Zircon U-Pb constraints on the timing of Sveconorwegian migmatite formation in the Western and Median Segments of the Idefjorden terrane, SW Sweden

Mimmi Ingered Dissertations in Geology at Lund University, Master's thesis, no 558 (45 hp/ECTS credits)

Department of Geology Lund University 2019

Zircon U-Pb constraints on the timing of Sveconorwegian migmatite formation in the Western and Median Segments of the Idefjorden terrane, SW Sweden

Master's thesis Mimmi Ingered

Department of Geology Lund University 2019

Contents

1	Introduction	7				
2	Background	7				
	2.1 Regional geology	7				
	2.1.1 Telemarkia terrane	8				
	2.1.2 Bamble and Kongsberg terranes	8				
	2.1.3 Idefjorden terrane	9				
	2.1.4 Eastern Segment	9				
	2.2 Locality Lilla Edet - field description	10				
	2.3 Migmatites	11				
	2.4 Geochronology and visualization of U-Pb data	12				
3	Methods	.13				
	3.1 Sample collection	13				
	3.2 Preparation and extraction of zircon	13				
	3.3 Petrography	13				
	3.4 Scanning Electron Microscopy (SEM)	13				
	3.5 Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS)	14				
	3.6 Data reduction	14				
4	Samples and petrography	.14				
	4.1 Western Segment (Sample MISE1802)	14				
	4.2 Gold Alv Snear Zone (Sample MISE1800) 4.2 Median Segment (Samples MISE1814 and MISE181()	10				
	4.5 Median Segment (Samples MISE1814 and MISE1810)	17				
	4.5.1 MISE1014 4.3.2 MISE1016	17				
5	A.S.2 WISE1010	1 / 10				
5	5.1 Western Segment (Sample MISE1802)	20				
	5.1.1 MISE1802a melanosome	$\frac{20}{20}$				
	5.1.2 MISE1802a leucosome	$\frac{1}{20}$				
	5.1.3 Combined results	$\frac{20}{22}$				
	5.2 Göta Älv Shear Zone (Sample MISE1806)	22				
	5.2.1 MISE1806 melanosome	22				
	5.2.2 MISE1806 leucosome	23				
	5.2.3 Combined results	24				
	5.3 Median Segment (Samples MISE1814 and MISE1816)	25				
	5.3.1 MISE1814a	25				
	5.3.2 MISE1816c melanosome	26				
	5.3.3 MISE1816c leucosome	27				
	5.3.4 Combined results	27				
6	Discussion	.28				
	6.1 Limitations of the method	28				
	6.2 A comparison of the structrual and textural relationships between the Western and Median Segments.	29				
	6.3 Geochronology	31				
	6.3.1 Protolith ages	31				
	6.3.2 Sveconorwegian ages	32				
_	6.3.3 Implications for the Sveconorwegian ages	32				
7	Conclusions	.33				
ð	Suggestions for further research	.34				
9 11	Acknowledgements	24				
A	10 NCICI CIICCS					
A	Appendix I					
<u>л</u>	Appendix III 40					
A	Appendix IV					
A	Appendix V					
A	ppendix VI	.75				
	•	-				

Cover Picture: Garnet-bearing migmatized gneiss with amphibolite layers, north of Hälltorp. Author for scale. Photo by Anna Sartell.

Zircon U-Pb constraints on the timing of Sveconorwegian migmatite formation in the Western and Median Segments of the Idefjorden terrane, SW Sweden

MIMMI INGERED

Ingered, M., 2019: Zircon U-Pb constraints on the timing of Sveconorwegian migmatite formation in the Western and Median Segments of the Idefjorden terrane, SW Sweden. *Dissertations in Geology at Lund University*, No. 558, 36 pp. 45 hp (45 ECTS credits).

Abstract: The Western and Median Segments of the Idefjorden terrane have been metamorphosed and migmatized during the Sveconorwegian orogeny (ca. 1 Ga), but the timing of these events between the two segments remains unclear. Here I show that Sveconorwegian metamorphism and associated migmatite formation is not coeval between the Western and Median Segments and that there is a contrast between the segments in terms of strain, migmatite abundance and retrograde metamorphic overprint. Magmatic crystallization ages were determined through U -Pb spot dating on zircon using Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS). Zircon cores with Th/U >0.2 yields an age of 1551 ± 6 Ma for the Arsjön migmatite in the Western Segment, 1349 ± 5 Ma for the Tösslanda migmatite within the Göta Älv Shear Zone, and 1601 ± 3 Ma and 1581 ± 8 Ma respectively for the Hälltorp migmatites in the Median Segment. Zircon in leucosome yield dates of 1073 ± 31 Ma for the Arsjön migmatite, 1046 ± 21 Ma for the Tösslanda migmatite and 1019 ± 27 Ma for the Hälltorp migmatites. The dates of the zircon rims are interpreted to be ages of metamorphism and migmatization and are supported by Th/U values around 0.02. The metamorphic ages are coeval with Sveconorwegian metamorphism in the Idefjorden terrane (1.14 -0.90 Ga), but the results demonstrate that Sveconorwegian metamorphism and migmatite formation occurred earlier in the Western Segment than in the Median Segment.

Keywords: Geochronology, Sveconorwegian orogen, U-Pb, Zircon, Migmatite, Idefjorden terrane, Western Segment, Median Segment

Supervisor: Anders Scherstén

Subject: Bedrock Geology

Mimmi Ingered, Department of Geology, Lund University, Sölvegatan 12, SE-223 62 Lund, Sweden. E-mail: mimmi.ingered@gmail.com

U-Pb-datering av zirkon från Svekonorvegiska migmatiter i Västra segmentet respektive Mediansegmentet i Idefjordenterrängen, sydvästra Sverige.

MIMMI INGERED

Ingered, M., 2019: Zirkon U-Pb datering av Svekonorvegiska migmatiter i Västra segmentet och Mediansegmentet i Idefjordenterrängen, sydvästra Sverige . *Examensarbeten i geologi vid Lunds universitet*, Nr. 558, 36 sid. 45 hp.

Sammanfattning: Det Västra segmentet och Mediansegmentet i Idefjordenterrängen omarbetades under metamorfos och migmatitbildning under den Svekonorvegiska orogenesen (ca. 1 Ga), men det råder fortfarande oklarheter kring tidpunkterna för dessa händelser inom och mellan de två segmenten. Denna studie visar att Svekonorvegisk metamorfos och associerad migmatitbildning inte är samtida i Västra segmentet och Mediansegmentet, samt att deformation, retrograd metamorf överprägling och mängden migmatiter kontrasterar mellan segmenten. Magmatiska kristallationsåldrar bestämdes med U-Pb-datering av zirkon genom laserablation och induktivt kopplad plasma masspektrometri (LA-ICP-MS). Zirkonkärnor med Th/U >0,2 ger en ålder av 1551 ± 6 Ma för Arsjönmigmatiten i Västra segmentet, 1349 ± 5 Ma för Tösslandamigmatiten i Göta Älv zonen, samt 1601 ± 3 Ma respektive 1581 ± 8 Ma för Hälltorpmigmatiterna i Mediansegmentet. Zirkon i leukosom ger 1073 ± 31 Ma för Arsjönmigmatiten, 1046 ± 21 Ma för Tösslandamigmatiten och 1019 ± 27 Ma för Hälltorpmigmatiterna. Dateringarna av tillväxterna tolkas som åldern för metamorfos och migmatitbildning och stöds av Th/U runt 0,02. De metamorfa åldrarna är samtida med Svekonorvegisk metamorfos i Idefjordenterrängen (1.14-0.90 Ga), men resultaten visar att Svekonorvegisk metamorfos och migmatitbildning inträffade tidigare i Västra segmentet än i Mediansegmentet.

Nyckelord: Geokronologi, Svekonorvegiska orogenesen, U-Pb, Zirkon, Migmatit, Idefjordenterrängen, Västra Segmentet, Mediansegmentet.

Handledare: Anders Scherstén

Ämnesinriktning: Berggrundsgeologi

Mimmi Ingered, Geologiska institutionen, Lunds Universitet, Sölvegatan 12, 223 62 Lund, Sverige. E-post: mimmi.ingered@gmail.com

1 Introduction

The Sveconorwegian orogen in southwestern Fennoscandia includes several tectonothermal terranes that are divided by major shear zones. The terranes were reworked in the Sveconorwegian orogeny at the end of the Mesoproterozoic (Bingen et al. 2005; Bingen et al. 2008b). The Sveconorwegian orogen is interpreted to have formed as a continent-continent collision between proto-Fennoscandia and another continent around 1.0 Ga (Bingen et al. 2005; Bingen et al. 2008b), although an accretionary orogen has also been suggested (Slagstad et al. 2013). The Idefjorden terrane, bound by the Mylonite Zone in the east and the Vardefjell Shear Zone in the northwest, was subdivided into the Western and Median Segments by Berthelsen (1980). These segments are structurally different from each other and might have been affected by the Sveconorwegian orogen to different extent in terms of deformation and preserved mineral assemblage. The segments are divided by the Göta Älv Shear Zone south of lake Vänern (Park et al. 1991). Migmatite gneisses are abundant within the Idefjorden terrane, but the age of these migmatites and the relative timing of migmatite formation between the different segments remain unclear. Since the available geochronological data on migmatites in the Idefjorden terrane is limited, it is uncertain if migmatite formation also occurred during the 1.64-1.52 Ga Gothian orogeny (Bingen et al. 2005). Recent results from radiometric dating of migmatite formation in the Median Segment determines the age to 1002±9 Ma (Ingered 2017). This result demonstrates that Sveconorwegian migmatite formation was associated with ductile isoclinal folding and that crustal melting did occur in the Idefjorden terrane. However, the regional extent of Sveconorwegian migmatites in the Idefjorden terrane remains unclear, and so far no Sveconorwegian migmatites have been recorded in the Western Segment. Here I present new zircon U-Pb data from migmatites around Lilla Edet from both the Western and Median Segments of the Idefjorden terrane. Electron imaging and zircon U-Pb dating through LA-ICP-MS (Laser Ablation Inductively Coupled Plasma Mass Spectrometry) analysis have been used to obtain ages of migmatite formation in the Idefjorden terrane. Field observations and petrography were also used to describe structural and textural differences of the migmatites on either side of the Göta Älv Shear Zone. The main research questions were.

- 1) Are Sveconorwegian migmatites widely spread in the Median Segment?
- 2) Are Sveconorwegian migmatites present in the Western Segment?
 - A) If yes, are they equal in extent and style to those of the Median Segment?
 - B) If yes, was migmatite formation coeval between the Western and Median Segments?

2 Background

2.1 Regional Geology

The 1.14-0.90 Ga Sveconorwegian orogen in southwestern Fennoscandia extends across southern Norway and through southwestern Sweden (Fig. 1) (Bingen et al. 2005; Bingen et al. 2008b). It is a tectonic counterpart to the Grenville Province in Canada and traditionally interpreted to have formed by a continentcontinent collision with another craton, possibly Amazonia (Bingen et al. 2005; Bingen et al. 2008a,b ; Möller & Andersson 2018). This conventional collision theory was questioned by Slagstad et al. (2013) where the Sveconorwegian belt has rather been explained as an accretionary orogen with periodic compression and extension.

The Sveconorwegian orogen is bounded to the east by the Sveconorwegian Frontal Deformation Zone (SFDZ) and the Protogine Zone, and to the northwest by the Caledonides (Wahlgren et al. 1994; Bingen et al. 2008b). East of the Protogine Zone lies the Transscandinavian Igneous Belt and the Svecofennian Province (Gorbatschev & Bogdanova 1993). The Sveconorwegian orogen is made up of five large lithotectonic units, separated by roughly N-S trending shear zones. The units are in order from west to east; Telemarkia, Bamble, Kongsberg, Idefjorden and Eastern Segment (Bingen et al. 2008b).

Bingen et al. (2008b) divides the Sveconorwegian orogeny into four phases, named Arendal, Agder, Falkenberg and Dalane. The Sveconorwegian assembly is illustrated in Fig. 1 and the scenario works for both an indigenous and an exotic Telemarkia terrane (Bingen et al. 2008b).

The Arendal phase (1140-1080 Ma) is characterized by high-grade metamorphism in the Bamble and Kongsberg terranes. The lithologies in the terranes are similar to the lithologies in both the Telemarkia and Idefjorden terranes, and it is therefore believed that the Bamble and Kongsberg tectonic wedges were formed by a collision between the Idefjorden and Telemarkia terranes (Bingen et al. 2008b and references therein). According to Bingen et al. (2008b) the time between 1080 Ma and 1050 Ma marked a period of tectonic quiescence in the Sveconorwegian orogen followed by the main Sveconorwegian orogenic event, the Agder phase. As mentioned above, the Agder phase (1050-980 Ma) reflects the possible continent-continent collision between Fennoscandia and another craton, possibly Amazonia (Bingen et al. 2005; Bingen et al. 2008b). This led to crustal thickening and imbrication in the centre of orogen affecting both the Telemarkia and Idefjorden terranes (Bingen et al 2008b). Highpressure conditions (1.0-1.5 GPa) in the Idefjorden terrane took place at 1050 Ma due to underthrusting and burial beneath the Telemarkia terrane to a depth of at least 35 km (Bingen et al 2008b; Söderlund et al. 2008). At the same time granitoid plutons intruded the Telemarkia terrane, followed by tectonic imbrication of the terrane at 1035 Ma reaching medium-pressure

Fig. 1. Left: Schematic model of the four phases: Arendal, Agder, Falkenberg and Dalane of the Sveconorwegian orogeny, redrawn after Bingen et al. (2008b). *Right*: Illustration of the Sveconorwegian orogen showing the main lithotectonic units and shear zones. VZ = Vardefjell Shear Zone, MZ = Mylonite Zone, $G\ddot{A}Z = G\ddot{o}ta$ $\ddot{A}lv$ Shear Zone and DBT = Dalsland Boundary Thrust. Redrawn after Bingen et al. (2008b).

granulite facies metamorphism (Bingen et al. 2008b).

At 980-970 Ma, the Falkenberg phase represents the last step of convergence represented by high-grade metamorphism in the Eastern Segment (Bingen et al. 2008b). Eclogites in the Eastern Segment, dated at 988±6 Ma, provide evidence of burial of the segment to a depth of ~65 km, shortly followed by divergence and exhumation (Möller et al. 2015; Tual et al. 2017). Andersson et al. (2002) and Ahlin et al. (2006) also provide evidence of metamorphism and migmatization along the Mylonite Zone and the Göta Älv Shear Zone around 980-970 Ma. The orogen collapsed after 970 Ma and entered the Dalane phase (970-900 Ma). This period was characterized by extension and relaxation, associated with post-collisional magmatism in the Telemarkia and Idefjorden terranes peaking at 930-920 Ma (Bingen et al. 2008b and references therein).

2.1.1 Telemarkia terrane

The allochthonous Telemarkia terrane (Fig. 1) in southern Norway is characterized by voluminous 1.52-1.48 Ga magmatism which produced volcanic and plutonic suites interlayered with metasedimentary rocks. These rocks were intruded by magmatic suites and overlain by sediments between 1.28 and 1.13 Ga (Bingen et al. 2008b and references therein). Sveconorwegian plutonism and metamorphism started around 1.05 Ga during the Agder phase and continued to ca. 0.92 Ga (Bogdanova et al. 2008; Bingen et al. 2008b; Slagstad et al. 2013). The Sveconorwegian metamorphism in the Telemarkia terrane ranges from greenschist to granulite-facies (Bingen et al. 2008b; Bogdanova et al. 2008).

2.1.2 Bamle and Kongsberg terranes

The Bamble and Kongsberg terranes (Fig. 1) in southeast Norway consists of metamorphosed 1.57-1.46 Ga plutonic and volcanic rocks intercalated with metasedimentary rocks (Bingen et al. 2008b and references therein; Engvik et al. 2016). The terranes form two small wedges overlying the Telemarkia terrane and according to Bingen et al. (2005) the Bamble and Kongsberg terranes could have formed from a collision between the Telemarkia and Idefjorden terranes (Bingen et al. 2008b; Petersson et al. 2015). Several magmatic suites intruded both the Bamble and Kongsberg terranes at around 1.20-1.15 Ga (Bingen et al. 2008b; Robert & Slagstad 2014; Engvik et al. 2016). The terranes give evidence of two Sveconorwegian metamorphic phases reaching amphibolite to granulitefacies. The first phase is limited to the Bamble terrane and is dated 1.14-1.12 Ga (Arendal phase), while the

second phase affected both the Bamble and Kongsberg terranes at around 1.11-1.08 Ga (Arendal phase; Bingen et al. 2008b,c and references therein; Engvik et al. 2016).

2.1.3 Idefjorden terrane

The allochthonous Idefjorden terrane (Fig. 1) lies immediately to the west of Eastern Segment and is delimited to the east by the Mylonite Zone (Bingen et al. 2008b). The terrane is made up of 1.66-1.53 Ga granitoid plutons, volcanic rocks, gneisses and metagraywacke sequences assembled during the Gothian (1.66-1.52 Ga) accretionary event (Bingen et al. 2008b; Petersen et al 2015). Berthelsen (1980) divided the terrane into the Median and the Western Segment, originally termed the Östfold slab. This internal subdivision will be used in this study when discussing the Idefjorden terrane. The Median and Western Segments (Fig. 2) are separated by the Dalsland Boundary Thrust north of lake Vänern, continuing as the Ørje Shear Zone in Norway (Berthelsen 1980; Bingen et al. 2008b). The boundary between the segments south of lake Vänern corresponds to the Göta Älv Shear Zone (Park et al. 1991). The Median Segment is made up of 1.63-1.59 Ga plutonic granitoids, volcanic dacites and intercalated sedimentary rocks, belonging to the Göteborg-Åmål Suite (Åhäll & Connelly 2008; Austin Hegardt 2010). The segment also comprises the older 1.66 Ga Horred formation with metavolcanic rocks and the early Sveconorwegian (1.1 Ga) volcanic and sedimentary Dal formation (Brewer et al. 2002; Åhäll & Connelly 2008).

The Western Segment contains 1.58-1.52 Ga intrusive granitic rocks belonging to the Hisingen suite and 1.59-1.55 Ga metasedimentary graywackes with minor metabasalts, termed the Stora Le-Marstrand (SLM) formation (Åhäll & Connelly 2008). A large granite batholith, the Bohus granite, also intruded the northern coast of the Western Segment at ca. 0.92 Ga (Eliasson & Schöberg 1991). The Kungsbacka Bimodal Suite (1.34-1.30 Ga) overlaps both the Median and Western Segments and forms a belt of granitic plutons along the Göta Älv Shear Zone and the Dalsland Boundary Thrust (Austin Hegardt et al. 2007).

Sveconorwegian metamorphism in the Idefjorden terrane took place between 1.05 and 0.98 Ga, during the Agder phase, and the metamorphic grade ranged from greenschist-facies to amphibolite-facies (Bingen et al. 2008b). Local high-pressure granulite-facies in mafic granulite boudins have also been reported by Söderlund et al. (2008) east of the Göta Älv Shear Zone.

2.1.4 Eastern Segment

The parautochthonous Eastern Segment (Fig. 1) in Sweden forms the easternmost unit affected by the Sveconorwegian orogeny and is mostly comprised of metamorphosed and deformed rocks belonging to the Transscandinavian Igneous Belt (Söderlund et al. 1999; Söderlund et al. 2002; Andersson et al. 2002). The unit is delimited to the east by the Sveconorwegian Frontal Deformation Zone and the Protogine Zone, and to the west by the west-dipping Mylonite Zone (Wahlgren et al. 1994; Andersson et al. 2002). The majority of the rocks in the Eastern Segment are gneissic granitoids with protolith ages between 1.74-1.66 Ga, however overprinted by the 1.47-1.38 Ga Hallandian orogeny in the southern parts (Möller et al. 2007; Bingen et al. 2008b; Petersson et al. 2015; Ulmius et al. 2015). The Sveconorwegian metamorphism took place between 0.98-0.96 Ga, during the Falkenberg phase (Bingen et al. 2008b; Möller & Andersson 2018) in the Eastern Segment and reached upper amphibolite to high-pressure granulite-facies (Johansson et al. 1991; Andersson et al. 1999; Möller & Andersson 2018). Metamorphism also reached eclogite-facies conditions, limited to a tectonic unit southeast of the Mylonite Zone (Möller et al. 2015; Möller & Andersson 2018).

Fig. 2. Geological map of the Idefjorden terrane showing major bedrock units and shear zones. The Median and Western Segments are divided by $G\ddot{A}Z = G\ddot{o}ta \ddot{A}lv$ Shear Zone and DBT = Dalsland Boundary Thrust. The Mylonite Zone (MZ) marks the boundary between the Idefjorden terrane to the west and the Eastern Segment to the east. TIB = Transscandinavian Igneous Belt, which in this case refers to the main composition of the Eastern Segment. Redrawn after Åhäll & Connelly (2008) and Austin Hegardt et al. (2005).

2.2 Locality Lilla Edet - field description

Lilla Edet lies 50 km north of Gothenburg, close to Trollhättan (Fig. 3) and by the river Göta Älv, within the Göta Älv Shear Zone. The bedrock in the area consists of north-south trending orthogneisses affected both by ductile and brittle deformation.

In the Western Segment (to the west of the Göta Älv Shear Zone) the bedrock is homogeneous and is made up of granitic to granodioritic gneisses and augen gneiss, of which some contain traces of muscovite. Garnet and hornblende have not been observed. Pegmatite bodies and dykes intrude the rocks and are rarely deformed. In one area around locality 3.1, small mafic lenses of amphibolite can be seen (Fig. 3c). Migmatitic rocks have been observed at locality 3.2 (Fig. 3c) where a granodioritic gneiss have been migmatized and folded (see section 4.1). Ductile deformation has been observed but not brittle deformation.

The bedrock in the Median Segment (to the east of the Göta Älv Shear Zone) is heterogeneous and consists of granitic to granodioritic gneisses, amphibolite and metamorphosed ultramafic rocks. The gneisses are often garnet-bearing and in some places contain hornblende and/or muscovite (see section 4.3). The mafic

Fig. 3. (a) Situation map of southern Sweden, rectangle referring to map *b*. Map data \bigcirc 2019 Google. (b) Map over the area between Göteborg and Trollhättan, showing the study area marked with a rectangle and the position of Lilla Edet. GÄZ = Göta Älv Shear Zone. Map data \bigcirc 2019 Google. (c) Close-up bedrock map showing the study area, from the Swedish Geological Survey. Sample locations are marked with stars and numbers (see Table 1 for further information). Red stars refer to the analysed samples. Legend for the bedrock map can be found in Appendix I. Modified after Samuelsson & Lundqvist (1988).

rocks form larger bodies and layers which are often garnet-rich. The area has also been intruded by deformed pegmatite dykes. In the Median Segment the rocks are more ductilely deformed. Brittle deformation has also been observed adjacent to the Göta Älv Shear Zone. Folding and migmatization is common and has affected both the felsic and the mafic rocks.

In the middle of the Göta Älv Shear Zone the bedrock consists of granitic to granodioritic gneisses, some of which have been migmatized (see section 4.2). Layers of mafic rocks and pegmatite veins are also abundant. The bedrock adjacent to the Göta Älv Shear Zone have been subject to ductile deformation and brittle deformation, the latter which is evident from abundant faults and slickensides.

2.3 Migmatites

Sawyer (2008) defines a migmatite as "a rock found in medium- and high-grade metamorphic areas that can be heterogeneous at the microscopic to macroscopic scale and that consists of two, or more, petrographically different parts." One of the parts must have been partially melted. The following section is based on Sawyer (2008). The partially melted part usually contains light-coloured minerals separated from dark-coloured minerals. The temperature must become sufficiently high for a rock to partially melt, above 650°C. Deformation also plays a role for the morphology of migmatites. The partial melt has a lower viscosity than the solid non-melted parts of the rock and will thus tend to deform to a greater extent. During deformation the melt is separated from the solids due to its viscosity and moves more rapidly down pressure gradients and collects in low pressure sites. Deformation continues in the weakest places, where the melt is situated, and the migmatites develop complex morphologies. Here I use the terminology from Sawyer (2008) when describing the constituents of a migmatite (Fig. 4):

Neosome: "The parts of a migmatite newly formed by, or reconstituted by, partial melting" - Sawyer, (2008).

Paleosome: "the non-neosome part of a migmatite that was not affected by partial melting and in which structures (such as foliations, folds, layering) older than the partial melting are preserved" - Sawyer (2008).

Residuum: the solid part of the neosome left after partial melting, e.g. melanosome.

Melanosome: the solid residual part (residuum) left after melt segregation, the melanosome constitutes the darker-coloured part of the neosome enriched in ferromagnesian minerals.

Leucosome: the segregated melt fraction of the neosome forming lighter-coloured parts of the neosome dominated by quartz and feldspars.

Selvedge: a narrow rim often situated around the leucosome, which is not part of paleosome or residuum and that is compositionally and mineralogically different from the host. This rim can consist of both light and dark minerals, but the more common type is a thin biotite-rich rim called a *mafic selvedge*.

Fig. 4. Schematic illustration of the constituents of migmatites. Modified from Sawyer (2008).

2.4 Geochronology and visualization of U-Pb data

One of the most commonly used mineral for U-Pb dating is zircon (ZrSiO₄) which incorporates U in its structure through substitution of Zr, while Pb does not fit into the crystal structure at the time of crystallization (Sylvester 2001). Other minerals used for U-Pb geochronology are monazite, apatite, titanite, rutile, baddeleyite, allanite and perovskite (Sylvester 2001; Schoene 2014). U-Pb geochronology is based on the decay of 238 U to 206 Pb with the half-life 4.468 billion years and 235 U to 207 Pb with the half-life 0.704 billion years (Sylvester 2001). None of the parent isotopes decay directly to the stable Pb isotopes but follows a decay sequence through a series of intermediate daughter isotopes. The decay sequence always leads to the same stable Pb isotopes (Schoene 2014). The decay chains are illustrated in Fig. 5. The half-lives of the intermediate daughter isotopes are short, often less than 10 years (Schoene 2014). Concentrations of U and Pb and the isotopic composition of Pb in a sample vield two ages: ²⁰⁶Pb/²³⁸U and ²⁰⁷Pb/²³⁵U (Sylvester 2001).

The data is usually displayed in a Wetherill concordia diagram (Wetherill 1956) or a Tera-Wasserburg concordia diagram (Tera & Wasserburg 1972a,b). The concordia diagrams describe how the ratios of U and Pb isotopes change over time, determined by its decay constants. In a Wetherill concordia diagram ²⁰⁶Pb/²³⁸U is plotted against ²⁰⁷Pb/²³⁵U and in a Tera-Wasserburg concordia diagram ²³⁸U/²⁰⁶Pb is plotted against ²⁰⁷Pb/²⁰⁶Pb. If a sample has remained a closed system since crystallization the sample will plot on the concordia curve and is therefore *concordant*. Samples plotting outside the concordia curve are called *discordant* and have gone through open-system behaviour (Schoene 2014; Sylvester 2001).

In geochronology, the result is usually assessed using the statistical relationship between the error of the population mean and the analytical error of each datum, which is expressed as the Mean Square of Weighted Deviates (MSWD; Wendt & Carl 1991). An MSWD value of 1 indicates that the scatter around the mean is due to analytical errors alone, while values >>1 can be the result of underestimated analytical errors, the presence of geological scatter or a combination of both. Geological causes for excess scatter in zircon U-Pb data can for example be Pb-loss or domain mixing. MSWD values <<1 indicate that analytical errors have been overestimated (Wendt & Carl, 1991; Schoene 2014; Ludwig 2012).

Discordant data can be due to gain or loss of U and/or Pb, or contamination of common Pb (Schoene 2014). In Fig. 6 the common causes of discordant data are illustrated in a Tera-Wasserburg concordia diagram. Episodic or ancient Pb-loss can be caused by an episode of metamorphism resulting in the point plotting off the concordia curve, on a line between the original crystallization age and the event of Pb-loss (Faure 2001; Schoene 2014). Mixing of different age domains in a complex zircon can also result in the point plotting off the concordia curve in the same man-

Fig. 5. Illustration of the U-Pb decay chains. Parent and stable daughter isotopes are outlined in orange. The blue boxes refer to the decay of 235 U and the purple boxes refer to the decay of 238 U. α = alpha decay, β = beta decay and Q = energy released during the decay. The inset shows further details of the symbols in each box. Redrawn after Schoene (2014).

Fig. 6. Tera-Wasserburg concordia diagram showing the common reasons to why data plot discordant.

ner as in the case of episodic Pb-loss (Gehrels 2014). Recent Pb-loss, often caused by radiation damage, is illustrated by horizontal displacement of a point to the right of the concordia curve. Poor U/Pb calibration can also result in horizontal displacement (Linders 2016; Faure & Mensing 2005). Contamination of common Pb in a sample results in discordant points displaced towards high 207 Pb/ 206 Pb values (Schoene 2014). Interpretation of discordant data is inherently difficult as it can be near impossible to distinguish the cause for the discordance, and for this reason, data that is >5% discordant is discarded to avoid incorrect interpretation.

3 Methods

3.1 Sample collection

Sixteen rock samples were collected during fieldwork in April and in May 2018. Four of these were chosen for zircon geochronology, and rock chips were sawed for thin section preparation. (See section 4 for further information about the samples).

3.2 Preparation and extraction of zircon

The four selected samples were sawed into eight smaller pieces, consisting of leucosome and melanosome, respectively. The pieces were crushed and powdered in a steel swing mill. The rock powder was panned by hand to separate the heavier minerals. Magnetic minerals were removed with a hand magnet. Zircon from the eight subsamples were hand-picked under a binocular microscope. Around 80 zircon crystals from each subsample were picked and placed on double-sided tape and cast into three separate 1-inch epoxy mounts. The mounts were polished with diamond paste to expose flat cross sections through the grains.

3.3 Petrography

Eleven thin sections from three of the selected samples have been manufactured. The fourth sample was small, and the entire sample was used for zircon U-Pb analysis. The thin sections were investigated under a polarization microscope for mineral assemblage, texture and compositional and fluid alterations.

3.4 Scanning Electron Microscopy (SEM)

The epoxy mounts were carbon coated with a Cressington Carbon Coater 108Carbon/A before analysis in a Scanning Electron Microscope (SEM) of model Tescan Mira3 equipped with Oxford EDS and EBSD system, at the department of Geology, Lund University. The SEM was used to study internal structures of the zircons and to determine spot positions for the following Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) analysis. Inclusions in the zircons were also analysed for their composition. The following settings was used during the analysis: beam intensity of 12-16 nA, acceleration voltage of 10-13 kV and a working distance of 10 mm. In a SEM, a fine beam of high-energy electrons is scanned across the surface of a sample. The beam induces several secondary features, such as backscattered electrons (BSE), secondary electrons (SE) and cathodoluminescence (CL) etc. (Goldstein et al. 2018). The latter two were used in this study.

During BSE analysis beam electrons are scattered when they hit the sample and some of the electrons change their direction of travel to return and exit the sample. The electrons that escape are referred to as *backscattered electrons (BSE)* and give important information of the composition of the sample. The BSE

intensity changes with compositions which produces a compositional contrast, such that lighter domains correspond to heavier elements (Goldstein et al. 2018). Secondary electrons (SE) are produced when beam electrons enter the sample and interact with weakly bound outer-shell atomic electrons. The secondary electrons produced close to the surface may escape the sample and thus be detected. The SE image displays a topographical contrast (Egerton 2016). Cathodoluminescence (CL) is the process by which beam electrons collide with atomic electrons in a sample. The beam electron transfers energy to an atomic electron which then emits an x-ray photon (visible light) while returning to its lowest-energy state. CL images also display a contrast because the wavelength of the emitted photon is dependent on the element (Egerton 2016). In CL internal structures in zircons like cores and growth rims can be distinguished (Hanchar & Miller 1993).

3.5 Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS)

Spot positions in the zircon grains were selected on the basis of the SEM images. A Laser Ablation Coupled Plasma Mass Spectrometry (LA-ICP-MS) analysis was used to obtain U-Pb ages of the zircons. The laser ablation model used is a Teledyne Photon Machines Analyte G2 and the laser system is connected to a Bruker Aurora M90 quadrupole inductively coupled plasma mass spectrometer. LA-ICP-MS is a fast and accurate analytical technique for U-Pb dating of zircons (Frei & Gerdes 2009). The instrument consists of two parts, the laser ablation system and the ICP-MS system (Schoene 2014). The epoxy mounts were placed in the sample cell together with primary reference zircon GJ-1 (Jackson et al. 2004) and secondary reference zircon 91500 (Wiedenbeck et al. 1995). The samples were ablated, and the particles were incorporated into a gas mixture of helium, argon and nitrogen. The gas carried the particles into an ICP torch where they were ionized (Schoene 2014). The ionized particles were then transported into the quadrupole mass spectrometer where the following isotopes were detected; ²⁰²Hg, ²⁰⁴Hg, ²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb, ²³²Th and ²³⁸U (See Appendix II for further descriptions). Ablation spots were put in cores and growth rims of the zircons, where a spot size of 18-20 µm was used with the laser running at 11-13 Hz and 2.5 J/cm². The geometry of the spots could be adjusted when necessary.

3.6 Data reduction

The raw data from the LA-ICP-MS analysis was imported into the program Iolite (Paton et al. 2011) where it was filtered and reduced. A baseline correction and a downhole fractionation correction was made. Mass discrimination was corrected using standard-sample bracketing where ²⁰⁷Pb/²⁰⁶Pb and ²³⁸U/²⁰⁶Pb are normalized to the primary standard GJ-1. Each spectra was manually analysed, and the most

stable signal block was chosen for each spectra. The reduced data was then tabulated and plotted in Microsoft Excel 2003 using the add-in Isoplot 3.75 (Ludwig 2012) to create U-Pb concordia diagrams, weighted averages and histograms. Baseline corrected common Pb is insignificant in a vast majority of the analysed spots. Data with significant common Pb was discarded given the difficulty to make an appropriate correction due to ²⁰⁴Hg interference on mass 204 and due to the unknown age of the common Pb component (e.g. ancient Pb in cracks or inclusions or recent Pb from lab contamination). Only data that do not require correction for common Pb and with a maximum discordance of 5% was used. All results are plotted in Tera-Wasserburg concordia diagrams with ellipses corresponding to 2 standard errors. Diagrams illustrating Th/U values were plotted in Igpet 2014.

4 Samples and petrography

Six out of sixteen samples collected in the field were selected for U-Pb zircon dating, sample localities are shown in Table 1. MISE1802 and MISE1805 were sampled in the Western Segment. MISE1813, MISE1814 and MISE1816 in the Median Segment, and MISE1806 within the Göta Älv Shear Zone. Sample MISE1805 and MISE1813 lack zircon and were discarded. A short field description and a petrographic description of the selected samples are summarized below.

4.1 Western Segment (Sample MI-SE1802)

Sample MISE1802, near Arsjön, is taken from a biotite-rich migmatitic granodioritic gneiss, at locality 3.2 west of the Göta Älv Shear Zone in the Western Segment (Fig. 3c and Fig. 7). The rock has 2-5 cm thick leucosome veins that are coarser-grained than the melanosome. Some veins are folded but only open folds were found. Sample MISE1802 was divided into three subsamples MISE1802a, MISE1802b and MISE1802c out of which the first two were analysed (Fig. 7c,d). MISE1802a consists of both a piece of leucosome and melanosome. MISE1802b consists of two pieces of leucosome.

There are four thin sections from this rock, MISE1802a leucosome, MISE1802a melanosome, MISE1802b leucosome 1 and MISE1802b leucosome 2 (Fig. 8). Quartz, K-feldspar, plagioclase, biotite, and epidote dominate the samples with accessory muscovite, titanite, apatite and zircon (Fig. 8e,f). The rock is inequigranular and the melanosome is slightly finergrained than the leucosome. Minerals with euhedral to subhedral crystal habits are biotite, epidote, muscovite, titanite, apatite and zircon. The remaining minerals have a subhedral to anhedral crystal habit. The biotite is magnesium rich, which is indicated by its green colour and the biotite aggregates define a weak foliation in sample MISE1802a melanosome and is absent in the leucosome samples. The K-feldspar shows tartan

Arsjön, Western Segment

Fig. 7. (a) The Arsjön migmatite (locality 3.2) in the Western Segment, from which sample MISE1802 was taken. (b) Close-up of picture a where folded leucosome veins can be seen. (c) The left hand-specimen represents subsample MISE1802a melano-some and the right hand-specimen represents subsample MISE1802a leucosome. (d) Hand-specimen from which subsample MISE1802b leucosome was taken.

Fig. 8. (a) Thin section MISE1802a leucosome. (b) Thin section MISE1802a melanosome. (c) Thin section MISE1802b leucosome 1. (d) Thin section MISE1802b leucosome 2. (e) Photomicrograph (plane light) of MISE1802a leucosome. Several epidote grains can be seen. Bt = biotite, Ep = epidote, Qtz = quartz, Plag = plagioclase, Fsp = K-feldspar. (f) Same photomicrograph as *e* but in cross-polarized light.

twinning, perthitic and sieve texture. The MISE1802b samples have dustier K-feldspar crystals than the MISE1802a samples. Titanite crystals are small in the leucosome and occur as inclusions in biotite or adjacent to biotite crystals. In the melanosome the titanite crystals are larger. The muscovite grains lie adjacent to biotite and epidote, but it is not clear whether it is primary or secondary muscovite.

4.2 Göta Älv Shear Zone (Sample MI-SE1806)

Sample MISE1806, near Tösslanda is a migmatitic alkali granitic gneiss that was sampled at locality 5.2 within the Göta Älv Shear Zone, between the Western and Median Segments (Fig. 3c and Fig. 9) The rock is heavily fractured and metasomatized. It has 2-4 cm thick leucosome veins rimmed by distinct biotite sel-

vedges (Fig. 9a). Thin leucosome-looking veins (<5 mm) are also present within the melanosome (Fig. 9a). At this locality, no fold structures were observed, and the leucosome is coarser-grained than the melanosome. The sample was divided into subsamples MISE1806 melanosome and MISE1806 leucosome (Fig. 9b).

Three thin sections were made from this rock; MISE1806 melanosome 1, MISE1806 melanosome 2 and MISE1806 leucosome (Fig. 10). Quartz, Kfeldspar, plagioclase, biotite, hornblende and ilmenite dominate the samples with accessory apatite and zircon (Fig. 10a). The minerals are anhedral except for a few subhedral biotite grains. The rock is inequigranular and the leucosome is coarser-grained than the melanosome. Interstitial fine-grained quartz with sutured boundaries are present in both leucosome and melano-

Tösslanda, Göta Älv Shear Zone

Fig. 9. (a) The Tösslanda migmatite at locality 5.2 within the Göta Älv Shear Zone, from which sample MISE1806 was taken. (b) The hand-specimens from which subsamples MISE1806 leucosome (the middle hand-specimen) and MISE1806 melanosome (the left and right hand-specimens) was taken.

Fig. 10. (a) Photomicrograph (plane light) of MISE1806 leucosome showing a large grain of hornblende with inclusions of biotite and ilmenite. The hornblende and feldspar grains have been altered to very fine-grained secondary mineral aggregates with abundant cracks. Fsp = K-feldspar, Qtz = quartz, Hbl = hornblende, Bt = bitotie, Ilm = ilmenite. (b) Thin section MISE1806 melanosome 1, perpendicular to the foliation. (c) Thin section MISE1806 melanosome 2, parallel with the foliation. (d) Thin section MISE1806 leucosome.

some. K-feldspar crystals are dusty and show tartan twinning, perthitic and sieve texture. Hornblende crystals have been altered to a very fine-grained aggregate of hornblende, biotite and ilmenite. The biotizated hornblende crystals are no longer pleochroic and cleavage cannot be seen. Ilmenite have partly formed pseudomorphs after titanite and often lies adjacent to and within biotite and hornblende. The mafic minerals define a pronounced foliation.

4.3 Median Segment (Samples MI-SE1814 and MISE1816)

4.3.1 MISE1814

Sample MISE1814, near Hälltorp is a garnet-bearing migmatitic gneiss that was sampled at locality 9.1 east of the Göta Älv Shear Zone in the Median Segment (Fig. 3c and Fig. 11). The sample consists of three subsamples, MISE1814a, MISE1814b and MI-SE1814c. Subsample MISE1814a, which was dated was taken from a 3 cm thick leucosome vein along the

fold-axial plane of a tight fold (Fig. 11a,b). There are no thin sections of this sample since the whole sample was used for zircon U-Pb dating.

4.3.2 MISE1816

Sample MISE1816 was sampled from the same garnetbearing migmatitic gneiss as sample MISE1814 above, at locality 9.1 (Fig. 3c and Fig. 12). This rock is an example of a *fold-structured migmatite* (cp. Sawyer 2008). Abundant leucosome veins are 1-3 cm thick and have been strained and folded. Veins are common along fold-axis planes (see section 4.3.1). Mafic dykes 10-30 cm in thickness are also deformed, but not as much as the gneiss. This is due to the competence contrast where mineral assemblage, texture and grain-size determines the extent of deformation. Sample MISE1816 was divided into three subsamples; MISE1816a, MISE1816b and MISE1816c, of which the latter was dated. MISE1816c consists of two pieces, one of melanosome and one of leucosome (Fig. 12b).

Hälltorp, Median Segment

Fig. 11. (a) The Hälltorp migmatite at locality 9.1 in the Median Segment, from which sample MISE1814a was taken. The sample was taken from the thick leucosome vein at the top along the fold-axial plane of the tight fold. (b) Hand-specimen representing sample MISE1814a.

Fig. 12. (a) Close-up of the Hälltorp migmatite at locality 9.1 in the Median Segment, which sample MISE1816 belongs to. (b) The left hand-specimen represents subsample MISE1816c leucosome and the right hand-specimen represents subsample MISE1816c melanosome.

The rock is represented by four thin sections; MISE1816c leucosome, MISE1816c melanosome 1, MISE1816c melanosome 2 and MISE1816c leucosome + melanosome (Fig. 13). Quartz, K-feldspar, plagioclase, biotite, scapolite and garnet dominate the samples with minor muscovite, epidote, titanite, ilmenite, hornblende, spinel, zircon and rutile (Fig. 13e,f,g,h). The rock is inequigranular and the majority of the minerals are subhedral to anhedral except for biotite that is euhedral and defines a weak foliation. Kfeldspar grains are dusty and show tartan twinning, perthitic and sieve texture. Quartz grains show signs of strain, and both granophyric and ribbon-textures occur. Hornblende was found in one thin section, MISE1816c melanosome 1. Muscovite lies adjacent to biotite and is also intergrown with biotite, scapolite and epidote. Titanite crystals are larger in the melanosome than in the leucosome. Garnet is only found in the melanosome and occur as isolated grains and as inclusions in scapolite. Alteration of scapolite in terms of oxidization and fractures is seen and the crystals are rich in inclusions. Scapolite in thin section MISE1816c leucosome + melanosome lies in two distinct bands in the foliation direction.

Hälltorp, Median Segment

Fig. 13. (a) Thin section of MISE1816c leucosome. (b) Thin section of MISE1816c melanosome 1. (c) Thin section of MISE1816c melanosome 2. (d) Thin section of the transition between leucosome and melanosome in MISE1816c. (e) Photomicrograph (plane light) of MISE1816c melanosome 1 showing a hornblende crystal, several scapolite grains and a garnet grain enclosed in scapolite. Fsp = K-feldspar, Qtz = quartz, Bt = biotite, Hbl = hornblende, Grt = garnet, Scp = scapolite, Plag = plagioclase, Ep = epidote, Ms = muscovite. (f) Same photomicrograph as *e* but in cross-polarized light. (g) Photomicrograph (plane light) of MISE1816c melanosome 2 showing remnant of epidote, minor muscovite and a ribbon-textured quartz grain in the bottom. (h) Same photomicrograph as *g* but in cross-polarized light.

Sample-ID	Locality	Latitude	Longitude	Site information	Rock type
MISE1801	3.1	58.157841	12.060858	Western Segment, near Hasteröd	Granitic augen gneiss
<u>MISE1802</u>	<u>3.2</u>	<u>58.132975</u>	<u>11.993259</u>	<u>Western Segment,</u> <u>near Arsjön</u>	Migmatitic granodioritic gneiss
MISE1803	3.3	58.133681	11.999500	Western Segment, near Arsjön	Granodioritic gneiss
MISE1804	3.4	58.160841	12.038619	Western Segment, near Hasteröd	Muscovite-rich granitic gneiss
MISE1805	5.1	58.133368	12.084540	Western Segment, near Röstorp	Granitic gneiss
<u>MISE1806</u>	<u>5.2</u>	<u>58.167812</u>	12.137814	<u>In Göta Älv Shear</u> Zone, near Tösslanda	Migmatitic alkali granitic gneiss
MISE1807	6.2	58.163722	12.289561	Median Segment, near Upphärad church	Metabasite and granodio- ritic gneiss
MISE1808	6.3	58.152448	12.350030	Median Segment, near Bjurdammen	Garnet-rich migmatitic granitic gneiss
MISE1809	7.1	58.200764	12.208180	Median Segment, near Sörby	Recrystallized granitic pegmatite
MISE1810	7.2	58.156490	12.328507	Median Segment, near St. Boda	Garnet-rich migmatitic granitic gneiss
MISE1811	8.1	58.190145	12.331870	Median Segment, near Hälltorp	Garnet-rich migmatitic granitic gneiss and garnet amphibolite
MISE1812	8.2	58.190171	12.332324	Median Segment, near Hälltorp	Garnet-rich migmatitic granitic gneiss and garnet amphibolite
MISE1813	8.3	58.189672	12.336314	Median Segment, near Hälltorp	Migmatitic granitic gneiss
<u>MISE1814</u>	<u>9.1</u>	<u>58.182703</u>	<u>12.327849</u>	<u>Median Segment.</u> <u>near Hälltorp</u>	Garnet-rich migmatitic granitic gneiss
MISE1815	11.1	58.169287	11.992733	Western Segment, in quarry near Backamo	Augen gneiss and gran- odioritic gneiss
<u>MISE1816</u>	<u>9.1</u>	<u>58.182345</u>	<u>12.329005</u>	Median Segment, near Hälltorp	<u>Garnet-rich migmatitic</u> granitic gneiss

Table 1. Sample locations and sample information. Underlined samples was used for zircon U-Pb dating. Coordinates given in Decimal degrees (datum: WGS-84).

5 Results

U-Th-Pb isotopes was determined in 599 spots in 411 zircon grains from seven subsamples. The eighth subsample MISE1802b from MISE1802 was excluded due to unstable ²⁰⁷Pb/²⁰⁶Pb ratios during the analytical session. Data that were >5% discordant, had quantifiable common Pb or poor precision were rejected from age calculation. A 10% discordance criterion was used for the younger population of subsample MISE1806 melanosome and MISE1802a leucosome due to few analyses. A total of 235 spot analyses were discarded using these criteria, leaving 364 analyses for which the ²⁰⁷Pb/²⁰⁶Pb dates are summarized in a histogram in Fig. 14, showing peaks at ~1050 Ma, ~1350 Ma, ~1550 Ma, ~1580 Ma and ~1600 Ma. Spot positions in zircon crystals that yielded concordant data are shown in Appendix III, note that only a selection of zircons are represented. Analytical data for all spots are listed in Appendix IV. Tera-Wasserburg concordia diagrams for all data in all samples are shown in Appendix V and Th/U plots for all samples are shown in Appendix VI. All errors are reported as 2 standard errors. The data were not equivalent enough to calculate concordia ages for all samples, and weighted average ²⁰⁷Pb/²⁰⁶Pb ratios were used instead. This also avoids problems with minor amounts of recent Pb-loss or U-Pb calibration errors. Results are presented for each subsample as well as combined into geochronological results from the Western Segment (MISE1802), Median Segment (MISE1814 and MISE1816) and from the Göta Älv Shear Zone (MISE1806), because the subsamples were of the same age and presumably from the same origin. Zircon descriptions for each sample are also presented.

Fig. 14. Histogram of all 364 concordant analyses from MISE1802, MISE1806, MISE1814 and MISE1816, showing five major populations at ~1050 Ma, ~1350 Ma, ~1550 Ma, ~1580 Ma and ~1600 Ma. The different subsamples are represented by boxes of different colour as shown in the legend. WS = Western Segment, $G\ddot{A}Z = G\ddot{o}ta \ddot{A}lv$ Shear Zone and MS = Median Segment.

5.1 Western Segment (Sample MI-SE1802)

5.1.1 MISE1802a melanosome

The zircon crystals are 100 to 200 μ m long and are mostly prismatic. The grains contain microfractures and have inclusions of apatite and quartz. Most cores show concentric oscillatory zoning (Appendix III zircons 24, 31 and 44 in Fig. 6), but some cores are homogeneous (Appendix III zircons 37 and 69 in Fig. 6). A few crystals have irregularly zoned cores. The zircons have CL-bright 5-15 μ m thick overgrowths that cut the zoned cores (Appendix III Fig. 6).

83 spots in 68 crystals were analysed for U-Pb (Appendices IV and V). The majority of the analyses had to be discarded due to discordance, leaving 34 analyses for an age calculation (Appendix III Fig. 6). The histogram in Appendix V illustrates the spread of the analyses around a mean date of ~1560 Ma. A ²⁰⁷Pb/²⁰⁶Pb weighted average of the population yields a 1557 ± 6 Ma (MSWD = 3.4, n = 30/34) date (Fig. 15). U concentration ranges between 57 ppm and 755 ppm with an average of 326 ppm and Th varies between 27 ppm and 730 ppm with an average of 296 ppm. Th/U vary from 0.274 to 1.830 with an average of 0.945 (Appendix VI Fig. 1b). Two analyses have distinctly lower Th/U of 0.068 and 0.093. These analyses are spot 76 in zircon 39 (U = 385 ppm and Th = 28 ppm) and spot 77 in zircon 40 (U = 673 ppm and Th = 67 ppm) (Appendix III Fig. 6 and Appendix VI Fig. 1b).

5.1.2 MISE1802 leucosome

The zircon crystals are rounded and prismatic, although some only make up a fragment of a grain. The crystals vary in size between 100 and 200 μ m. The grains contain a few inclusions of apatite and quartz. The cores are mostly homogeneous or irregularly zoned (Appendix III zircons 2, 13 and 20 in Fig. 7). Some cores also display concentric oscillatory zoning (Appendix III zircons 6, 10 and 56 in Fig. 7), and one grain show sector zoning (Appendix III zircon 45 in Fig. 7). CL-bright overgrowths (<40 μ m thick), that cut the zoned cores, are abundant (Appendix III Fig. 7). Zircon 31 is entirely CL-bright (Appendix III Fig. 7).

112 spots in 70 grains were analysed for U-Pb (Appendices IV and V). All but 57 analyses had to be discarded due to discordance (Appendix III Fig. 7). Two main populations are seen in the histogram, one around 1550 Ma and another around 1050 Ma (Appendix V). The older population yields a 207 Pb/ 206 Pb weighted average date of 1545±9 Ma (MSWD = 7.9, n = 45/48) with U concentrations from 13 ppm to 615 ppm (average 173 ppm) and Th from 4 ppm to 753 ppm with an average of 160 ppm (Fig. 16a,b). Th/U for the older population ranges between 0.136 and 1.790 with an average of 0.8 (Appendix VI Fig. 1b).

11 spots in total belong to the younger population, due to discordance, 9 spots were used for an age calculation. Note that 3 of the analyses are up to 10% discordant. A 207 Pb/ 206 Pb weighted average of the young-

Arsjön, Western Segment

Fig. 15. Arsjön, Western Segment. (a) Tera-Wasserburg concordia diagram for sample MISE1802a melanosome. (b) 207 Pb/ 206 Pb weighted average date of sample MISE1802a melanosome. Age in million years on the y-axis. The plotted analyses are <5% discordant.

Arsjön, Western Segment

Fig. 16. Arsjön, Western Segment. (a) Tera-Wasserburg concordia diagram of the older population in sample MISE1802a leucosome. (b) 207 Pb/ 206 Pb weighted average date of the older population in sample MISE1802a leucosome. Age in million years on the y-axis. The plotted analyses are <5% discordant. (c) Tera-Wasserburg concordia diagram for the younger population in sample MISE1802a leucosome. (d) 207 Pb/ 206 Pb weighted average date of the younger population in sample MISE1802a leucosome date of the younger population in sample MISE1802a leucosome. The plotted analyses are <10% discordant.

er population yields a 1073 ± 31 Ma (MSWD = 0.86, n = 9) date (Fig. 16c,d). The younger population has U concentrations ranging from 5 ppm to 12 ppm (average 10 ppm), Th concentrations from 0.005 ppm to 1 ppm (average 0.18 ppm) and Th/U vary between 0.002 and 0.111 with an average of 0.027 (Appendix VI Fig. 1b).

5.1.3 Combined results

Subsamples MISE1802a melanosome and MISE1802a leucosome come from the same rock piece and therefore the results from these two datasets were combined. The age calculation is based on 5% discordance for the older population but 10% discordance for the younger population. Both subsamples contain data representing the older population, but dates belonging to the younger population was only found in MISE1802a leucosome. The MISE1802a leucosome 1545±9 Ma date for its older population is slightly, but not significantly younger than that of the MISE1802a melanosome that yielded a 1557±6 Ma date. The combined 207 Pb/ 206 Pb weighted average of the older populations of the two subsamples is 1551±6 Ma (MSWD = 6.6, n = 76/82) (Fig. 17a,b).

As for the younger population the combined results are the same as for the dataset of subsample MISE1802a leucosome, namely a 1073 ± 31 Ma (MSWD = 0.86, n = 9) date (Fig. 17c,d).

5.2 Göta Älv Shear Zone (Sample MI-SE1806)

5.2.1 MISE1806 melanosome

The zircon crystals are 75 to 275 μ m along the c-axis, with both prismatic and rounded shapes. A few grains are broken. Inclusions of apatite, quartz and K-feldspar

Arsjön, Western Segment

Fig. 17. Arsjön, Western Segment. (a) Combined Tera-Wasserburg concordia diagram of the older population for samples MISE1802a leucosome and MISE1802a melanosome. (b) Combined 207 Pb/ 206 Pb weighted average date of the older population for samples MISE1802a leucosome and MISE1802a melanosome. Age million years on the y-axis. The plotted analyses are <5% discordant. (c) Combined Tera-Wasserburg concordia diagram for the younger population for sample MISE1802a leucosome. No younger ages were found in MISE1802a melanosome. (d) Combined 207 Pb/ 206 Pb weighted average date of the younger population for sample MISE1802a leucosome. No younger ages were found in MISE1802a melanosome. (d) Combined 207 Pb/ 206 Pb weighted average date of the younger population for sample MISE1802a leucosome, based on zircon rims. The plotted analyses are <10% discordant. Ellipses correspond to 2 standard errors.

are abundant. The crystals are CL-dark with irregularly zoned or homogeneous cores. Overgrowths are difficult to see since they are CL-dark, but a few can be distinguished (Appendix III zircons 9 and 31 in Fig. 2).

78 spots in 59 grains were analysed for U-Pb (Appendices IV and V) out of which 53 analyses were used for age calculations (Appendix III Fig. 2). The remaining 25 analyses were discarded due to discordance. Histograms with peaks at ~1350 Ma and ~1050 Ma are shown in Appendix V. A 207 Pb/ 206 Pb weighted average of the older population yields a 1347±6 Ma (MSWD = 4.6; n = 48/51) date (Fig. 18a,b). U concentrations for the older population range from 287 ppm to 2004 ppm (average 710 ppm) and Th from 154 ppm to 1796 ppm (average 563 ppm). Th/U vary from 0.248 to 2.066 with an average of 0.785 (Appendix VI Fig. 1a).

The two remaining analyses belongs to the younger population and a 207 Pb/ 206 Pb weighted average yields the date: 1081±270 Ma (MSWD = 3.1; n = 2) (Fig. 18c,d). The younger population consist of spot 57 in zircon 31 (U = 870 ppm, Th = 342 ppm and Th/U = 0.373) and spot 99b in zircon 83 (U = 254 ppm, Th = 13 ppm and Th/U = 0.047) (Appendix III Fig. 2 and Appendix VI Fig. 1a). Due to few young dates, the age calculation of the young population is based on 10% discordance.

5.2.2 MISE1806 leucosome

The zircon crystals are prismatic and rounded and vary in size from 75 to 275 μ m. A third of the crystals only make up a fragment of a grain. Apatite-, quartz- and K -feldspar inclusions are common. The crystals are CLdark with irregularly zoned or homogeneous cores.

Tösslanda, Göta Älv Shear Zone

Fig. 18. Tösslanda, Göta Älv Shear Zone. (a) Tera-Wasserburg concordia diagram for the older population in sample MISE1806 melanosome. (b) $^{207}Pb/^{206}Pb$ weighted average date of the older population in sample MISE1806 melanosome. Age in million years on the y-axis. The plotted analyses are <5% discordant. (c) Tera-Wasserburg concordia diagram for the younger population in sample MISE1806 melanosome. (d) $^{207}Pb/^{206}Pb$ weighted average date of the younger population in sample MISE1806 melanosome. (d) $^{207}Pb/^{206}Pb$ weighted average date of the younger population in sample MISE1806 melanosome. (d) $^{207}Pb/^{206}Pb$ weighted average date of the younger population in sample MISE1806 melanosome based on zircon rims. The plotted analyses are <10% discordant.

Due to whole grains being CL-dark the overgrowths are hard to distinguish, but a few can be observed (Appendix III zircon 63 in Fig. 3).

93 spots in 56 zircons were analysed for U-Pb (Appendices IV and V). 40 spot analyses were rejected due to discordance. The remaining 53 spot analyses (Appendix III Fig. 3) generate two main populations, one at ~1350 Ma and one at ~1050 Ma which be seen in a histogram in Appendix V. A 207 Pb/ 206 Pb weighted average of the older population yields a 1355±8 Ma (MSWD = 4.4; n = 39/43) date (Fig. 19a,b) with U from 148 ppm to 1119 ppm (average 541 ppm) and Th from 66 ppm to 2083 ppm (average 586 ppm). Th/U range from 0.412 to 3.500 with an average of 1.020 (Appendix VI Fig. 1a).

A 207 Pb/ 206 Pb weighted average of the younger population yields a 1046±22 Ma (MSWD = 4.6; n = 9/10) date (Fig. 19c,d). The younger population has U concentrations between 728 ppm and 3680 ppm with an average of 1708 ppm and Th concentrations from 12 ppm to 833 ppm with an average of 130 ppm. Th/U vary between 0.005 and 0.716 with an average of 0.035 (Appendix VI Fig. 1a).

5.2.3 Combined results

Subsamples MISE1806 leucosome and MISE1806 melanosome come from the same rock piece and thus the two datasets were combined. A 5% discordance criterion was applied for the combined results. Both subsamples yield dates from an older and a younger population. The 1347±6 Ma MISE1806 melanosome yields a younger date for the older population than the 1355±8 Ma MISE1806 leucosome but the dates overlap within error. The combined weighted average for the older populations of the two subsamples is 1349±5 Ma (MSWD = 5.0, n = 89/94) (Fig. 20a,b).

Tösslanda, Göta Älv Shear Zone

Fig. 19. Tösslanda, Göta Älv Shear Zone. (a) Tera-Wasserburg concordia diagram for the older population in sample MISE1806 leucosome. (b) 207 Pb/ 206 Pb weighted average date of the older population in sample MISE1806 leucosome. Age in million years on the y-axis. The plotted analyses are <5% discordant. (c) Tera-Wasserburg concordia diagram for the younger population in sample MISE1806 leucosome. (d) 207 Pb/ 206 Pb weighted average date of the younger population in sample MISE1806 leucosome date of the younger population in sample MISE1806 leucosome. The plotted analyses are <5% discordant.

Tösslanda, Göta Älv Shear Zone

Fig. 20. Tösslanda, Göta Älv Shear Zone. (a) Combined Tera-Wasserburg concordia diagram of the older population for samples MISE1806 leucosome and MISE1806 melanosome. (b) Combined $^{207}Pb/^{206}Pb$ weighted average date of the older population for samples MISE1806 leucosome and MISE1806 melanosome. Age in million years on the y-axis. The plotted analyses are <5% discordant. (c) Combined Tera-Wasserburg concordia diagram for the younger population for sample MISE1806 leucosome and MISE1806 helanosome. (d) Combined $^{207}Pb/^{206}Pb$ weighted average date of the younger population for sample MISE1806 leucosome and MISE1806 neuronal diagram for the younger population for sample MISE1806 helanosome. (d) Combined $^{207}Pb/^{206}Pb$ weighted average date of the younger population for sample MISE1806 neuronal diagram for the younger population for sample MISE1806 helanosome. (d) Combined $^{207}Pb/^{206}Pb$ weighted average date of the younger population for sample MISE1806 neuronal diagram for the younger population for sample MISE1806 helanosome. (d) Combined $^{207}Pb/^{206}Pb$ weighted average date of the younger population for sample MISE1806 helanosome, based on zircon rims. The plotted analyses are <5% discordant.

For the younger population the average dates overlap between the two subsamples, in large part due to the poor precision of the 1081±270 Ma MISE1806 melanosome compared to the 1046±22 Ma MISE1806 leucosome. A 5% discordance criterion was used for the combined age calculation for the young population. The combined weighted average of the younger populations of the two subsamples is 1046±21 Ma (MSWD = 4.1, n = 10/11) (Fig. 20c,d).

5.3 Median Segment (Samples MI-SE1814 and MISE1816)

5.3.1 MISE1814a

The zircon crystals are 50 to 200 μ m in size and are both prismatic and rounded. A few apatite inclusions are present in some grains. The majority of the cores are CL-dark and complex with irregular zoning. A few zircons have CL-dark cores with distinct concentric oscillatory zoning (Appendix III zircons 53 and 56 in Fig. 1) and two zircons show sector zoning. Several crystals have two or more generations of 5-15 μ m thick overgrowths; an inner CL-bright rim and a CL-dark outer rim (Appendix III zircons 65 and 78 in Fig. 1). The inner rims often cut the zoned cores and the outer rims cut the inner rims (Appendix III zircon 74 in Fig. 1).

85 spots in 55 crystals were analysed for U-Pb (Appendices IV and V). 39 out of the 85 analyses were used for age calculations (Appendix III Fig. 1). The remaining analyses were omitted due to discordance and lack of precision. A histogram of all analyses yields two major peaks, one larger at \sim 1580 Ma and

Hälltorp, Median Segment

Fig. 21. Hälltorp, Median Segment. (a) Tera-Wasserburg concordia diagram for the older population in sample MISE1814a. (b) 207 Pb/²⁰⁶Pb weighted average date of the older population in sample MISE1814a. Age in million years on the y-axis. The plotted analyses are <5 % discordant. (c) Tera-Wasserburg concordia diagram for the younger population in sample MISE1814a. (d) 207 Pb/²⁰⁶Pb weighted average date of the younger population in sample MISE1814a based on zircon rims. The plotted analyses are <5% discordant.

one smaller at ~1030 Ma (Appendix V). A 207 Pb/ 206 Pb weighted average for the older population yields a 1581±8 Ma (MSWD = 3.1; n = 36/37) date (Fig. 21a,b). For these 37 analyses U concentrations range from 65 ppm to 701 ppm with an average of 262 ppm. Th concentrations range from 10 ppm to 904 ppm with an average of 256 ppm. Th/U vary from 0.162 to 1.495, with an average of 0.912 (Appendix VI Fig. 1b). Spot 81 of zircon 78 sticks out in having a distinctly lower Th/U value of 0.071 (U = 103 ppm, Th = 9.8 ppm) (Appendix III Fig. 1).

A weighted average for the younger population yields a 1032 ± 34 Ma (MSWD = 0.22; n = 2) date (Fig. 21c,d). Spot 32 in zircon 22 (U = 214 ppm, Th = 1.0 ppm) and spot 75 in zircon 68 (U = 57 ppm, Th = 0.2 ppm) belongs to the younger population (Appendix III Fig. 1). These spots yield Th/U of 0.004 and 0.002 respectively (Appendix VI Fig. 1b).

5.3.2 MISE1816c melanosome

The zircon crystals are between 100 and 300 μ m along the c-axis, with prismatic and rounded shapes. The grains are heterogeneous and fractured. The crystals contain a few inclusions of apatite, K-feldspar and quartz. The cores are both CL-dark and CL-bright and some show concentric oscillatory zoning (Appendix III zircons 53, 73 and 79 in Fig. 4) and a few cores show sector zoning (Appendix III zircons 4, 49 and 75 in Fig. 4). The zircon crystals have 10-15 μ m thick CL -bright overgrowths (Appendix III Fig. 4).

86 spots in 56 grains were analysed for U-Pb (Appendices IV and V). 74 of these 86 analyses were used for age calculations and the rest were discarded (Appendix III Fig. 4). A histogram of all analyses reveals one peak at about 1600 Ma (Appendix V). A 207 Pb/ 206 Pb weighted average of the population yields a 1601±4 Ma (MSWD = 2.3; n = 68/74) date (Fig. 22).

Hälltorp, Median Segment

Fig. 22. Hälltorp, Median Segment. (a) Tera-Wasserburg concordia diagram for sample MISE1816c melanosome. (b) 207 Pb/ 206 Pb weighted average date of sample MISE1816c melanosome. Age in million years on the y-axis. The plotted analyses are <5% discordant and ellipses correspond to 2 standard errors.

U concentrations vary from 55 ppm to 875 ppm (average 273 ppm), Th varies from 43 ppm to 664 ppm (average 208 ppm) and Th/U range between 0.209 and 1.330 with an average of 0.766 (Appendix VI Fig. 1b). One analysis, spot 55 in zircon 28, has a higher U conconcentration of 1153 ppm (Th = 465 ppm, Th/U = 0.398) (Appendix III Fig. 4).

5.3.3 MISE1816c leucosome

The zircon crystals are prismatic and rounded and vary in size from 100 to 300 μ m. A few inclusions of apatite, K-feldspar and quartz are present. The crystals are fractured, show no zonation and are CL-dark. Most of the grains are completely homogeneous but in a few grains several generations of overgrowths can be seen. Zircons 11, 12 and 32 show CL-bright (5-10 μ m thin) inner rims with CL-dark outer rims (Appendix III Fig. 5). Zircons 2 and 36 only have a CL-bright (5-10 μ m thin) outer rim (Appendix III Fig. 5).

62 spots in 47 crystals were analysed for U-Pb (Appendices IV and V). 54 out of the 62 analyses were included in the age calculations, the remaining analyses were omitted due to discordance (Appendix III Fig. 5). The sample generates two population peaks, one at ~1600 Ma and one at ~1000 Ma which can be seen in the histogram in Appendix V. The older population yields a ²⁰⁷Pb/²⁰⁶Pb weighted average date of 1600 ± 4 Ma (MSWD = 2.5; n = 49/52), with U from 412 ppm to 3980 ppm (average 1311 ppm) and Th from 168 ppm to 1960 ppm (average 665 ppm) (Fig. 23a,b). Th/U range from 0.107 to 1.088 with an average of 0.549 (Appendix VI Fig. 1b). One analysis (spot 92 in zircon 70) deviates from the rest in having high concentrations of U (12 000 ppm), Th (11 030 ppm) and higher Th/U (1.088) (Appendix III Fig. 5).

The younger population consists of spot 61 in zir-

con 32 (U = 1385 ppm, Th = 64 ppm, Th/U = 0.046) and spot 77 in zircon 48 (U = 841 ppm, Th = 9 ppm, Th/U = 0.010) (Appendix III Fig. 5 and Appendix VI Fig. 1b). A 207 Pb/ 206 Pb weighted average of the younger population yields a 1037±200 Ma (MSWD = 3.6, n = 2) date (Fig. 23c,d).

5.3.4 Combined results

Subsamples MISE1816c leucosome and MISE1816c melanosome come from the same rock in the Median Segment and thus the results from these two datasets were combined. Sample MISE1814 yielded a significantly younger date (1581±8 Ma) for the older population than subsamples MISE1816c melanosome (1601±4 Ma) and MISE1816c leucosome (1600±4 Ma). The MISE1814 date for the older population was therefore not combined with the MISE1816 older population date, even though the rocks were indistinguishable in the field. The date for the younger population on the other hand was similar for MISE1814 and MISE1816c leucosome and these results were combined to enhance the precision of the age calculation. A 5% discordance criterion was used for the combined results.

A combined ${}^{207}\text{Pb}/{}^{206}\text{Pb}$ weighted average of the older populations in the MISE1816 subsamples yield a 1601±3 Ma (MSWD = 2.5, n = 118/126) date (Fig. 24a,b).

Spot 77 in zircon 48 in subsample MISE1816c leucosome (Fig. 23c left ellipse) was not included in the combined age calculation of the young population for MISE1814 and MISE1816c leucosome. The reason is that the zircon does not have a clear boundary between the core and the rim and that the core has high U concentrations (3420 ppm) and high Pb concentrations (2830 ppm), while the rim has relatively low

Hälltorp, Median Segment

Fig. 23. Hälltorp, Median Segment. (a) Tera-Wasserburg concordia diagram for the older population in sample MISE1816c leucosome. (b) 207 Pb/ 206 Pb weighted average date of the older population in sample MISE1816c leucosome. Age in million years on the y-axis. The plotted analyses are <5% discordant. (c) Tera-Wasserburg concordia diagram for the younger population in sample MISE1816c leucosome. (d) 207 Pb/ 206 Pb weighted average date of the younger population in sample MISE1816c leucosome. (d) 207 Pb/ 206 Pb weighted average date of the younger population in sample MISE1816c leucosome. (d) 207 Pb/ 206 Pb weighted average date of the younger population in sample MISE1816c leucosome. (d) 207 Pb/ 206 Pb weighted average date of the younger population in sample MISE1816c leucosome. (d) 207 Pb/ 206 Pb weighted average date of the younger population in sample MISE1816c leucosome. (d) 207 Pb/ 206 Pb weighted average date of the younger population in sample MISE1816c leucosome. (d) 207 Pb/ 206 Pb weighted average date of the younger population in sample MISE1816c leucosome. (d) 207 Pb/ 206 Pb weighted average date of the younger population in sample MISE1816c leucosome.

concentrations of both U and Pb (841 ppm and 58 ppm respectively). This means that there is risk for domain mixing between the rim and the core. A combined $^{207}Pb/^{206}Pb$ weighted average of the young population in the two subsamples yields the date: 1019±27 Ma (MSWD = 0.85, n = 3) (Fig. 24c,d).

6 Discussion

6.1 Limitations of the method

Several zircons in all samples have rims that yield dates belonging to an older population, despite that, given the textural context, a younger metamorphic date was expected. A possible explanation is that the laser beam ablates into the zircon core even if it looks like a thick metamorphic rim on the surface (Fig. 25). If the zircon is insufficiently polished, meaning if a cross section through the grain has not been achieved, then the surface image can give a false appearance of the subsurface of the zircon. An image of a thicker rim on the surface can in fact just be a thin rim at depth. Dating that rim can thus give a "false" age, dating the igneous core instead of the metamorphic rim.

Another possibility is that these are indeed correct dates of an old magmatic or metamorphic event. In some cases a younger metamorphic signature was detected in the first few pulses of ablation, followed by an older magmatic signature. In a few analyses the spectra could be split in two, thus yielding both a younger and an older date. Spot 99b in MISE1806 melanosome is a split analysis (Appendix III Fig. 2). Spots 4b, 18a, 61a and 69a in MISE1806 leucosome are also split analyses (Appendix III Fig. 3). Spots 43, 132 and 137 in MISE1802a leucosome and spot 108 in MISE1802a melanosome are all CL-bright rims that yielded dates belonging to an older population when a

Fig. 24. Hälltorp, Median Segment. (a) Combined Tera-Wasserburg concordia diagram of the older population for subsamples MISE1816c melanosome and MISE1816c leucosome. (b) Combined 207 Pb/ 206 Pb weighted average date of the older population for subsamples MISE1816c melanosome and MISE1816c leucosome. Age in million years on the y-axis. The plotted analyses are <5% discordant. (c) Combined Tera-Wasserburg concordia diagram of the younger population for sample MISE1816c leucosome. (d) Combined 207 Pb/ 206 Pb weighted average date of the younger population for sample MISE1814 and subsample MISE1816c leucosome. (d) Combined 207 Pb/ 206 Pb weighted average date of the younger population for sample MISE1814 and subsample MISE1816c leucosome, based on zircon rims. The plotted analyses are <5% discordant.

metamorphic date was expected (Appendix III Figs. 6 and 7). Spots 47 and 90 in MISE1806 melanosome and spots 13, 41, and 46 in MISE1806 leucosome could also be rims that are actually metamorphic (Appendix III Figs. 2 and 3). Sample MISE1814a has several zircons with thick CL-bright rims that did not yield younger metamorphic dates (Appendix III Fig. 1) and in MISE1816c leucosome thicker CL-bright zircon rims was expected but was not seen due to insufficient polishing of the zircons.

6.2 A comparison of the structural and textural relationships between the Western and the Median Segments

In the Western Segment, the bedrock is dominated by homogeneous granodioritic gneisses and augen gneisses, with discordant intrusions of pegmatites that rarely show any signs of deformation. Migmatite was only observed in one rock which is folded along gentle to open folds. In the thin sections, quartz, K-feldspar, plagioclase, biotite and epidote dominate the mineral assemblage. Most grains are euhedral to subhedral. Accessory muscovite is also found in the thin sections. Garnet and hornblende have not been observed in the field or in the thin sections in any of the sampled rocks from the Western Segment.

In the Median Segment, the heterogeneous bedrock is made up of granitic to granodioritic gneisses, amphibolites and ultramafics. The rocks often contain garnet and occasionally hornblende and muscovite. Pegmatites that intruded the gneisses are strongly deformed. Stromatic and fold-structured migmatites are common. Folding of the bedrock is common in the whole field area with tight to isoclinal folds. Quartz, K

Fig. 25. Illustration showing the issues with polishing zircons insufficiently. The left drawing represents a cathodoluminescence image of a zircon as seen from above when polished. A core with oscillatory zoning and a metamorphic rim can be distinguished and ablation spots are put in the core and in the rim. The right drawings illustrate the zircon as seen in cross section. The top scenario represents a sufficiently polished zircon in which the blue spot will obtain the igneous age and the red will obtain the metamorphic age as expected. In the bottom scenario the zircon is insufficiently polished which will cause the laser beam to ablate into the core. As a result, the igneous age is obtained instead of the metamorphic age.

-feldspar, plagioclase, biotite, scapolite and garnet dominate the thin sections. There is also minor hornblende, traces of anhedral epidote grains and some minor muscovite. Quartz grains are elongate, some ribbon-textured, indicating high strain in the rock. Mineral grains are subhedral to anhedral.

Within the Göta Älv Shear Zone the bedrock is dominated by granitic to granodioritic gneisses with layers of mafic rocks and intrusions of pegmatite veins. Migmatites with gentle folds have been observed but no fold-structures were seen at the sampled locality. The thin sections are dominated by quartz, Kfeldspar, plagioclase, biotite, hornblende and opaque minerals, which have been oxidized. Biotization of hornblende is also common. Interstitial fine-grained quartz with sutured boundaries is abundant. In the Göta Älv Shear Zone both ductile and brittle deformation have taken place, the latter evident from the faults cutting the foliation. The brittle deformation can also be seen in micro-scale in the thin sections where fractures are abundant. The migmatization of the rock took place in a ductile environment and the alteration and the fracturing of the rock occurred after the migmatization in a cooler environment. Since the rock is found in a zone of weakness it is highly plausible that the zone has been reactivated several times throughout the Sveconorwegian orogeny (and after). Therefore, the rock could have gone through metamorphism more than once during this period.

Overall, there is striking contrast between the

Western and Median Segments, with strain, migmatite abundance and mineral parageneses. The migmatization of the rocks in the Western and Median Segments, and within the Göta Älv Shear Zone must have occurred during upper amphibolite facies conditions since the rocks must reach above 650°C to start melting. Signs of prograde metamorphism in upper amphibolite-facies is not preserved in the mineral assemblage of the Arsjön migmatite in the Western Segment nor in the Tösslanda migmatite within the Göta Älv Shear Zone. Instead mineral assemblages typical for greenschist-facies to lower amphibolite-facies conditions are present, that possibly formed through mineral re-equilibration during decompression and overprinted earlier upper amphibolite-facies minerals. In the Hälltorp migmatites in the Median Segment the preserved amphibolite-facies mineral assemblages suggest less retrograde metamorphic overprint, although traces of epidote grains have been found. This difference in preserved metamorphic grade on either side of the Göta Älv Shear Zone was also described by Austin Hegardt (2010). Furthermore, strain is greater in the Median Segment of the study area and tight to isoclinal folds are abundant in contrast to the Western Segment. The causes for the contrast in deformation between the two segments remain unclear and further work is required to investigate this. Perhaps the Median Segment has been buried to a greater depth than the Western Segment during the Sveconorwegian orogeny, which generated higher strain and formed more migmatites in the Median Segment.

6.3 Geochronology

The samples analysed in this study yield three generations of zircon, two older populations (Fig. 26a) and one younger population (Fig. 26b). The combined data for MISE1802 (Western Segment), MISE1806 (Göta Älv Shear Zone), MISE1814 and MISE1816 (Median Segment) will be used when discussing the data and its implications. First, the older populations will be discussed followed by the younger population. Lastly implications for the younger population for all samples combined will be reviewed.

6.3.1 Protolith ages

The combined weighted average of 1551 ± 6 Ma (MSWD = 6.6, n = 76/82 for sample MISE1802 (the Arsjön migmatile) in the Western Segment is interpreted to be the magmatic crystallization age of the rock and corresponds to the 1.58-1.52 Ga Hisingen Suite (Åhäll & Connelly 2008). The majority of the zircons in the melanosome exhibit concentric oscillatory zoning, which is a common feature in igneous zircon (Hoskin & Black 2000; Hoskin & Schaltegger 2003; Corfu et al. 2003). The igneous origin is further supported by high Th/U values with a mean of ~0.8, values >0.2 is typical for igneous zircon (Williams & Claesson 1987; Yakymchuk et al. 2018 and references therein). Due to unstable 207 Pb/ 206 Pb several analyses were rejected from age calculations.

The combined weighted average for sample MISE1806 (the Tösslanda migmatite) in the Göta Älv Shear Zone yields a date of; 1349 ± 5 Ma (MSWD = 5.0, n = 89/94), which is interpreted to be the magmatic crystallization age of the rock. Th/U around ~0.9 support the magmatic origin of the zircons

(Yakymchuk et al. 2018 and references therein). This rock most likely belongs the Kungsbacka Bimodal Suite even though it is slightly older than the 1.34-1.30 Ga ages hitherto obtained from this suite along the Göta Älv Shear Zone (Austin Hegardt et al. 2007). Although this age is the oldest reported from the Kungsbacka Bimodal Suite, it is still significantly younger than the petrographically similar 1368±4 Ma Tjärnesjö (Andersson et al. 1999) and the 1380±6 Ma Torpa (Åhäll et al. 1997) granites in the Eastern Segment, confirming the lack of temporal and petrogenetic correlation of these rocks across the Mylonite Zone (Austin Hegardt et al. 2007).

The combined weighted average of 1601±3 Ma (MSWD = 2.5, n = 118/126) for sample MISE1816 and the weighted average of 1581 ± 8 Ma (MSWD = 3.1, n = 36/37) for sample MISE1814a both belonging to the Hälltorp migmatite in the Median Segment, are interpreted to be magmatic crystallization ages. The 1601±3 Ma MISE1816 age correlates well with the rocks belonging to the 1.63-1.59 Ga Göteborg-Åmål Suite (Åhäll & Connelly 2008). The 1581±8 Ma MISE1814 on the other hand is thought to belong to a local pluton of the Hisingen Suite (1.58-1.52 Ga) which have intruded the Göteborg-Åmål belt. Although the two samples were taken from identical looking rocks a few metres apart, it cannot be ruled out that MISE1816 and MISE1814 originally were two different rocks. The U and Th concentrations are significantly different and so are the protolith ages. This serves to illustrate the challenge with high-strained migmatite gneisses (see cover picture). The magmatic source for both samples is supported by Th/U values around ~ 0.7 , characteristic for igneous zircon (Williams & Claesson 1987; Yakymchuk et al. 2018 and references therein).

Fig. 26. (a) Combined Tera-Wasserburg concordia diagram of the concordant protolith ages of all samples. The plotted analyses are <5% discordant. The different samples are represented by ellipses of different colour as shown in the legend. WS = Western Segment, $G\ddot{A}Z = G\ddot{o}ta$ $\ddot{A}lv$ Shear Zone and MS = Median Segment. (b) Combined Tera-Wasserburg concordia diagram of the concordant Sveconorwegian metamorphic ages of all samples. The plotted analyses are <10% discordant. The different samples are represented by ellipses or respond to 2 standard errors.

MISE1814a and MISE1816c melanosome got zircons cores with irregular zoning and a few cores with magmatic oscillatory zoning still preserved, further reinforcing the igneous origin of the zircons. Zircon in MISE1816c leucosome on the other hand are completely homogeneous. This homogeneity is probably caused by overprinting of an igneous zonation during metamorphism, since zonation is still preserved in the melanosome of the sample.

6.3.2 Sveconorwegian ages

The timespan from partial melting of a rock to metamorphic crystallization of the partial melt is relatively short (Sawyer 2008), and most likely lies within the error of the metamorphic dates yielded in this study. Therefore, the migmatite formation is considered to be the process of metamorphic crystallization of partial melts in this study. Zircon rims from the Arsjön migmatite (MISE1802) in the Western Segment yielded a weighted average date of 1073±31 Ma (MSWD = 0.86, n = 9) based solely on rims from the leucosome since no rims with younger dates were found in the melanosome. This date is interpreted to be the age of metamorphism and associated migmatite formation and coincides with Sveconorwegian metamorphism (1.14-0.90 Ga) in southwestern Fennoscandia (Bingen et al. 2005; Bingen et al. 2008b). The analyses have low concentrations of U (5-12 ppm) with a mean of 10 ppm and low Th concentrations (0.005-1 ppm) with an average of 0.18 ppm. Low Th/U values (0.002-0.111) with an average of 0.027 also define the population. Low Th concentrations and low Th/U values are both characteristic for metamorphic zircon (Yakymchuk et al. 2018 and references therein). The zircon rims that yielded the metamorphic signature are all CL-bright and both the cores and the rims are homogeneous, also typical for metamorphic zircon (Corfu et al. 2003). Zircon 31 is CL-bright throughout the grain with the same brightness as in metamorphic rims. The Th/U in conjunction with the Sveconorwegian date indicate that this crystal either formed after complete dissolution reprecipitation processes during metamorphism, or that it crystallized as a discrete grain during migmatization (Appendix III Fig. 7).

Inside the Göta Älv Shear Zone a weighted average of zircon rims from sample MISE1806 (the Tösslanda migmatite) yielded a date of 1046 ± 21 Ma (MSWD = 4.1, n = 10/11), interpreted to be the age of metamorphism and migmatite formation. The age is coeval with the Sveconorwegian metamorphic event at 1.14-0.90 Ga (Bingen et al. 2005; Bingen et al. 2008b). The metamorphic signature is supported by high U concentrations (254-3680 ppm, average ~1700 ppm) and relatively low Th concentrations (12-830 ppm, average ~130 ppm) as well as low Th/U values (0.004-0.300, average ~0.03), typical for metamorphic zircon according to Yakymchuk et al. (2018 and references therein). The metamorphic homogeneous overgrowths are hard to see since the zircons are CL-dark and unzoned. MISE1806 is the only sample in which the

melanosome also yielded metamorphic dates, this is probably due to the leucosome-looking veins present in the melanosome parts of the rock. Two analyses in MISE1806 leucosome, spot 38 in zircon 36 and spot 77 in zircon 84 yielded significantly younger dates of 945±19 Ma and 960±32 Ma respectively, interpreted to be metamorphic ages (Appendix IV). Spot 77 is included in the age calculation of the younger population since it is within 5% discordant. Spot 38 is within 10% discordant and was not included in the age calculation. These two analyses could indicate a later stage of Sveconorwegian metamorphism, at least in the Göta Älv Shear Zone, but the small data set makes any conclusions speculative at best and more work is required to confirm the existence of a younger phase of zircon growth within the Göta Älv Shear Zone.

In the Median Segment zircon rims from samples MISE1814a and MISE1816c leucosome (the Hälltorp migmatites) gave a weighted average date of 1019±27 Ma (MSWD = 0.85, n = 3). The date is interpreted to be the age of metamorphism and migmatite formation, and it coincides with Sveconorwegian metamorphism at 1.14-0.90 Ga (Bingen et al. 2005; Bingen et al. 2008b). The two subsamples most likely belong to different protoliths since the protolith dates and the U and Th concentrations are distinct between the two. The metamorphic overprint and associated migmatite formation is although thought to be coeval between the subsamples. The reason is that the two rocks look identical in the field and that they yielded similar metamorphic dates. The metamorphic signature is supported by low Th/U values between 0.003 and 0.04 with an average of 0.018. The analyses have high U concentrations (57-1385 ppm) with an average of 552 ppm and low Th concentrations (0.2-64 ppm) with an average of 21 ppm, also indicative for metamorphic zircon (Yakymchuk et al. 2018 and references therein). The two metamorphic zircon rims in MISE1814a are both CL-bright and homogeneous, and the cores are irregularly zoned or unzoned. The zircon rim in MISE1816c leucosome is CL-dark with an unzoned core. Several CL-bright zircon rims yielded discordant protolith ages but had metamorphic Th/U signatures of ~0.05. An example is spot 4 in zircon 2 (Appendix III Fig. 1). This could indicate the presence of Gothian migmatization, though highly speculative, or that analyses yielded a mixed date with signatures from both an igneous core and a metamorphic rim. Zircons in MISE1816c leucosome are all homogeneous, while zircons in the melanosome are more diverse.

6.3.3 Implications for the Sveconorwegian ages

The three Sveconorwegian ages from the study area differ in age, from older in the west to younger in the east. This coincides well with the overall Sveconorwegian age decrease from west to east recorded in the Sveconorwegian orogenic belt from 1.14 Ga in the Bamble terrane to 0.98 Ga in the Eastern Segment (Bingen et al. 2008b; Austin Hegardt 2010; Möller et al. 2015). The main Sveconorwegian metamorphic ages recorded in the Idefjorden terrane are constrained to the Agder phase, between 1.05-0.98 Ga (Bingen et al. 2008b). All the dates of migmatite formation in the 1073 \pm 31 Ma Arsjön migmatite (MISE1802), the 1046 \pm 21 Ma Tösslanda migmatite (MISE1806) and the 1019 \pm 27 Ma Hälltorp migmatites (MISE1816) and the 1019 \pm 27 Ma Hälltorp migmatites (MISE1814 and MISE1816) overlap with the timespan of the Agder phase. The oldest metamorphic record from the Begna sector, (the Norwegian part of the Idefjorden terrane west of the Oslo rift) is dated at 1.09 Ga (Bingen et al. 2008b,c), so a date of 1073 \pm 31 Ma in the Western Segment might be reasonable even if better precision of the date is obtained.

Sveconorwegian metamorphic ages in the Western Segment are scarce but a few have been recorded centred around 1.04-1.03 Ga (Austin Hegardt 2010), although no Sveconorwegian ages of migmatite formation have been found. Austin Hegardt et al. (2007) analysed metamorphic overgrowths on zircons from the Kärra pegmatite that yielded a U-Pb upper intercept age of 1043±11 Ma, coeval within error with the Arsjön migmatite (1073±31 Ma) from this study. A Sm-Nd garnet isochron from an amphibolite in Nordön gave a date of 1029±6 Ma and Ar-Ar muscovite analyses on a metagraywacke yielded a cooling age of 981±4 Ma (Austin Hegardt 2010). Three rare-mineral pegmatites near the coast in the Western Segment vielded magmatic U-Pb columbite ages of 1041±2 Ma (Skantorp), 1039±3 Ma (Timmerhult) and 1030±1 Ma (Högsbo; Romer & Smeds 1996). These pegmatites, which intruded into brittle crust are discordant to the gneissosity and thereby constrain minimum ages for ductile deformation and migmatite formation in the Western Segment. This means that the 1073±31 Ma Arsjön migmatite must have formed before the pegmatites intruded.

There are a greater number of age records of Sveconorwegian metamorphism and migmatite formation in the Median Segment. Söderlund et al. (2008) analysed the Haregården and the Lunden metadolerite dykes, near Trollhättan, which yielded a 1026±5 Ma and 1046±6 Ma date respectively. These two metadolerite dykes are the only record of high-grade metamorphism in high-pressure granulite-facies found in the Idefjorden terrane (Söderlund et al. 2008). Migmatitic gneisses further south, near Mölnlycke, have been dated to 974±22 Ma by Ahlin et al. (2006) and to 1017±17 Ma (Austin Hegardt 2010). Another migmatitic gneiss, near the Lake Stora Delsjön, was dated to 1002±9 Ma by Ingered (2017) and the Lake Horsika migmatite in the same area yielded a date of 1060±77 Ma (Haeggman 2015). The Hälltorp migmatites (1019±27 Ma) in the Median Segment all overlap with the Sveconorwegian dates mentioned above.

It is notable that all protolith ages are older than the beginning of the Sveconorwegian orogeny and that all the investigated rocks were affected by the orogenesis. Yet, there are striking contrasts in strain, migmatite abundance and preserved mineral assemblages between the different rocks. Although, the composition of the investigated rocks is not different enough to explain the varying response to the Sveconorwegian metamorphism and further studies are therefore required. The Tösslanda migmatite (1046±21 Ma) in the transitional Kungsbacka Bimodal Suite, located within the Göta Älv Shear Zone, serves as an important marker horizon as it post-dates any possible Gothian metamorphic overprint and that it provides strong support for substantial Sveconorwegian migmatite formation. It might thus be inferred that the metamorphism of both the Western and Median Segments are also the result of Sveconorwegian orogeny.

Given the dates recorded in the Idefjorden terrane and especially due to the dates in this study Sveconorwegian metamorphism and associated migmatite formation is not coeval between the Western and Median Segments. It is possible that metamorphism started in the Idefjorden terrane already at 1.07 Ga and that the Agder phase therefore started earlier than 1.05 Ga, although restricted to the Western Segment, The period between the Arendal phase (1.14-1.08 Ga) and the Agder phase (1.05-0.98 Ga) was thought to be characterized by tectonic quiescence (Bingen et al. 2008b). This might not be the case, at least not locally. If Sveconorwegian metamorphism and associated migmatite formation started in the Western Segment around 1080-1040 Ma, this supports the interpretation that the 1.04-1.03 Ga pegmatites dated by Romer and Smeds (1996) constrain a minimum age for ductile deformation and migmatite formation in the Western Segment. Furthermore, the emplacement of the pegmatites in the Western Segment pre-dates the migmatite formation in the Median Segment. Metamorphism of the Idefjorden terrane during the Agder phase should be revised to include the period between ca. 1.08 Ga and 1.05 Ga. The Agder phase is better described as a phase of metamorphism in the Idefjorden terrane between 1.08-0.98 Ga.

7 Conclusions

Migmatites have been found in both the Western and Median Segments, and within the Göta Älv Shear Zone, but they are different in extent and style. In the Median Segment migmatites are more abundant, higher-strained and preserved a higher-grade mineral assemblage. In the Western Segment and within the Göta Älv Shear Zone migmatites are rare, and the lowergrade mineral assemblages are most likely the result of mineral re-equilibration through decompression.

- The protolith age for the migmatite in the Western Segment is 1551±6 Ma which belongs to the Hisingen Suite.
- The migmatite within the Göta Älv Shear Zone yields a protolith age of 1349±5 Ma corresponding to the Kungsbacka Bimodal Suite.
- The migmatites in the Median Segment yield two protolith ages, one at 1601±3 Ma belonging to the Göteborg-Åmål belt, and one at

 1581 ± 8 Ma which is interpreted as a local pluton of the Hisingen Suite. The two migmatites were initially thought to be of the same origin, but since the protolith ages reveal this not to be the case, it demonstrates the complexity with high-strained migmatite gneisses.

- Ages of metamorphism and migmatite formation are 1073±31 Ma in the Western Segment, 1046±21 Ma within the Göta Älv Shear Zone and 1019±27 Ma in the Median Segment. Since the migmatite within the Göta Älv Shear Zone post-dates any Gothian (ca. 1.6 Ga) metamorphic overprint, it demonstrates that migmatite formation during the Sveconorwegian orogeny was significant. So far, evidence for older migmatite events is lacking in the studied area.
- The results here in combination with literature data on pegmatites in the Western Segment (Romer & Smeds 1996) and on migmatite formation in the Median Segment (Ingered 2017), indicate that migmatite formation occurred earlier in the Western Segment, before ca. 1040 Ma and later in the Median Segment after ca. 1020 Ma.

8 Suggestions for further research

- Since Sveconorwegian migmatite formation in the Western Segment is poorly recorded more migmatites need to be dated in this area.
- To better understand the cause for the different response to Sveconorwegian metamorphism and deformation in the Idefjorden terrane, further studies are required. A comparison of P-T-t paths for migmatites in the Western and Median Segments could give insight to this problem.

9 Acknowledgements

I would like to thank my supervisor, Anders Scherstén for his support and enthusiasm for this project. I would also like to thank Lena Lundqvist from SGU in Gothenburg for helping me with the field work and Tomas Næraa for helping me run LA-ICP-MS analyses and the subsequent data reduction. My most humble thanks to Anna Sartell, with whom I did the field work. Last but not least, I would like to thank my fellow students, especially Hanna, for these past 5 years. It has truly been an adventure!

10 References

- Åhäll, K.I. & Connelly, J.N., 2008: Long-term convergence along SW Fennoscandia: 330 m.y. of Proterozoic crustal growth. *Precambrian Research* 163, 402-421.
- Åhäll, K.I., Samuelsson, L. & Persson, P.-O., 1997: Geochronology and structural setting of the 1.38 Ga Torpa granite; implications for the charnockite formation in SW Sweden. *GFF 119*, 37-43.

- Ahlin, S., Austin Hegardt, E. & Cornell, D., 2006: Nature and stratigraphic position of the 1614 Ma Delsjön augen granite-gneiss in the Median Segment of southwest Sweden. *GFF 128*, 21-32.
- Austin Hegardt, E., Cornell, D., Claesson, L., Simakov, S., Stein, H. & Hannah, J., 2005: Eclogites in the central part of the Sveconorwegian Eastern Segment of the Baltic Shield: Support for an extensive eclogite terrane. *GFF 127*, 221-232.
- Austin Hegardt, E., Cornell, D.H., Hellström, F.A. & Lundqvist, I., 2007: Emplacement ages of the mid-Proterozoic Kungsbacka Bimodal Suite, SW Sweden. *GFF 129*, 227-234.
- Austin Hegardt, E., 2010: Pressure, temperature and time constraints on tectonic models for southwestern Sweden. *Department of Earth Sciences, University of Gothenburg.* A134, 1-26.
- Andersson, J., Söderlund, U., Cornell, D., Johansson, L. & Möller, C., 1999: Sveconorwegian (-Grenvillian) deformation, metamorphism and leucosome formation in SW Sweden, SW Baltic Shield: Constraints from a Mesoproterozoic granite intrusion. *Precambrian Research 98*, 151-171.
- Andersson, J., Möller, C. & Johansson, L., 2002: Zircon geochronology of migmatite gneisses along the Mylonite Zone (S Sweden): A major Sveconorwegian terrane boundary in the Baltic Shield. *Precambrian Research 114*, 121-147.
- Berthelsen, A., 1980: Towards a palinspastic tectonic analysis of the Baltic Shield. *In J.* Cogne & M. Slansky (eds.): Geology of Europe, from Precambrian to the post-Hercynian sedimentary basins, 5 -21. *International Geological Congress Colloque C6.*
- Bingen, B., Skår, Ø., Marker, M., Sigmond, E.M.O., Nordgulen, Ø., Ragnhildstveit, J., Mansfeld, J., Tucker, R.D. & Liégeois, J.P., 2005: Timing of continental building in the Sveconorwegian orogen, SW Scandinavia. Norwegian Journal of Geology 85, 87-116.
- Bingen, B., Andersson, J., Söderlund, U. & Möller, C., 2008a: The Mesoproterozoic in the Nordic countries. *Episodes* 31, 29-34.
- Bingen, B., Nordgulen, Ø. & Viola, G., 2008b: A fourphase model of the Sveconorwegian orogeny, SW Scandinavia. *Norwegian Journal of Geology* 88, 43-72.
- Bingen, B., Davis, W.J., Hamilton, M.A., Engvik, A.K., Stein, H.J., Skår, Ø. & Nordgulen, Ø., 2008c: Geochronology of high-grade metamorphism in the Sveconorwegian belt, S. Norway: U-Pb, Th-Pb and Re-Os data. Norwegian Journal of Geology 88, 13-42.
- Bogdanova, S., Bingen, B., Gorbatschev, R., Kheraskova, T., Kozlov, V., Puchkov, V. & Volozh, Y., 2008: The east European craton (Baltica) before and during the assembly of Rodinia. *Precambrian Research 160*, 23-45.
- Brewer, T.S., Åhäll, K.I., Darbyshire, D.P.F. & Menuge, J.F., 2002: Geochemistry of late Mesopro-

terozoic volcanism in southwestern Scandinavia: implications for Sveconorwegian / Grenvillian plate tectonic models. *Journal of the Geological Society, London 159*, 129-144.

- Corfu, F., Hanchar, J.M., Hoskin, P.W.O. & Kinny, P., 2003: Atlas of Zircon Textures. In J.M Hanckar & P.W.O. Hoskin (eds.): Zircon, 469-500. Reviews in Mineralogy and Geochemistry 53. Egerton, R.F., 2016: Physical Principles of Electron Microscopy: an introduction to TEM, SEM and AEM. 2nd edition. Springer International Publishing, Cham. 196 pp.
- Eliasson, T. & Schöberg, H., 1991: U-Pb dating of the post-kinematic Sveconorwegian (Grenvillian) Bohus granite, SW Sweden: evidence of restitic zircon. *Precambrian Research* 51, 337-350.
- Engvik, A.K., Bingen, B. & Solli, A., 2016: Localized occurrences of granulite: P-T modeling, U-Pb geochronology and distribution of early-Sveconorwegian high-grade metamorphism in Bamble, South Norway. *Lithos 240-243, 84-103*.
- Faure, G. & Mensing, T.M., 2005: *Isotopes: principles and applications*. 3rd edition. John Wiley & Sons, Hoboken. 897 pp.
- Faure, G., 2001: Origin of igneous rocks: the isotopic evidence. Springer, Berlin. 496 pp.
- Frei, D. & Gerdes, A., 2009: Precise and accurate in situ U-Pb dating of zircon with high sample throughput by automated LA-SF-ICP-MS. *Chemical Geology 261*, 261-270.
- Gehrels, G., 2014: Detrital zircon U-Pb geochronology applied to tectonics. *Annual Review of Earth and Planetary Sciences* 42, 127-149.
- Goldstein, J.I., Newbury, D.E., Michael, J.R., Ritchie, N.W.M., Scott, J.H.J. & Joy, D.C., 2018: Scanning Electron Microscopy and X-Ray Microanalysis, 4th edition. Springer, New York. 550 pp.
- Gorbatschev, R. Bogdanova, S., 1993: Frontiers in the Baltic Shield. *Precambrian Research 64*, 3-21.
- Haeggman, R., 2015: Zircon dating of the Lake Horsika migmatite. Department of Earth Sciences, University of Gothenburg. B875, 1-17.
- Hanchar, J.M. & Miller, C.F., 1993: Zircon zonation patterns as revealed by cathodoluminescence and backscattered electron images: implications for interpretation of complex crustal histories. *Chemical Geology 110*, 1-13.
- Hoskin, P.W.O. & Black, L.P., 2000: Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. *Journal of Metamorphic Geology 18*, 423-439.
- Hoskin, P.W.O. & Schaltegger, U., 2003: The composition of zircon and igneous and metamorphic petrogenesis. *In* J.M Hanckar & P.W.O. Hoskin (eds.): Zircon, 27-62. *Reviews in Mineralogy and Geochemistry 53*.
- Ingered, M., 2017: U-Pb datering av zirkon från migmatitisk gnejs i Delsjöområdet, Idefjordenterrängen. *Dissertations in Geology at Lund University, Bachelor's thesis 512*, 1-23.

- Jackson, S., Pearson, N.J., Griffin, W.L. & Belousova, E.A., 2004. The application of laser ablation - inductively coupled plasma - mass spectrometry to in situ U-Pb zircon geochronology. *Chemical Geology 211*, 47-69.
- Johansson, L., Lindh, A. & Möller, C., 1999: Late Sveconorwegian (Grenville) high-pressure granulite facies metamorphism in southwest Sweden. *Journal of Metamorphic Geology 9*, 283-292.
- Linders, W., 2016: U-Pb geochronology and geochemistry of host rocks to the Bastnäs-type REE mineralization in the Riddarhyttan area, west central Bergslagen, Sweden. *Dissertations in Geology at Lund University, Master's Thesis 466*, 1-60.
- Ludwig, K.R., 2012: User's manual for Isoplot 3.75. A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publications 5, 1-75.
- Möller, C., 1998: Decompressed eclogites in the Sveconorwegian (-Grenvillian) orogen of SW Sweden: petrology and tectonic implications. *Jour*nal of Metamorphic Geology 16, 641-656.
- Möller, C. & Andersson, J., 2018: Metamorphic zoning and behaviour of an underthrusting continental plate. *Journal of Metamorphic Geology* 36, 567 -589.
- Möller, C., Andersson, J., Dyck, B. & Antal Lundin, I., 2015: Exhumation of an eclogite terrane as a hot migmatitic nappe, Sveconorwegian orogen. *Lithos 226*, 147-168.
- Möller, C., Andersson, J., Lundqvist, I. & Hellström, F., 2007: Linking deformation, migmatite formation and zircon U-Pb geochronology in polymetamorphic orthogneisses, Sveconorwegian Province, Sweden. *Journal of Metamorphic Geology* 25, 727-750.
- Park, R.G., Åhäll, K.I. & Boland, M.P., 1991: The Sveconorwegian shear-zone network of SW Sweden in relation to mid-Proterozoic plate movements. *Precambrian Research* 49, 245-260.
- Paton, C., Hellstrom, J., Paul, B., Woodhead, J. & Hergt, J., 2011: Iolite: Freeware for the visualisation and processing of mass spectrometric data. *Journal of Analytical and Atomic Spectrometry 26*, 2508-2518.
- Petersson, A., Scherstén, A., Bingen, B., Gerdes, A. & Whitehouse, M.J., 2015: Mesoproterozoic continental growth: U-Pb-Hf-O zircon record in the Idefjorden Terrane, Sveconorwegian Orogen. *Precambrian Research 261*, 75-95.
- Roberts, N.M.W. & Slagstad, T., 2014: Continental growth and reworking on the edge of the Columbia and Rodinia supercontinents; 1.86-0.9 Ga accretionary orogeny in southwest Fennoscandia. *International Geology Review 57*, 1-25.
- Romer, R. & Smeds, S.-A., 1996: U-Pb columbite ages of pegmatites from Sveconorwegian terranes in Southwestern Sweden. *Precambrian Research* 76, 15-30.
- Samuelsson, L. & Lundqvist, I., 1988: Bedrock map

8B Vänersborg SO. Scale 1:50 000. Swedish Geological Survey, Af 160.

- Sawyer, E.W., 2008: *Atlas of Migmatites*. NRC Research Press, Ottawa. 371 pp.
- Schoene, B., 2014: U-Th-Pb Geochronology, In H.D. Holland & K.K. Turekian (eds.): Treatise on Geochemistry vol. 4, 341-378. Elsevier, Oxford.
- Slagstad, T., Roberts, N.M.W., Marker, M., Røhr, T.S. & Schiellerup, H., 2013: A non-collisional, accretionary Sveconorwegian orogen. *Terra Nova 25*, 30-37.
- Sylvester, P., 2001: Laser-Ablation-ICPMS in the Earth Sciences: principles and applications. *Short course series / Mineralogical Association of Canada 29*, 1-243.
- Söderlund, U., Persson, P.-O., Jarl., L.G., Stephens, M.B. & Wahlgren, C.H., 1999: Protolith ages and timing of deformation in the eastern marginal part of the Sveconorwegian orogen, southwestern Sweden. *Precambrian Research 94*, 29-48.
- Söderlund, U., Möller, C., Andersson, J., Johansson, L. & Whitehouse, M.J., 2002: Zircon geochronology in polymetamorphic gneisses in the Sveconorwegian orogen, SW Sweden: ion microprobe evidence for 1.46-1.42 Ga and 0.98-0.96 Ga reworking. *Precambrian Research 113*, 193-225.
- Söderlund, U., Hellström, F.A. & Kamo, S.L, 2008: Geochronology of high-pressure mafic granulite dykes in SW Sweden: tracking the P-T-t path of metamorphism using Hf isotopes in zircon and baddeleyite. *Journal of Metamorphic Geology 26*, 539-560.
- Tera, F. & Wasserburg, G.J., 1972a: U-Th-Pb systematics in lunar highland samples from the Luna 20 and Apollo 16 missions. *Earth and Planetary Science Letters 17*, 36-51.
- Tera, F. & Wasserburg, G.J., 1972b: U-Th-Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks. *Earth and Planetary Science Letters* 14, 281-304.
- Tual, L., Pitra, P. & Möller, C., 2017: P-T evolution of Precambrian eclogite in the Sveconorwegian orogen, SW Sweden. *Journal of Metamorphic Geolo*gy 35, 493-515.
- Ulmius, J., Andersson, J. & Möller, C., 2015: Hallandian 1.45 Ga high-temperature metamorphism in Baltica: P-T evolution and SIMS U-Pb zircon ages of aluminous gneisses, SW Sweden. *Precambrian Research 265*, 10-39.
- Wahlgren, C.-H., Cruden, A.R. & Stephens, M.B., 1994: Kinematics of a major fan-like structure in the eastern part of the Sveconorwegian orogen, Baltic Shield, south-central Sweden. *Precambrian Research* 70, 67-91.
- Wendt, I. & Carl, C., 1991: The statistical distribution of the mean squared weighted deviation. *Chemical Geology 86*, 275-285.
- Wetherill, G.W., 1956: Discordant uranium-lead ages. Transactions of the American Geophysical Un-

ion 37, 320-326.

- Wiedenbeck, M., Allé, P., Corfu, F., Griffin, W.L., Meier, M., Oberli, F., von Quadt, A., Roddick, J.C. & Spiegel, W., 1995: Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. *Geostandards Newsletters* 19, 1-23.
- Williams, I.S. & Claesson, S., 1987: Isotopic evidence for the Precambrian provenance and Caledonian metamorphism of high-grade paragneisses from the Seve Nappes, Scandinavian Caledonides. *Contributions to Mineralogy and Petrology 97*, 205-217.
- Yakymchuk, C., Kirkland, C.L. & Clark, C., 2018: Th/ U ratios in metamorphic zircon. *Journal of Metamorphic Geology 36*, 715-737.
Appendix I - Bedrock map of the study area

Conservations of the second se		the second secon	American Ame	And and a second	Image: Construction Image: Construct
Tind Landen	as fatores	and the second second	No.	Henseler Reference	2 km
	۲	Hâll Outrop			Granit, fint medelkornig och något gnejsig, vanligen muskovitförande Granite, finely medium-grained, slightly foliated, frequently with muscovite
	\bigtriangledown	Stenbrott, nedlagt Quarry, abandoned			Granit, grå till rödgrå, med mikroklinögon och muskovit, gnejsig Granite, arev to reddish arev, porphvitic with muscovite, aneissic
	45	Stänglighet med gradtal för stupning Lineation, plunge in degrees			Omkristallisation av företrädesvis medel- till grovkornig intrusivbergart Recrystallization of preforably medium- to coarse-grained intrusive rock
	25	Veckaxel med gradtal för stupning Fold axis, plunge in degrees			Mikroklinögon med diameter >2 cm Microcline augen with diameter >2 cm
	60	Skiffrighet med gradtal för stupning Foliation, dip in degrees			Mikroklinögon med diameter <2 cm Microcline augen with diameter <2 cm
	%	Skiffrighet med vertikal stupning Foliation, dip vertical		:-:	Migmatitiserad berggrund, andelen mobilisat oftast >50 % Migmatized rock with >50 % neosome
	/	Skiffrighet med angiven stupningsriktning Foliation, direction of dip indicated			Pegmatitådror Pegmatitic veins
	/	Sprickzon, morfologiskt eller geologiskt väl framträdande Fracture zone, morphologically or geologically prominent		1 2	Graniter, ögonförande, vanligen gnejsiga och ådriga (äldre ögongraniter) 1 = rödgrå, granatrik, äldst, 2 = röd, gammastrålning >30 uR, yngst. Granites, porphyritic, frequently gneissic and veined (older augen granites) 1 = reddish argv, garnet rich, oldest, 2 = red, -radiation >30 uR, youngest
[1	Förkastning genom väsentligen horisontella rörelser Strike-slip or oblique-slip fault	itoider oids		Granit och ljus granodiorit, gnejsiga Granite and light granodiorita, gneissic
	B KvB M	B = tektonisk breccia, KvB = kvartsläkt breccia, M = mylonit B = tectonic breccia, KvB = breccia cemented by quartz, M = mylonite	B-grani		Granodiorit och ljus tonalit, gnejsiga Granodiorite and light tonalite, gneissic
		Starkt förskiffrad berggrund Strongly foliated rocks			Tonalit, gnejsig Tonalite, gneissic
[1 ₀ 2 ₀ 3 ₀ 4 ₀ 5 ₀ ∕	Innesiutningar av 1. ospecificerade bergarter, 2. finkorniga gnejser, 3. intrusiva bergarter 4. basiska bergarter, 5. begynnande assimilation av nämnda bergarter Xenoliths of 1. unspecified rocks, 2. fine grained gneiss, 3. intrusive rocks, 4. basic rocks, 5. incipient assimilation of these xenoliths			Gnejs, rödgrå med mikroklinögon Gneiss, reddish-grey with microcline augen
	m	Muskovit i relativt riklig mängd Muscovite in considerable amounts	der		Granit och ljus granodiorit, gnejsiga Granite and light granodiorite, gneissic
· · [Db//	Diabasgång Dolerite dike	-granitoid		Granodiorit och ljus tonalit, gnejsiga Granodiorite and light tonalite, gneissic
	Ss	Sandstensfyllda sprickor Fissures filled up with sandstone	A 4		Tonalit, gnejsig Tonalite, gneissic
		Kambrisk sandsten Cambrian sandstone		U U	Metabasit, ultramafisk Metabasite, ultramafic
[11	Granodiorit, granit, pegmatit och aplit som gångar Dikes of granodiorite, granite, pegmatite and aplite			Metagabbro och metadiorit Metagabbro and metadiorite
		Pegmatit Pegmatite		1-7	Metabasit (amfibolit) som tunna skikt, skivor eller linser Metabasite (amphibolite) as thin layers, sheets or lenses
rusives		Ögongranit, rödgrå, messformig till starkt förskiffrad (yngre ögongranit) Augengranite, reddish-grey, massive to strongly foliated/younger augengranite)			Metabasit (amfibolit) Metabasite (amphibolite)
C-int		Metabasit, vanligen med bevarad primärtextur (omvandlad gabbro, diorit och diabas) Metabasite, frequently with primary textures (metagabbro, - diorite and - dolerite)		_K1	Kvartsitlager i ytbergartsgnejs Quartzite bed in supracrustal gneisses
		Granit, röd, med små mikroklinögon och muskovit, gnejsig Granite, red, with small microclineaugen and muscovite, gneissic			Ytbergartsgnejs, kvarts- och fältspatrik till glimmerrik, huvudsakligen vulkanisk Supracrustal gneisses, felsic to intermediary, mainly volcanic

Fig. 1. Bedrock map of the study area (same as in Fig. 3c) with legend, from the Swedish Geological Survey. $G\ddot{A}Z$ = the Göta \ddot{A} lv Shear Zone. Sample locations are marked with stars and numbers (see Table 1 for further information). Red stars refer to the analysed samples. Modified after Samuelsson & Lundqvist (1988).

Appendix II - LA-ICP-MS Methodology

Table 1. LA-ICP-MS U-Th-Pb	dating methodology, Department	of Geology, Lund University.
----------------------------	--------------------------------	------------------------------

Laboratory & Sample Prepara- tion	
Laboratory name	LA-ICP-MS lab at Lund University
Sample type / mineral	Zircon
Sample preparation	Conventional mineral separation, 1 inch resin mount, 0,25 μm polish to finish
Imaging	SE-imaging, CL-imaging, Tescan Mira3, 10-13kV, 12-16nA, 10 mm working distance.
Laser ablation system	
Make, Model & type	Photon Machines, Analyte G2
Ablation cell & volume	HelEx II Active 2-volume
Laser wavelength	193 nm
Pulse width	>4 ns
Fluence	2.5 J/cm ⁻²
Repetition rate	11-13 Hz
Spot size	18 x 18, 25 x 13, 23 x 14 μm
Sampling mode / pattern	18 µm single spot analyses
Carrier gas	He 0,8 L/min, N ² 4 ml/min, Ar make-up gas combined using a Y- connector close to sample cell
Pre-ablation laser warm-up (background collection)	30 seconds
Ablation duration	30 seconds
Wash-out delay	2 seconds
Cell carrier gas flow	0.8 l/min He
ICP-MS Instrument	
Make, Model & type	Bruker Aurora M90 quadrupole ICP-MS
Sample introduction	Via conventional tubing (1814a) and squid tubing (1802, 1806, 1816)
RF power	1350 W
Make-up gas flow	1.0 l/min Ar
Detection system	Single collector secondary electron multiplier
Masses measured	202, 204, 206, 207, 208, 232, 238
Integration time per peak	4 ms
Total integration time per reading	Approx. 1 sec
Sensitivity	20000 cps/ppm Pb
Dead time	16 ns
Data Processing	
Gas blank	40 second on-peak
Calibration strategy	GJ-1 used as primary reference material, 91500 used as secondary reference material, possibly BB-16 as well.
Reference Material info	GJ-1 (Jackson et al. 2004) 91500 (Wiedenbeck et al. 1995)

Data processing package used /	Iolite Software: baseline correction, downhole fractionation correc-
Correction for LIEF	tion and common Pb correction
Mass discrimination	Standard-sample bracketing with ²⁰⁷ Pb/ ²⁰⁶ Pb and ²⁰⁶ Pb/ ²³⁸ U nor-
	malized to reference material GJ-1
Uncertainty level & propagation	Ages are quoted at 2 sigma internal errors
Quality control / Validation	GJ-1: Wtd ave ²⁰⁷ Pb/ ²⁰⁶ Pb Age = 605 ± 5 Ma
	91500: Wtd ave ²⁰⁷ Pb/ ²⁰⁶ Pb Age = 1068 ± 4 Ma
Other information	Detailed method description reported by Frei & Gerdes (2009)

Appendix III – Spot positions in representative zircons

Fig. 1a. Hälltorp, Median Segment. CL-images of analysed zircons in MISE1814a, that gave concordant analyses. Concordant (<5% discordance) spots are shown with solid lines and discordant analyses with dotted lines (>5% discordance). White spots represent the older igneous population while red spots represent the younger metamorphic population. The zircon number is shown in the upper left corner of each image. The spot number is indicated with #, followed by the 207 Pb/ 206 Pb date with 2 standard errors.

Fig. 1b. Hälltorp, Median Segment. CL-images of analysed zircons in MISE1814a, that gave concordant analyses. Concordant (<5% discordance) spots are shown with solid lines and discordant analyses with dotted lines (>5% discordance). White spots represent the older igneous population while red spots represent the younger metamorphic population. The zircon number is shown in the upper left corner of each image. The spot number is indicated with #, followed by the 207 Pb/ 206 Pb date with 2 standard errors.

Tösslanda, Göta Älv Shear Zone

Fig. 2a. Tösslanda, Göta Älv Shear Zone. CL-images of analysed zircons in MISE1806 melanosome, that gave concordant analyses. Concordant (<5% discordance) spots are shown with solid lines and discordant analyses with dotted lines (>5% discordance). White spots represent the older igneous population. The zircon number is shown in the upper left corner of each image. The spot number is indicated with #, followed by the 207 Pb/ 206 Pb date with 2 standard errors.

Fig. 2b. Tösslanda, Göta Älv Shear Zone. CL-images of analysed zircons in MISE1806 melanosome, that gave concordant analyses. Concordant (<5% discordance) spots are shown with solid lines and discordant analyses with dotted lines (>5% discordance). White spots represent the older igneous population while red spots represent the younger metamorphic population. The zircon number is shown in the upper left corner of each image. The spot number is indicated with #, followed by the ²⁰⁷Pb/²⁰⁶Pb date with 2 standard errors. The asterisk indicates an analysis used for age calculations with up to 10% discordance.

Fig. 2c. Tösslanda, Göta Älv Shear Zone. CL-images of analysed zircons in MISE1806 melanosome, that gave concordant analyses. Concordant (<5% discordance) spots are shown with solid lines and discordant analyses with dotted lines (>5% discordance). White spots represent the older igneous population while red spots represent the younger metamorphic population. Overlapping spots are split analyses. The zircon number is shown in the upper left corner of each image. The spot number is indicated with #, followed by the ²⁰⁷Pb/²⁰⁶Pb date with 2 standard errors.

Tösslanda, Göta Älv Shear Zone

Fig. 3a. Tösslanda, Göta Älv Shear Zone. CL-images of analysed zircons in MISE1806 leucosome, that gave concordant analyses. Concordant (<5% discordance) spots are shown with solid lines and discordant analyses with dotted lines (>5% discordance). White spots represent the older igneous population while red spots represent the younger metamorphic population. Overlapping spots are split analyses. The zircon number is shown in the upper left corner of each image. The spot number is indicated with #, followed by the ²⁰⁷Pb/²⁰⁶Pb date with 2 standard errors.

Tösslanda, Göta Älv Shear Zone

Fig. 3b. Tösslanda, Göta Älv Shear Zone. CL-images of analysed zircons in MISE1806 leucosome, that gave concordant analyses. Concordant (<5% discordance) spots are shown with solid lines and discordant analyses with dotted lines (>5% discordance). White spots represent the older igneous population while red spots represent the younger metamorphic population. The zircon number is shown in the upper left corner of each image. The spot number is indicated with #, followed by the 207 Pb/ 206 Pb date with 2 standard errors.

Fig. 3c. Tösslanda, Göta Älv Shear Zone. CL-images of analysed zircons in MISE1806 leucosome, that gave concordant analyses. Concordant (<5% discordance) spots are shown with solid lines and discordant analyses with dotted lines (>5% discordance). White spots represent the older igneous population while red spots represent the younger metamorphic population. The zircon number is shown in the upper left corner of each image. The spot number is indicated with #, followed by the 207 Pb/ 206 Pb date with 2 standard errors.

Hälltorp, Median Segment

Fig. 4a. Hälltorp, Median Segment. CL-images of analysed zircons in MISE1816c melanosome, that gave concordant analyses. Concordant (<5% discordance) spots are shown with solid lines and discordant analyses with dotted lines (>5% discordance). White spots represent the older igneous population. The zircon number is shown in the upper left corner of each image. The spot number is indicated with #, followed by the 207 Pb/ 206 Pb date with 2 standard errors.

Fig. 4b. Hälltorp, Median Segment. CL-images of analysed zircons in MISE1816 melanosome, that gave concordant analyses. Concordant (<5% discordance) spots are shown with solid lines and discordant analyses with dotted lines (>5% discordance). White spots represent the older igneous population. The zircon number is shown in the upper left corner of each image. The spot number is indicated with #, followed by the 207 Pb/ 206 Pb date with 2 standard errors.

Fig. 4c. Hälltorp, Median Segment. CL-images of analysed zircons in MISE1816 melanosome, that gave concordant analyses. Concordant (<5% discordance) spots are shown with solid lines and discordant analyses with dotted lines (>5% discordance). White spots represent the older igneous population. The zircon number is shown in the upper left corner of each image. The spot number is indicated with #, followed by the 207 Pb/ 206 Pb date with 2 standard errors.

Fig. 4d. Hälltorp, Median Segment. CL-images of analysed zircons in MISE1816 melanosome, that gave concordant analyses. Concordant (<5% discordance) spots are shown with solid lines and discordant analyses with dotted lines (>5% discordance). White spots represent the older igneous population. The zircon number is shown in the upper left corner of each image. The spot number is indicated with #, followed by the 207 Pb/ 206 Pb date with 2 standard errors.

Fig. 5a. Hälltorp, Median Segment. CL-images of analysed zircons in MISE1816 leucosome, that gave concordant analyses. Concordant (<5% discordance) spots are shown with solid lines and discordant analyses with dotted lines (>5% discordance). White spots represent the older igneous population. The zircon number is shown in the upper left corner of each image. The spot number is indicated with #, followed by the 207 Pb/ 206 Pb date with 2 standard errors.

Hälltorp, Median Segment

Fig. 5b. Hälltorp, Median Segment. CL-images of analysed zircons in MISE1816 leucosome, that gave concordant analyses. Concordant (<5% discordance) spots are shown with solid lines and discordant analyses with dotted lines (>5% discordance). White spots represent the older igneous population while red spots represent the younger metamorphic population. The zircon number is shown in the upper left corner of each image. The spot number is indicated with #, followed by the 207 Pb/ 206 Pb date with 2 standard errors.

Fig. 5c. Hälltorp, Median Segment. CL-images of analysed zircons in MISE1816 leucosome, that gave concordant analyses. Concordant (<5% discordance) spots are shown with solid lines and discordant analyses with dotted lines (>5% discordance). White spots represent the older igneous population while red spots represent the younger metamorphic population. The zircon number is shown in the upper left corner of each image. The spot number is indicated with #, followed by the 207 Pb/ 206 Pb date with 2 standard errors.

Fig. 6a. Arsjön, Western Segment. CL-images of analysed zircons in MISE1802a melanosome, that gave concordant analyses. Concordant (<5% discordance) spots are shown with solid lines and discordant analyses with dotted lines (>5% discordance). White spots represent the older igneous population. The zircon number is shown in the upper left corner of each image. The spot number is indicated with #, followed by the 207 Pb/ 206 Pb date with 2 standard errors.

Fig. 6b. Arsjön, Western Segment. CL-images of analysed zircons in MISE1802a melanosome, that gave concordant analyses. Concordant (<5% discordance) spots are shown with solid lines and discordant analyses with dotted lines (>5% discordance). White spots represent the older igneous population. The zircon number is shown in the upper left corner of each image. The spot number is indicated with #, followed by the 207 Pb/ 206 Pb date with 2 standard errors.

Fig. 7a. Arsjön, Western Segment. CL-images of analysed zircons in MISE1802a leucosome, that gave concordant analyses. Concordant (<5% discordance) spots are shown with solid lines and discordant analyses with dotted lines (>5% discordance). White spots represent the older igneous population while red spots represent the younger metamorphic population. The zircon number is shown in the upper left corner of each image. The spot number is indicated with #, followed by the ²⁰⁷Pb/²⁰⁶Pb date with 2 standard errors. The asterisk indicates an analysis used for age calculations with up to 10% discordance.

Fig. 7b. Arsjön, Western Segment. CL-images of analysed zircons in MISE1802a leucosome, that gave concordant analyses. Concordant (<5% discordance) spots are shown with solid lines and discordant analyses with dotted lines (>5% discordance). White spots represent the older igneous population while red spots represent the younger metamorphic population. The zircon number is shown in the upper left corner of each image. The spot number is indicated with #, followed by the 207 Pb/ 206 Pb date with 2 standard errors.

Fig. 7c. Arsjön, Western Segment. CL-images of analysed zircons in MISE1802a leucosome, that gave concordant analyses. Concordant (<5% discordance) spots are shown with solid lines and discordant analyses with dotted lines (>5% discordance). White spots represent the older igneous population while red spots represent the younger metamorphic population. The zircon number is shown in the upper left corner of each image. The spot number is indicated with #, followed by the 207 Pb/ 206 Pb date with 2 standard errors. The asterisk indicates an analysis used for age calculations with up to 10% discordance.

APPENDIX IV – Geochronology data

Table 1. LA-ICP-MS data for analysed zircons, includes all analyses except for rejected spots. Bold text indicates the concordant and filtered data at 5% discordance, out of which the mean average ages were calculated. Asterisk indicates measurements of up to 10% discordance in the younger population, used in the age calculations. Sq = square, Rec = rectangle.

Zircon	Spot	Spot geometry	Core/ Rim	U (ppm)	Th (ppm)	Th/U	²³⁸ U/ ²⁰⁶ Pb	± 2SE	²⁰⁷ Pb/ ²⁰⁶ Pb	± 2SE	²⁰⁷ Pb/ ²⁰⁶ Pb age (Ma)	± 2SE	Conc. %
MISE1802	2a leucosome												
1	Spot 35	Sq	Core	81	104	1.1806	3.5323	0.0374	0.0962	0.0012	1552	23	104
2	Spot 36	Sq	Core	278	87	0.2004	3.5236	0.0509	0.0967	0.0011	1561	21	103
3	Spot 37	Rec	Core	247	277	1.0604	3.5199	0.0335	0.0968	0.0009	1562	17	103
4	Spot 39	Sq	Core	404	488	1.1862	3.6232	0.0420	0.0989	0.0009	1604	18	98
5	Spot 41	Rec	Rim	121	52	0.4146	4.1442	0.0979	0.0963	0.0020	1554	39	90
6	Spot 42	Sq	Core	650	753	0.9804	3.7120	0.0427	0.0977	0.0007	1581	14	97
6	Spot 43	Rec	Rim	46	21	0.4421	3.5587	0.0608	0.0977	0.0021	1581	40	101
7	Spot 44	Sq	Core	163	26	0.1364	3.6364	0.0397	0.0976	0.0011	1579	21	99
7	Spot 45	Sq	Rim	12	0.01	0.0018	5.3619	0.0978	0.0749	0.0029	1066	78	103
8	Spot 46	Sq	Core	109	106	0.9390	3.5311	0.0324	0.0962	0.0009	1552	18	104
8	Spot 47	Rec	Rim	8	0.02	0.0033	4.9826	0.1316	0.0745	0.0047	1055	127	112
9	Spot 48	Sq	Core	104	23	0.2212	3.7679	0.0369	0.0980	0.0013	1586	25	96
9	Spot 49	Sq	Rim	12	1.06	0.0762	5.9067	0.1919	0.0745	0.0052	1055	141	96
10	Spot 50	Sq	Core	227	203	0.8150	3.6403	0.0477	0.0965	0.0009	1557	18	101
11	Spot 52	Sq	Core	193	168	0.8045	3.5461	0.0390	0.0953	0.0011	1534	22	104
12	Spot 53	Rec	Core	332	260	0.7843	4.0917	0.0636	0.1075	0.0011	1757	19	80
12	Spot 54	Rec	Rim	13	4	0.2688	3.6900	0.0899	0.0927	0.0032	1482	65	104
13	Spot 55	Sq	Core	253	272	1.0173	3.5039	0.0307	0.0955	0.0007	1539	14	105
14	Spot 56	Sq	Core	156	193	1.2022	3.6010	0.0415	0.0976	0.0010	1578	19	100
18	Spot 61	Sq	Core	187	111	0.5727	3.5997	0.0454	0.0962	0.0011	1552	21	102
20	Spot 64 *	Rec	Rim	9	0.03	0.0028	5.8005	0.1144	0.0768	0.0035	1116	91	92
21	Spot 66	Rec	Rim	140	78	0.5450	3.6536	0.0280	0.0963	0.0008	1554	15	100
22	Spot 68	Sq	Core	289	239	0.8078	3.3014	0.0283	0.0944	0.0008	1516	15	113
24	Spot 71	Sq	Core	231	327	1.2821	3.7037	0.0425	0.0946	0.0009	1521	19	101
26	Spot 72	Sq	Core	222	221	0.8921	3.4602	0.0383	0.0966	0.0009	1559	18	105
25	Spot 73	Rec	Core	176	144	0.7886	3.4734	0.0483	0.0964	0.0009	1556	18	105
27	Spot 75	Sq	Core	237	230	0.9452	3.6088	0.0313	0.0940	0.0007	1508	15	105
27	Spot 76	Sq	Core	273	241	0.8666	3.4892	0.0317	0.0943	0.0008	1515	15	107
28	Spot 77	Rec	Core	173	183	0.9191	3.7078	0.0344	0.0942	0.0010	1512	19	102
29	Spot 78	Sq	Core	87	115	1.2783	3.5829	0.0347	0.0947	0.0012	1522	24	104
31	Spot 80	Sq	Rim	12	0.04	0.0039	5.8241	0.1221	0.0737	0.0036	1033	99	99
32	Spot 81	Sq	Core	215	190	0.8340	3.4352	0.0413	0.0941	0.0011	1510	22	109
33	Spot 82	Sq	Core	77	91	1.1249	3.5026	0.0368	0.0925	0.0010	1478	21	110
34	Spot 83	Sq	Core	96	38	0.2825	3.7397	0.0392	0.0980	0.0011	1586	21	96
35	Spot 84	Sq	Core	306	560	1.7995	3.3278	0.0399	0.0930	0.0009	1487	19	114
35	Spot 85	Rec	Rim	9	0.10	0.0333	5.9988	0.1475	0.0791	0.0050	1175	125	85
37	Spot 87	Sq	Core	109	136	0.6711	3.6140	0.0379	0.0950	0.0012	1528	24	103
38	Spot 88	Sq	Core	147	241	1.6273	3.6010	0.0376	0.0936	0.0009	1499	19	105
38	Spot 89*	Rec	Rim	5	0.17	0.0435	5.4885	0.1777	0.0792	0.0063	1177	157	92
40	Spot 90	Sq	Core	198	285	1.3441	3.6010	0.0467	0.0996	0.0008	1617	15	98
39	Spot 93	Sq	Rim	10	0.005	0.0018	6.0132	0.1193	0.0742	0.0033	1047	90	95

42	Spot 95	Sq	Core	206	181	0.6250	3.4153	0.0397	0.0952	0.0009	1532	18	108
44	Spot 98	Sq	Rim	20	1.45	0.0645	5.6022	0.1287	0.0886	0.0034	1396	74	76
45	Spot 99	Sq	Core	35	25	0.7102	3.6630	0.0416	0.0947	0.0016	1522	32	102
45	Spot 100	Rec	Rim	149	74	0.4566	3.7147	0.0580	0.0959	0.0014	1546	27	99
49	Spot 104	Rec	Core	202	270	1.2870	3.3223	0.0596	0.0933	0.0016	1494	32	114
50	Spot 105	Sq	Core	89	42	0.4439	3.7064	0.0495	0.0929	0.0014	1486	29	104
50	Spot 106	Rec	Rim	109	26	0.2327	3.4130	0.0373	0.0894	0.0013	1413	28	117
51	Spot 107	Sq	Core	165	297	1.7899	3.7636	0.0439	0.0939	0.0009	1506	19	101
52	Spot 108	Sq	Core	125	104	0.7831	3.4698	0.0397	0.0946	0.0009	1519	18	107
53	Spot 109	Sq	Core	104	129	1.2077	3.8183	0.0569	0.0932	0.0011	1492	22	101
53	Spot 110	Sq	Rim	10	0.33	0.1111	5.8651	0.1410	0.0729	0.0039	1011	108	100
54	Spot 111	Sq	Core	397	351	0.8432	3.8300	0.1085	0.0920	0.0008	1467	17	102
56	Spot 112	Sq	Core	167	58	0.3356	3.5461	0.0566	0.0961	0.0015	1550	29	103
58	Spot 114	Rec	Core	234	179	0.7657	3.7023	0.0411	0.0969	0.0009	1565	18	98
60	Spot 116	Rec	Core	124	116	0.7082	3.7147	0.0428	0.0963	0.0011	1554	21	99
61	Spot 117	Sq	Core	90	83	0.8977	3.8168	0.0495	0.0952	0.0011	1532	22	98
62	Spot 118	Rec	Core	184	190	1.0091	3.6900	0.0613	0.0971	0.0014	1569	27	99
63	Spot 120	Sq	Core	152	66	0.4203	3.7313	0.0557	0.0960	0.0012	1548	23	99
65	Spot 122	Rec	Core	59	23	0.2653	3.6350	0.0449	0.0970	0.0015	1567	29	100
65	Spot 123 *	Rec	Rim	12	0.02	0.0022	5.7770	0.1168	0.0770	0.0030	1121	78	92
67	Spot 124	Sq	Core	63	48	0.7663	3.7594	0.0438	0.0909	0.0013	1445	27	105
69	Spot 127	Sq	Core	120	78	0.6382	3.3659	0.0521	0.0936	0.0012	1500	24	112
70	Spot 129	Sq	Rim	4	0.02	0.0065	5.1151	0.1622	0.0825	0.0070	1257	166	92
71	Spot 130	Sq	Core	72	31	0.4329	3.7051	0.0398	0.0927	0.0013	1482	27	104
72	Spot 131	Sq	Core	192	113	0.5838	3.6684	0.0417	0.0958	0.0009	1544	17	101
72	Spot 132	Rec	Rim	97	40	0.4026	3.6550	0.0441	0.0944	0.0011	1516	22	103
74	Spot 136	Sq	Core	171	241	1.3928	3.6657	0.0699	0.0957	0.0016	1542	31	101
74	Spot 137	Rec	Rim	161	94	0.5482	3.7189	0.0567	0.0936	0.0010	1500	20	102
75	Spot 138	Sq	Core	313	343	1.0929	3.5026	0.0319	0.0958	0.0007	1544	15	105
77	Spot 141	Sq	Core	239	216	0.8985	3.3411	0.0279	0.0950	0.0008	1527	16	110
79	Spot 144	Sq	Core	215	218	1.0081	3.6523	0.0440	0.0951	0.0013	1530	26	102
80	Spot 145	Rec	Core	152	101	0.6570	3.6969	0.0547	0.0969	0.0013	1565	25	99
81	Spot 146	Rec	Core	207	213	1.0267	3.3478	0.0426	0.0953	0.0011	1534	22	110
81	Spot 147	Rec	Rim	12	0.03	0.0030	5.6593	0.1185	0.0742	0.0034	1047	92	100
MISE18	02a melanosome												
2	Spot 29	Rec	Core	375	10	0.0106	4.3029	0.0574	0.0975	0.0014	1577	27	85
3	Spot 30	Sq	Core	168	174	0.9980	4.1876	0.0649	0.0972	0.0013	1571	25	88
3	Spot 31	Sq	Core	366	318	0.8368	3.9216	0.0400	0.0953	0.0010	1534	19	95
5	Spot 33	Sq	Core	644	845	1.2005	3.9078	0.1252	0.1371	0.0042	2191	53	67
6	Spot 34	Sq	Core	100	127	1.1614	3.8139	0.0407	0.0965	0.0012	1558	23	96
7	Spot 35	Sq	Core	311	226	0.6373	3.8183	0.0423	0.0953	0.0011	1534	22	98
9	Spot 37	Rec	Core	221	337	1.1765	3.8640	0.0358	0.0944	0.0010	1516	20	98
11	Spot 39	Sq	Core	340	292	0.8621	3.7147	0.0400	0.1105	0.0012	1808	20	85
12	Spot 40	Sq	Core	307	405	1.0965	3.9463	0.0545	0.0969	0.0010	1564	19	93

13	Spot 41	Rec	Core	290	191	0.6725	3.5881	0.0438	0.1146	0.0023	1874	36	85
13	Spot 42	Rec	Rim	132	24	0.1883	3.9841	0.0381	0.1040	0.0012	1697	21	85
14	Spot 43	Sq	Core	342	239	0.6807	3.7922	0.0618	0.0963	0.0010	1554	19	97
15	Spot 45	Rec	Rim	161	84	0.5198	3.8506	0.0430	0.0981	0.0009	1588	17	94
17	Spot 47	Rec	Core	177	123	0.6468	3.4686	0.0469	0.1123	0.0025	1837	40	89
19	Spot 49	Rec	Core	240	214	0.8150	3.6470	0.0306	0.0974	0.0009	1576	17	99
20	Spot 50	Rec	Core	629	705	1.0235	3.6792	0.0338	0.1040	0.0010	1697	18	91
21	Spot 51	Rec	Core	302	16	0.0514	3.8820	0.0663	0.0971	0.0016	1569	31	94
22	Spot 52	Rec	Core	388	730	1.7575	3.8226	0.0263	0.0958	0.0007	1544	14	97
23	Spot 53	Sq	Core	442	413	0.8143	3.7979	0.0447	0.0987	0.0009	1599	17	94
24	Spot 54	Sq	Core	222	217	0.8993	3.8300	0.0381	0.0968	0.0009	1564	17	96
24	Spot 55	Sq	Rim	375	324	0.8104	3.9635	0.0346	0.0957	0.0008	1542	16	94
25	Spot 56	Sq	Core	405	420	0.9355	3.7369	0.0363	0.0963	0.0008	1554	16	98
26	Spot 57	Rec	Core	733	743	0.9533	4.2992	0.0684	0.1007	0.0010	1637	18	82
28	Spot 60	Sq	Core	217	154	0.6826	3.7037	0.0398	0.0998	0.0012	1620	22	95
29	Spot 61	Sq	Core	287	254	0.9033	3.7722	0.0327	0.0955	0.0007	1538	14	99
31	Spot 66	Rec	Rim	61	29	0.5063	3.7010	0.0479	0.0973	0.0013	1573	25	98
32	Spot 67	Sq	Core	58	39	0.6949	3.7893	0.0359	0.0961	0.0012	1550	23	97
33	Spot 69	Rec	Core	197	247	1.2407	3.8139	0.0378	0.0963	0.0010	1554	19	97
34	Spot 70	Rec	Core	321	338	1.0101	3.8052	0.0333	0.0963	0.0007	1554	14	97
35	Spot 71	Sq	Core	477	381	0.7868	3.6792	0.0393	0.1002	0.0008	1627	15	95
37	Spot 74	Sq	Core	402	136	0.2740	3.6941	0.0478	0.0965	0.0011	1558	21	99
39	Spot 76	Rec	Core	385	28	0.0685	3.7722	0.0427	0.0964	0.0010	1556	19	97
40	Spot 77	Sq	Core	673	67	0.0932	3.7750	0.0328	0.0960	0.0008	1548	16	98
40	Spot 78	Sq	Rim	325	355	0.7257	3.8895	0.0318	0.0973	0.0008	1573	15	94
41	Spot 79	Rec	Core	755	652	0.7541	3.5524	0.0341	0.1009	0.0009	1641	17	97
42	Spot 80	Rec	Core	277	427	1.4388	3.7439	0.0378	0.0966	0.0010	1559	19	98
43	Spot 81	Rec	Core	306	584	1.8302	3.7313	0.0306	0.0972	0.0009	1571	17	97
44	Spot 82	Sq	Rim	342	244	0.7184	3.6711	0.0323	0.0959	0.0009	1545	18	101
44	Spot 83	Sq	Rim	593	482	0.8140	4.0883	0.0318	0.0969	0.0006	1565	12	90
45	Spot 84	Sq	Core	566	498	0.8857	3.6617	0.0429	0.0973	0.0009	1574	18	99
46	Spot 85	Sq	Core	1022	830	0.5464	4.3328	0.1051	0.0955	0.0008	1538	15	87
47	Spot 86	Rec	Core	195	269	1.3439	3.8805	0.0301	0.0977	0.0010	1581	19	93
48	Spot 87	Sq	Core	402	319	0.7911	3.7495	0.0464	0.1006	0.0010	1636	18	93
49	Spot 88	Rec	Core	712	524	0.7310	4.1305	0.0546	0.1036	0.0011	1690	20	83
50	Spot 89	Sq	Core	276	401	1.4209	3.7807	0.0300	0.0957	0.0008	1542	16	98
51	Spot 90	Rec	Core	476	627	1.2804	3.6563	0.0455	0.1047	0.0019	1709	33	91
52	Spot 91	Sq	Core	535	536	0.9634	3.8760	0.0315	0.1015	0.0010	1652	18	90
53	Spot 92	Sq	Core	354	424	1.1723	3.8358	0.0427	0.1022	0.0015	1664	27	90
54	Spot 93	Sq	Core	669	649	0.9158	4.4053	0.0640	0.0991	0.0009	1608	17	82
55	Spot 94	Sq	Core	205	103	0.4545	3.9573	0.0423	0.0939	0.0011	1506	22	96
56	Spot 95	Sq	Core	489	396	0.8091	4.1859	0.0438	0.0975	0.0006	1578	12	88
57	Spot 96	Sq	Core	345	474	1.3550	3.6232	0.0394	0.0970	0.0010	1567	19	100
59	Spot 98	Sq	Core	234	209	0.8576	3.7272	0.0306	0.0980	0.0009	1587	17	97

62	Spot 102	Rec	Rim	120	119	0.9434	3.6232	0.0473	0.0982	0.0009	1591	17	99
66	Spot 105	Sq	Core	410	430	1.0616	3.5817	0.0334	0.0965	0.0008	1557	16	102
67	Spot 106	Sq	Core	215	283	1.2240	3.6417	0.0345	0.0961	0.0009	1550	17	101
68	Spot 107	Sq	Core	576	581	0.9009	3.7216	0.0360	0.0970	0.0006	1568	12	98
69	Spot 109	Sq	Core	136	123	0.8368	3.5298	0.0361	0.0963	0.0010	1554	19	103
70	Spot 110	Sq	Core	576	506	0.8006	3.6140	0.0379	0.0973	0.0007	1573	13	100
MISE1	806 leucosome												
3	Spot 3	Sq	Core	731	820	1.0893	4.1220	0.0561	0.0870	0.0008	1361	17	103
4	Spot 4a	Sq	Core	1102	854	0.7680	4.2248	0.0553	0.0864	0.0011	1347	25	102
4	Spot 4b	Sq	Core	728	45	0.0518	5.3648	0.1094	0.0755	0.0019	1082	50	102
5	Spot 5	Sq	Core	854	2220	1.9841	5.7078	0.1662	0.0864	0.0007	1348	16	77
7	Spot 6	Sq	Core	362	318	0.8432	4.2248	0.1321	0.0874	0.0012	1369	26	100
7	Spot 7	Sq	Rim	980	732	0.7062	5.2110	0.1385	0.0887	0.0008	1398	17	81
8	Spot 8	Sq	Core	492	1890	3.8023	5.5249	0.0794	0.0916	0.0011	1459	23	73
8	Spot 9	Sq	Rim	547	2890	5.0531	4.7778	0.0776	0.0896	0.0013	1417	28	86
9	Spot 10	Sq	Core	612	468	0.7485	3.9620	0.0392	0.0853	0.0007	1323	17	110
11	Spot 11	Sq	Core	820	768	0.7657	4.3085	0.0947	0.0862	0.0012	1343	27	100
13	Spot 12	Sq	Core	735	643	0.8475	4.1545	0.0501	0.0886	0.0009	1395	20	100
13	Spot 13	Rec	Rim	987	884	0.8591	4.2105	0.0762	0.0880	0.0010	1382	22	99
14	Spot 14	Rec	Core	1060	1354	1.2422	3.8850	0.0664	0.0869	0.0010	1358	22	109
14	Spot 15	Rec	Rim	403	283	0.6930	4.4683	0.0659	0.0848	0.0010	1311	23	99
15	Spot 16	Sq	Core	895	1427	1.7391	4.3783	0.0556	0.0858	0.0008	1333	18	99
16	Spot 17a	Sq	Core	636	754	1.1990	4.3271	0.1348	0.0872	0.0017	1365	38	98
16	Spot 17b	Sq	Core	172	175	1.0352	3.4722	0.0603	0.0940	0.0015	1508	30	108
16	Spot 18a	Sq	Rim	2005	83	0.0373	5.3163	0.1159	0.0749	0.0014	1066	38	104
15	Spot 18b	Sq	Rim	483	681	1.2019	4.2571	0.0598	0.0874	0.0011	1369	24	99
17	Spot 19	Sq	Core	330	934	2.5510	4.6189	0.1088	0.0952	0.0015	1532	30	82
18	Spot 20	Sq	Core	845	1322	1.6393	4.7801	0.0708	0.0843	0.0013	1299	30	94
19	Spot 21	Sq	Core	816	1936	2.4213	4.5351	0.1070	0.0909	0.0016	1445	34	89
20	Spot 22	Sq	Core	577	563	0.8613	4.2790	0.0604	0.0866	0.0008	1350	17	100
21	Spot 23	Rec	Core	292	128	0.4562	4.1169	0.0644	0.0885	0.0013	1393	28	101
21	Spot 24	Sq	Rim	2470	12	0.0051	5.3305	0.1478	0.0746	0.0016	1058	43	105
22	Spot 25	Sq	Core	344	184	0.5659	4.2553	0.0598	0.0849	0.0010	1313	22	104
22	Spot 26	Rec	Rim	1082	200	0.1499	5.5586	0.0865	0.0755	0.0010	1082	27	99
24	Spot 27	Sq	Core	541	2680	4.8544	6.9444	0.7234	0.0984	0.0043	1594	82	54
23	Spot 28	Sq	Core	660	780	1.0707	4.2790	0.0641	0.0934	0.0013	1496	26	90
23	Spot 29	Rec	Rim	204	90	0.4617	3.6127	0.0653	0.0937	0.0013	1502	26	105
25	Spot 30	Sq	Core	759	1060	1.0787	5.2056	0.0867	0.0863	0.0010	1346	22	84
27	Spot 31	Sq	Core	788	797	1.0571	4.4033	0.1047	0.0927	0.0018	1482	37	89
28	Spot 32	Sq	Core	413	392	0.9634	4.0193	0.0630	0.0847	0.0008	1309	17	109
31	Spot 33	Rec	Core	261	304	0.8850	3.9246	0.0400	0.0855	0.0010	1326	22	110
32	Spot 34	Sq	Core	483	564	0.8703	5.8411	0.0716	0.0886	0.0011	1396	24	73
32	Spot 35	Sq	Core	159	88	0.5488	4.0733	0.0498	0.0881	0.0014	1385	31	102
34	Spot 36	Sq	Core	1087	697	0.6373	5.5006	0.0877	0.1103	0.0036	1804	59	60

36	Spot 37	Sa	Core	2800	33	0.0125	6 7250	0.0005	0.0733	0.0007	1021	18	88
36	Spot 37	Sq	Rim	2850	30	0.0129	6 8250	0.0978	0.0706	0.0007	045	10	03
37	Spot 30	Sq	Core	651	787	0.0129	4 1754	0.0978	0.0877	0.0007	1376	22	101
38	Spot 35	Sa	Core	500	480	0.7092	4 3734	0.0542	0.0863	0.0010	1345	22	100
38	Spot 40	Bec	Dim	149	67	0.4589	4 3365	0.1222	0.0851	0.0014	1318	32	102
30	Spot 47	Sa	Core	533	435	0.8425	4 2212	0.0481	0.0873	0.0014	1366	19	102
40	Spot 42	Sq	Core	1230	7240	5 7071	5 6306	0.2017	0.0880	0.0005	1382	48	76
40	Spot 45	Sq	Rim	304	1180	3 1546	5.0813	0.0826	0.0890	0.0016	1404	34	82
41	Spot 45	Sa	Core	297	405	1 0776	4 2937	0.0627	0.0870	0.0011	1360	24	99
41	Spot 46	Rec	Rim	187	386	1 2821	4 2717	0.0839	0.0867	0.0014	1354	31	100
42	Spot 47	Sa	Core	240	82	0.3106	4 7596	0.0793	0.0876	0.0015	1374	33	89
42	Spot 48	Rec	Rim	402	36	0.0871	6 4683	0.1171	0.0813	0.0014	1220	34	75
43	Spot 40	Sa	Rim	332	180	0.4778	4 2626	0.0600	0.0842	0.0014	1229	25	105
45	Spot 49	Sa	Core	506	467	0.9033	4.1982	0.0846	0.0856	0.0014	1329	32	103
45	Spot 50	Sa	Rim	637	2133	3 3898	5 2770	0.0668	0.0930	0.0011	1488	22	75
46	Spot 57	Sa	Core	238	324	1.2180	4.5351	0.0864	0.0857	0.0011	1331	25	96
46	Spot 52 Spot 53	Sa	Rim	339	804	2.0790	4.2283	0.0518	0.0874	0.0010	1369	21	100
47	Spot 54	Sa	Core	358	471	1.3405	4.1964	0.0458	0.0867	0.0011	1354	24	102
47	Spot 55	Sa	Rim	775	575	0.7479	4.1391	0.0463	0.0869	0.0009	1358	20	103
48	Spot 56	Sa	Core	557	495	0.8969	4.0568	0.0592	0.0858	0.0009	1333	21	107
48	Spot 57	Rec	Rim	490	210	0.4115	4.7778	0.1370	0.0830	0.0013	1269	31	97
49	Spot 58	Sa	Core	447	357	0.7246	4.0783	0.0765	0.0880	0.0018	1382	39	102
49	Spot 59	Sa	Rim	944	571	0.6135	6.5876	0.1128	0.0858	0.0010	1334	23	68
51	Spot 60	Sa	Core	782	558	0.7380	4.2882	0.0883	0.0867	0.0013	1354	29	100
51	Spot 61a	Sa	Rim	1013	40	0.0333	5.4496	0.0891	0.0746	0.0011	1058	30	103
51	Spot 61b	Sa	Rim	146	71	0.4926	3.9370	0.0450	0.0860	0.0016	1338	36	109
54	Spot 62	Sq	Core	378	666	1.6920	4.2517	0.0868	0.0881	0.0013	1385	28	98
55	Spot 63	Sq	Core	204	402	1.5873	4.2194	0.1086	0.0867	0.0039	1354	87	101
55	Spot 64	Sq	Rim	1168	833	0.7163	5.2301	0.1723	0.0763	0.0018	1103	47	102
56	Spot 65	Sq	Core	753	383	0.5076	4.2159	0.0658	0.0859	0.0014	1336	32	103
56	Spot 66	Sq	Rim	481	337	0.6798	4.0339	0.0504	0.0884	0.0015	1391	33	103
56	Spot 67	Sq	Rim	628	1730	2.2883	10.741	0.2884	0.1154	0.0030	1886	47	30
58	Spot 68	Sq	Core	754	648	0.8703	1 4.0634	0.0380	0.0870	0.0007	1361	16	104
58	Spot 69a	Rec	Rim	3680	37	0.0097	5.3967	0.1194	0.0753	0.0012	1077	32	102
58	Spot 69b	Rec	Rim	418	296	0.6969	3.6403	0.0689	0.0835	0.0011	1281	26	122
58	Spot 70	Rec	RIm	665	87	0.1182	5.4645	0.0717	0.0852	0.0011	1320	25	82
59	Spot 71	Sa	Core	1770	16	0.0057	5.7274	0.1082	0.0730	0.0007	1014	18	102
62	Spot 72	Sq	Rim	1810	29	0.0105	5.6338	0.0857	0.0736	0.0006	1032	17	102
63	Spot 73	Sq	Rim	462	1600	2.7933	4.2248	0.0803	0.0880	0.0011	1382	24	99
66	Spot 74	Sq	Rim	1145	1119	0.9671	4.7148	0.0956	0.0881	0.0014	1385	31	90
67	Spot 75	Sa	Core	1119	1105	0.9950	4.2553	0.1086	0.0882	0.0020	1387	44	98
84	Spot 76	Sa	Core	2200	86	0.0403	10.384	0.2157	0.0921	0.0020	1469	41	40
84	Spot 77	Sa	Rim	1359	15	0.0115	2 6.1087	0.2202	0.0711	0.0011	960	32	102
87	Spot 78	Sa	Core	395	548	1.2837	3.9777	0.0665	0.0907	0.0016	1440	34	102

87	Spot 79	Sq	Rim	614	322	0.4651	4.3783	0.0537	0.0861	0.0012	1340	27	99
88	Spot 80	Sq	Core	624	2083	3.5002	4.3706	0.0669	0.0883	0.0014	1389	30	96
88	Spot 81	Sq	Rim	649	282	0.4456	4.4346	0.0629	0.0841	0.0010	1295	23	101
90	Spot 82	Sq	Core	435	576	1.3263	4.1632	0.0676	0.0874	0.0011	1369	24	101
90	Spot 83	Sq	Rim	630	963	1.3004	4.9529	0.1006	0.0881	0.0010	1384	21	86
91	Spot 84	Sq	Rim	516	379	0.7348	3.8432	0.0384	0.0864	0.0008	1347	17	111
93	Spot 85	Sq	Rim	464	360	0.7955	3.7327	0.0488	0.0873	0.0010	1367	22	112
95	Spot 86	Rec	Core	1451	1260	0.9058	3.7608	0.0594	0.0870	0.0011	1360	24	112
95	Spot 87	Rec	Rim	1395	167	0.1149	6.6934	0.2867	0.0939	0.0019	1506	38	60
98	Spot 88	Sq	Core	1205	847	0.7402	3.8241	0.0380	0.0865	0.0008	1350	18	111
98	Spot 89	Rec	Rim	1510	322	0.1988	5.4705	0.0658	0.0916	0.0011	1459	23	74
98	Spot 90	Sq	Core	1083	1257	1.1696	3.9952	0.0623	0.0932	0.0012	1492	24	97
MISE180)6 melanosome												
1	Spot 27	Sq	Core	722	716	1.0040	4.3215	0.0840	0.0865	0.0014	1349	31	99
2	Spot 28	Sq	Core	547	480	0.8190	4.2445	0.0468	0.0866	0.0007	1351	15	101
3	Spot 29	Sq	Core	445	288	0.6506	4.4053	0.0543	0.0862	0.0013	1343	29	98
4	Spot 30	Sq	Core	382	663	1.3755	4.1946	0.0440	0.0879	0.0008	1381	17	100
5	Spot 31	Sq	Core	472	359	0.4608	4.2626	0.0382	0.0870	0.0007	1359	15	100
6	Spot 32	Sq	Core	721	367	0.5216	4.2517	0.0380	0.0861	0.0007	1340	16	102
7	Spot 33	Sq	Core	306	459	1.3928	4.2827	0.0385	0.0914	0.0009	1455	19	93
7	Spot 34	Rec	Rim	598	3650	5.5991	7.7942	0.1458	0.1283	0.0021	2075	29	38
8	Spot 35	Sq	Core	873	779	0.8749	5.6054	0.1100	0.0853	0.0008	1322	17	80
9	Spot 36	Sq	Core	682	721	0.9452	4.3178	0.0485	0.0867	0.0006	1354	14	99
10	Spot 37	Sq	Core	1368	1124	0.7843	3.9777	0.0427	0.0862	0.0006	1342	13	108
11	Spot 38	Sq	Core	478	263	0.5618	4.3649	0.0457	0.0867	0.0008	1353	18	98
12	Spot 39	Sq	Core	463	1430	2.4752	5.0659	0.0821	0.0892	0.0012	1408	26	82
13	Spot 40	Sq	Core	1362	509	0.3683	4.4924	0.0686	0.0867	0.0009	1353	19	96
14	Spot 41	Sq	Core	330	165	0.4885	4.3122	0.0465	0.0864	0.0009	1348	20	100
15	Spot 42	Sq	Core	667	324	0.4943	4.1615	0.0468	0.0865	0.0009	1349	20	103
16	Spot 43	Sq	Core	1476	1086	0.6964	4.1477	0.0516	0.0857	0.0006	1332	13	105
18	Spot 44	Sq	Core	487	320	0.6456	4.2753	0.0402	0.0883	0.0008	1389	17	98
19	Spot 45	Sq	Core	925	670	0.7194	4.1442	0.0429	0.0866	0.0006	1351	14	103
20	Spot 46	Sq	Core	457	384	0.7413	4.3159	0.0428	0.0862	0.0007	1342	16	100
20	Spot 47	Sq	Rim	972	233	0.2481	4.3215	0.0486	0.0847	0.0007	1308	15	103
21	Spot 48	Sq	Core	520	683	1.1364	4.0258	0.0421	0.0880	0.0008	1382	17	103
21	Spot 49	Sq	Rim	681	013	0.8795	4.2391	0.0431	0.0865	0.0007	1349	15	101
22	Spot 50	Sq Sa	Core	2004	3/8	0.7153	4.14//	0.0516	0.0853	0.0009	1322	21	105
25	Spot 51	Sq S-	Dim	2004	511	0.9302	4.2373	0.0700	0.0849	0.0010	1347	17	101
23	Spot 52	Sq Sa	Rim	925 500	511	0.5053	4.5290	0.0095	0.1208	0.0007	2225	41	51
20 27	Spot 55	34 §~	Core	642	274	2.7027	J.2330	0.0987	0.1398	0.0035	1250	+1	31 102
2/	Spot 54	pe So	Core	043 745	3/0 1040	1 3251	4.1311	0.0601	0.000	0.0003	1201	1/	103
31	Spot 55	Sq Sq	Core	968	673	0.7158	4.2735	0.1479	0.0862	0.007	1343	47	91 101
31	Spot 50	Rec	Rim	870	342	0.3731	6.0606	0.0955	0.0758	0.0010	1089	26	90
	Spot 57			0/0		0.0701	0.0000	0.0900	0.07.00	0.0010	1007	20	70

32	Spot 58	Sq	Core	796	604	0.7463	4.3384	0.0546	0.0855	0.0007	1328	17	101
34	Spot 59	Sq	Rim	732	590	0.8299	4.3215	0.0598	0.0852	0.0009	1321	20	102
35	Spot 60	Sq	Core	1114	802	0.7468	4.4326	0.0727	0.0863	0.0013	1345	29	98
37	Spot 61	Sq	Core	903	928	1.0215	4.3029	0.0555	0.0882	0.0009	1387	19	97
38	Spot 62	Sq	Core	426	249	0.5599	4.3178	0.0503	0.0851	0.0009	1317	21	102
39	Spot 63	Sq	Core	432	424	1.0235	4.3048	0.0463	0.0862	0.0008	1343	17	100
45	Spot 64	Sq	Core	556	505	0.7734	4.2517	0.0416	0.0870	0.0007	1360	16	100
45	Spot 65	Sq	Rim	436	585	1.3423	4.6577	0.0716	0.0842	0.0009	1296	20	97
46	Spot 66	Sq	Core	647	504	0.7508	4.1667	0.0451	0.0858	0.0008	1335	17	104
49	Spot 67	Sq	Core	632	482	0.7610	4.2808	0.0513	0.0859	0.0009	1337	21	101
50	Spot 68	Sq	Rim	433	217	0.4941	4.6189	0.0512	0.0871	0.0008	1362	18	93
51	Spot 69	Sq	Core	1657	1316	0.7734	4.2699	0.0656	0.0861	0.0010	1340	22	101
51	Spot 70	Sq	Rim	717	574	0.7479	4.1911	0.0474	0.0871	0.0007	1362	15	101
56	Spot 71	Sq	Core	413	311	0.7479	3.9017	0.0731	0.0855	0.0010	1327	23	111
61	Spot 72	Rec	Rim	515	722	1.4164	5.1151	0.1727	0.0883	0.0011	1389	24	83
61	Spot 73	Rec	Core	1160	2950	2.6483	8.0645	0.2341	0.1940	0.0044	2776	37	27
62	Spot 74	Sq	Core	476	268	0.5618	4.2808	0.0403	0.0865	0.0008	1350	19	100
65	Spot 75	Sq	Core	469	317	0.6394	4.4209	0.0919	0.0850	0.0013	1316	30	100
65	Spot 76	Sq	Rim	287	155	0.5580	4.1771	0.0366	0.0854	0.0009	1324	21	105
66	Spot 77	Sq	Core	731	798	0.9276	4.3516	0.0663	0.0857	0.0009	1332	20	100
67	Spot 78	Sq	Core	281	208	0.7485	4.0766	0.0465	0.0854	0.0011	1325	25	107
68	Spot 79	Sq	Core	539	396	0.6545	4.0733	0.0431	0.0858	0.0008	1334	19	106
68	Spot 80	Sq	Rim	707	315	0.4883	4.0917	0.0486	0.0852	0.0009	1320	21	107
69	Spot 81	Sq	Core	384	424	1.1442	4.1615	0.0623	0.0866	0.0011	1352	25	103
70	Spot 82	Sq	Core	353	246	0.6562	4.0112	0.0531	0.0988	0.0017	1602	32	90
70	Spot 83	Sq	Rim	821	268	0.3180	5.0000	0.0825	0.0840	0.0006	1291	15	91
71	Spot 84	Sq	Core	400	400	0.9191	4.3159	0.0522	0.0882	0.0009	1387	19	97
71	Spot 85	Sq	Rim	981	650	0.6588	4.2283	0.0518	0.0860	0.0009	1339	21	102
72	Spot 86	Sq	Core	497	1030	2.2321	4.8146	0.0719	0.1328	0.0030	2135	40	57
72	Spot 87	Sq	Rim	448	308	0.7032	4.0601	0.0429	0.0854	0.0008	1325	18	107
74	Spot 88	Sq	Core	544	385	0.6969	4.1964	0.0511	0.0866	0.0010	1352	22	102
75	Spot 89	Sq	Core	545	1570	2.7450	7.8740	0.1612	0.0958	0.0014	1544	27	50
75	Spot 90	Sq	Rim	734	870	1.1641	4.1339	0.0427	0.0858	0.0007	1333	15	105
76	Spot 91	Rec	Core	638	1370	1.0417	4.9702	0.2050	0.0878	0.0010	1378	22	86
76	Spot 92	Rec	Rim	534	691	1.2594	5.1177	0.0943	0.0995	0.0026	1615	49	71
77	Spot 93	Sq	Rim	852	349	0.3704	4.7192	0.0579	0.0837	0.0009	1287	20	96
78	Spot 94	Sq	Rim	666	1426	2.0661	4.1876	0.0631	0.0885	0.0015	1393	33	99
79	Spot 95	Sq	Core	519	541	0.9579	4.3649	0.0419	0.0859	0.0010	1336	23	100
82	Spot 96	Sq	Core	332	1010	2.3419	5.8582	0.0789	0.0994	0.0018	1613	34	63
82	Spot 97	Rec	Rim	564	738	1.2690	4.8591	0.0614	0.0934	0.0012	1496	24	81
83	Spot 98	Sq	Core	341	128	0.4219	4.1859	0.0648	0.0843	0.0009	1300	21	106
83	Spot 99a	Sq	Rim	903	557	0.6349	4.2337	0.0484	0.0867	0.0010	1354	22	101
83	Spot 99b	Sq	Rim	254	14	0.0476	5.6402	0.1209	0.0734	0.0025	1025	69	103
85	Spot 100	Sq	Core	494	509	1.0320	4.1632	0.0485	0.0887	0.0012	1398	26	99

85	Spot 101	Rec	Rim	1009	843	0.7576	4.8239	0.0721	0.0850	0.0016	1316	37	92
86	Spot 102	Sq	Core	846	583	0.6892	4.2373	0.0628	0.0873	0.0015	1367	33	100
89	Spot 103	Sq	Core	526	369	0.7435	4.1789	0.0471	0.0860	0.0010	1338	22	103
MISE18	14a												
1	Spot 1	Sq	Core	311	94	0.2915	3.4130	0.1864	0.0989	0.0030	1603	57	103
1	Spot 2	Rec	Rim	180	97	0.5618	3.3898	0.1953	0.0985	0.0032	1596	61	104
2	Spot 3	Sq	Core	219	95	0.3922	3.4722	0.1567	0.0998	0.0028	1620	52	101
2	Spot 4	Rec	Rim	42	2	0.0260	3.9683	0.1575	0.0965	0.0029	1558	56	93
3	Spot 5	Sq	Core	155	203	1.2594	3.5211	0.1736	0.0984	0.0032	1594	61	101
4	Spot 6	Sq	Core	400	197	0.4545	3.4843	0.1821	0.0981	0.0030	1588	57	102
5	Spot 7	Rec	Core	219	208	0.8857	3.9432	0.1228	0.0950	0.0020	1528	40	95
5	Spot 8	Rec	Rim	73	56	0.7032	3.4965	0.1589	0.1009	0.0031	1641	57	99
6	Spot 9	Sq	Core	228	311	1.3004	3.6805	0.1260	0.1010	0.0022	1643	40	94
6	Spot 10	Rec	Rim	231	96	0.4525	3.3223	0.1545	0.0986	0.0027	1598	51	106
7	Spot 11	Sq	Core	218	169	0.7194	3.8462	0.2811	0.1020	0.0047	1661	85	90
7	Spot 12	Rec	Rim	294	75	0.2653	4.0816	0.2166	0.1005	0.0034	1633	63	86
8	Spot 13	Rec	Core	190	192	1.0194	3.6630	0.1610	0.1010	0.0028	1643	51	95
9	Spot 15	Rec	Core	186	270	1.4124	3.6232	0.1575	0.0988	0.0028	1602	53	98
10	Spot 16	Sq	Core	264	174	0.6402	3.8926	0.1045	0.0992	0.0018	1609	34	92
11	Spot 17	Sq	Core	131	159	1.1806	4.2212	0.0659	0.0987	0.0013	1600	25	86
12	Spot 18	Rec	Core	236	499	1.9194	3.1456	0.0970	0.0992	0.0013	1609	24	111
12	Spot 19	Sq	Rim	398	66	0.1318	4.1288	0.0903	0.0986	0.0015	1598	28	88
14	Spot 20	Sq	Core	213	244	1.1099	4.0933	0.0754	0.0966	0.0013	1559	25	90
15	Spot 21	Sq	Core	521	99	0.1946	4.2735	0.2739	0.1028	0.0037	1675	67	81
15	Spot 22	Sq	Core	159	87	0.5405	3.9526	0.1875	0.0958	0.0026	1544	51	94
16	Spot 23	Sq	Core	222	111	0.5444	3.9032	0.1127	0.0978	0.0018	1583	34	93
17	Spot 24	Sq	Core	229	190	0.8264	3.8700	0.0794	0.0982	0.0015	1590	29	93
18	Spot 25	Rec	Core	198	194	0.9398	3.9573	0.0532	0.0974	0.0011	1575	21	92
18	Spot 26	Sq	Rim	276	76	0.3021	3.9262	0.0555	0.0972	0.0009	1572	18	93
20	Spot 27	Sq	Core	208	116	0.5879	4.0355	0.0489	0.0970	0.0011	1567	21	91
20	Spot 28	Rec	Rim	197	97	0.5263	3.6670	0.0430	0.0995	0.0011	1615	21	96
21	Spot 29	Sq	Core	246	294	1.1876	4.0112	0.0434	0.0977	0.0011	1581	21	91
21	Spot 30	Sq	Rim	68	0.41	0.0044	6.2383	0.0856	0.0770	0.0018	1121	47	85
22	Spot 31	Sq	Core	314	265	0.8110	4.2699	0.0802	0.0972	0.0017	1571	33	86
22	Spot 32	Rec	Rim	214	1.07	0.0049	5.9242	0.1474	0.0734	0.0016	1025	44	98
23	Spot 33	Sq	Core	344	200	0.5869	4.1649	0.1128	0.0992	0.0025	1609	47	86
24	Spot 34	Sq	Core	162	245	1.4837	3.6430	0.0372	0.0978	0.0013	1583	25	99
24	Spot 35	Rec	Rim	114	91	0.8382	3.8790	0.0497	0.0981	0.0014	1588	27	93
40	Spot 36	Sq	Core	124	155	1.2438	3.6697	0.0417	0.0978	0.0013	1583	25	98
40	Spot 37	Rec	Rim	65	58	0.8688	3.6206	0.0551	0.0986	0.0015	1598	28	98
41	Spot 38	Sq	Core	289	520	1.7857	3.7936	0.0432	0.0988	0.0012	1602	23	94
42	Spot 39	Sq	Core	235	67	0.2768	3.6536	0.0481	0.1021	0.0016	1663	29	94
42	Spot 40	Rec	Rim	487	109	0.2239	3.8971	0.0608	0.0987	0.0008	1600	16	92

43	Spot 41	Sq	Core	220	297	1.3298	3.8655	0.0359	0.0979	0.0011	1585	21	94
44	Spot 42	Sq	Core	179	104	0.5774	3.9308	0.0525	0.0926	0.0014	1480	29	99
45	Spot 43	Sq	Core	293	451	1.4934	3.7779	0.0385	0.0992	0.0010	1609	19	94
45	Spot 44	Rec	Rim	130	41	0.3008	5.2165	0.0735	0.0976	0.0013	1579	25	72
46	Spot 45	Sq	Core	572	531	0.9050	6.0314	0.2656	0.0984	0.0012	1594	23	62
47	Spot 46	Sq	Core	562	600	1.0893	3.6496	0.0400	0.1000	0.0011	1624	20	96
47	Spot 47	Rec	Rim	330	22	0.0629	4.8709	0.1613	0.0983	0.0013	1592	25	76
48	Spot 48	Sq	Core	587	187	0.3378	4.0437	0.0965	0.0985	0.0012	1596	23	89
48	Spot 49	Rec	Rim	185	65	0.3621	3.6166	0.0471	0.0985	0.0012	1596	23	99
49	Spot 50	Sq	Core	238	242	0.9208	3.8655	0.0478	0.0966	0.0010	1558	19	95
50	Spot 52	Sq	Core	312	179	0.5938	5.2301	0.1422	0.0994	0.0012	1613	22	70
50	Spot 53	Rec	Rim	612	78	0.0877	7.2993	0.6926	0.0988	0.0014	1602	26	52
51	Spot 54	Sq	Core	168	208	1.2255	3.6324	0.0396	0.0974	0.0012	1575	23	100
51	Spot 55	Rec	Rim	328	51	0.1621	3.7425	0.0574	0.0959	0.0012	1546	24	99
52	Spot 56	Sq	Core	362	444	1.2658	3.7051	0.0357	0.0975	0.0008	1577	16	98
53	Spot 57	Sq	Core	255	269	1.0811	3.6350	0.0489	0.0980	0.0015	1586	29	99
54	Spot 58	Sq	Core	313	380	1.2034	3.8139	0.0495	0.0979	0.0012	1585	23	95
55	Spot 59	Rec	Core	136	73	0.5155	3.8521	0.0638	0.0955	0.0016	1538	32	97
55	Spot 60	Sq	Rim	92	65	0.7358	4.7148	0.0978	0.0948	0.0016	1524	32	81
56	Spot 61	Sq	Core	701	904	1.3106	3.5137	0.0778	0.0980	0.0014	1586	27	102
57	Spot 62	Sq	Core	68	63	0.9268	4.1684	0.0521	0.0949	0.0016	1526	32	91
57	Spot 63	Sq	Core	403	146	0.3636	4.2337	0.0358	0.0933	0.0009	1494	18	92
58	Spot 64	Sq	Core	245	360	1.4327	3.8124	0.0320	0.0979	0.0009	1585	18	95
58	Spot 65	Rec	Rim	113	17	0.1522	3.9339	0.0805	0.0975	0.0016	1577	31	93
60	Spot 66	Sq	Core	391	282	0.7225	3.5537	0.1048	0.0963	0.0026	1554	51	103
62	Spot 67	Sq	Core	135	136	0.8576	3.5765	0.0435	0.0967	0.0010	1561	19	102
63	Spot 68	Sq	Core	645	360	0.5464	4.2863	0.1121	0.0978	0.0012	1583	23	85
64	Spot 69	Sq	Core	478	184	0.3931	3.7608	0.0891	0.0962	0.0022	1552	43	98
65	Spot 70	Sq	Core	418	487	1.1710	3.7189	0.1259	0.0977	0.0023	1581	44	97
66	Spot 71	Sq	Core	212	244	1.1682	3.9200	0.0415	0.0964	0.0009	1556	18	94
67	Spot 72	Sq	Core	102	93	0.9470	3.7369	0.0559	0.0954	0.0013	1536	26	100
67	Spot 73	Sq	Rim	92	0.97	0.0094	6.7659	0.1877	0.0729	0.0031	1011	86	88
68	Spot 74	Sq	Core	208	214	1.0684	3.6088	0.0873	0.0966	0.0011	1559	21	101
68	Spot 75	Rec	Rim	57	0.24	0.0029	5.9701	0.1141	0.0740	0.0020	1041	55	96
73	Spot 76	Sq	Rim	43	7	0.1385	8.0775	0.3328	0.1007	0.0059	1637	109	46
74	Spot 77	Sq	Core	417	537	1.3038	3.6430	0.0956	0.0976	0.0015	1579	29	99
76	Spot 78	Sq	Core	423	634	1.3624	3.5575	0.0823	0.0984	0.0017	1594	32	100
76	Spot 79	Sq	Rim	144	23	0.1605	4.6729	0.2620	0.0969	0.0021	1565	41	80
78	Spot 80	Sq	Core	234	155	0.6293	3.7636	0.0623	0.0983	0.0011	1592	21	95
78	Spot 81	Rec	Rim	103	10	0.0709	3.4722	0.1326	0.0960	0.0023	1548	45	105
82	Spot 82	Sq	Core	303	387	1.2987	4.2608	0.0890	0.0944	0.0014	1516	28	90
82	Spot 83	Sq	Rim	46	0.53	0.0085	9.3197	0.3127	0.1060	0.0041	1732	71	38
89	Spot 84	Sq	Core	413	608	1.4841	3.5039	0.0994	0.0992	0.0017	1609	32	101
89	Spot 85	Sq	Rim	321	470	1.4948	3.5727	0.0945	0.0986	0.0016	1598	30	100

2	Spot 31	Sq	Core	1499	754	0.4953	3.5174	0.0470	0.0987	0.0009	1600	17	101
2	Spot 32	Rec	Rim	522	274	0.5038	3.5162	0.0532	0.0997	0.0007	1619	14	100
5	Spot 33	Sq	Core	2293	1069	0.4132	5.9067	0.1814	0.0893	0.0010	1411	21	71
5	Spot 34	Rec	Rim	1072	169	0.1658	3.6153	0.0706	0.0964	0.0006	1556	12	101
8	Spot 35	Sq	Core	1225	607	0.4845	3.5499	0.0391	0.0984	0.0008	1593	15	100
7	Spot 36	Sq	Core	2490	7040	2.1930	4.2105	0.1099	0.0933	0.0013	1494	26	92
7	Spot 37	Sq	Rim	1770	510	0.2881	3.4602	0.0443	0.0983	0.0008	1592	15	103
10	Spot 38	Rec	Core	1491	1400	0.9328	3.5411	0.0439	0.0979	0.0010	1584	18	101
10	Spot 39	Rec	Rim	1016	492	0.4766	3.5587	0.0532	0.0984	0.0008	1594	14	100
9	Spot 40	Sq	Core	1540	1435	0.9390	3.3841	0.0389	0.0985	0.0008	1597	14	105
12	Spot 41	Sq	Core	1089	864	0.7918	3.4734	0.0374	0.0994	0.0009	1612	16	101
11	Spot 42	Sq	Core	1585	1528	0.9692	3.4211	0.0339	0.0981	0.0007	1588	14	104
14	Spot 43	Sq	Core	1844	1112	0.5999	3.4868	0.0426	0.0990	0.0010	1606	18	101
13	Spot 44	Sq	Core	1497	1148	0.7610	3.5398	0.0388	0.0987	0.0009	1600	17	100
13	Spot 45	Rec	Rim	765	446	0.5615	3.5298	0.0274	0.0988	0.0007	1602	13	100
16	Spot 46	Sq	Core	3700	683	0.1789	3.6140	0.0718	0.0978	0.0010	1583	19	100
19	Spot 47	Sq	Core	876	484	0.5333	3.5855	0.0347	0.0976	0.0007	1579	14	100
20	Spot 48	Sq	Core	1228	889	0.7215	3.4130	0.0373	0.0981	0.0007	1589	14	104
21	Spot 49	Sq	Core	1588	1002	0.6435	3.5323	0.0499	0.0989	0.0008	1604	15	100
24	Spot 50	Sq	Core	641	492	0.7485	3.5894	0.0606	0.0985	0.0012	1596	23	99
23	Spot 51	Sq	Core	1805	1026	0.5817	3.5286	0.0473	0.0990	0.0007	1605	13	100
26	Spot 52	Rec	Core	1239	806	0.6770	3.5336	0.0350	0.0987	0.0007	1600	14	100
26	Spot 53	Sq	Rim	581	238	0.4132	3.3944	0.0300	0.0979	0.0007	1585	13	105
25	Spot 54	Sq	Core	2180	328	0.1499	5.2356	0.1480	0.0886	0.0010	1395	21	81
28	Spot 55	Sq	Core	3050	1295	0.4257	3.5524	0.0946	0.0996	0.0018	1617	34	99
27	Spot 56	Sq	Core	1215	620	0.5171	3.5663	0.0687	0.0995	0.0015	1615	28	99
27	Spot 57	Rec	Rim	654	351	0.5260	3.5829	0.0398	0.0975	0.0008	1576	15	101
30	Spot 58	Sq	Core	786	475	0.6165	3.5361	0.0325	0.0988	0.0007	1602	14	100
32	Spot 59	Sq	Core	3790	901	0.2353	4.3706	0.1356	0.0946	0.0008	1519	16	87
32	Spot 60	Sq	Core	709	332	0.4941	3.5907	0.0374	0.0983	0.0007	1591	13	100
32	Spot 61	Rec	Rim	1385	64	0.0469	6.0643	0.1655	0.0724	0.0016	997	45	99
31	Spot 62	Sq	Core	1697	942	0.5219	3.5765	0.0499	0.0985	0.0007	1596	13	100
36	Spot 63	Sq	Core	1031	572	0.5528	3.5051	0.0270	0.0992	0.0006	1609	11	101
36	Spot 64	Rec	Rim	854	414	0.4562	3.5549	0.0354	0.0985	0.0009	1596	17	100
39	Spot 65	Sq	Core	698	482	0.6406	3.5199	0.0273	0.0989	0.0007	1604	13	100
38	Spot 66	Sq	Core	3030	1960	0.6640	3.5286	0.0647	0.0984	0.0009	1595	18	101
40	Spot 67	Sq	Core	987	685	0.6998	3.5162	0.0371	0.0991	0.0010	1607	19	100
41	Spot 68	Sq	Core	895	567	0.6365	3.5014	0.0306	0.0991	0.0008	1607	14	101
42	Spot 69	Sq	Core	412	228	0.5379	3.4200	0.0386	0.1006	0.0011	1635	20	101
44	Spot 70	Sq	Core	2620	1320	0.4737	3.6101	0.0508	0.0978	0.0011	1583	21	100
44	Spot 71	Sq	Rim	950	188	0.1838	3.4941	0.0293	0.0997	0.0006	1618	12	100
45	Spot 72	Sq	Core	533	236	0.3003	3.4650	0.0348	0.1004	0.0012	1632	22	100
45	Spot 73	Rec	Rim	670	485	0.7184	3.4795	0.0412	0.0996	0.0010	1617	18	101

46	Spot 74	Sq	Core	759	447	0.5952	3.5063	0.0332	0.0989	0.0008	1604	14	101
49	Spot 75	Sq	Core	715	427	0.5970	3.5842	0.0270	0.0984	0.0007	1593	13	100
48	Spot 76	Rec	Core	3420	685	0.1969	3.5740	0.0741	0.0980	0.0007	1586	14	100
48	Spot 77	Rec	Rim	841	9	0.0108	5.6593	0.0480	0.0741	0.0006	1043	17	101
51	Spot 78	Sq	Core	939	349	0.3413	3.2982	0.0457	0.1006	0.0012	1635	22	104
50	Spot 79	Sq	Core	759	408	0.5714	3.5448	0.0302	0.0988	0.0008	1602	15	100
50	Spot 80	Sq	Rim	1079	267	0.2653	3.4880	0.0304	0.0996	0.0008	1617	15	101
52	Spot 81	Sq	Core	903	583	0.6868	3.4928	0.0317	0.0991	0.0009	1607	17	101
54	Spot 82	Sq	Core	1076	446	0.4369	3.4783	0.0557	0.0999	0.0013	1622	24	100
57	Spot 83	Sq	Core	720	329	0.5051	3.4746	0.0471	0.1001	0.0010	1626	19	100
58	Spot 84	Sq	Core	1208	144	0.1212	5.4885	0.1175	0.0926	0.0014	1480	29	73
59	Spot 85	Sq	Core	810	505	0.6053	3.6127	0.0313	0.0981	0.0008	1589	16	99
61	Spot 86	Sq	Core	872	544	0.5928	3.4892	0.0414	0.1005	0.0010	1633	18	99
60	Spot 87	Sq	Core	1113	217	0.1692	4.5517	0.1388	0.0891	0.0019	1406	41	91
66	Spot 88	Sq	Core	985	783	0.7348	3.3212	0.0397	0.0989	0.0010	1604	18	106
67	Spot 89	Sq	Core	1475	841	0.5325	3.6245	0.0946	0.0987	0.0015	1600	28	98
68	Spot 90	Sq	Core	4140	912	0.1361	3.3058	0.0514	0.0964	0.0011	1556	21	110
68	Spot 91	Sq	Rim	3980	606	0.1066	3.4662	0.0709	0.0976	0.0015	1579	29	104
70	Spot 92	Sq	Core	12000	11030	1.0881	3.5727	0.0549	0.0983	0.0013	1592	25	100
MISE181	6c melanosome												
2	Spot 31	Sq	Core	348	372	1.0989	3.4060	0.0568	0.0999	0.0015	1622	28	102
1	Spot 32	Sq	Core	428	372	0.8834	3.6337	0.0396	0.0981	0.0009	1588	17	99
3	Spot 33	Sq	Core	875	251	0.2899	3.4904	0.0439	0.0984	0.0010	1594	19	102
3	Spot 34	Rec	Rim	217	133	0.6831	3.3512	0.0416	0.0994	0.0010	1613	19	104
4	Spot 35	Sq	Core	215	260	1.2320	3.7244	0.0319	0.0989	0.0010	1603	18	96
5	Spot 36	Sq	Core	196	197	0.9718	3.7779	0.0343	0.0973	0.0009	1573	17	96
9	Spot 37	Sq	Core	635	356	0.5291	3.6377	0.0423	0.0985	0.0009	1596	17	98
9	Spot 38	Rec	Rim	187	63	0.3372	3.3693	0.0636	0.0994	0.0012	1613	22	104
7	Spot 39	Sq	Core	192	221	1.1198	3.6697	0.0391	0.0990	0.0011	1605	21	97
7	Spot 40	Sq	Rim	355	152	0.4401	6.4851	0.0757	0.0993	0.0009	1611	16	57
14	Spot 41	Rec	Core	247	127	0.5653	3.5436	0.0389	0.0988	0.0010	1602	19	100
14	Spot 42	Rec	Rim	126	70	0.5637	3.2185	0.0622	0.0995	0.0016	1615	30	108
13	Spot 43	Rec	Core	227	234	0.9662	3.9463	0.0389	0.0963	0.0009	1553	18	94
13	Spot 44	Rec	Rim	223	176	0.8078	3.6550	0.0441	0.1000	0.0011	1624	20	96
17	Spot 45	Rec	Core	196	133	0.6748	5.6786	0.1193	0.0975	0.0017	1577	33	66
17	Spot 46	Rec	Rim	126	72	0.5672	5.1975	0.1567	0.0969	0.0025	1565	48	72
19	Spot 47	Sq	Core	263	347	1.3278	3.6670	0.0484	0.0978	0.0012	1583	23	98
19	Spot 48	Sq	Rim	241	89	0.3727	3.6324	0.0449	0.0986	0.0013	1598	25	98
20	Spot 49	Sq	Core	331	339	1.0320	3.5298	0.0847	0.0993	0.0019	1611	36	100
20	Spot 50	Rec	Rim	242	257	1.0373	3.7397	0.0378	0.0955	0.0009	1538	17	99
22	Spot 51	Sq	Core	352	259	0.7077	3.5753	0.0524	0.0981	0.0008	1587	16	100
21	Spot 52	Sq	Core	390	381	0.9990	3.5575	0.0481	0.0989	0.0010	1604	18	100
24	Spot 53	Sq	Core	278	295	0.9980	3.5348	0.0462	0.0982	0.0010	1591	18	101
23	Spot 54	Sq	Core	260	266	1.0163	3.6417	0.0517	0.0976	0.0012	1579	23	99

nonn	28	Spot 55	Sa	Core	1153	165	0 2091	3 4005	0.0744	0.0005	0.0018	1615	24	103
n. appa. 3 appa. 3 cons appa. 3 appa. 3 cons appa. 3 appa. 5 spa. 6 cons 1.42 1.55 0.425 0.482 0.606 0.008 0.009 1.93 1.83 34 Spar 58 Sq Care 9.91 1.68 0.483 0.001 0.001 1.615 1.11 35 Spar 61 Sq Care 1.91 1.01 0.483 0.430 0.001 1.52 2.41 36 Spar 61 Sq Care 1.91 1.20 0.430 0.430 0.430 0.001 1.55 2.41 36 Spar 63 Sq Care 1.92 1.71 0.204 0.401 0.411 0.457 0.401 0.411 0.411 1.415 1.41 0.467 0.401 0.411 0.411 1.415 1.41 0.427 0.411 0.401 0.401 0.411 0.411 0.411 0.411 0.411 1.41 0.411 0.	20	Spot 55	Sq	Core	200	206	0.3381	3.4073	0.0/44	0.0995	0.0018	1605	16	103
A. Spin S. Spin S. Core P 15 Part S Spin S	22	Spot 50	ડપ્ જેવ	Core	242	155	0.3488	3.4072	0.0400	0.0990	0.0009	1503	10	103
set spin s out 1.13 1.14 1.14 0.0001 0.0001 0.0010 1.013 1.15 75 Spin 640 Sq Rin 211 0.11 0.3377 3.080 0.0995 0.0001 1013 120 16 Spin 64 Sq Core 194 173 0.888 4.319 4.339 0.0012 1520 211 26 Spin 64 Sq Core 187 1.446 3.439 0.064 0.001 0.012 1520 211 29 Spin 64 Rec Rin 288 101 0.214 3.399 0.089 0.001 1628 219 44 Spin 67 Sq Core 214 348 1.1655 3.527 0.662 0.010 1.613 1.33 45 Spin 67 Sq Core 214 1.415 1.533 0.642 0.0101 1.618 1.63 46 Spin 71 Sq	33	Spot 57	Sq	Core	215	220	1 1001	3.4092	0.0350	0.0985	0.0010	1615	10	102
3.1 span S ag Care 399 100 0.0399 0.0098 0.0098 0.0098 0.0098 0.0098 0.0098 0.0098 0.0098 0.0018 159 141 36 Spot 61 Sq Care 194 173 0.3839 4.339 4.339 0.0010 153 23 36 Spot 61 Sq Care 579 172 0.244 3.689 0.0051 0.0010 1536 23 42 Spot 64 Re Kim 485 255 0.6161 3.690 0.0980 0.0011 1626 27 42 Spot 67 Sq Care 248 1.655 3.521 0.092 0.0101 0.001 1.641 219 44 Spot 67 Sq Care 214 1.92 3.012 0.012 0.013 1.642 215 45 Spot 71 Sq Care 213 272 0.212 0.014 0.001	34	Spot 58	Sq S-	Core	215	169	0.2750	3.4631	0.0401	0.0995	0.0011	1015	19	101
3. spot ov sq km 2.90 Km 2.90 0.007 0.017 15.60 2.90 5. Spot 62 Sq Rim 2.90 3.70 0.430 4.300 0.001 15.60 2.90 3.9 Spot 63 Sq Core SP0 172 0.2964 5.600 0.6051 0.6050 0.0010 15.56 2.90 4.9 Spot 65 Sq Core 2.80 1.80 0.284 3.390 0.6010 0.6010 0.6010 0.6010 0.6010 0.6010 0.6010 1.667 9.90 4.4 Spot 67 Sq Core 2.91 8.10 0.282 3.511 0.603 0.6010 1.613 2.91 4.4 Spot 67 Sq Core 1.33 4.70 0.7273 3.333 0.401 0.400 0.4013 1.636 2.51 5.90 Spot 70 Sq Gr Rim 2.41 2.90 2.90 0.	37	Spot 59	Sq	Core	599	108	0.2759	3.005/	0.0390	0.0985	0.0009	1597	18	97
36 Space C1 Sq Core 154 1.73 0.8888 4.3898 4.3898 4.3898 4.3898 4.3898 4.3898 4.3898 4.3898 4.3898 4.3898 4.3898 4.3898 4.3898 0.0010 1556 23 39 Space A3 Sq Core 579 172 0.4046 3.3890 0.6050 0.6980 0.0010 1628 23 42 Space A5 Sq Core 244 3.480 0.463 3.460 0.6030 0.6090 0.6010 0.577 0.6010 1567 197 42 Space 67 Sq Core 224 149 0.272 3.932 0.6011 0.6018 1633 33 45 Space 67 Sq Core 234 149 0.333 3.9464 0.403 0.6013 1646 1548 5pace 71 Rec Rim 274 125 0.471 3.491 0.4053 0.4068 0.4010 0	37	Spot 60	Sq	Rim	291	101	0.3377	3.7078	0.0440	0.0997	0.0010	1618	18	95
36 Spot 62 Sq Km 299 4,74 1,4406 6,4619 0,0054 0,0012 1571 23 39 Spot 64 Rec Rim 368 101 0,2044 5,309 0,858 0,0012 1671 123 42 Spot 64 Sq Carce 448 295 0,6141 3,690 0,6058 0,0010 1677 19 44 Spot 66 Sq Carce 240 1,810 0,223 3,531 0,6058 0,0010 1613 3,333 46 Spot 67 Sq Carce 247 199 0,321 0,333 0,400 0,0013 1586 253 45 Spot 71 Sq Carce 133 127 1,413 3,333 0,467 0,499 0,410 0,400 0,4010 0,401 0,400 0,401 0,400 0,401 0,400 0,401 0,400 0,401 1,413 1,43 1,43 1,43 1,43	36	Spot 61	Sq	Core	194	173	0.8889	4.3309	4.3309	4.3309	0.0012	1520	24	88
39 Spot 63 Sq Core F79 172 0.2944 3.699 0.0972 0.0012 1571 23 42 Spot 65 Sq Core 485 0.2944 3.690 0.0851 0.1002 0.0010 1562 27 42 Spot 65 Sq Core 485 0.2952 3.5511 0.6903 0.0901 0.6016 1.642 29 44 Spot 67 Sq Core 226 1.71 0.273 3.9324 0.071 0.1005 0.0013 159 2.5 45 Spot 70 Sq Core 226 1.913 0.353 0.447 0.9985 0.0013 159 2.5 45 Spot 70 Sq Core 213 272 1.933 3.533 0.447 0.9997 0.0010 1.618 2.7 47 Spot 73 Sq Core 1.93 2.0141 0.449 0.9997 0.012 1.616 2.2	36	Spot 62	Sq	Rim	289	347	1.0406	3.6819	0.0664	0.0954	0.0010	1536	20	101
39 Spot 64 Rec Rec<	39	Spot 63	Sq	Core	579	172	0.2964	3.6390	0.0596	0.0972	0.0012	1571	23	100
42 Spot 65 Sq Core 485 295 0.0161 3.670 0.0085 0.0085 0.0081 0.0011 1567 197 42 Spot 67 Sq Rim 271 81 0.2952 3.521 0.0623 0.0970 0.0010 1.617 197 44 Spot 68 Sq Core 226 171 0.7273 3.9324 0.0711 0.1005 0.0013 1598 257 45 Spot 70 Rec Rim 153 47 0.507 0.412 0.0997 0.0010 1618 18 45 Spot 71 Rec Rim 415 222 0.4012 3.7147 0.414 0.4010 0.4012 1.618 124 47 Spot 73 Rec Rim 415 0.22 0.4012 0.4017 0.4012 1.618 22 47 Spot 73 Rec Rim 41 0.42 0.773 0.4017 0.4017 1.618	39	Spot 64	Rec	Rim	368	101	0.2614	3.3990	0.0381	0.1002	0.0011	1628	20	102
42 Spor 66 Sq Rim 271 81 0.292 3.551 0.0893 0.0910 1667 19 44 Spor 67 Sq Core 294 348 1.165 3.5273 0.0622 0.1011 0.0016 1633 33 46 Spor 69 Rec Rim 153 47 0.3027 3.496 0.4022 0.9086 0.0013 1598 25 45 Spor 71 Rec Rim 274 125 0.4476 3.333 0.4467 0.9097 0.0010 1618 18 48 Spor 71 Rec Rim 271 125 0.416 3.333 0.4467 0.9097 0.0010 1622 24 49 Spor 71 Rec Rim 474 125 0.416 0.305 0.0012 1618 22 47 Spor 73 Sq Core 387 1350 1.0215 3.616 0.413 0.0001 0.6012 <th< td=""><td>42</td><td>Spot 65</td><td>Sq</td><td>Core</td><td>485</td><td>295</td><td>0.6161</td><td>3.6670</td><td>0.0605</td><td>0.0980</td><td>0.0014</td><td>1586</td><td>27</td><td>98</td></th<>	42	Spot 65	Sq	Core	485	295	0.6161	3.6670	0.0605	0.0980	0.0014	1586	27	98
44 Spot 67 Sq Core 294 348 1.165 5.3273 0.0622 0.1011 0.0016 1641 29 46 Spot 68 Sq Core 226 171 0.727 3.9324 0.711 0.1005 0.0013 1598 25 45 Spot 70 Sq Core 245 100 0.516 3.333 0.0467 0.0997 0.0013 1626 244 48 Spot 72 Sq Core 213 272 1.1933 3.9322 0.0465 0.1010 0.0013 1626 244 48 Spot 73 Rec Rim 445 222 0.4912 3.714 0.4014 0.0010 1613 242 47 Spot 73 Rec Rim 445 222 0.4912 3.7140 0.4012 1661 23 47 Spot 73 Rec Rim 41 140 0.973 0.773 0.4012 163 33	42	Spot 66	Sq	Rim	271	81	0.2982	3.5511	0.0593	0.0970	0.0010	1567	19	102
46 Spot 68 Sq. Core 226 171 0.7273 3.9324 0.0711 0.1005 0.0018 1633 33 46 Spot 69 Ree Rim 153 47 0.0277 3.4916 0.4042 0.0985 0.0013 1598 25 45 Spot 71 Ree Rim 245 109 0.5160 3.5332 0.4467 0.0997 0.0010 1618 18 48 Spot 73 Ree Rim< 245 222 0.4912 3.7147 0.0414 0.1000 0.0010 1623 18 49 Spot 73 Ree Rim 445 222 0.4912 3.7147 0.0414 0.0010 0.0012 1643 22 47 Spot 76 Ree Rim 41 0.42 0.0013 3.683 0.0413 0.0001 1633 3.3 51 Spot 77 Sq Core 356 404 1.101 3.7175 0.128	44	Spot 67	Sq	Core	294	348	1.1655	3.5273	0.0622	0.1011	0.0016	1644	29	98
46 Spot 69 Ree Rim 153 47 0.027 3.4916 0.0402 0.0986 0.0131 1598 25 45 Spot 70 Rec Rim 274 125 0.476 3.333 0.0467 0.097 0.010 1618 187 45 Spot 73 Rec Rim 213 222 0.4912 3.7147 0.0445 0.100 0.010 1623 188 49 Spot 73 Rec Rim 445 222 0.4912 3.7147 0.044 0.009 0.012 1618 22 47 Spot 75 Sq Core 587 1350 1.9068 3.773 0.0413 0.009 0.012 1605 23 47 Spot 76 Rec Rim 141 0.42 0.0011 5.683 0.041 0.0012 1624 22 51 Spot 77 Sq Core 356 404 1.101 3.171 0.413 0.0011 1.603 1.593 23 51 Spot 80 Sq Rec </td <td>46</td> <td>Spot 68</td> <td>Sq</td> <td>Core</td> <td>226</td> <td>171</td> <td>0.7273</td> <td>3.9324</td> <td>0.0711</td> <td>0.1005</td> <td>0.0018</td> <td>1633</td> <td>33</td> <td>89</td>	46	Spot 68	Sq	Core	226	171	0.7273	3.9324	0.0711	0.1005	0.0018	1633	33	89
45Spor 70SqCore2451090.51603.53610.03880.09850.001315962545Spot 71RecRin2741250.44763.3330.4670.0970.01016181848Spot 73RecRin4452220.4120.41340.1000.013162621349Spot 74SqCore1932011.0223.6160.0660.0970.01216182247Spot 75SqCore5871501.96083.7730.0410.0031.3986.551Spot 76RecRin410.420.00815.6830.0410.0010.01216242251Spot 78RecRin1082.60.2303.5100.4130.0010.01715503.3353Spot 78RecRin1682.73.7160.0150.01515332.953Spot 81RecCore3163441.15013.7150.1280.001515734854Spot 81RecCore1682.31.15073.7230.0670.01515734855Spot 81RecCore1689.30.8113.5180.4330.0151.5422.955Spot 84RecRin2.02.31.5143.5030.0350.0131.6142.	46	Spot 69	Rec	Rim	153	47	0.3027	3.4916	0.0402	0.0986	0.0013	1598	25	102
45Spot 71RecRim2741250.44763.3330.04670.0970.001016181848Spot 72SqCore2132721.19333.5920.04650.1010.001316262448Spot 73RecRim4452220.49123.7170.04140.1000.001016231847Spot 75SqCore1571.90283.6160.03660.03610.09090.001216182247Spot 76RecRim410.420.00115.6830.04310.0900.001216242251Spot 77SqCore1411400.97473.71660.04130.0000.001216242251Spot 78RecRim1082.60.23053.95100.04370.0910.001715503353Spot 79RecCore3644141.10013.71750.1280.09780.001515832954Spot 81RecCore3664041.1013.71750.0570.001515832955Spot 81RecCore3661.15073.65100.0760.09780.001515422954Spot 84RecCore1882301.15073.5560.0570.001515422954Spot 84RecCore1880.801	45	Spot 70	Sq	Core	245	109	0.5160	3.5361	0.0388	0.0985	0.0013	1596	25	101
48Spot 72SqCore2132721.19333.59320.04650.1010.001316262448Spot 73RecRim4452220.49123.71470.04140.10000.0010162318<49Spot 74SqCore1932011.02253.61660.03660.09970.001216182247Spot 75SqCore58713501.96083.77330.07430.09030.001216052351Spot 76RecRim410.420.00815.6830.08410.08870.001216422251Spot 78RecCore1411400.97433.71600.04370.09310.001216432353Spot 79RecCore3564041.10113.71750.12880.09730.002515734853Spot 80SqRecCore3163841.15343.69280.11590.09750.001515832954Spot 81RecCore1892301.15073.7520.0530.001316162355Spot 82SqCore1892301.15073.7520.0550.00550.001515832955Spot 82SqCore1892301.15073.5250.05580.09710.001516262356Spot 84 <td>45</td> <td>Spot 71</td> <td>Rec</td> <td>Rim</td> <td>274</td> <td>125</td> <td>0.4476</td> <td>3.3333</td> <td>0.0467</td> <td>0.0997</td> <td>0.0010</td> <td>1618</td> <td>18</td> <td>105</td>	45	Spot 71	Rec	Rim	274	125	0.4476	3.3333	0.0467	0.0997	0.0010	1618	18	105
48Spot 73RecRim4452220.49123.71470.04140.10000.001016231849Spot 74SqCore1932011.02253.61660.03660.09970.00121.6182247Spot 75SqCore58713501.90083.77930.07430.09900.00121.6052347Spot 76RecRim410.420.0815.68830.08410.08870.00301.3986551Spot 77SqCore1411400.97473.71060.04130.00610.001715503.9351Spot 78RecCore1564041.1013.71750.12580.00730.002515734853Spot 80SqRim4761280.24513.65100.0760.09750.002515734855Spot 81RecCore1892301.15073.75230.05070.00151.5422954Spot 84RecCore1892300.81103.51860.04830.10100.0151.62623355Spot 85SqCore1892300.5173.5250.05580.00151.5422954Spot 84RecCore1892300.5163.56250.05580.00131.6162356Spot 85SqGore197<	48	Spot 72	Sq	Core	213	272	1.1933	3.5932	0.0465	0.1001	0.0013	1626	24	97
49Spot 74SqCore1932011.02253.61660.03660.09790.00121.6182247Spot 75SqCore5871.3501.96083.77930.07430.09900.00121.6052.347Spot 76ReeRim410.420.00815.68830.0410.08770.00301.3986551Spot 77SqCore1411400.97473.71660.04130.09610.00171.5503.353Spot 78ReeCore3564041.10013.71750.12580.09730.00251.5734853Spot 80SqRim4761.280.24513.65100.0760.09750.00121.5832954Spot 81ReeCore3163841.15343.69280.11590.09750.00151.5422955Spot 83RqCore3162301.15073.75230.06360.09710.00131.6602856Spot 84ReeCore1089.30.31133.6130.6430.00130.00151.6262856Spot 85SqCore1089.30.3113.5180.0950.00131.6112457Spot 86SqCore1881830.89133.6130.0490.09131.6122356Spot 85Sq	48	Spot 73	Rec	Rim	445	222	0.4912	3.7147	0.0414	0.1000	0.0010	1623	18	95
47Spot 75SqCore58713501.96083.77930.07430.09900.001216052347Spot 76ReeRim410.420.00815.6830.8410.08870.003013986551Spot 77SqCore1411400.97473.71660.04130.10000.001216242251Spot 78ReeRim108260.23053.9100.0370.09610.001715503353Spot 79ReeCore3564041.10013.71750.12580.09730.002515734853Spot 81ReeCore3163841.15343.69280.11590.09750.002515774855Spot 82SqCore1892301.15073.75230.0670.09800.001415862755Spot 84ReeCore110730.33183.6130.04970.001316412456Spot 85SqCore1971830.89133.6130.04290.10190.001316412456Spot 84SqCore1851850.96153.50390.0330.09800.001416172657Spot 86SqCore1851850.96153.50390.0330.09800.001316412458Spot 91SqC	49	Spot 74	Sq	Core	193	201	1.0225	3.6166	0.0366	0.0997	0.0012	1618	22	97
47Spot 76RecRim410.420.00815.68830.08410.08870.003013986551Spot 77SqCore1411400.97473.71060.04130.10000.001216242251Spot 78RecRim108260.23053.95100.04370.09610.001715503353Spot 79RecCore3564041.10013.71750.12580.09730.002515734853Spot 80SqRim4761280.24513.65100.0760.09780.001515832952Spot 81RecCore3163841.15343.69280.1190.09750.002515774855Spot 82SqCore1892301.15073.7520.05070.09800.001415862754Spot 83RecRim210730.33183.67780.6660.09570.01515422954Spot 84RecCore108930.81103.5180.04330.10110.001516262855Spot 85SqCore1971830.89133.6130.04290.10190.01316412460Spot 87SqCore1971830.89133.5130.04290.10190.01116172658Spot 88S	47	Spot 75	Sq	Core	587	1350	1.9608	3.7793	0.0743	0.0990	0.0012	1605	23	94
51Spot 77SqCore1411400.97473.71060.04130.10000.001216242251Spot 78RecRim108260.23053.95100.04370.09610.001715503353Spot 79RecCore3564041.10013.71750.12580.09730.002515734853Spot 80SqRim4761280.24513.65100.0760.09780.001515832952Spot 81RecCore3163841.1543.69280.1190.09750.002515774855Spot 82SqCore1892301.15073.75230.05070.00800.001415862754Spot 83RecCore108930.81103.5180.06250.001515422954Spot 84RecCore108930.81103.5180.04330.001116262856Spot 85SqCore1971830.89133.36130.04290.001316412460Spot 88SqCore1971830.99153.5030.0390.001216032357Spot 89SqCore1851850.91613.5030.0390.001316412460Spot 87SqCore1971830.89133.616<	47	Spot 76	Rec	Rim	41	0.42	0.0081	5.6883	0.0841	0.0887	0.0030	1398	65	75
51Spot 78RecRim108260.23053.95100.04370.09610.001715503353Spot 79RecCore3564041.10013.71750.12580.09730.002515734853Spot 80SqRim4761280.24513.65100.07060.09780.001515832952Spot 81RecCore3163841.15343.69280.11590.09750.002515774855Spot 82SqCore1892301.15073.75230.05070.09800.001415862755Spot 83RecRim210730.33183.67780.06360.09570.001515422954Spot 84RecCore108930.81103.51860.04830.1010.001516262856Spot 85SqCore108930.81103.51860.04830.1010.001316412460Spot 86SqCore1971830.89133.36130.04290.001416172658Spot 88SqCore1851850.96153.50390.09710.011416172658Spot 89SqCore1832581.15723.5180.03710.09650.001415693161Spot 91SqCore1	51	Spot 77	Sq	Core	141	140	0.9747	3.7106	0.0413	0.1000	0.0012	1624	22	95
53Spot 79RecCore3564041.10013.71750.12580.09730.002515734853Spot 80SqRim4761280.24513.65100.07060.09780.001515832952Spot 81RecCore3163841.15343.69280.11590.09750.002515774855Spot 82SqCore1892301.15073.75230.05070.09800.001415862755Spot 83RecRim210730.33183.67780.06360.09570.001516262856Spot 84RecCore108930.81103.51860.04330.10110.001516262856Spot 85SqCore1971830.89133.36130.04290.10090.001316412460Spot 87SqCore1971830.89133.36130.04290.10090.001416172658Spot 88SqCore1851850.96153.50390.03310.09890.001216032362Spot 89SqCore1851850.96153.50190.09710.001615693164Spot 91SqCore1851251.06723.5160.07110.09650.001115962163Spot 91Sq <td>51</td> <td>Spot 78</td> <td>Rec</td> <td>Rim</td> <td>108</td> <td>26</td> <td>0.2305</td> <td>3.9510</td> <td>0.0437</td> <td>0.0961</td> <td>0.0017</td> <td>1550</td> <td>33</td> <td>94</td>	51	Spot 78	Rec	Rim	108	26	0.2305	3.9510	0.0437	0.0961	0.0017	1550	33	94
53Spot 80SqRim4761280.24513.65100.07060.09780.001515832952Spot 81RecCore3163841.15343.69280.11590.09750.002515774855Spot 82SqCore1892301.15073.75230.05070.09800.001415862755Spot 83RecRim210730.33183.67780.06360.09570.001515422954Spot 84RecCore108930.81103.51860.04830.10010.001516262856Spot 85SqCore1971830.89133.36130.04290.10990.001316412460Spot 87SqCore1971830.89133.31610.04290.10990.001316412461Spot 88SqCore1851850.96153.50390.03930.09960.001416172658Spot 89SqCore1851850.96153.50390.03930.09970.001316412461Spot 89SqCore1851850.96153.50390.03930.099116032362Spot 89SqCore1851850.96153.50390.09710.001615693161Spot 91SqCore<	53	Spot 79	Rec	Core	356	404	1.1001	3.7175	0.1258	0.0973	0.0025	1573	48	98
52Spot 81RecCore 316 384 1.1534 3.6928 0.1159 0.0075 0.0025 1577 48 55 Spot 82SqCore 189 230 1.1507 3.7523 0.0507 0.0980 0.0014 1586 27 55 Spot 83RecRim 210 73 0.3318 3.678 0.0636 0.0957 0.0015 1542 29 54 Spot 84RecCore 108 93 0.8110 3.5186 0.0483 0.1011 0.0015 1626 28 56 Spot 85SqCore 266 202 0.7072 3.5625 0.0987 0.0013 1641 24 60 Spot 86SqCore 197 183 0.8913 3.3613 0.0429 0.1009 0.0013 1641 24 60 Spot 87SqCore 508 664 1.2484 3.3102 0.0581 0.0966 0.0014 1617 26 58 Spot 88SqCore 185 0.9615 3.5039 0.0933 0.0996 0.0012 1603 23 62 Spot 98SqCore 185 0.752 3.5186 0.0761 0.0961 0.0014 1569 31 61 Spot 91SqCore 183 258 1.3280 3.518 0.0971 0.0016 1569 31 63 Spot 92RecRim 125 <	53	Spot 80	Sq	Rim	476	128	0.2451	3.6510	0.0706	0.0978	0.0015	1583	29	99
55 Spot 82 Sq Core 189 230 1.1507 3.7523 0.0507 0.0980 0.0014 1586 27 55 Spot 83 Rec Rim 210 73 0.3318 3.6778 0.0636 0.0957 0.0015 1542 29 54 Spot 84 Rec Core 108 93 0.8110 3.5186 0.0433 0.101 0.0015 1626 28 56 Spot 85 Sq Core 266 202 0.7072 3.5625 0.0588 0.0987 0.0013 1640 24 60 Spot 86 Sq Core 197 183 0.8913 3.3613 0.0429 0.1009 0.013 1641 24 60 Spot 87 Sq Core 185 0.9615 3.5039 0.0933 0.0994 0.0012 1603 23 62 Spot 89 Sq Core 185 0.971 0.0161 1569 31	52	Spot 81	Rec	Core	316	384	1.1534	3.6928	0.1159	0.0975	0.0025	1577	48	98
55 Spot 83 Rec Rim 210 73 0.3318 3.6778 0.0636 0.0957 0.0015 1542 29 54 Spot 84 Rec Core 108 93 0.8110 3.5186 0.0483 0.1001 0.0015 1626 28 56 Spot 85 Sq Core 197 183 0.8913 3.3613 0.0429 0.1009 0.0013 1640 24 60 Spot 87 Sq Core 197 183 0.8913 3.3613 0.0429 0.1009 0.0013 1641 24 60 Spot 87 Sq Core 185 0.9615 3.5039 0.0393 0.0989 0.0012 1603 23 62 Spot 88 Sq Core 185 185 0.9615 3.5039 0.0971 0.0112 1603 23 62 Spot 90 Rec Rim 107 88 0.792 3.5186 0.0371 0.0986 <td>55</td> <td>Spot 82</td> <td>Sq</td> <td>Core</td> <td>189</td> <td>230</td> <td>1.1507</td> <td>3.7523</td> <td>0.0507</td> <td>0.0980</td> <td>0.0014</td> <td>1586</td> <td>27</td> <td>96</td>	55	Spot 82	Sq	Core	189	230	1.1507	3.7523	0.0507	0.0980	0.0014	1586	27	96
54Spot 84RecCore108930.81103.51860.04830.10110.001516262856Spot 85SqCore2662020.70723.56250.05580.09870.001316002559Spot 86SqCore1971830.89133.36130.04290.10090.001316412460Spot 87SqCore5086641.24843.31020.05810.09960.001416172658Spot 88SqCore1851850.96153.50390.03930.09890.001216032362Spot 89SqCore2192501.06723.65100.07600.09670.001615693161Spot 91SqCore3672780.77523.51860.03710.09860.001415962163Spot 92RecRim107880.77243.51860.03710.09860.001415982763Spot 93RecRim1251020.77603.50510.04910.09860.001415982863Spot 94RecRim1251020.77603.40370.06600.09960.002016173768Spot 95SqCore3334621.32983.41880.04680.09990.001216222268Spot 95	55	Spot 83	Rec	Rim	210	73	0.3318	3.6778	0.0636	0.0957	0.0015	1542	29	101
56 Spot 85 Sq Core 266 202 0.7072 3.5625 0.0987 0.0013 1600 25 59 Spot 86 Sq Core 197 183 0.8913 3.3613 0.0429 0.1009 0.0013 1641 24 60 Spot 87 Sq Core 508 664 1.2484 3.3102 0.0581 0.0996 0.0014 1617 26 58 Spot 88 Sq Core 185 185 0.9615 3.5039 0.0393 0.0989 0.0012 1603 23 62 Spot 89 Sq Core 219 250 1.0672 3.6510 0.0760 0.0967 0.0019 1561 37 62 Spot 90 Rec Rim 107 88 0.7924 3.6166 0.0589 0.0971 0.0016 1569 31 61 Spot 91 Sq Core 367 278 0.7752 3.5186 0.0371 0.0986 0.0011 1599 27 63 Spot 93 Rec	54	Spot 84	Rec	Core	108	93	0.8110	3.5186	0.0483	0.1001	0.0015	1626	28	99
59Spot 86SqCore1971830.89133.36130.04290.10090.001316412460Spot 87SqCore5086641.24843.31020.05810.09960.001416172658Spot 88SqCore1851850.96153.50390.03930.09890.001216032362Spot 89SqCore2192501.06723.65100.07600.09670.001915613762Spot 90RecRim107880.79243.61660.05890.09710.001615693161Spot 91SqCore3672780.77523.51860.03710.09850.001115962163Spot 92RecCore1832581.32803.50510.04910.09860.001415982763Spot 93RecRim1251020.77463.67780.11230.09760.003015795863Spot 94RecRim101790.75703.40370.06600.09960.001216222268Spot 95SqCore3334621.32983.41880.04680.09990.001216222268Spot 96RecRim153860.52803.43760.07560.09780.001815983469Spot 98<	56	Spot 85	Sq	Core	266	202	0.7072	3.5625	0.0558	0.0987	0.0013	1600	25	100
60Spot 87SqCore5086641.24843.31020.05810.09960.001416172658Spot 88SqCore1851850.96153.50390.03930.09890.001216032362Spot 89SqCore2192501.06723.65100.07600.09670.001915613762Spot 90RecRim107880.79243.61660.05890.09710.001615693161Spot 91SqCore3672780.77523.51860.03710.09850.001115962163Spot 92RecCore1832581.32803.50510.04910.09860.001415982763Spot 93RecRim1251020.77463.67780.11230.09760.003015795863Spot 94RecRim101790.75703.40370.06600.09960.002016173768Spot 95SqCore3334621.32983.41880.04680.09990.001216222268Spot 96RecRim153860.52803.43760.07560.09780.002115834067Spot 97SqCore1511821.06723.49280.05610.09860.01815983469Spot 98 </td <td>59</td> <td>Spot 86</td> <td>Sq</td> <td>Core</td> <td>197</td> <td>183</td> <td>0.8913</td> <td>3.3613</td> <td>0.0429</td> <td>0.1009</td> <td>0.0013</td> <td>1641</td> <td>24</td> <td>102</td>	59	Spot 86	Sq	Core	197	183	0.8913	3.3613	0.0429	0.1009	0.0013	1641	24	102
58 Spot 88 Sq Core 185 185 0.9615 3.5039 0.0393 0.0989 0.0012 1603 23 62 Spot 89 Sq Core 219 250 1.0672 3.6510 0.0760 0.0967 0.0019 1561 37 62 Spot 90 Rec Rim 107 88 0.7924 3.6166 0.0589 0.0971 0.0016 1569 31 61 Spot 91 Sq Core 367 278 0.7752 3.5186 0.0371 0.0985 0.0011 1596 21 63 Spot 92 Rec Core 183 258 1.3280 3.5051 0.0491 0.0986 0.0014 1598 27 63 Spot 93 Rec Rim 125 102 0.7760 3.4037 0.1123 0.0976 0.0030 1579 58 63 Spot 94 Rec Rim 101 79 0.7570 3.4037	60	Spot 87	Sq	Core	508	664	1.2484	3.3102	0.0581	0.0996	0.0014	1617	26	105
62 Spot 89 Sq Core 219 250 1.0672 3.6510 0.0760 0.0967 0.0019 1561 37 62 Spot 90 Rec Rim 107 88 0.7924 3.6160 0.0589 0.0971 0.0016 1569 31 61 Spot 91 Sq Core 367 278 0.7752 3.5186 0.0371 0.0985 0.0011 1569 21 63 Spot 92 Rec Core 183 258 1.3280 3.5051 0.0491 0.0986 0.0014 1598 27 63 Spot 93 Rec Rim 125 102 0.7746 3.6778 0.1123 0.0976 0.0030 1579 58 63 Spot 93 Rec Rim 101 79 0.7570 3.4037 0.0660 0.0996 0.0020 1617 37 63 Spot 95 Sq Core 333 462 1.3298 3.4188 0.0468 0.0999 0.0012 1622 22 68 Spot 96 <td>58</td> <td>Spot 88</td> <td>Sq</td> <td>Core</td> <td>185</td> <td>185</td> <td>0.9615</td> <td>3.5039</td> <td>0.0393</td> <td>0.0989</td> <td>0.0012</td> <td>1603</td> <td>23</td> <td>101</td>	58	Spot 88	Sq	Core	185	185	0.9615	3.5039	0.0393	0.0989	0.0012	1603	23	101
62 Spot 90 Rec Rim 107 88 0.7924 3.6166 0.0589 0.0971 0.0016 1569 31 61 Spot 91 Sq Core 367 278 0.7752 3.5186 0.0371 0.0985 0.0011 1599 21 63 Spot 92 Rec Core 183 258 1.3280 3.5051 0.0491 0.0986 0.0014 1598 27 63 Spot 93 Rec Rim 125 102 0.7746 3.6778 0.1123 0.0976 0.0030 1579 58 63 Spot 93 Rec Rim 101 79 0.7570 3.4037 0.0660 0.0996 0.0020 1617 37 68 Spot 95 Sq Core 333 462 1.3298 3.4188 0.0468 0.0999 0.0012 1622 22 68 Spot 96 Rec Rim 153 86 0.5280 3.4376 0.0756 0.0978 0.0021 1583 40 67 Spot 97 <td>62</td> <td>Spot 89</td> <td>Sq</td> <td>Core</td> <td>219</td> <td>250</td> <td>1.0672</td> <td>3.6510</td> <td>0.0760</td> <td>0.0967</td> <td>0.0019</td> <td>1561</td> <td>37</td> <td>100</td>	62	Spot 89	Sq	Core	219	250	1.0672	3.6510	0.0760	0.0967	0.0019	1561	37	100
61 Spot 91 Sq Core 367 278 0.7752 3.5186 0.0371 0.0985 0.0011 1596 21 63 Spot 92 Rec Core 183 258 1.3280 3.5051 0.0491 0.0986 0.0014 1598 27 63 Spot 92 Rec Rim 125 102 0.7746 3.6778 0.1123 0.0976 0.0030 1579 58 63 Spot 93 Rec Rim 101 79 0.7570 3.4037 0.0660 0.0996 0.0020 1617 37 68 Spot 95 Sq Core 333 462 1.3298 3.4188 0.0468 0.0999 0.0012 1622 22 68 Spot 95 Sq Core 333 462 1.3298 3.4188 0.0468 0.0999 0.0012 1622 22 68 Spot 96 Rec Rim 153 86 0.5280 3.4376 0.0756 0.0978 0.0021 1583 40 67 Spot 97 <td>62</td> <td>Spot 90</td> <td>Rec</td> <td>Rim</td> <td>107</td> <td>88</td> <td>0.7924</td> <td>3.6166</td> <td>0.0589</td> <td>0.0971</td> <td>0.0016</td> <td>1569</td> <td>31</td> <td>100</td>	62	Spot 90	Rec	Rim	107	88	0.7924	3.6166	0.0589	0.0971	0.0016	1569	31	100
63 Spot 92 Rec Core 183 258 1.3280 3.5051 0.0491 0.0986 0.0014 1598 27 63 Spot 93 Rec Rim 125 102 0.7746 3.6778 0.1123 0.0976 0.0030 1579 58 63 Spot 93 Rec Rim 101 79 0.7570 3.4037 0.0660 0.0996 0.0020 1617 37 68 Spot 95 Sq Core 333 462 1.3288 3.4188 0.0468 0.0999 0.0012 1622 22 68 Spot 96 Rec Rim 153 86 0.5280 3.4376 0.0756 0.0978 0.0012 1583 40 67 Spot 97 Sq Core 151 182 1.0672 3.4928 0.0561 0.0986 0.0018 1598 34 69 Spot 98 Sq Core 148 148 0.9355 3.5689 0.0420 0.0981 0.0012 1588 23	61	Spot 91	Sq	Core	367	278	0.7752	3.5186	0.0371	0.0985	0.0011	1596	21	101
63 Spot 93 Rec Rim 125 102 0.7746 3.6778 0.1123 0.0976 0.0030 1579 58 63 Spot 94 Rec Rim 101 79 0.7570 3.4037 0.0660 0.0996 0.0020 1617 37 68 Spot 95 Sq Core 333 462 1.3298 3.4188 0.0468 0.0999 0.0012 1622 22 68 Spot 96 Rec Rim 153 86 0.5280 3.4376 0.0756 0.0978 0.0021 1583 40 67 Spot 97 Sq Core 151 182 1.0672 3.4928 0.0561 0.0986 0.0018 1598 34 69 Spot 98 Sq Core 148 148 0.9355 3.5689 0.0420 0.0981 0.0012 1588 23	63	Spot 92	Rec	Core	183	258	1.3280	3.5051	0.0491	0.0986	0.0014	1598	27	101
63 Spot 94 Rec Rim 101 79 0.7570 3.4037 0.0660 0.0996 0.0020 1617 37 68 Spot 95 Sq Core 333 462 1.3298 3.4188 0.0468 0.0999 0.0012 1622 22 68 Spot 96 Rec Rim 153 86 0.5280 3.4376 0.0756 0.0978 0.0021 1583 40 67 Spot 97 Sq Core 151 182 1.0672 3.4928 0.0561 0.0986 0.0018 1598 34 69 Spot 98 Sq Core 148 148 0.9355 3.5689 0.0420 0.0981 0.0012 1588 23	63	Spot 93	Rec	Rim	125	102	0.7746	3.6778	0.1123	0.0976	0.0030	1579	58	98
68 Spot 95 Sq Core 333 462 1.3298 3.4188 0.0468 0.0999 0.0012 1622 22 68 Spot 96 Rec Rim 153 86 0.5280 3.4376 0.0756 0.0978 0.0021 1583 40 67 Spot 97 Sq Core 151 182 1.0672 3.4928 0.0561 0.0986 0.0018 1598 34 69 Spot 98 Sq Core 148 148 0.9355 3.5689 0.0420 0.0981 0.0012 1588 23	63	Spot 94	Rec	Rim	101	79	0.7570	3.4037	0.0660	0.0996	0.0020	1617	37	103
68 Spot 96 Rec Rim 153 86 0.5280 3.4376 0.0756 0.0978 0.0021 1583 40 67 Spot 97 Sq Core 151 182 1.0672 3.4928 0.0561 0.0986 0.0018 1598 34 69 Spot 98 Sq Core 148 148 0.9355 3.5689 0.0420 0.0981 0.0012 1588 23	68	Spot 95	Sq	Core	333	462	1.3298	3.4188	0.0468	0.0999	0.0012	1622	22	102
67 Spot 97 Sq Core 151 182 1.0672 3.4928 0.0561 0.0986 0.0018 1598 34 69 Spot 98 Sq Core 148 148 0.9355 3.5689 0.0420 0.0981 0.0012 1588 23	68	Spot 96	Rec	Rim	153	86	0.5280	3.4376	0.0756	0.0978	0.0021	1583	40	104
69 Spot 98 Sq Core 148 148 0.9355 3.5689 0.0420 0.0981 0.0012 1588 23	67	Spot 97	Sq	Core	151	182	1.0672	3.4928	0.0561	0.0986	0.0018	1598	34	102
	69	Spot 98	Sq	Core	148	148	0.9355	3.5689	0.0420	0.0981	0.0012	1588	23	100

73	Spot 99	Sq	Core	83	76	0.8749	3.5817	0.0577	0.0993	0.0022	1611	41	99
73	Spot 100	Sq	Rim	374	132	0.3461	4.1186	0.0577	0.0933	0.0013	1494	26	94
72	Spot 101	Sq	Core	300	313	0.9606	3.4638	0.0576	0.1006	0.0017	1635	31	100
75	Spot 102	Sq	Core	195	212	1.0384	3.5261	0.0547	0.0979	0.0015	1585	29	102
75	Spot 103	Sq	Core	146	119	0.7862	3.4990	0.0502	0.0991	0.0018	1607	34	101
74	Spot 104	Sq	Core	175	50	0.2770	3.6536	0.0801	0.0953	0.0018	1534	36	102
77	Spot 105	Sq	Core	171	68	0.3925	3.4990	0.0477	0.0981	0.0014	1588	27	102
77	Spot 106	Sq	Rim	113	96	0.8368	3.5829	0.0591	0.0983	0.0018	1592	34	100
77	Spot 107	Rec	Rim	322	133	0.3986	3.4317	0.0683	0.0993	0.0018	1611	34	102
80	Spot 108	Sq	Core	229	87	0.3846	3.5398	0.0564	0.0991	0.0016	1607	30	100
79	Spot 109	Sq	Core	262	446	1.1737	3.5791	0.0807	0.0976	0.0018	1579	35	101
79	Spot 110	Rec	Rim	134	46	0.3401	4.0161	0.0532	0.0975	0.0018	1577	35	91
78	Spot 111	Sq	Core	270	323	1.0341	3.4258	0.0704	0.0984	0.0022	1594	42	104
84	Spot 112	Sq	Core	55	43	0.7800	3.7965	0.0692	0.0934	0.0022	1496	45	101
83	Spot 113	Sq	Core	215	193	0.8576	3.6298	0.0606	0.0985	0.0017	1596	32	98
83	Spot 114	Rec	Rim	63	52	0.7806	3.8008	0.0737	0.0951	0.0020	1530	40	98
82	Spot 115	Sq	Core	294	122	0.4153	3.7327	0.0711	0.0986	0.0016	1598	30	96
82	Spot 116	Rec	Rim	257	64	0.2088	3.7411	0.0462	0.0970	0.0014	1567	27	97

1800

1900

Appendix V - Concordia diagrams and histograms of all analyses

1200 1300 1400 1500 1600 1700

²⁰⁷Pb/²⁰⁶Pb Age (Ma)

Appendix VI - Th/U plots of all samples

Fig. 1a. Igpet diagrams showing Th/U plotted against Th to the left and 207 Pb/ 206 Pb age (Ma) plotted against Th/U to the right. Filled symbols indicate concordant analyses (<5% discordance) used to calculate weighted average dates. Hollow symbols indicate discordant analyses (>5% discordance). Legend of samples is shown in the upper left corner of each diagram.

Fig. 1b. Igpet diagrams showing Th/U plotted against Th to the left and 207 Pb/ 206 Pb age (Ma) plotted against Th/U to the right. Filled symbols indicate concordant analyses (<5% discordance) used to calculate weighted average dates. Legend of samples is shown in the upper left corner of each diagram.

Tidigare skrifter i serien "Examensarbeten i Geologi vid Lunds universitet":

- Sällström, Oskar, 2017: Tolkning av geofysiska mätningar i hammarborrhål på södra Gotland. (15 hp)
- 504. Ahrenstedt, Viktor, 2017: Depositional history of the Neoproterozoic Visingsö Group, south-central Sweden. (15 hp)
- 505. Schou, Dagmar Juul, 2017: Geometry and faulting history of the Long Spur fault zone, Castle Hill Basin, New Zealand. (15 hp)
- 506. Andersson, Setina, 2017: Skalbärande marina organismer och petrografi av tidigcampanska sediment i Kristianstadsbassängen – implikationer på paleomiljö. (15 hp)
- 507. Kempengren, Henrik, 2017: Föroreningsspridning från kustnära deponi: Applicering av Landsim 2.5 för modellering av lakvattentransport till Östersjön. (15 hp)
- 508. Ekborg, Charlotte, 2017: En studie på samband mellan jordmekaniska egenskaper och hydrodynamiska processer när erosion påverkar släntstabiliteten vid ökad nederbörd. (15 hp)
- 509. Silvén, Björn, 2017: LiDARstudie av glaciala landformer sydväst om Söderåsen, Skåne, Sverige. (15 hp)
- 510. Rönning, Lydia, 2017: Ceratopsida dinosauriers migrationsmönster under krittiden baserat på paleobiogeografi och fylogeni. (15 hp)
- 511. Engleson, Kristina, 2017: Miljökonsekvensbeskrivning Revinge brunnsfält. (15 hp)
- 512. Ingered, Mimmi, 2017: U-Pb datering av zirkon från migmatitisk gnejs i Delsjöområdet, Idefjordenterrängen. (15 hp)
- 513. