar-
ization effects of adding a thin layer of ice or water onto a flat asphalt surface.
Since the reflectivity of polarized radiation depends both on the polarization
and the index of refraction of the reflector one can create a setup founded in
well established physics to determine the surface type. These methods rely
on illuminating a planar surface, and can thus not effectively be used for the
application considered in this report where target surfaces may have large
variations in height such as in lawns. In the present case of distinguishing
grass we are instead more interested in capturing the topography of a surface,
not captured as slight differences in polarization.

Backscattering from rough surfaces have been studied in for instance
(Fung and Pan, 1987) and (Fung et al., 1992), clearly showcasing the dif-
ficulties in the modeling of scattering processes from irregular targets. In
these papers, a surface is modeled having a Gaussian height distribution
with a correlation function determining its shape. Such modeling requires
detailed prior knowledge of the surface at hand and does not capture the
many complexities arising in real-world surface structures and could hardly
be of any great use for this project. In (Scharf et al., 2018), the frequency
dependence of monostatic surface backscattering was evaluated for a simu-
lated surface with similar assumptions, and shown to be in accordance with
an experimental setup. Surfaces were distinguished by using the Fraunhofer
criterion, which occurs as angular dependent constructive and destructive in-
terference at specific combinations of frequency and roughness. This model
is however unsuitable for the present carrier frequency of 60 GHz and the
large surface variations in the target surfaces investigated in this report.

As far as the authors know, this paper presents the first attempts of clas-
sification of grass target surfaces using millimeter-wave radar with the sensor
placed in a device moving at constant velocity. Furthermore, we employ a
temporal feature extraction process and pass extracted features to a machine
learning classifier for surface classification in a manner which has seemingly
not been done before in literature for this type of problem.
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Figure 1.1: Image of the 60 GHz PCR radar sensor used in this work (retrieved
from www.acconeer.com/products on 14/1/18).

1.2 Objective

In this work we, wish to explore whether it is possible to create an effective
classification scheme from millimeter-wave radar response acquired during
device movement. The classification task will be to accurately distinguish a
grass surfaces from a selection of non-grass surfaces commonly found adja-
cent to lawns. All experiments will be performed using two 60 GHz pulsed
coherent radar (PCR) sensors from Acconeer, see Figure 1.1, mounted at the
front of device moving straight at a constant velocity.

To this end, the Python programming language will be utilized together
with Scikit learn and Keras with a TensorFlow backend for development
(Pedregosa et al., 2011), (Chollet, 2015), (Abadi et al., 2015).

1.3 Thesis Outline

The outline of this thesis is as follows:

Chapter 2: This chapter explains the fundamentals of PCR systems, and
describes how distance, reflectivity and radial velocity can be extracted from
the radar response. The method in which radar measurements are carried
out is explained, as well as the IQ demodulation procedure.

Chapter 3: In chapter 3, we proceed with describing the data collection
method. Sensor settings, such as pulse length and sampling frequency, are
discussed.

www.acconeer.com/products
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Chapter 4: Chapter 4 presents the feature extraction process. Tempo-
ral features, such as the autocovariance, are investigated for accurate surface
classification. At the end of the chapter, one of the tested extraction methods
is selected for further use.

Chapter 5: In this chapter, a few different classifiers are tested for predic-
tion accuracy. A selection of two linear and four non-linear machine learning
models are tested. At the end of the chapter, one machine learning classifier
is selected as the most suitable.

Chapter 6: In chapter 6, data augmentation and outlier suppression is
discussed.

Chapter 7: Chapter 7 examines the capabilities of the found model in
real and artificially created test scenarios. The found results, as well as some
error sources and limitations, are discussed.

Chapter 8: In chapter 8, conclusions of this work are presented and possible
directions of future work are discussed.
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Chapter 2

Radar System Overview

In order to build a model capable of accurately capturing distinguishing fea-
tures from target surfaces, one must first understand the origin and structure
of the received signal. In this chapter a few fundamental concepts in radar
systems are introduced that explain how a target’s range, velocity, and reflec-
tivity arise in a PCR system. The mixing and IQ demodulation procedures
are also discussed, which explain how radar measurements are performed.

2.1 Target Properties from Pulsed Radar Response

Fundamentally, a radar operates by radiating RF electromagnetic energy
and listening if the transmitted energy generates any echoes (Skolnik, 2009).
By analyzing properties of returning signals, it is then possible to obtain
information regarding the scattering targets. This may involve the distance
and angle at which scatterers are located, or at which velocity they are
moving in. With a sufficiently high angular and range resolution, it is even
possible to discern shapes and sizes of targets.

Standard radars are active systems, meaning that they have a radiating
antenna and hence do not depend on any ambient radiation (Richards, 2014).
Radar systems can be realized in many ways, however in this report a PCR
system is used. This means that a sequence of short coherent wavelets are
transmitted towards a target scene to determine its properties. One such
transmitted wavelet pulse xT (t) has some carrier frequency, fc, and envelope,
A(t), as in

xT (t) = A(t) sin(2πfct). (2.1)

After various scattering processes, the returning signal is captured by either
an array of antennas, or just a single antenna.

7
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2.1.1 Single-Antenna Considerations

Commonly, in larger radar systems, many receiving antennas capture the
returning radiation. This allows for distinguishing radar targets not only in
range, but also in angle. In this work, a single receiving antenna is used,
meaning that the radar has no intrinsic method of determining at which
angle a scatterer is located. Thus, only information in range can be captured
by this sensor.

To understand what information can be obtained from such a one-dimensional
signal, a single point scatterer some distance away from the transmitter is
here considered. If a radar pulse on the form of (2.1) is transmitted towards
it, the returning signal will be a delayed pulse on the form (Richards, 2014)

y(t) = CA(t−B) sin(2πfc(t−B)) (2.2)

where B is some delay related to the distance to the target and C a constant
corresponding to the loss of energy from transmission to reception of a pulse.
For the purposes of this report the properties of this delay is of particular
interest. In the next two sections it is shown how distance and velocity
can be deduced from this parameter using absolute measurements of B and
relative changes in B between pulse measurements. The C variable carries
information about the reflectivity of a scatterer, described lastly.

2.1.2 Radar Distance Measurements

If a point scatterer was present at a distance d from the transmitting antenna,
a wavelet will return 2d/c seconds after transmission, where c denotes the
speed of light. The 2 appears to accommodate for the pulse traveling forth
and back between the sensor and the scatterer. Hence, the transmitted signal
is delayed according to

y(t) = CA(t− 2d/c) sin(2πfc(t−
2d

c
))

= CA(t− 2d/c) sin(2πfct−
4πd

c
fc).

(2.3)

By measuring the delay B in (2.2), either as a phase shift or a shift in
envelope, one may simply calculate the distance through

d =
Bc

2
. (2.4)

Thus, by examining the time delay between pulse transmission and reception,
we can deduce the distance to the target scatterer.
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2.1.3 Doppler Frequency in Pulsed Radar

If the target scatterer is moving from or towards the transmitting antenna,
a shift in frequency will occur in the received pulse y(t). For velocity v, the
transmitted frequency, fc, will be shifted to fr according to the well known
Doppler formula (Ridenour, 1947)

fr =
c+ v

c− v
fc (2.5)

where a positive v indicates that the scatterer is moving towards the trans-
mitter. The frequency shift fd, also known as the beat frequency (BF), is
then

fd = fr − fc =
2v

c− v
fc ≈

2v

c
fc =

2v

λc
(2.6)

where λc is the carrier wavelength. This shift means that an approaching
target has a slightly increased returning frequency, and conversely that a
receding target has a slightly decreased frequency. In this project, a pulsed
radar is used, meaning that measurements are done repeatedly using short
wavelets instead of transmitting one continuous wave. What does this mean
for the Doppler shift?

The use of short wavelets means that each individual transmitted pulse
becomes compressed by the Doppler shift. This compression is miniscule, on
the scale of fractions of picoseconds, and thus insignificant for any target with
reasonably moderate velocity. For a PCR system with sampling frequency,
Fs, and sampling period, Ts = 1/Fs, the Doppler shift can instead of a shift
in frequency be viewed as a phase shift from one pulse to the next. Between
two distance measurements a target moves a distance vTs. Hence, each pulse
travels a distance 2vTs less than the preceding one. This distance corresponds
to 2vTs/λc wavelengths, providing a phase change, ∆φ, per pulse of

∆φ =
4π

λc
vTs. (2.7)

For a target moving at a constant pace, the BF arising from the constant
Doppler phase shift is thus fd = 2v/λc, as was found in equation (2.6). Thus,
by taking a discrete Fourier transform (DFT) of the sequence of Ts-spaced
measurements for one specific distance, we can estimate the velocity from
the peak frequency f in the DFT as

v =
λcfd

2
≈ λcf

2
. (2.8)
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2.1.4 Power Dissapation

The C factor in (2.2) describes the ratio of the emitted power that is received
after scattering. To get a feel for how a target’s reflectivity relates to this
factor, we can make the following thought experiment. First, we assume
that the transmitted power, Pt, is radiated isotropically by a point source,
meaning that the power density is distributed uniformly by the source over
the surface of a sphere. When our radar sphere has radius R, the power
density at the sphere surface becomes (Amin, 2017)

Pd =
Pt

4πR2
(2.9)

where 4πR2 is the surface area of the sphere. If a scatterer is present at range
d with radar cross section (RCS) σ and gain Gt, the fraction of the radar
power reflected by the scatterer is given by

