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Abstract

This report is about using generative adversarial networks with predictive coding networks
for future frame prediction. Model selection choices for the components of the network are
explored by training different models and testing their performance on next frame prediction
in digital video from driving scenarios. Benefits and issues of using adversarial loss for future
frame prediction as well as different choices for the model are discussed.

1 Introduction

Making short-term predictions about the future states of the world has many applications in control
and machine intelligence. Autonomous vehicles need to predict where other road users will be to
drive in a safe and efficient manner. Robots interacting with humans anticipating how the person
will react to a certain action can optimize their behaviour with respect to predicted outcomes. Also
weather forecasting, music generation, natural language processing and many other applications
are problems best constructed as sequence prediction problems.

This report is concerned with future frame prediction in digital video and the use of a state of the
art sequence prediction architecture PredNet [Lotter et al., 2015, Lotter et al., 2016], implemented
in a modern artificial neural network framework that is inspired by the Predictive Coding theory
in neuroscience [Friston and Kiebel, 2009]. Predictive Coding theory is one of many theories that
describes human perception and action control. Predictive coding is a plausible theory in the
sense that the brain has the necessary components to do all the computations needed for learning
and inference, which makes it a good source of inspiration for machine intelligence using artificial
neural networks. This work will look at improving on the PredNet architecture by using adversarial
loss. Then a comparison of the performance on future frame prediction in video sequences is done
between the network with and without adversarial loss and with different choice of parameters.

In the report there will first be a review of previous work related to Predictive Coding, future
frame prediction using artificial neural networks and generative adversarial networks. A theoretical
description of the future frame prediction problem will given. Then there will be descriptions of
the suggested changes and additions to the model, which are tested and compared against to each
other. Finally there will be a discussion followed by a conclusion.

2 Previous Work

Recently there have been a wide range of neural network techniques applied to the problem of fu-
ture frame prediction. In [Srivastava et al., 2015] long short-term memory (LSTM) units [Hochre-
iter and Schmidhuber, 1997] was used together with unsupervised learning to predict sequences.
[Mathieu et al., 2015] used generative adversarial networks (GAN) in a deep convolutional network
to generate next frame predictions. [Xue et al., 2016] described a probabilistic motion sampling
model based on variational auto-encoders [Kingma and Welling, 2013] and trained a generative
encoder-decoder network to generate a distribution of next frame predictions based on this model.
[Kalchbrenner et al., 2016] designed a probabilistic video model that encodes time, space and color
structure in a dependency chain to estimate a joint distribution of future frames in a generative
network. [Byeon et al., 2017] used a pyramidical convolutional LSTM structure that accumu-
lates activation by propagating the convolutions for each space dimension and in the forward time
dimension to the pixel to predict for each pixel. [Liang et al., 2017] separated the frame predic-
tion problem into predicting flow and then predicting motion given flow in two joint networks
trained with adversarial loss. [Villegas et al., 2017a] also separated motion and frame prediction
but processed motion in different time scales by taking difference images between non-sequent
frames. Instead of directly predicting pixels, [Villegas et al., 2017b] made a network that learned
to estimate and predict human pose and then to generate an image based on the predicted pose.
[Lotter et al., 2015, Lotter et al., 2016] took inspiration from Predictive Coding [Friston and
Kiebel, 2009] to design a neural network called PredNet for next frame prediction. Their network
uses convolutional LSTMs as recurrent state units and the difference between prediction and current
frame as error units. This is done in a hierarchical structure where errors are propagated up in
the hierarchy to higher level states and the recurrent states are propagated down to lower level
states. [Zhong et al., 2018] used PredNet along with a Multi-layer Perceptron (MLP) and trained
the networks jointly to control a robot, optimizing predicted action, using PredNet as generator.



3 Method

3.1 Future Frame Prediction Problem

Future frame prediction is the problem to estimate the next frame, or a sequence of next frames,
given past frames. Here the focus is the problem of finding the next frame. In general the next
frame x441 follows an unknown distribution P that depends on all previous frames

P(rip1|ve, 241, ..., 1), (1)

where x1, x2, ..., x¢ is a sequence of observed frames. In this setting the video sequence data are
natural video sequences, and as such it is only possible to measure one of the real future frames x4 ;.
The task is to find a function that generates the prediction Z;y; that maximizes the probability
given previous frames as

Top1 = Ge(l’tﬂ”t) = glaXP($t+1‘xtaxt—la ---,3?1), (2)
t4+1

where Gy is a generator, here implemented as a neural network with weights 6 trained to generate
predictions given the current frame x; and the current network state r; as input. The generator
will sometimes be written as G without the subscript of the weights, when the weights are not
immediately relevant. The generator G only sees one frame at a time, but can save a representation
of previous frames x1, ..., x;_1 as 7, which endows the network with the ability to encode motion.

The learning problem for the network Gy is to vary 0 to find the Gy that minimizes some distance
measure between the real data x;y; and the generated samples Z;y;. This distance between the
predictions and the real next frames, denoted as L(&;y1,x¢41), is the loss function one wishes to
minimize. Some different loss functions such as adversarial loss and L; distance will be explored
here. The loss can also measure the distance between network states calculated from real and
predicted frames as L(Z¢11, Ty1, 741, Tew1) Or more generally the distance between a function of
the predicted and real frame L(u(&¢11),u(x¢41)) for transfer learning, where an example of u could
be a utility function of outcomes of actions done based on evidence Z; 1,2 y1. The loss function is
optimized by means of some optimization algorithm based on gradient descent. The loss function
should be chosen so that the distribution converges to P as the loss function is minimized.

To predict arbitrary future frames 7 steps into the futue, the predictions ;11 are passed to the
network as real frames to iteratively generate one frame at a time. Given a sequence z;, . ; frames
Ztyr+1 can, generally, be generated as

"ft+7—+1 = G(i"t+7—, ’r't+7-), where flAft+7- = G(.’i’t+7—,1, Tt+7-71) if 7> ]., (3)
Zi't+1 = G(SC{;, ’I"t) if 7 =1. (4)

In this work the focus is on 7 = 1.

3.2 Artificial Neural Networks

Artificial Neural Networks are systems that use a model of a neuron in a network to learn to
approximate a function from some data. The learning algorithms are referred to as training and
is done by means of some gradient descent optimization method, minimizing a loss function with
respect to the network node weights. An introduction to neural networks can be found in the deep
learning book [Goodfellow et al., 2016]. The reader is assumed to be familiar with neural networks,
but most of the report can be understood without that background knowledge.

3.3 Generative Model

The predictive coding network of [Lotter et al., 2015, Lotter et al., 2016] is used as generator
network. The network has layers arranged in a top-down hierarchal fashion, where higher layers in
the hierarchy carry more abstract representations of the frames. [Lotter et al., 2015, Lotter et al.,
2016] use the name levels for what is usually called layers in artificial neural networks. Here the
name layer will be used. The model can be seen in figure 1. In each layer there is a convolutional
prediction unit that makes a prediction #! of the frame ! in layer [ in the hierarchy. The prediction
error is passed to a convolutional LSTM unit that updates its states r!, which is passed to the
prediction unit. The frame x¥ is the input image x; and the states in higher layers are calculated



level 1

CoNVLSTM
RELU

Figure 1: This figure shows the states and model elements in layer [ of the PredNet model. These
layers are stacked in a hierarchal structure, where zf is the input image and z} is the predicted
image. At higher layers z! is a more abstract spatial representation of the image dynamics. r}
are recurrent representations of the state of the model, represented as the recurrent state of the
CONVLSTM unit. €] is the prediction error produced by subtracting the input and the prediction
and separating it into two population, one for negative errors and one for positive errors. The
exact update equations are listed in (5).

in a convolutional layer that takes the error efl of the lower layer as input. The update rules are
the same as in [Lotter et al., 2016] and are listed in (5).

o {xt, o if 1 <0 (5)
MAaxPooL(RELU(Conv(e; *))), >0

i} = RELU(Conv(r})) (5b)

el = [RELU(z! — &), RELU (2} — 21)] (5¢)

rl = CONVLSTM(el_,,r!_;, UpsampLE(riT1)) (5d)

3.4 GAN - Generative Adversarial Network

To train the network the loss function must first be defined. Training a generative model using
mean squared error or mean absolute error as loss leads to blurry looking results [Lotter et al., 2016].
A way to combat this is to use adversial loss in a generative adversarial model, GAN [Goodfellow
et al., 2014]. The idea behind GAN is to use two adversely trained neural network models, one
that generates fake samples, called generator G, and one that distinguishes fake samples from real
samples, called critic D. The goal is to train G to generate samples close to the real samples and
using the ability of D to distinguish between the fake and real samples in a loss function of the
form

Lp = L(D(z), D(#)), (6)

instead of using per-pixel mean squared or mean absolute error. The critic D is incorporated into
the generator loss function in such a way that minimizing the critic loss makes G try to generate
samples that D cannot distinguish from real samples. At the same time the critic loss has the
adverse objective, to distinguish real samples from fake samples, in the critic loss.



3.4.1 Related work on GAN for future frame prediction

While GAN is general in that it can be applied to any type of generative model, their typical
application is to capture distributions of image sets with no input or only class label inputs.
Future frame prediction is closely related to the class of image-to-image translation problem, in
which [Isola et al., 2017] took an approach that used GAN conditioned on input images for a wide
variety of these problems. While they make the statement that all image-to-image translation
problems can be treated the same way, they did not apply it to future frame prediction. In other
previous work GANs have been used for future frame prediction. [Liang et al., 2017] and [Jang
et al., 2018] used GAN loss to predict motion and optical flow. For the work presented in this
report GAN will be used directly as loss on the image frames (6), rather than constructing a loss
on motion. This is similar to [Mathieu et al., 2015] who used GAN conditioned on a sequence of
input images on different image scales for future frame prediction. Just like in [Isola et al., 2017]
the conditioning will be from input image to output image and the GAN loss will be combined
with Ly loss, but instead of using the normal GAN [Goodfellow et al., 2014], the improved version
of Wasserstein GAN [Arjovsky et al., 2017, Gulrajani et al., 2017] is the GAN used here. This is
because it does not have problems with mode collapse and the generator trains well even when the
critic gets ahead in training, thus making training more reliable than ordinary GAN.

3.4.2 Adversarial model

The adversarial model is described in more detail here, with its main components critic loss,
generator loss and the training algorithm. The critic loss is as follows.

Lp(@et1,&41) = E(D(2441)) = E(D(Z641)) + Agp E ([ Vi D(Fer1)[l2 — 1) (7)

where x;y1 ~ Pg are real samples, Z;11 ~ Pg are generated samples and ;11 € Pz, , are
uniformly sampled on the straight line between the drawn samples x4 and Z;11. D is the critic
network and Ay, is a loss weight. This is the unconditioned version of the critic loss. The first two
terms are the critic losses on real and fake samples. The last term is a penalty on the gradient.
The gradient penalty checks the gradient of the critic at a point uniformly sampled between the
generated sample and the real sample and penalizes it as it diverges from 1. This is done because
the critic has to be 1-Lipschitz in order to be able to use the Kantorovich-Rubinstein duality to
obtain the form of 1-Wasserstein distance in (7), which is satisfied when the gradients are less than
1 everywhere [Arjovsky et al., 2017]. Penalizing any divergence from 1, instead of just penalizing
the gradients being less than 1, has the added benefit of preventing the vanishing gradient problem.

By minimizing (7) the critic will be trained to minimize D(x41), the critic value on real samples,
and to maximize D(Z441), the critic value on fake samples. The critic value can be interpreted as
scores for the samples based on how real they look. To further help the critic, it is conditioned on
the generator input frame x; by passing the real/fake sample z;y1 or ;41 with ;. If the critic
would not be conditioned on input frames it could at best distinguish realistically looking frames,
while a conditioned critic can potentially also take states of object in the input frame into account.
Writing this in the loss function it becomes

Lp(ze1, ey1|ze) = E(D(@441,20)) — E(D(Ze41,70)) + Agp E(|[Vz,,, D@41, 2) ]2 = 1) (8)

A graph visualization of the critic training model is shown in figure 2.
The generator loss function is the following combination of the critic loss on generated samples
and L, distance,

La =E(D(@t+1)) + A1 E([|Z41 — 2e31]1) - (9)
and the corresponding conditioned loss is
Lo =E(D(Z41,2¢)) + ALt E (|21 — 2e4a(]1) - (10)

Minimizing this loss trains the generator to have a negative critic value on the generated samples,
while maintaining low absolute pixel error. The generator training minimizes critic loss on gener-
ated samples while the critic training is trying to minimize the negative critic score on generated
samples, that is to maximize the critic score on generated samples. These adverse objectives of the
critic and generator are trained alternatingly to make the critic better at distinguishing generated
samples from real samples and to make the generator better at generating fake samples that can
fool the critic.



Figure 2: This figure shows a
simplified version of the critic
computational graph. The
input frame z; 1 is passed
through the generator G to
generate a prediction Ty. Iy

[ critic loss ]
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(fake loss) (real loss) (gradient penalty) line between the prediction Z¢
Y 3 7'y and the real frame x;. x;, Iy

and Z; are passed to the critic

v
S I along with z;_; to get the
xtl@ D:] @> vx{asserstein loss and the gra-
— dient penalty. The losses are

summed as in (8) to get the
total critic loss. The loss is
applied to every time slice of
the input and optimized with
back propagation to get the
critic weight updates. To be

Ty

[ random weighted average ]

Ty X4 more precise, x;_1 is not ac-
tually passed to the genera-
G tor, but rather G generates

a prediction based on its in-
ternal states and updates its
internal states using x; after
generating a prediction. See
listing 1.

Tt—1

The L loss term is added as in [Isola et al., 2017], who found that a combination of conditioned
adversarial loss and L; loss is best for a variety of image-to-image translation tasks. [Lotter et al.,
2016] did not use adversarial loss but they had best results using L; loss, producing less blurry
results than Ly loss. A graph visualization of the generator training model is shown in figure 3.

3.5 Training

To train the combined model both losses (7) and (9) are minimized. This is done by alternating
between updating the generator Gy weights # and the critic D,, weights w using Adam steps
[Kingma and Ba, 2014]. The training is done in minibatches of size M, with Np minibatches for
every batch. Np is called the training ratio and defines how many times the critic weights are
updated for each generator update. The complete training algorithm is listed in listing 1, with a
list of parameters in table 1. First a batch of M - Np real samples are drawn and split into Np
minibatches. The critic weights are updated using these minibatches and then another minibatch
of the same size is made from a combination of samples in each of the minibatches, which is then
used to update the generator. The procedure is similar to that in [Gulrajani et al., 2017] but
without the sampling and with the conditional critic.

The samples are sequences that the generator and critic process frame by frame. For each time
step the generator is first asked to predict the current frame using its internal states, and then it
receives the real current frame which it uses to update its internal states. This way the generator
can only use the past frame to make predictions. The critic receives the current fake or real frame
along with the previous real frame. This way the prediction for the first frame in the sequence is
based off of nothing, and this has to be taken into account when updating the weights. This is
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Figure 3: This figure shows the
generator computational graph.
The generator G takes the input
frame x;_ 1 and makes a predic-
tion Z;. The crtic D is evaluated
on Z; with z;_1 to get the wasser-
stein loss and the L; distance be-
tween x; and Z; is calculated to get
the L; loss. L loss and wasser-
stein loss are summed to get the
total generator loss. This com-
putation is applied to every time
slice of the input and optimized
using back propagation to update
the generator weights. To be more
precise, r;_1 is not actually passed
to the generator, but rather G gen-
erates a prediction based on its in-
ternal states and updates its inter-
nal states using x; after generating
a prediction. See listing 1.



Description Symbol Default Value
Number of training iterations N 31250 (400 epochs)
Training ratio Np 5
Minibatch size M 4
Sequence length T 10
Gradient penalty weight Agp 10

L1 loss weight ALl 100
Learning rate o} 0.0001
Adams momentum weight 51 0.0

Adams momentum weight B2 0.9

Time loss weights Atp, Atp, | See equation 11 and 12

Table 1: This table shows a list of parameters that are used in the training algorithm, listed in
listing 1, with their default values.

done by weighting the loss for each time step with time loss weights

0, ift=0
P ) ’ 11
‘o {1, if t >0, (11)
0 ift=0
A = ’ ’ 12
= {1/(T—1), if £ >0, (12)

where A\;, and A;,, are time loss weights for critic loss and L, loss respectively.

3.6 Critic model

A visualization of the critic model is shown in figure 4. The critic uses a structure with stacked
convolutional layers followed by densely connected layers. The benefit of using convolutions is
that they use weight sharing, requiring less trainable parameters while still being able to capture
information over an area in the image. Because of the weight sharing the convolutional layers
are also translationally invariant, which is to some extent an expected property in a next frame
prediction model, while the densely connected layers are not. The total receptive field of the
convolutional layers can be calculated by tracing the filter sizes and strides of the convolution
filters backward. For the parameters used in the experiments, shown in table 2, the total receptive
field is 70x70 pixels.

layer type filter size stride
Conv2D  3x3x16 1
Conv2D  3x3x32 1
Conv2D  3x3x32 2

FLATTEN
DENSE 128
DENSE 1

Table 2: This table shows the filter sizes and stride of the convolutional layers in the critic and
the number of ouput nodes in the densely connected layers. For densely connected layers the filter
size is the number of nodes in the layer. A filter size of AxBxC represents a stack of C filters each
covering an area of AxB pixels. The number of input channels to each layer is the stack size C' of
the previous layer.

3.6.1 Training Ratio

Training ratio Np is a hyperparameter in the WGAN model that defines how many critic weight
updates should be done for each generator weight update. [Gulrajani et al., 2017] use sampling,
generating new samples for each critic update. However sampling is not well suited for future frame
prediction because the problem has a one-to-one mapping between input and output in the data.
Potentially there could be variations in possible future frames, due to noise and the random nature



Algorithm 1 Training algorithm for GAN model. The required values are hyperparameters and
are listed in table 1.

Require: number of training iterations IV, training ratio Np, minibatch size M, sequence length
T, gradient penalty weight Ay, L1 loss weight A1, learning rate o, Adams momentum weights
p1 and B2

Require: time loss weights A\:j,, A,

Require: initial generator weights 6 and critic weights w
forn=1:N do

Draw batch {z}""™ ffoil_’,';ND;mzl"“’M, where zy "™ is an empty frame
Draw a random number € ~ U[0, 1].
for np=1: Np do
for m=1: M do
r+0
fort=1:T do
Ty Tprey < Ty 2 "
Z,r < Go(z,7)
e+ (l-ex
L(D7mt)  Dy(2, Tprev) = Du (@, Tprev) + Agp(|[Va D(Z; Tprev)[]2 — 1)

end for
end for
w < ADAM(vwﬁ an\f:1 23:1 AtDL(D7717t)7 w, , B, B2)
end for

Set batch {;v;"}:rj)lTM = Repartion({z;?"™ ?joi{”’%’ND;mzl""’M)
for m=1: M do
r<0
fort=1:T do
T, Tprev < T}, Titq
Z,r « Go(z,7)
L(Gm’t) — = Aty D (2, Tprev) + Aepy A& — ||y

end for
end for
0 <+ ADAM(V@% Z%:l Z?:l L(Gm7t)7 @, Bla 52)
end for

10
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Figure 4: This is a visualiza-
tion of the layers in the critic
model.  Predictions Z; or real
samples x; are concatenated with
the previous frame x;_1 and then
passed through convolutional lay-
ers with Leaky ReLU as activa-
tion function. This is followed
by flattening the samples to the
shape [nbatcha T, Npixels nchanncls]a
a densely connected layer with
Leaky ReLU activation and an-
other densely connected layer. De-
tails about filter parameters can be
seen in table 2.



Category
Set City Residential Road Total
Training 820 2790 556 4166
Validation | 11 0 0 11
Testing 16 48 30 94

Table 3: This table shows the dataset split for the Kitti dataset when using sequences of length
10.

of the observed dynamics, but it is still only possible to observe one of the possible future frames.
Sampling could possibly model the differences in scene dynamics, but with only one possible output
frame to calculate the loss on, it could easily lead to the model just ignoring the latent input [Isola
et al., 2017].

To still be able to vary the number of times the critic is updated per generator update, the
batches are divided into minibatches, with the number of minibatches being Np. Then each
critic update uses one of the minibatches and the generator update uses a mixed partition of the
minibatches of the same size as a minibatch, as described in algorithm 1. The relation between the
number of times the critic is updated per generator update is not what matters here, but rather
the amount of data used to update the critic and generator. The critic could almost equivalently
be updated with one batch and Np times larger learning rate because sampling is not used. Either
way the reason for having the training ratio is to give the critic an advantage in training.

There is one drawback with this method and that is that the generator can only be trained
on 1/Np part of the training dataset, which can be a big problem depending on how much data
is available. The effect of using the learning rate suggested in [Gulrajani et al., 2017] Np = 5 is
compared to using Np = 1 in the experiments. It would be interesting to try other learning rates
but that will be left to future work, and instead the effect of using scheduled optimization (that is
having many critic updates for each generator update) as opposed to alternating optimization.

4 Experiments

4.1 Datasets

In the experiments the Kitti dataset [Geiger et al., 2013] is used for training and the Caltech
Pedestrians datasets [Dollar et al., 2009] is used for evaluation. Kitti contains 6 hours of recordings
from driving in Germany with a camera on the car roof. The recordings are from diverse driving
scenarios in urban, suburban and rural environments. This dataset is split into a training set,
validation set and testing set. The number of samples in each set is listed in table 3. The
results on this testing set can be compared to the results on Caltech Pedestrians to evaluate the
generalization performance when testing on a new dataset. Caltech Pedestrians contains 10 hours
of recording, with a camera mounted in the dashcam location, driving around Los Angeles. All
video sequences are split into sample sequences with 10 frames in each sequence and frame rate 10
Hz. Each frame is an image of size 128x160 pixels in RGB format.

4.2 Tests

The generator model is trained on the Kitti dataset to generate next frame predictions, with five
different loss settings. The main setting is that of using a combination of conditional adversarial
loss and L; loss as in (10) with Ar; = 100 as suggested in [Isola et al., 2017]. A baseline model with
only L, loss is trained as a comparison. To see the effect of conditioning in the critic a model with
no conditioning is trained with loss as in (9). A model with only adversarial loss is also trained to
be able to see the effects of the L term.

4.3 Evaluation Method

The best way to evaluate generative models is not always clear. In this setting there is a target frame
to compare against using some metric. The metrics could be Structural Similarity Index Measure
(SSIM), mean average error, mean squared error or some other per pixel metrics. These metrics
have the benefit that they reward per pixel accuracy. Future frame prediction is a probabilistic

12



problem and the error metric should measure the difference in distribution between the generator
and the real distribution, but because there is only one target in the data for each frame, any error
metric can at best take into account the mean of the distribution. Another drawback of these
metrics is that they reward blurry predictions because blurry images have a lower average error
for misaligned images.

Another metric that can be used is to let humans evaluate if the predictions look real. Blurry
images would be punished by this and humans can to some extent imagine if a frame can realistically
be the frame following the previous frame. Exact alignment and high per pixel accuracy is more
difficult for a human to critique. Another problem with human evaluation is the binary nature of
the answer to the question of whether the samples look real or not, maybe resulting in that all
fake samples are evaluated as fake. One approach to human evaluation can be found in [Villegas
et al., 2017b] where human evaluation was used to compare between samples generated by different
models, giving them a way to compare the quality of the different methods.

Evaluation is also application specific. If the goal is to use the generative model in a sensor
function in an autonomous vehicle, then per pixel accuracy may be more important than how real
the sample looks to a human, because it represents geometrically accurate information. On the
other hand if the goal is to generate fake videos for social media, then human evaluation is maybe
more appropriate. In this article per pixel metrics will be used, but the reader should keep the
issues with these metrics in mind.

To see the performance of the critic it has to be looked at in terms of its performance during
training, as that is when it is used, and it also has to be looked at in the light of how the generator
is performing, because the generator trains better when the critic can provide it with a meaningful
loss. The critic loss, the generator loss and the classification accuracy are important metrics, and
the development of these metrics during training can be useful in determining if the generator is
learning something from the critic. An ideal critic trains the generator to be an ideal generator, if
the design of the generator allows it, which means that it can generate samples indistinguishable
from real samples. Because the samples become indistinguishable, the critic accuracy goes to 0.5.
At the same time, if a critic does not learn anything and always makes the same distinction between
samples, then the critic accuracy would also be 0.5, but the critic performance would be very bad.

In normal GANs the loss is the classification accuracy of a discriminator, making it easy to
interpret. For WGAN there is no way to directly measure the classification accuracy of the critic.
One might be tempted to count the sign of the Wasserstein loss, counting negative loss for a real
sample and positive loss for a fake sample as a correct classification, but this is not a correct inter-
pretation. It is true that minimizing the critic loss encourages the critic to give a low wasserstein
value for real samples and a high wasserstein value for fake samples, but the critic value can have
an arbitrary translation built into it. In the critic loss function (8) this translation cancels because

E(D(zi41,21) + C) = E(D(Zt41, ) + C) = E(D (2141, 21)) — E(D(Ze41, 21)) - (13)

Because of this cancellation the sum E (D(xz¢y1,2:)) — E (D(Z¢41,2¢)) can be interpreted as the
performance of the critic. When this value is zero, it must be that wasserstein loss is same for real
and fake samples, implying that the critic makes no distinction between the samples. Likewise,
when this value is negative, the critic succesfully makes some distinction between real and fake
samples. The value should not be positive but could become by chance. In practice the full critic
loss, including the gradient penalty term, can be used equivalently, because the gradient penalty
should be small compared to the wasserstein loss. If the gradient penalty term grows large, there
are problems with either exploding or vanishing gradients.

The critic is a binary classifier with an unknown classification threshold. A useful way to
analyze binary classifiers with unknown thresholds is a Receiver Operating Characteristics (ROC)
curve. In a ROC curve the true positive rate (tpr) is plotted against the false positive rate (fpr) for
different classification thresholds. True positive rate is the rate of correctly classified real samples
and false positive rate is the rate of incorrectly classified fake samples.

5 Results

In this section the performance of the different models will be presented in terms of the evaluation
metrics on the testing dataset. Additionaly the performance of the models during training, on the
validation split of the training dataset, is presented.
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epoch | mean absolute error | critic wasserstein loss
25 0.03181 -6.5055
50 0.02600 -7.8402
75 0.02416 -7.6461
100 0.02276 -7.7055
125 0.02311 -5.9373
150 0.02213 -6.3951
175 0.02100 -7.9216
200 0.02043 -7.4577
225 0.02021 -7.0891
250 0.01945 -7.8119
275 0.01974 -7.3401
300 0.01877 -7.4514
325 0.01856 -3.4960
350 0.01799 -6.5167
375 0.01811 -6.9934
400 0.01757 -7.9941

Table 4: This table shows the validation loss after every 25th epoch in terms of mean absolute
error and wasserstein loss for the critic.

5.1 Supplementary Material

Supplementary material of full resolution animated samples and code for the project can be found
at https://bitbucket.org/MagnusWallgren/exjobb/src/master/.

5.2 Training

The purpose of GAN is to be used during training. Here different parameters in the model are
looked at in terms of training performance. The parameters are number of epochs in training,
training ratio Np and loss function. The parameter space is large in terms of how much time it
would take to train enough models to explore the whole parameter space. Instead a standard model
is used and each parameter is varied one-by-one to explore how the training behavior changes with
different parameter changes.

5.2.1 Increasing Training Time

Increasing the training time can lead to increased performance because the weights are updated for
more iterations, but it can also lead to decreased performance because of overtraining. Overtraining
means that the model is trained to have a low loss on training data but does not generalize well to
other data. To investigate the robustness against overtraining two models with conditional WGAN
and L loss and Np = 5 were trained for 250 and 400 epochs respectively. Critic and generator
validation losses are shown in figure 5 and listed in table 4 for the model trained for 400 epochs.
Table 5 lists the evaluation metrics on the test dataset for both models.

The validation mean absolute error decreases for the whole training duration for the 400 epoch
model, which suggests that there is no overtraining in the generator. The performance on the test
set is better for the model trained for 250 epochs, which does not agree well with the consistent
decrease in validation loss for the model trained for 400 epochs. This may be due to variation in
weight initialization leading to the 250 epoch model finding a better minimum than the 400 epoch
model. Seeing that variations such as weight initialization makes a bigger difference than increasing
training time from 250 to 400 epochs, it can safely be said that the increased performance from
training more than 250 epochs is not large. There is a trade-off between performane and training
time and training the model for 250 epochs already takes 28 hours on two GPUs. How long
the training time should be depends on the application. For models that need to be fine-tuned,
going over 250 epochs may be important but otherwise it does not seem useful. Even training
two different models and choosing the one with lower test error could be a better approach than
training for more than 250 epochs. Even better could be to train an ensemble network, which is a
weighted sum of models that are trained jointly.
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Figure 5: This figure shows the generator and critic validation loss during training, at the end of
each epoch for 400 epochs, as means over batches of validation samples. The generator losses (top)
are given as the terms in the generator loss in (10). In the top left figure wass is the Wasserstein
loss on generated samples and mae is L loss, including the loss weight Ar; = 100. In the top right
figure the L; loss is shown without the scaling weight Ar1. The critic loss (bottom left and bottom
right) is given as the terms in the critic loss in (8), including the loss weights. real-fake is the
difference between the Wasserstein loss on fake and real samples D(x) — D(Z), gp is the gradient
penalty and total is the total critic loss. real and fake are critic values on real and fake samples,
D(z) and —D(%), respectively.

Loss Parameters Pedestrians Kitti
epochs | Np | SSIM MSE MAE SSIM MSE MAE
CWGAN + Ly 250 5 0.9028 | 0.003939 | 0.03311 | 0.8580 | 0.004431 | 0.03497
CWGAN + Ly 400 5 0.8788 | 0.004828 | 0.03709 | 0.8188 | 0.005753 | 0.04054
Ly 250 5 0.9257 | 0.002954 | 0.02607 | 0.8946 | 0.003302 | 0.02816
CWGAN 250 5 0.7535 | 0.01136 | 0.06011 | 0.6664 | 0.01492 | 0.06937
WGAN + I, 250 1 0.8861 | 0.004394 | 0.03409 | 0.7844 | 0.006875 | 0.04411
CWGAN + I, 250 1 0.9018 | 0.003879 | 0.03388 | 0.8510 | 0.004745 | 0.03688
Previous Frame 0.8581 | 0.006969 | 0.03474 | 0.6965 | 0.01435 | 0.05912

Table 5: This table shows performance of generators trained with different losses as means over
about 1000 samples. CWGAN is short for Conditional WGAN and WGAN is WGAN without
conditioning. SSIM is Structural Similarity Index Measure, MSE is Mean Square Error and MAE
is Mean Absolute Error. All models use training ratio Np = 5 except for the model in the bottom
row and all models are trained for 250 epochs except for the model in the second row. The model
with only L1 loss performs best on all metrics and the model with only WGAN loss performs worst.
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Figure 6: This figure shows ROC curves for two different critics. The true positive rates and
false positive rates are evaluated on about 1000 samples at the end of training. The left plot shows
ROC for a critic trained without conditining and the right plot shows ROC for a critic trained with
conditioning. The critic without conditioning is clearly better than the critic with conditioning,
with higher tpr and lower fpr for most thresholds. Both models use training ratio 1 and are trained
for 250 epochs.

5.3 Testing
5.3.1 Weighting of Critic

In the figure it can be seen that the L; term in the generator loss is outweighed by the critic loss,
even though the L term is weighted by Ar; = 100. This is expected to happen because, even with
the loss weight, the L, loss is small. The maximum possible distance between two pixels is 1 with
pixels value in the range [0,1] or 100 if including the loss weight. On the other hand the critic
loss can be arbitrarily large, because of the canceled translation and in the figure it varies between
-30 and 5. The L; loss decreases with increasing epoch, indicating that the generator learns to
minimize the pixel distance well.

In the critic loss the total loss varies in the range [—14, —4] for the first 25 epochs and then
stabilizes to the range [—8, —5] for the rest of the training. The important thing to note here is
that the total loss is always negative. This means that the critic outperforms the generator, in that
it is able to distinguish between real and fake samples better than guessing. From the 25th epoch
the total critic loss only has small variations and can neither be said to be increasing or decreasing.
This could be because the critic and generator have converged and the generator is unable to learn
anything more from the critic, because of some limit in the design or training. This does not seem
to be the case because the generator L loss keeps decreasing. Another possibility is that the critic
and generator are learning at the same rate and that neither of them have converged, but the critic
stays ahead of the generator. The gradient penalty in the critic is small, indicating that there is
no problem with vanishing or exploding gradients.

5.3.2 Conditioning the Critic

To see the effect of conditioning the critic on the previous frame two models are trained, one where
the critic is conditioned on the input frame using the loss function in (8), and one where the critic
is not conditioned on the input frame using the loss function in (7). The ROC curve of the critics
are shown in figure 6 and the area under the curves are listed in table 6.

The area under the ROC curve is larger for the critic without conditioning and from the shape
of the ROC curves it is apparent that the critic without conditioning consistently has higher
true positive rate and lower false positive rate for different classification thresholds. The critic
performance should always be looked at in relation to the generator performance because a better
generator makes distinguishing between samples more difficult for the critic. The performance of
the generators is better for the conditioned model in terms of per pixel error as can be seen in table
5. The question then is if the better critic performance of the model without conditioning has any
benefit that is not measured in per pixel error. Looking at the the samples in the supplementary
material it seems that the critic without conditioning produces samples that are sharper but contain
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ROC curve area
Loss Np | Pedestrians | Kitti
CWGAN + L, 5 0.6684 0.7462
CWGAN 5 0.6052 0.6402
WGAN + 4 1 0.6808 0.6772
CWGAN + Ly 1 0.5740 0.5885

Table 6: This table lists the area under the Receiver Operating Characteristics (ROC) curve for
some different critics. Here CWGAN stands for Conditional WGAN and WGAN is WGAN without
conditioning. Np is the training ratio. ROC curve plots can be seen in figures 6, 7 and 8
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Figure 7: This figure shows ROC curves for two different critics. The true positive rates and false
positive rates are evaluated on about 1000 samples at the end of training. The left plot shows ROC
for a critic trained with training ratio Np = 5 and the right plot shows ROC for a critic trained
with Np = 1. Both critics are conditional.

some visual artifacts, such as flickering colors in parts with large amounts of motion.

5.3.3 Training Ratio

To see the effect of using different training ratios Np two models are trained, one with Np = 1
and one with Np = 5. Their ROC curves are shown in figure 7 and the corresponding area under
the curves are listed in table 6. The performance of the generators for each of the models are listed
in 5. The generator performance of the model trained with Np = 5 is consistently better than the
model with Np = 1. The critic trained with training ratio Np = 5 has better critic performance as
can be seen in the ROC curve. The critic being better for higher training ratio is what is expected,
since a higher training ratio is meant to give the critic an advantage in training. There is no clear
difference in the visual quality of the output sequences in the supplementary material.

5.3.4 Combining GAN and L; Loss

GAN loss and L; loss can be combined arbitrarily or used individually, leaving three different
combinations, only GAN loss, only L; loss or GAN and L; loss combined. Here one each of
these models are trained, with the GAN models being trained with training ratio 5 and using
conditioning. The combined model weights the L; loss term with Ar; = 100 as in (8). This may
seem like a large loss weight, but the L, loss is small and the critic can be scaled in training to
suppress the Ly loss. This weight is the same as suggested in [Isola et al., 2017], in which they use
the classic GAN architecture, while here it is used with WGAN.

The generator performance in evaluation is listed in table 5. The ROC curves of the critics are
shown in figure 8 and the area under the curves are listed in table 6. The generator performance
is best for only L; loss and worst for only WGAN loss, notably it is worse than using the previous
frame as prediction. For the models that use GAN, the model that uses the combined loss has a
higher true positive rate and the GAN only model has lower false positive rate for their respective
optimal threshold. The area under the ROC curve is larger for the combined model. From this
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Figure 8: This figure shows ROC curves for two different critics. The true positive rates and false
positive rates are evaluated on about 1000 samples at the end of training. The left plot shows
ROC for a critic in a model trained with a combination of GAN and L; loss and the right plot
shows ROC for a critic in a model trained with only GAN loss. Both critics are conditional and
use training ratio Np = 5.

it is not immediately clear if the critic is better for the combined model, but from taking into
account the poor generator performance for the GAN-only model it is expected that the GAN-
only critic should have a better performance. Therefore it seems that the combined critic has better
performance than the GAN-only critic, which is notable because the only differences between the
models lie in the generator loss function and not in the critic.

5.4 Output Sequences

Figure 9 shows sequences of generated samples with the real sequence. Table 5 shows the perfor-
mance in evaluation for the different models.

6 Discussion

6.1 Model selection

The generator model selection that has been explored in this report is the choice between L; loss,
WGAN or a combination of the two as loss function. The critic model has the options between
using conditioning or not and what training ratio to use. For the generator it is clear that adding
WGAN to the loss makes the generator worse in terms of per pixel error. Other than that it is not
apparent if the addition of WGAN loss has the supposed benefit of generating less blurry samples.
It looks like it does have this effect on the output sequences for the model without conditioning, but
without any objective method of testing it, this conclusion cannot be drawn. It can be concluded
that using WGAN loss only, without adding L, loss, results in low performance in terms of per pixel
error and output sequences that do not make correct predictions, even having worse performance
than using last frame as prediction.

The two best performing critics are the critic with conditional WGAN loss and training ratio
Np = 5 and the critic without conditioning and training ratio Np = 1. With higher training ratio
it is expected that the critic performs better, and comparing the conditioned critics with Np = 1
and Np = 5 shows that this is the case. Whether this results in better generator performance
cannot be answered without having some way of evaluating the performance other than per pixel
error. Seeing that Np = 5 worked better than Np = 1 for the conditioned model and that not
using conditioning led to better critic performance for the critics with training ratio Np = 1, it
would be interesting to see if Np = 5 without conditioning is the best parameter choices for the
critic.

Other than performance in terms of output error, the critics are not equally efficient in com-
putation. It is desirable to be able to reduce the long training time and in this aspect the critic
model selection matters. Conditioning the critic means that the input data is twice as large and
therefore twice as much data has to uploaded with each batch, which could have a negative impact
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Figure 9: This figure shows generated sequences (bottom) along with real sequences (top). The
images have been downsampled. More examples with full resolution, animated examples and
side by side comparisons can be seen at https://bitbucket.org/MagnusWallgren/exjobb/src/
master/
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on efficiency [Chollet et al., 2015]. With this in mind it might be better to not use conditioning
when efficiency is important. Using L; loss only for the generator has a much higher impact on
computational performance, because the critic does not have to be trained at all.

6.2 Limitations in Data

One problem that was presented in section 3.1 is that the future frame prediction problem is the
problem of estimating a probability density of possible future frames given past frame, but with
natural video sequences only one future frame from the distribution is available for each sequence
of past frames, and as such the generator can learn the mean of the distribution at best. A
way to combat this could be to use some way of artificially generating frames. This could be
by generating the entire sequences artificially or by using some data augmentation technique. It
would be important that the generated data actually captures the distribution if the model should
be able to be transferred to a problem on real data, but the problem to begin with is that the
distribution is unknown.

7 Conclusion

This report has explored using Wassersteing GAN with predective coding networks for future frame
prediction in digital videos. The best model, in terms of per pixel error, using adversarial loss is
the conditioned WGAN model with training ratio 5, but this model does not perform better than
just using L loss. Other than per pixel error, it is difficult to evaluate the quality of generated
samples without adding subjective judgement, which makes it unclear if there are other benefits
of using adversarial loss.
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