Pe =
PtGtσ

4πd2
. (2.10)

Then, provided that the scattering process is isotropic and lossless, the power
reflected back at the radar receiver is

Pf =
Pe

4πd2
=

PtGtσ

(4πd2)2
. (2.11)

Finally, only a portion Pr = PfAr of the power is captured by the receiver,
where Ar is a function of transmission wavelength and receive antenna gain.
Including this into (2.11), we obtain the radar range equation (RRE) relating
the transmitted and received power as

Pr =
PtGtArσ

16π2d4
. (2.12)

It is worth pointing out that this argument only holds for scatterers of limited
sizes, and that if the scattering target for instance was a parabolic antenna, a
waveguide or an infinite plane, this relationship between the transmitted and
received power would not be valid. The RRE states that power dissipates
rapidly, by a factor 1/d4, with range. Hence, increasing the distance to a
target object by a factor 2 will return only 1/16 of the power otherwise
received. According to (Richards, 2014), this rate in real-world scenarios is
typically between 1/d to 1/d4, so that the process may not be as lossy as the
RRE predicts. If the noise power, N , remains constant regardless of target
distance, the signal-to-noise ratio (SNR), defined as SNR = Pr/N quickly
decreases with range.
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We also see from the RRE that the power returned is governed by the
RCS, σ, of the target. The RCS describes how reflective a target is, deter-
mined by its size and shape as well as its dielectric properties. RCS can be
regarded as a fictious area that describes the intensity of the wave reflected
back to the scatterer. This area corresponds to the projected area of a per-
fectly conducting sphere, with a diameter of several wavelengths, whose echo
strength would match that of the target if we were to replace the target with
the sphere (Knott, 1993).

However, as the reflectivity and thus the RCS can vary with both distance
and viewing angle, this fictious metal sphere subsequently changes size de-
pending on where in space it is located. Thus, our best recourse is to simply
regard the RCS as a measure of the intensity of the radar echo expressed in
terms of an area.

2.2 Matched Filter

In the preceding section, it was shown that the scattering response carries
information about the target range, the reflectivity, and the radial velocity.
This section explains how the radar captures the returning signals to generate
raw radar data through matched filtering.

Matched filtering involves convolving the returning signal with a copy
of the transmitted signal. Since the radio channel is assumed to be linear
and time invariant (any Doppler shift is insignificant on the transmission-
reception time scale) the received signal consists of a sum of weighted and
time shifted transmitted signals. An internal pulse, called an analysis pulse,
is generated as a delayed copy of the transmitted pulse. The received sig-
nal and the generated signal are then multiplied and summed to form one
measurement point m(τ), where τ is the internal delay of the analysis pulse.

Mathematically, we can describe matched filtering as a convolution

m(τ) = xT (−t) ∗ y(t) =

∫ +∞

−∞
xT (t− τ)y(t)dt (2.13)

where xT (t) is the analysis pulse as defined in (2.1) and y(t) is the returning
wavelet. If the incoming signal, y(t), stems from a single scattering point
target, then y(t) is on the form of (2.2). With the envelope, A(t), as a
rectangular envelope1 of duration L

1The rectangular envelope is commonly used for maximal power transmission
(Richards, 2014), however the Acconeer radar system employs an envelope more similar
to a raised cosine. The rectangular envelope is used here for mathematical convenience.
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Figure 2.1: Analysis pulse xT (t− τ) (top), received pulse y(t) (mid) and multi-
plication output xT (t− τ)y(t) (bottom). As the signals do not overlap the multi-
plication yields only zero values.

A(t) =

{
1 if 0 ≤ t < L

0 otherwise,
(2.14)

m(τ) will be on the form

m(τ) =


0 if |τ − 2d/c| ≥ L

(2.16) if |τ − 2d/c| < L and τ ≤ 2d/c

(2.17) if |τ − 2d/c| < L and τ > 2d/c

(2.15)

C

2

(
(τ + L−B) cos(2πfc(τ −B))− 1

2πfc
sin(2πfc(τ −B))

)
(2.16)

C

2

(
(B + L− τ) cos(2πfc(τ −B)) +

1

2πfc
sin(2πfc(τ −B))

)
. (2.17)

The full derivation of (2.15), (2.16) and (2.17) can be found as an ap-
pendix. This procedure is illustrated in Figures 2.1 and 2.2. The analysis
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Figure 2.2: Analysis pulse xT (t − τ) (top), received pulse y(t) (mid) and mul-
tiplication output xT (t − τ)y(t) (bot). The overlapping signals produce non-zero
values after multiplication.

pulse is shown in the top plot, the received pulse in the center and the result
of the elementwise multiplication at the bottom. These two figures differ in
that the internal delay, τ , of the analysis pulse is different, so that no overlap
occurs in the first figure while significant overlap happens in the second.

In Figure 2.3, a full numerical computation of m(τ) has been performed,
shown in part in Figures 2.1 and 2.2. Note that this result was obtained
for a noise-free mixing of a signal from a single theoretical point scattering
target. It is thus clear that with complicated continuous structures, target
scenes produce complex outputs at the receiver.

2.3 IQ Demodulation

Even though single-antenna receivers have no angular resolution, it was
shown above that the radar echo carries useful information. By measur-
ing the temporal shift from transmission to reception, we can calculate the
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Figure 2.3: The matched filtering output m(τ) is produced by summing the
overlap of the analysis and received pulse for all lags τ .

distance to a scatterer, and by examining the phase shift between pulses,
we may find the BF and thus the radial velocity of the scatterer. Finally,
the scatterers’ dielectric properties are brought forward through the RCS,
showing up as a scaling factor after matched filtering.

Although the raw data signal produced by matched filtering holds the
information we are interested in, it commonly has a low SNR (Richards,
2014) and depends on the carrier frequency as can be seen in equations
(2.16) and (2.17), and in Figure 2.3. To get rid of the carrier frequency,
some transformation of the raw signal is usually performed. In this work,
we are particularly interested in resolving small Doppler shifts, and thus
we wish to closely monitor phase shifts from one measurement to the next.
One effective data representation of raw data that facilitates accurate phase
tracking involves splitting the signal into its In-phase and Quadrature (IQ)
components (Lien et al., 2016).

The In-phase channel mixes the raw signal with an oscillator at the car-
rier frequency fc, and the Quadrature channel with the same frequency but
with a 90◦ phase shift from the In-phase channel. After low-pass filtering,
the IQ components are interpreted as a complex number, I(t) + jQ(t). IQ
demodulation shifts the information bearing part of the mixed signal to base-
band, meaning that an echo waveform on form A(t) sin(2πfct + φ(t)) after
demodulation has the form A(t)ejφ(t), effectively eliminating the carrier fre-
quency. Thus, after matched filtering and IQ demodulation we obtain a set
of complex range measurements that we will denote as a radar sweep. The
details of the IQ demodulation scheme can be found in the appendix.



Chapter 3

Data Acquisition and
Preprocessing

In the preceding chapter, it was shown how certain metrics can be extracted
from a target scatterer using its radar response, where the values the radar
produces after matched filtering and IQ-demodulation was on the form of
complex IQ radar sweeps. In this chapter, we continue with describing how
measurements are acquired, structured, and preprocessed. Some PCR system
settings are discussed.

3.1 Data Representation

A common representation of data acquired by multi-antenna radars is the
datacube (Richards, 2014). The first dimension of the datacube consists of
the radar sweeps, as described in section 2.3. Radar sweeps are formed by
estimating the time-of-flight of a returning wavelet from a target scene, as
described in section 2.2. This process forms the shortest time frame possible
with sample spacing on the picosecond scale for millimeter-wave radar, and
is thus commonly referred to as the fast time scale. New radar sweeps are
acquired at a rate set by the sampling frequency. This sequence of radar
sweeps form the second dimension of the datacube. Due to its much slower
rate, it is aptly referred to as the slow time scale. Finally, the last dimension
is constructed from the antenna array. This representation of data acquired
by radar arrays are often referenced in journal papers when describing, for
instance, beam forming or Doppler processing algorithms (Gentile and Dono-
van, 2018).

We are thus working with two time scales simultaneously. Previously, the
variable t described the fast time scale, but it will from this point be referred

15
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to as the slow time scale to accomodate for this new dimension. Instead, we
will denote the fast time scale with its corresponding range.

The PCR system considered in this work only has a single receiving an-
tenna, meaning it does not capture angular information, as discussed in sec-
tion 2.1.1. Thus, we are left with data representing only fast and slow time
dimensions. Two such systems are used in parallel, but are not synchronized
to one another. This essentially means that the sensors take turn in captur-
ing radar sweeps as opposed to listening to the same echo wavelets. Angular
information is still omitted, but using two sensors, surface characteristics can
be more accurately captured.

For our intents and purposes, we may concatenate the two discrete sensor
outputs to form a data matrix. If a radar sensor’s output with fast time index
d = 1...Z and slow time index t = 1...Q is described by r(d, t), we form a
data matrix D with sensors r1(d, t) and r2(d, t) through

D =


r1(0, 0) r1(1, 0) · · · r1(Z, 0) r2(0, 0) · · · r2(Z, 0)
r1(0, 1) r1(1, 1) · · · r1(Z, 1) r2(0, 1) · · · r2(Z, 1)

...
...

. . .
...

...
. . .

...
r1(0, Q) r1(0, Q) · · · r1(Z,Q) r2(0, Q) · · · r2(Z,Q)

 , (3.1)

or, more succinctly, as samples r(n, t) = Dn,t with n = 1...2Z. Each collected
data matrix is built up of Q = 50, 000 slow time samples.

3.2 Measurement Setup

As mentioned above, two sensors each capture one data matrix per mea-
surement session. Sensor data is acquired while the robot is moving at a
constant pace, as illustrated in Figure 3.1. Furthermore, two mounting an-
gles are used, where one sensor is facing directly towards the ground while
the other has a 22.5◦ forward tilt. The reasoning behind this setup is for
each sensor to capture different aspects of the surface below; the sensor di-
rected straight downwards may capture a larger component of the specular
(i.e. mirror-like) reflection from the ground plane, while the tilted may cap-
ture more diffuse reflections. This concept is closely related to the surface
ruggedness illustrated in Figure 3.2. It is worth noting that the half power
beam width of the sensor is roughly 60◦ (Acconeer, 2018), meaning that an
angular width of about 60◦ is illuminated by each sensor.

A final consideration is that as the sensors are placed on the inside of the
robot plastic chassis, there is a risk for interference in the region between the
plastic and the antenna. To avoid this, a small mount was 3D-printed so that
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Figure 3.1: Illustation of the data acquisition process. Radar sweeps are col-
lected during constant velocity robot movement and stored in a data matrix. For
visualization purposes, the absolute values of the complex radar sweeps are shown
and the spatial distance between radar sweep measurements have been greatly
exaggerated.
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Figure 3.2: By using two PCR sensors with different mounting angles more
diverse information about a target surface is obtained. The ratio between specular
and diffuse reflectivity is dependent on surface roughness, as illustrated in the
figure.

the distance to the plastic was λc/4. Doing this means that any undesired
wavelets propagating back and forth in this region interfere destructively due
to the change in phase and the superposition principle of electromagnetic
radiation (Griffiths, 2018).

3.3 Target Surfaces

In this work, we wish to see if we can create a binary classifier capable of
distinguishing grass from non-grass surfaces. For the application of keeping
a robot lawn mower in bounds, it is natural to select other surfaces that
commonly border lawns. The selection of surfaces was made with this in
mind, and is presented in table 3.1, along with the number of measurement
sessions per surface, each acquiring one data matrix with 50,000 slow time
samples. Each session was taken either on a different day or in a different
location than the rest. Note that the total sampling time amounts to
50, 000 · 42/(Fs[s

−1] · 60) = 175 minutes.

Table 3.1: Measured surface types and number of captured data matrices per
surface type.
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3.4 Measurement Settings

The Acconeer PCR system has several user-defined settings. In this sec-
tion, a few key parameters of these are discussed, namely the range swath,
the slow time sampling rate, and the wavelet duration. Although finding
the appropriate sensor settings requires some level of trial-and-error due to
hardware and software limitations, a good starting point can be found from
a theoretical standpoint.

3.4.1 Sampling Rate

When working with radars and moving targets, it is important to select a
sampling frequency, Fs, capable of resolving the maximum speed that an
investigated target can attain. If the sampling frequency is too low, aliasing
occurs, distorting the frequency spectrum (Lindgren et al., 2014). In order
to assure that aliasing does not occur, one must select a sampling rate at
least twice the maximal frequency component received, fmax. This limit is
commonly known as the Nyquist limit (Proakis and Manolakis, 2014). From
section 2.1.3 we find that the velocity, v, the carrier wavelength, λc and
the BF, fd are related through v ≈ λcfd/2. Combining this result with the
Nyquist limit, we require from the sampling rate that

Fs ≥ 2fmax = 2fd,max ≈
4vmax
λc

. (3.2)

The maximum velocity, vmax, above is the radial velocity. In the measure-
ment setup depicted in Figure 3.3, a vehicle is moving forward at constant
velocity, v0, having a sensor mounted at the front with a 22.5-degree tilt
and a 60 degree angular spread. The maximal velocity component that is
orthogonal to the sensor occurs at the far end of the radar’s view, at a
22.5◦ + 30◦ = 52.5◦ tilt angle. With λc = c/fc = 0.005 m and the maximum
orthogonal velocity component, v⊥,max, the requirement above can be written
as

Fs ≥
4v⊥,max
λc

=
4v0 sin(52.5◦)

λc
≈ 190 Hz. (3.3)

Thus, in order to avoid aliasing, the sampling rate, Fs, should be at least 190
Hz.

3.4.2 Wavelet Duration

The length, or duration, of the transmitted wavelet pulses in a PCR system
determines the bandwidth. Taking a Fourier transform of a short wavelet
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Figure 3.3: Sensor placement of the 22.5◦-degree tilted sensor in the robot chassis.
The figure indicates the furthest point visible by this sensor.

produces a wider spectrum, and a longer pulse length conversely produces a
narrower spectrum. Assuming the same amplitude, a longer wavelet corre-
sponds to transmitting more energy and thus receiving a signal with better
spectral resolution and SNR, while a shorter wavelet has better spatial res-
olution. Thus, the wavelet duration parameter becomes a tradeoff between
spatial resolution and SNR. A reasonable strategy is therefore to start with
a short wavelet and increase its duration until a reasonable SNR is obtained.

3.4.3 Range Swath

Finally, the radar measures power over some range interval, also called the
range swath of the radar (Richards, 2014). Again, a tradeoff appears. If a
short range swath is selected, we can increase the sampling rate and still stay
within the allowed hardware transmission speed limitations. However, if the
range swath becomes too short, we may miss useful information we could
have collected outside the chosen interval.

Thus, a reasonable strategy is to select the most critical interval and
then increase the sampling frequency to its hardware allowed limit, keeping
in mind that the sampling frequency should exceed the limit found above in
section 3.4.1. As the distance to the surface plane is roughly 12 cm in the
measurement setup, the furthest distance illuminated is 12/ sin(37.5◦) ≈ 20
cm from the sensor. We should therefore at least have a range swath spanning
this region.

The three settings for the three parameters discussed in this section are
summarized in table 3.2.
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Table 3.2: Sensor settings. The wavelet duration is set as short as possible while
maintaining a reasonable SNR.

3.5 Downsampling in Fast Time

Using the settings in table 3.2, we obtain 331 range samples per radar sweep
in the 7-23 cm range swath, and as samples are equidistantly spaced, they are
separated by (230 [mm]−70 [mm])/331 ≈ 0.48 mm. After examining a num-
ber of radar sweeps, it is clear that closely spaced points are highly related,
and that including all datapoints for analysis is redundant. This correlation
occurs in part due to IQ demodulation, as it involves low pass filtering in
fast time (see appendices), making closely spaced points highly correlated.
With this redundancy of information in mind, we may downsample by some
integer factor, D, without significant loss of information. Downsampling
measurements r1(d, t) and r2(d, t) by a factor D can be expressed as

r1,D(d, t) = r1(dD, t), and r2,D(d, t) = r2(dD, t) (3.4)

and the data matrix rD(n, t) is formed correspondingly.

3.6 Sweep Normalization

One hardware quirk of the radar sensors used in this project is that their
gain, found in Ar in the RRE, can vary significantly from one sensor to the
next. This means that faced with the same target at the same distance,
two sensors exhibit a similar sweep structure, but possibly with a different
scaling. Assuming a model’s training data has been collected with one sensor,
it could therefore be difficult to successfully perform classifications with the
same model using a sensor which has a different gain. A way to overcome
this issue is to perform radar sweep normalization as a preprocessing step.
There are multiple ways of performing such a normalization.

A simple strategy is to simply divide each sweep with its maximum ab-
solute value. While this may intuitively seem like a good idea, it eliminates
signal evolution structures between consecutively captured sweeps - if neigh-
boring sweeps vary in received signal strength, we wish to capture such a
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behavior. A better solution is to instead have the normalization method de-
pend on several consecutive sweeps. Normalizing using multiple sweeps thus
maintains some of the relative amplitude structure. Constructing a smaller
gain independent data matrix, x(n, t), consisting of K downsampled sam-
pling points and T consecutive sweeps, starting from slow time sample, Tm,
we can normalize by the average amplitude through

x(n, t) =
rD(n, Tm + t)TK∑K−1

n=0

∑T−1
τ=0 |rD(n, Tm + τ)|

. (3.5)

Thus, we can perform gain normalization while, at least partially, maintain-
ing any structures or patterns present in the returning sweep energy. The
drawback of this normalization is that information pertaining to absolute
measurements of target surfaces’ RCS is lost in the process.



Chapter 4

Feature Extraction

In this chapter, we describe our feature extraction process. This process is
an intermediary step between data preprocessing and surface classification,
where we calculate metrics that are used for classification. After introducing
some potential features, we compare the accuracy of a few feature ensem-
bles using a linear classifier to determine which ensemble should be used for
further analysis.

4.1 Why Feature Extract?

Machine learning algorithms fundamentally aim to extract useful patterns in
data. In our case, data consist of the complex output of two radar receivers
and the useful patterns we search for are patterns capable of distinguishing
the surface type as either grass or non-grass.

We found in chapter 2 that a single radar sweep only provides information
about ranges and reflectivities but cannot determine target velocities. Due
in part to the normalization process done in the preprocessing step, such
measures alone will hardly suffice to make an efficient predictor. Instead,
information from several sequential sweeps should be used to generate a
prediction. In order to make use of the information content present in the
sequence of radar sweeps we have two main options.

The first involves using a complex nonlinear machine learning algorithm,
such as a deep neural network (DNN) with a large number of hidden layers
that figures out how to calculate efficient temporal metrics on its own, pro-
vided large bulks of unmodified data. Algorithms exist that indeed can learn
to analyze frequency components, for instance for speech recognition (Graves
et al., 2013), but tend to be too computationally expensive to realistically
implement when hardware is limited.

23
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Instead, we utilize that we know that taking the DFT in slow time pro-
vides velocity estimates for a given distance through BFs, as was explained
in 2.1.3. The scaling of each frequency bin thus provides an estimate of the
amount of velocity component at a given range. Such estimates are rich in
information regarding the topography of a surface structure, as it accounts
for the RCS of a surface at different velocities and thus different angles of
incidence.

A second option is thus to utilize this knowledge and perform feature
extraction. By extracting a smaller set of features pertaining to the frequency
content of the given data, we can significantly reduce the complexity of the
model. Furthermore, the feature extraction process allows us to pinpoint
what data characteristics we wish to monitor, and subsequently which data
characteristics we believe are of value. This ensures that the machine learning
algorithm generates its predictions using patterns in metrics selected by the
authors, rather than finding patterns from raw input data. For these reasons
the focus of this report is using feature extraction based machine learning.

4.2 Features

Calculating velocity-based features require the use of a sequence of multiple
sweeps. How long should one such sequence be? If T radar sweeps are used
per classification, the rate of classifications per second, Fc, produced relates
to the sampling rate through

Fc =
Fs
T
. (4.1)

Hence, the parameter T becomes a tradeoff between feature accuracy and
classification rate. The more samples used per classification, the better the
extracted features become at the cost of a lower classification frequency.
Conversely, we may be able to generate feature estimates more rapidly by
setting T to a lower value, but will in the process end up with worse feature
estimates.

In this section, four different feature types are discussed aimed at cap-
turing the geometric characteristics of a target surface. From a given data
matrix x(n, t) consisting of T = 25 consecutive sweeps normalized as de-
scribed in section 3.6, we construct for each feature type a corresponding
feature vector. We can then concatenate different feature vectors to form
longer sets of features as we please.
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Figure 4.1: By averaging the absolute values of several consecutive sweeps we
obtain a measure of the average sweep shape. The dashed line shows the average of
individual absolute values of radar sweeps, shown as solid semi-transparent lines.

4.2.1 Envelope Estimation

First of all, we may characterize a sweep by its envelope form; that is, the
shape of the absolute values of the radar sweeps. We do this by simply cal-
culating the absolute value averages in slow time to construct the estimated
envelope shape x̂(n) through

x̂(n) =
1

T

T−1∑
t=0

|x(n, t)|. (4.2)

In Figure 4.1, we see what such an averaging process yield. Individual vari-
ances are suppressed forming a stable estimate of the sweep shape. With
K fast time samples, the estimate of the expected envelope feature vector
becomes

fx =
[
x̂(0) x̂(1) ... x̂(K − 1)

]
. (4.3)

4.2.2 Fourier Transform

As discussed in section 2.1.3, we can relate the velocity of a scatterer to its
BF through (2.8). When an entire target scene is illuminated, computing a
DFT in the slow time domain thus provides a velocity profile of the scene at
every range, indicating the amount of each velocity is present for the range in
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question. Due to the sampling settings outlined in chapter 3, no significant
aliasing in the frequency spectrum should occur in theory, as the sampling
rate was set with the Nyquist criterion in mind. In Figure 4.2, the DFTs of
radar IQ data are shown for all surface types considered in this work. For
visualization purposes, the square root of the absolute values of the DFT
are shown. For grass (the top two plots), the frequency content is contained
mainly in the vicinity of the zero-frequency bin, while the other materials
have larger components at higher frequencies.

As for the feature vector, a T -step DFT along the slow time axis is first
computed for each range, n, as

dn = DFT
{
x(n, t)

}
t

=
T−1∑
t=0

x(n, t) exp
(
− 2πi

kt

T

)
, k = 0, ..., T − 1. (4.4)

After this, the transformations for all ranges are concatenated into a one-
dimensional feature vector. This feature vector must be real-valued, as the
machine learning classifiers considered in this work use real-valued inputs.
The feature vector is formed by taking the absolute values of the frequency
components through

ff =
[
|d0|∆ |d1|∆ . . . |dK |∆

]
, (4.5)

where | · |∆ denotes elementwise absolute values, and K is the number of fast
time samples.

4.2.3 Autocovariance in Range

A second method to investigate time-domain dependencies is through the au-
tocovariance function. This method adds the benefit of allowing for a specifi-
cation of the number of covariance lags, q, which subsequently determines the
number of features. Figure 4.3 displays absolute values of autocovariances
estimated from 5000 sweeps for all surface types considered. As the most
even surface, the tiled pavement shows the highest autocovariances, whereas
grass - the arguably most uneven surface - indicates a low autocovariance. It
should be noted that since only absolute values are shown, phase information
has been lost in this plot.

In order to have a reasonable classification rate, see (4.1), only T = 25
sweeps are used for generating one feature vector. The biased estimate of
the autocovariance function can be obtained through (Jakobsson, 2015)

r̂n(k) =
1

T

T−1∑
t=k

(
x(n, t)− µ̂n

)(
x(n, t− k)− µ̂n

)∗
(4.6)
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Figure 4.2: For each material a DFT is computed over 128 sweeps in slow time.
For visualization purposes the square root of the absolute values of the complex-
valued DFT is shown, highlighting differences in frequency content of the different
surfaces.

where

µ̂n =
1

T

T−1∑
t=0

x(n, t). (4.7)

The bias in this estimate is completely inconsequential as all features later are
normalized to zero mean unit variance. Autocovariance estimation through
(4.6) is based on the assumption that x(n, t) are measurements of a wide-
sense stationary process. For a rough real-world terrain, this assumption is
optimistic. However, the estimates may nonetheless make for useful metrics
for classification as they feature slow time frequency content. The features
may be formed as

r̂k =
[
r̂0(k) r̂1(k) ... r̂K−1(k)

]
. (4.8)

Noting that the autocovariance sequence at 0 lag produces only real numbers,
as any complex number z = a + bi multiplied with its conjugate has zero



28 CHAPTER 4. FEATURE EXTRACTION

Figure 4.3: The first 11 autocovariance lags have been computed from a large
number of slow time samples taken at roughly 14 cm for each surface considered in
this work. The absolute values of the covariance lags are shown here for illustrative
purposes. Note that only the zeroth lag is real-valued and that the others are
complex valued.

imaginary part Im(zz∗) = Im((a + bi)(a − bi)) = Im(a2 + b2) = 0, we may
form the full real-valued feature component for q autocovariance lags fr as

fr =
[
r̂0 Re(r̂1) Im(r̂1) ... Re(r̂q) Im(r̂q)

]
. (4.9)

4.2.4 Autocovariance in Energy

Although the sweep normalization process rendered absolute measurements
of RCS pointless, we are still able to investigate any time-dependent structure
through the autocovariance function. First, we estimate the energy in each
radar sweep v(t) and the average energy va(t) in T number of sweeps, and
then estimate the real-valued autocovariance sequence h(k) as

v(t) =
1

N

N−1∑
n=0

x(n, t)x∗(n, t) (4.10)

va =
1

T

T−1∑
t=0

v(t) (4.11)
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Table 4.1: Three feature configurations of the four introduced features are com-
pared. An X indicates that the feature is used in the configuration. Above,
Abs indicate estimated envelopes, AC-E and AC-R autocovariances in energy and
range, respectively, and DFT the discrete Fourier transform. Ideally we want as
few features and as high linear separability, shown through an SVM accuracy score,
as possible.

h(k) =
1

T

T−1∑
t=k

(
v(t)− va

)(
v(t− k)− va

)∗
. (4.12)

As h(k) only consist of real values, the energy autocovariance feature vector
fh is formed as

fh =
[
h(0) h(1) ... h(q − 1)

]
, (4.13)

where q is the number of covariance lags.

4.2.5 Reducing the Range Swath

Before performing any feature processing, data is downsampled by a down-
sampling factor of D = 20 as was described in section 3.5. However, after
examining a number of radar sweeps, it is clear that ranges below approxi-
mately 11 cm only contain little useful information. This can clearly be seen
in the dark regions of the DFTs in Figure 4.2. Similarly, little information is
found at longer ranges. Therefore, we extract samples from an intermediate
region when downsampling, modifying equation (3.4) to

r1,D(d, t) = r1(50 + dD, t), and r2,D(d, t) = r2(50 + dD, t) (4.14)

for d = 0, ..., 13. With this definition, the downsampled radar sweeps consist
of 14 evenly spaced range indices from ranges 9.4 to 21.9 cm. Thus, the
resulting data matrix used for generating one set of features has 14·2 complex
ranges for the two sensors, and T = 25 slow time sweeps.
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Figure 4.4: Origin of the 174 features in features in feature configuration 2.

4.3 Tested Feature Combinations

Four different feature extraction methods have now been described - the av-
erage signal shape, the autocovariance in range and energy and the Fourier
transform. Each method generates multiple features. However, we are not
limited to feed our model with features taken from a single one of the meth-
ods. In table 4.1, results from three feature configurations are tested. Each of
these combinations was tested in a support vector machine classifier (SVM,
described in further detail in chapter 5), to evaluate which was the most
efficient. The first one, which simply involves the averaged sweep envelope,
requires much fewer features than the other two combinations - 28 positive
real numbers for the 28 ranges. But looking at its performance, these features
are not enough to reach the accuracy attained in the other two cases.

By instead selecting autocovariances with 2 lags as features the accuracy
increases by over 5 percentage points. Here we also include the averaged abso-
lute values of sweeps as features, as this information is lost when subtracting
the mean during the computation of the autocovariances. This configuration
generates a feature vector with 174 elements, as illustrated in Figure 4.4. 28
of the features come from the absolute values and 6 from the energy auto-
covariance. The majority of the features come from the autocovariance in
range. For each of the 28 range bins there is one real-valued feature rep-
resenting variance followed by two complex autocovariances for each range
bin. This should give us 28 + 2 · 28 = 84 features, but as the real- and
imaginary parts of complex numbers are split up in two features, we obtain
28 + 2 · 2 · 28 = 140 features. The total number of features therefore becomes
28 + 6 + 140 = 174.

We can also choose to look at the Fourier transform, as in configuration
3. Using the DFT, we reach a similar accuracy as in configuration 2 but
get some 700 features. The 700 features are a result of computing a discrete
Fourier transform along the slow time of all 28 ranges over 25 samples1. The
length of each transform is 25, and by concatenating them all into one feature
vector, we end up with 28 · 25 = 700 elements.

1Ideally, the DFT should be computed as an FFT over a number of slow time samples
which is a power of 2. However, to get a fair comparison of the feature extraction methods,
we utilize the same number of samples for all methods.
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The high accuracy and low number of features of configuration 2 makes
it the clear top performer of the three, and will be used for the remainder of
this report for further investigation.

4.4 Feature Principal Component Analysis

Through the feature extraction methods described in previous sections, we
obtain high dimensional feature vectors. Getting an intuitive feel for such
high-dimensional data is difficult as direct plotting is limited to three dimen-
sions.

Principal component analysis (PCA) is a classical technique in statistical
data analysis which takes a large set variables from a multivariate dataset
and finds a smaller set of variables with less redundancy. Critically, PCA
finds a rotated orthogonal coordinate system such that the elements of the
set become uncorrelated (Hyvasrinen et al., 2004). By projecting elements
onto the principal axes corresponding onto the directions of maximal variance
we obtain a good approximation of the original data in a lower dimension.

After having chosen to proceed with feature configuration 2 in table 4.1,
the 174 dimensions can be reduced to 2 dimensions using PCA. By projecting
feature vectors onto the two directions of maximal variance, we get a good
visualization of the separability of the different surfaces as seen in Figure 4.5.
Note that each dot in this plot corresponds to one feature vector, and that
the figure represents features extracted from the full set of 175 minutes of
data sampled at 200 Hz.
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Figure 4.5: By performing a principal component analysis on the feature vectors
we project 174 dimensional feature vectors onto two dimensions corresponding to
directions of maximum variance. This allows for us to visualize how separable the
different surface types are. In each plot, the samples corresponding to the titled
surface are highlighted.



Chapter 5

Machine Learning

In this chapter, a few classification models are described and evaluated. Two
linear and four nonlinear models for supervised learning are compared using
leave-one-out (LOO) cross validation on the acquired data. The workflow for
all models apart from the last follows the chart in Figure 5.1 where extracted
features are used for classification.

5.1 Linear Models

Linear classifiers perform a classification decision based on the value of a
linear combination of input data (Santos, 2018). In the binary case, this
corresponds to dividing the dataset with a single hyperplane, splitting data
into two categories. New test data is predicted to belong to a category based
on which side of the hyperplane it is on. In this work, two linear models are
considered: linear discriminant analysis (LDA) and a support vector machine
(SVM) with a linear kernel.

5.1.1 Linear Discriminant Analysis

Linear discriminant analysis is an algorithm commonly used for dimension-
ality reduction (Raschka, 2014), but can also be used for classification pur-
poses. LDA projects given data onto a subspace in a manner that separates
the classes as much as possible.

LDA bears many similarities to PCA in that it is based on finding eigen-
vectors with the largest corresponding eigenvalues, with the key difference
that PCA disregards class labels whereas LDA does not. For further reading
about LDA, we refer to (Raschka, 2014).
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Obtained data

Training data Test data

Preprocess and
extract features

Preprocess and
extract features

Estimate µf , σf

Scale to ZMUV Scale to ZMUV

Train model

Classification

Postprocessing

Model output

Figure 5.1: Flowchart of the procedure of generating classifications. Both
training- and test data are preprocessed and scaled so that each feature has
zero mean and unit variance (ZMUV). The training data is used to obtain model
weights, which become inputs to the classifier. Using these weights, predictions
are made on the test data. These predictions then go through a postprocessing
which results in the final output.
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5.1.2 Support Vector Machines

Support vector machines are one of the most popular linear models for su-
pervised learning. The simplest SVM does not introduce any nonlinearities
through any kernel tricks, and generates a linear hyperplane that separates
two sets of labeled data similarly to LDA. Unlike LDA however, an SVM is
not an eigen-based method, making SVMs less prone to outliers. Finding a
good hyperplane can be done in numerous ways. An SVM finds what it re-
gards as the best hyperplane by optimizing after parameters that maximize
the high-dimensional distance between the hyperplane and sample points
closest to it (Boswell, 2002).

5.2 Nonlinear Models

In many cases, data cannot be satisfactorily separated by a linear classifier.
In the binary case this means that two classes in a dataset cannot be prop-
erly split by any one hyperplane. For such data non-linear algorithms may
perform better. In this work, four different nonlinear machine learning clas-
sifiers are tested: random forest (RF), logistic regression (LR) and two types
of artificial neural networks (ANNs).

5.2.1 Random Forest

Random forest (RF) is an ensemble learning method that can be used for
both regression- and classification problems. The name stems from that
the method is based on a collection of randomly initiated decision trees. A
decision tree is structured as a sequence of simple questions, or decision rules.
These rules typically consider whether its input is equal to or smaller than
some value. The answers to these questions form a path in the decision tree,
leading to an end node which corresponds to a prediction.

Random forest segments the training data into n parts, and induces a
decision tree from each group of data. Thus, there are n predictors that
work independently, and by selecting the most common prediction, random
forest yields a robust result with little risks of overfitting due to the com-
bined results of multiple decision trees. On top of that it offers a very high
accuracy in a wide variety of applications, while still maintaining an intuitive
model structure that allows us to, for instance, estimate which features are
important (Breiman, 2002). In Google’s Project Soli, random forests were
used for millimeter-wave radar gesture recognition with impressive results
(Lien et al., 2016).
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5.2.2 Logistic Regression

Logistic regression (LR) is similar to linear regression where the parameters
{bi} are optimized to model the linear relationship between the inputs {Xi}
and the continuous output Y

Y = b0 +
n∑
i=1

biXi. (5.1)

However, logistic regression is rather used for modeling a binary variable,
Ylog ∈ {0, 1}. Therefore, a continuous output is unsuitable. Instead, the
expression in (5.1) is mapped to the open interval (0, 1) using the sigmoid
function, defined as σ(z) = 1

1+e−z . Thus, LR maps the input variables to

Ylog =
1

1 + exp(−(b0 +
∑n

i=1 biXi))
. (5.2)

This value can be interpreted as the probability that a feature vector with
a set of features, {Xi}, belongs to class 1. Note that for Y → ∞ we have
that Ylog → 1 and for Y → −∞ that Ylog → 0. The model parameters in
LR are trained in such a way that Y becomes large for input combinations
representing samples of class 1, and small for samples of class 0.

For further details about LR, including details on how its parameters are
optimized, we refer to (Shalev-Shwartz and Ben-David, 2016).

5.2.3 Artificial Neural Networks

Artificial neural networks constitute a class of nonlinear models designed to
mimic biological neural systems (Rojas, 1996). ANNs consist of multiple
layers of neurons, or nodes. The networks are structured with an input
layer followed by one or more hidden layers and an output layer (Logan,
2017). Figure 5.2 illustrates a simple network which takes a feature vector

x(0) = [x
(0)
1 x

(0)
2 ]T as input. By multiplying the feature vector with a set of

weights w(1) the features are propagated through the network, generating a
set of new node values. In the network in Figure 5.2, the output from the
input layer, forwarded to the hidden layer, becomes

x(1) =

x
(1)
1

x
(1)
2

x
(1)
3

 =

w
(1)
11 w

(1)
21

w
(1)
12 w

(1)
22

w
(1)
13 w

(1)
23

 · [x(0)
1

x
(0)
2

]
. (5.3)

When the nodes in the hidden layer receive the propagated values, they may
range anywhere from negative to positive infinity. Using an activation func-
tion f , the node transforms the input to a more suitable format in terms of
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whether the node should be “active” or not (or, in biological terms, whether
the neuron should fire) (Kriesel, 2007). The function f also introduces non-
linearity in the model, making ANNs capable of solving nonlinear problems.

In (5.3) we omit the bias term in the hidden layer labeled ”1” in Figure
5.2. A bias term is an external, constant input to an input or hidden layer.
The bias term is independent of inputs from the preceding layer and increases
the flexibiliy of a model, as it allows for translations of the activation function
(Kohl, 2010).

Next, the output from the activation function is propagated with a new
set of weights w(2)

x(2) =

[
x

(2)
1

x
(2)
2

]
=

[
w

(2)
11 w

(2)
21 w

(2)
31

w
(2)
12 w

(2)
22 w

(2)
32

]
·

f(x
(1)
1 )

f(x
(1)
2 )

f(x
(1)
3 )

 . (5.4)

The propagated values in x(2) are the inputs to the output layer which after
application of the activation function produces the output that is interpreted
as a classification prediction. The model weights w(i) of a neural network are
set through some version of the backpropagation algorithm during the model
training phase. For details about backpropagation, we refer to chapter 7 in
(Rojas, 1996).

By introducing more than one hidden layer, an ANN can be called a
deep neural network (DNN). With increased number of hidden layers, DNNs
are capable of extracting more complex patterns from data such as for image
recognition (Szegedy et al., 2018) or modeling of speech (Hinton et al., 2012).
Since we in the preceding chapter performed feature extraction, it should in
this case not be necessary to have more hidden layers than two, since useful
features should already readily available from the feature extraction stage.

Hyperparameters of Neural Networks

The sizes of input and output layers are determined by the classification
problem, but the internal structure of a DNN classifier can be structured
freely. The number of hidden layers and the number of nodes therein should
be selected with care, as increasing the model size rapidly increases the com-
putational complexity and the number of trainable parameters.

While the number of hidden layers and the number of nodes in each layer
relates to the architecture of the network, there are several parameters that
are related to the training process. The batch size specifies how many sam-
ples are propagated through a network between each model weight update.
A small batch size has the benefit of requiring little memory and converg-
ing rapidly, but at the same time impairs the gradient estimate (Brownlee,
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Figure 5.2: A simple neural network with 2 inputs, 2 outputs, and one hidden
layer. The top node in the hidden layer is a bias term which is added for increased
network flexibility.

2017). With a larger batch size the gradient is more accurately estimated
but convergence is slower.

When it comes to reducing overfitting, dropout is a method commonly
utilized in neural networks. By randomly disabling some of the hidden layer
nodes during the training phase the model is forced to become more general,
not relying on any specific set of nodes for accomplishing its target. A node
n in layer k is disabled by setting its weights w

(k)
nj to 0, where j ranges from

1 to the number of nodes in the sequent layer. For any node in a layer that
features dropout, the dropout rate specifies the probability that the node will
be disabled.

If the total number of feature vectors is m, and the batch size is b, there
will be dm/be forward and backward propagations, and an equal number of
model weight updates. Each batch is only propagated once, but to extend
the model training process further, we can specify number of epochs. This
hyperparameter determines how many times each batch will be fed through
the model. One epoch is often not enough for the weights to fully converge
(Kriesel, 2007), but increasing the number of epochs naturally increases the
training time. Furthermore, too many epochs may put the model at risk of
overfitting. In (Prechelt, 1998), this issue is addressed, along with proposed
strategies to avoid it.

The hyperparameters of the DNN model were optimized using the free
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Figure 5.3: Using Hyperas a network with two hidden layers was optimized in
terms of number of nodes in each layer, dropout rate, batch size and optimization
algorithm. The resulting network has 25 and 13 nodes (including bias terms) in
the hidden layers, and dropout rates of 14 and 2 percent, respectively.

optimization tool Hyperas (available at https:// github.com/ maxpumperla/
hyperas). Hyperas selected the number of nodes, the dropout rates, the batch
size and the optimization algorithm (from the three optimization algorithm
options of RMSprop, Adam, and Stochastic Gradient Descent natively avail-
able in Keras).

With the selections made by Hyperas, the network in Figure 5.3 is ob-
tained. The two hidden layers have 24 and 12 nodes with dropout rates
of 14 and 2 percent, respectively. Both layers have the activation function
f(x) = max(0, x) often referred to as rectified linear unit (ReLU) and the
output layer has a softmax activation function. Furthermore, the batch size
in the learning phase is 32, and the number of epochs is set to 20. Finally,
the optimization algorithm preferred by Hyperas is RMSprop.

5.2.4 Convolutional Neural Network with Long Short Term
Memory

In previous models normalized data went through a feature extraction pro-
cess before going into model training. For this model, on the other hand, no
feature extraction is performed. Instead, several consecutive radar sweeps are
used as input. We can view the sequence of slow time samples for any one
range as a one-dimensional time series containing the velocity information
found in the BFs as was discussed in section 2.1.3. Previously we utilized
this temporal information by calculating Fourier transforms and estimating

https://github.com/maxpumperla/hyperas
https://github.com/maxpumperla/hyperas
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autocovariance coefficients for a few lags, but we may also exploit this tem-
poral behavior in a more immediate way.

Recurrent neural networks are models that work with sequential data by
having feedback within individual layers in the network structure (Karim
et al., 2018). The problem with these networks, however, is that they suffer
from a quickly vanishing or exploding gradient, and can only sustain a short
term memory (Pascanu et al., 2013). A way to combat this is to use a neural
network layer type called long short term memory (LSTM).

LSTM layers have previously been used successfully for classifications in
radar applications. For instance, in (Jithesh et al., 2017) the method was
used in a classification model that was able to distinguish multiple classes
of flying targets with high accuracy. The theory behind these layers are
thoroughly described in for example (Hochreiter and Schmidhuber, 1997).
Another successful approach for time series classifications is convolutional
neural networks (CNNs) (Karim et al., 2018). In (Capobianco et al., 2018),
time series of radar data were preprocessed and used as input to a CNN. The
network was used to predict what types of vehicles were driving past a radar
sensor and managed to do so with a good success rate.

A combination of the LSTM layer with a CNN is proposed in (Karim
et al., 2018). This proves to be a significant improvement from just using
CNNs when classifying time series. The architecture of the model we use
in this work is similar to this classifier with only a few tweaks of parameter
values. The model essentially concatenates the outputs from an LSTM net-
work and a network consisting of three one-dimensional convolution layers.
For more details we refer to (Karim et al., 2018).

5.3 Model Evaluation

When evaluating a machine learning model, one must decide how a dataset
should be split into data used for training and data used for evaluation. There
exist a great number of strategies to split data into these two (Raschka, 2016).
One of the simplest ways of dividing the dataset is to randomly select a
portion of samples to use for training and use the remainder for evaluation of
model performance. These two sets are commonly referred to as the training
and the validation set.

There is one chief issue with this random-selection methodology. If we,
for instance, are predicting using features from a small data matrix found
from a specific grass sample, the model has trained on a large portion of
not only other lawns on different days, but also from the same lawn on the
same day. This means that a model under investigation has trained on very
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similar samples with very high resemblance to what it is currently attempting
to classify. The authors consider this to be cheating, as such a scenario is not
particularly realistic. It would be more informative to test how the model
manages when trained only with samples from other lawns without help from
its neighboring samples, as this is what the model would be faced with in
any real-world scenario. For this reason, we will employ leave-one-out (LOO)
cross validation next explained.

5.3.1 Leave-One-Out Strategy

For this project 42 data matrices were collected from surfaces described in
table 3.1. Each surface was acquired either on a separate day or in a separate
location from the others. When evaluating how well a model perform we
would like to test it in as realistic of a scenario as possible, where only
training data from other days and locations are available.

Because of this we use the leave-one-out cross validation strategy. This
strategy involves cycling through each of the 42 data matrices and leaving out
one and training on the remainder, as shown in Figure 5.4. We then evaluate
model performance on the left-out data matrix. This strategy ensures that
when we classify a surface, the model has not seen any data from the same
measurement session and we thus get a more realistic performance providing
an indication of the model’s robustness. The LOO strategy also has the
benefit that all data for the most part is used in training, instead of only a
portion as is required in the random selection method (Raschka, 2016). In
table 5.1 the LOO accuracy scores of all six models are listed for comparison.

5.3.2 Selecting a Model

From table 5.1 we can see that all models perform well on asphalt and tiled
surfaces. Gravel, soil and grass are occasionally harder to classify correctly.
Looking back at the PCA in Figure 4.5 this should not come as a great
surprise, as these are the main surface types with significant overlap of their
two principal components. As for gravel, there is one data matrix that sticks
out - Gravel 2. The accuracy of this measurement sessions is well below the
average accuracy regardless of model. This could be because this particular
gravel data matrix contained characteristics not captured by the other gravel
surfaces resulting in several misclassifications. It also possible that some
temporary problem occured in the measurement setup.

The LSTM and CNN model has a great accuracy span ranging from 59%
to having multiple perfect scores. While it has a leading median score of
99.8%, it also contains several surfaces where it performed very poorly. This
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Figure 5.4: With the leave-one-out strategy data is split up into n parts. The
model evaluation is then performed in n steps. Each time, one part of the data is
excluded from the training and evaluated upon. The T’s mark which parts of the
data that are used for training, and the C’s show which data matrix is used for
classification.

gives it the highest standard deviation among all the methods, suggesting it
is not as robust as its competitors. It is possible that this could be remedied
with a little bit of fine-tuning, but due to a limited amount of time we
disregard this model, making the DNN-model the top performer with the
greatest median and mean as well as the lowest standard deviation. Thus,
for the remainder of this report, the DNN model is used.
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Table 5.1: LOO accuracies for all collected data matrices evaluated for accuracy
using each of the six machine learning classifiers.
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Chapter 6

Postprocessing and Data
Augmentation

In the previous chapter, a DNN classifier was found to be the top performing
model for the surface classification problem investigated. In this chapter,
two improvements to this model are introduced. First, we use a basic data
augmentation technique to increase the size of the training data. Then,
outlier suppression and detection methods are discussed.

6.1 Data Augmentation

A recurring problem in training ANNs is that there simply is not enough
training data for proper convergence (Lemley et al., 2017). Too little data
will make a network prone to overfitting, which means that it becomes highly
biased to what it has seen in training and that it will subsequently perform
poorly on any validation or test set. In the preceding chapter, dropout
was introduced for this particular purpose. Examining the cross validation
accuracies it is clear that reasonable accuracy is attained without any further
means.

However, by augmenting the data, we can further increase the training
set size, and subsequently potentially increase model performance. Data aug-
mentation is the process of supplementing a dataset with similar data created
from the same dataset. How one augments a dataset is completely depen-
dent on the data set. In for instance computer vision, data augmentation
often involves rotating, translating, blurring or in some other way modifying
existing images (Lemley et al., 2017).

In the present case of increasing the number of smaller data matrices with
T slow time samples from a given data matrix with Q slow time samples,
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Table 6.1: Leave-one-out accuracies with and without data augmentation.

we can allow for overlapping batches. Previously, when batches of length
T were generated from Q slow time samples, every T sweeps produced one
data matrix providing a total of Q/T matrices for analysis. However, noting
that any sequence of T radar sweeps is a valid data matrix, we may form
overlapping matrices from every T/A samples, where A is some integer factor
selected so that T/A becomes an integer. This produces (A − 1)(Q/T − 1)
additional matrices providing a total P number of data matrices according
to

P =
Q

T
+ (A− 1)

(Q
T
− 1
)

=
AQ

T
− A+ 1. (6.1)

Setting A = 5, one data matrix consisting of 50,000 slow time samples nor-
mally yielding 2,000 smaller data matrices with T = 25 slow time samples,
instead produces 9996 matrices. Thus, with this method we are able to in-
crease the number of training data by almost a factor of 5. In table 6.1 the
effects of data augmentation in terms of performance with A = 5 is compared
to having no augmentation.

6.2 Outlier Suppression and Change Detection

Even with an optimized model with tons of training data, erroneous predic-
tions are inevitable in any real-world scenario. Prediction probabilities are
produced by the model rapidly, 8 times a second for a sampling rate of 200
Hz and a batch size T = 25 according to equation (4.1). With such errors
present in the prediction confidences of the model, what is a reasonable strat-
egy to detect when a change in surface has occurred while still allowing for
occasional erronous predictor outputs?

Many elaborate statistically appealing methods for change detection are
presented in (Basseville and Nikiforov, 1993). These methods require some
basic assumptions on the data it attempts to detect a change from, such
as for the data having constant probability distribution before and after a
parameter change occurs. This, however, renders these methods difficult
to use in the present use case, as we are dealing with the output of an
artificial neural network producing predictions with unknown structure. This
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is reinforced by examining what the model outputs, see the top Figure in 7.3.
Predictions remain extremely stable for long periods of time, with occasional
outlying predictions every now and then. This makes, as far as we can
tell, the methods presented in (Basseville and Nikiforov, 1993) unsuitable for
detecting change at the softmax output.

The perhaps most effective way to suppress outliers in a sequence of data
is through some form of median filtering (Yin et al., 1996). Median filters
are robust against impulsive-type noise, a property that cannot be achieved
by traditional linear filtering techniques. The regular form of a median filter
simply takes the median of current and previous datapoints, resulting in an
output significantly less sensitive to inconsistencies (Pearson, 2002). For a
sequence, {pk}, of predictions produced by the DNN we apply a median filter
of length L to render a final prediction confidence at time instance i (Yin
et al., 1996)

p̂i = median{pk}ik=i−L+1. (6.2)

By specifying some decision threshold, ξ ∈ [0, 1], a classification, ci, can be
produced as

ci =

{
0 if p̂i < ξ

1 otherwise.
(6.3)

The drawback of using median filtering, or any filtering for that matter,
is that the detection of a surface change is delayed by a few steps. Thus,
L must be selected so that the device has not moved too far before the
change detection has occurred, but also such that the filter is still capable of
sufficiently suppressing outlying predictions.
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Chapter 7

Results and Discussion

In this section the best models’ capabilities are tested and discussed. Up to
this point the model has been evaluated on labeled data, providing a clear
ground truth to evaluate the models’ predictions on. In this chapter the
model will instead make predictions on unlabeled data and instead output
its confidence in its prediction. We then discuss various topics with regards
to the results found and some overall considerations.

7.1 Real and Artificial Transition Regions

While we previously mainly have focused on LOO accuracies, we have not
in detail studied what the neural network softmax output that we base our
classification on looks like. We are specifically interested in examining how
well performance is when the robot moves across a transition region, a re-
gion where the surface type changes from grass to non-grass and vice versa.
Ideally, the prediction should rapidly change according to the new target
surface.

This can be accomplished in two different ways. The first revolves around
creating a test set through concatenation of sequences of radar sweeps from a
few different data matrices. By selecting alternating surface types, we artifi-
cially generate transition region data which we can predict on. By examining
these predictions we get a feel for what output the predictor could generate
when moving from one surface to the next. The second method is to use
real-world measurements from when the robot traverses an actual transition
region. We should see that when the robot has reached the transition its
predictions change accordingly.

In the first test, samples from four surfaces are concatenated into a se-
quence: grass, asphalt, grass and tiles, where the two grass samples were
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Figure 7.1: Predictions on an artificial transition region created using samples
from four different regions. The bottom figure shows the median filtered predic-
tions with filter length L = 5.

taken from different data matrices. The predictions are shown in the top
part of Figure 7.1. In the lower part of this figure, the predictions are me-
dian filtered with filter length L = 5 as was discussed in section 6.2. The
outliers are suppressed, rendering accurate predictions of the different sur-
faces.

Two more challenging surfaces, according to table 5.1, are soil and gravel.
In Figure 7.2 predictions on artificial transitions including these are shown.
Something worth noting in the two figures is that the surface transition is
delayed by two steps after the median filtering. It is important to be aware
of what distance this corresponds to in the physical world, since we do not
want to detect an edge too long after it has already passed. Each prediction
uses 25 samples, and with a delay of two predictions this means a 50 sample
delay. With the sampling rate at 200 Hz (see table 3.2), this means a 0.25
second delay in the edge detection, which for a robot traveling at the speed
of v = 0.3 m/s means a spatial delay of 0.3 · 0.25 = 0.075 m. This distance
may be reduced by increasing the classification rate. This could of course
be done by altering T or Fs in (4.1), but also through making predictions
more frequently by allowing the model to make a prediction at intermediate
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Figure 7.2: Predictions on an artificial transition region created using samples
from four different regions.

points, given the T most recent sweeps.
Looking at the high LOO accuracies in table 5.1, the solid classifica-

tions accuracies in artificial transitions should not come as a surprise, as the
LOO accuracies and the artificially created predictions were created similarly.
What can be seen that we didn’t know from table 5.1 is that not only does
the model classify correctly, but usually does so with a very high confidence.

To test the model further, data was collected when the test robot moved
from one surface to another. Figure 7.3 shows a transition from grass to
tiles, and Figure 7.4 a transition from grass to gravel. Focusing on the
median filtered predictions, we see that outside the transition region, the
model works well for classifying either surface. Looking at the transitions
sections, we see a rather sharp switch in prediction confidence. Nonetheless,
this switch is not immediate. This is likely due to that the wide combined
field of view of the two sensors captures both regions simultaneously, and
thus the model tries to make a prediction on data obtained from a mixture
of the two surface types.
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Figure 7.3: Predictions from a real-world test where the robot traversed a tran-
sition from grass to a tiled pavement.
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Figure 7.4: Predictions from a real-world test where the robot traversed a tran-
sition from grass to gravel.



7.2. FEATURE EXTRACTION AND MODEL SELECTION 53

7.2 Feature Extraction and Model Selection

Table 5.1 is in many ways a very telling one. Using the LOO cross validation
strategy each data measurement was classified without using any of the sam-
ples from the measurement session the data was taken from. Six different
methods of classification were evaluated; two linear and four nonlinear.

First and foremost, it is noted that each tested method performed at
the very least decently. One may argue that the LSTM model is unstable
or that using LDA produces lower accuracy predictions, but they nonethe-
less generated average accuracies above 97%. Considering that these are the
lower-performing classifiers and the remaining ones perform even better sug-
gests that the performed feature extraction captures, or at least maintains,
most of the crucial information in the original data. The PCA-plot in Figure
4.5 served as a proof of concept to this already at an early stage, as some
degree of separation can be seen in only two dimensions. Furthermore, as lin-
ear models managed to separate data decently we know that the information
content is readily available without the usage of more advanced nonlinear
classifiers.

A deep learning puritan might argue that no feature extraction should
be performed when working with deep neural networks; a network should be
able to find good data characteristics on its own. Hence, an ANN may yield
a better result by omitting the feature extraction process as this unavoidably
discards some information from the original data.

Since much of the information needed to distinguish grass from non-grass
surfaces is in the slow time dimension a neural network needs to be exposed
to multiple sweeps to extract such information. This can, if we don’t allow for
feature extraction, either be done through concatenation of several sweeps,
or through some version of a recurrent neural network. The first option
is computationally expensive, as the network needs to figure out how to
compute useful features from the set of complex data matrix which certainly
would require a deep neural net. The second was investigated in this report
through the CNN and LSTM model from (Karim et al., 2018). While it
for many surfaces did perform very well, it showed lackluster performance
on others indicating poor robustness, while simultaneously being the most
complex of the investigated models. It may nonetheless be of interest to
investigate if robustness can be improved for this model. However, based
solely on the results found in this report we argue that the reduced complexity
and increased control makes the feature extraction process worthwhile for the
task of distinguishing grass from non-grass surfaces.

On a different note, the final choice of classifier is debatable. The DNN
classifier was chosen mainly due to its high stable LOO scores in table 5.1.
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Nonetheless linear models performed well too, but didn’t quite reach the ac-
curacies of the DNN model, implying that the feature vectors are at least
approximately linearly separable. Placing more effort on the linear models
through testing more types of linear classifiers and optimizing their hyperpa-
rameters more carefully might make one of the linear models the top choice.

While linear classifiers require only a dot product for making a prediction,
one should not be deterred by the seemingly high complexity of the DNN
model. Once trained, making a prediction using our DNN model is only a
matter of computing 3 fairly small matrix multiplications and 24 + 12 + 2 =
38 calls to an activation function. This is done quickly even with limited
hardware resources, making for a parsimonious classifier. The heavy work
lies in the model training phase, which is significantly more computationally
complex.

7.3 Errors and Uncertainties

For this project, a total of 42 data matrices were captured from 5 different sur-
face types, see table 3.1. The number of matrices acquired from each surface
was based on having a reasonably balanced dataset with a similar number of
grass and non-grass samples. Having a balanced (or near-balanced) measure-
ment set ensures that the classification is not biased either way; with more
samples of one class the classifier will naturally tend towards the surface type
it has seen more of in training. This however leaves other surfaces with less
similar training data, and it is well possible that more measurements of the
lower-performing soil and gravel surfaces are needed.

Another risk when collecting data is obtaining too little of it. By looking
at how little improvement the data augmentation made in table 6.1, it would
seem that obtaining Q = 50, 000 sweeps per data matrix was enough. How-
ever by increasing the number of data matrices collected we increase data
diversity, capturing a wider range of grass types.

A more technical uncertainty regards the assumption of a constant veloc-
ity over different surfaces. The robot used in this project kept a somewhat
steady pace regardless of surface type, but when faced with rough terrain or
steep hills the robot’s velocity altered a fair bit. As both the DFT and auto-
covariance requires a consistency in the spacing between sample points, we
cannot tolerate too large variations in velocity. Hence, to sample at regular
distances the sampling could be controlled by positional feedback from the
robot rather than a fixed sampling frequency.

Previously we mentioned that predictions can be made more frequent by
continuously keeping track of the T most recent samples. A similar idea can
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be applied to the normalization process. Even if we only use T = 25 sweeps
for feature extraction, we are not limited to use only those for the sweep
normalization. By in addition using sweeps from further back in time, a
more stable mean energy estimate is achieved. The estimate could in theory
be updated for each new sample.

7.4 Surface Variances

One particularly challenging aspect of adequately classifying surfaces is that
the space of realistically occurring surface variations is essentially infinite.
As any lawn owner can testify a lawn changes drastically over the course of
its life span depending on grass height, weather conditions, tear and temper-
ature. One would certainly need an enormous training dataset to capture
all such variations. And that would still only account for one single lawn.
It wouldn’t take much for the classifier to enter uncharted territory, as the
machine learning classifier solely bases its predictions on training feature
vectors.

However, we see from our results that accurate classification is possible
when acquired data is reasonably similar to what has been seen in training.
A robot can learn to identify surfaces as being grassy or not provided that
it has previously been exposed to somewhat similar surfaces.

To remedy for the dangers of using an unchecked neural network classi-
fier one should consider using some supporting sanity-check system in con-
junction with the algorithm suggested in this thesis to improve robustness.
Checking that returning signals are of reasonable strengths or that the esti-
mated distance to the ground remains unchanged are suggestions.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this work the possibilities of using millimeter-wave radar for surface clas-
sification for rough target surfaces were explored. It was found that by
extracting features exploiting temporal behavior and combining this with a
deep neural network classifier it is possible to perform binary classification
distinguishing grass covered surfaces from four other types of surfaces com-
monly found adjacent to lawns with an accuracy of 98.5 % using LOO cross
validation. Application of a median filter onto the classifier outputs effec-
tively suppressed prediction outliers, providing good results on artificial and
real-world test data.

The feature extraction procedure along with the neural network clas-
sification and median output filtering show promise for use in real world
applications. Such applications may involve autonomous lawn mowers and
autonomous vacuum cleaners.

8.2 Future Work

There are many possible areas of improvement for the classification scheme
presented in this work. It would be interesting to examine which sensor angles
are most useful, and to further investigate what PCR system settings are best
suited for rough surface classification. In this work sets of radar sweeps were
normalized as a preprocessing step due to different sensors having different
gain. Through consistent calibration one could circumvent this issue and
use differences in RCS to a greater extent than was possible in this work.
Furthermore, collecting a larger and more diverse dataset could show if a
network becomes capable of generalizing grass from non-grass surfaces when
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a dataset contains a wider range of surface examples, or if this model falls
short in such situations.

On the modeling side it would be interesting to attempt classification
without any feature extraction at all and a very deep neural network, or
further examine recurring neural network models. It would likewise be of
interest to use linear classifiers with other types of extracted features. Lastly
a velocity-based sampling scheme should be considered for future use ensuring
equidistant sampling.
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IQ Demodulation

IQ demodulation involves the process of transforming a signal on form

x(t) = A(t) sin(fct+ φ(t)) (1)

to complex form without the carrier frequency fc (Lee, 1991)

xIQ(t) = A(t)eiφ(t). (2)

IQ demodulation thus aims to extract the information bearing part of x(t)
found in the envelope A(t) and phase shift φ(t) from (1). Most classical
radars follow the demodulation scheme depicted in Figure 1. The first step
is to split the signal in (1) into two separate channels. In the upper channel,
the signal is multiplied by a coherent sinusoid with the same carrier frequency
as the received pulse. The result of this multiplication can be rewritten as

A(t) sin(fct+ φ(t)) · 2 sin(fct) = (3)

A(t) cos(φ(t))− A(t) cos(2fct+ φ(t)) (4)

yielding one baseband sinusoid and one sinusoid at the double carrier fre-
quency.

The next step in the demodulation scheme is to low pass filter to get rid
of the undesired high frequency term term in (4) leaving only A(t) cos(φ(t)).
This constitutes the In-phase channel I(t).

Similarly, in the bottom channel in Figure 1, x(t) is multiplied by a signal
of the same carrier frequency. However, this time, the signal is shifted 90◦ in
phase1. We can rewrite this product as

A(t) sin(fct+ φ(t)) · 2 cos(fct) = (5)

A(t) sin(φ(t)) + A(t) sin(2fct+ φ(t)). (6)

1This shift is technically a Hilbert transform, as the sinusoid is shifted by π/2.
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Figure 1: Schematics for a typical IQ demodulation.

After low pass filtering we obtainA(t) sin(φ(t)) which we define as the Quadra-
ture channel Q(t). Finally, by interpreting I(t) and Q(t) channels as the
real- and imaginary parts of a complex number, respectively, we obtain our
IQ representation as

I(t) + iQ(t) = A(t)
(

cos(φ(t)) + i sin(φ(t))
)

= A(t)eiφ(t). (7)



Proof of 2.15, 2.16 and 2.17

For signals y(t) and xT (t) defined as

y(t) = CA(t−B) sin(Ω(t−B))

xT (t) = A(t) sin(Ωt)
(8)

with angular carrier frequency Ω = 2πfc, where A(t) is defined as

A(t) =

{
1 if 0 ≤ t < L

0 otherwise
(9)

the output m(τ) of the matched filtering process becomes

m(τ) =

∫ +∞

−∞
y(t)xT (t− τ)dt (10)

= C

∫ +∞

−∞
A(t−B)A(t− τ) sin(Ω(t−B)) sin(Ω(t− τ))dt. (11)

This integral can be split into three cases:

(i) When |τ −B| ≥ L, i.e. when no overlap occurrs.

(ii) When |τ −B| < L and τ ≤ B.

(iii) When |τ −B| < L and τ > B.

The first case, (i), clearly results in the integral becoming 0. Case (ii) can
be written as

m(τ) = C

∫ τ+L

B

sin(Ω(t−B)) sin(Ω(t− τ))dt (12)

=
C

2

∫ τ+L

B

cos(Ω(τ −B))− cos(Ω(2t−B − τ))dt (13)

=
C

2

(
(τ + L−B) cos(Ω(B − τ))− 1

2Ω

[
sin(Ω(2t−B − τ)

]τ+L

B

)
(14)
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=
C

2

(
(τ + L−B) cos(Ω(B − τ))

− 1

2Ω

(
sin(Ω(τ + 2L−B))− sin(Ω(B − τ))

)) (15)

Selecting L as a whole number n of wavelengths λ, the argument of the
second sinusoid can be simplified into

Ω(τ + 2L−B) = Ω(τ −B) + 2
2πfnλ

c
(16)

= Ω(τ −B) + 2
2πfnc

cf
(17)

= Ω(τ −B) + 4πn. (18)

This means that, as the sinus function is odd and 2π periodic, (15) can
be rewritten as

C

2

(
(τ + L−B) cos(Ω(τ −B))− 1

Ω
sin(Ω(τ −B))

)
. (19)

For (iii), we get a similar integral differing in the integral limits

m(τ) =

∫ B+L

τ

sin(Ω(t−B)) sin(Ω(t− τ))dt (20)

which is calculated similarly to (ii) to yield

C

2

(
(B + L− τ) cos(Ω(τ −B)) +

1

Ω
sin(Ω(τ −B))

)
. (21)

Thus, the full mixing output can be written as

m(τ) =


0 if |τ −B| ≥ L

(19) if |τ −B| < L and τ ≤ B

(21) if |τ −B| < L and τ > B.

(22)
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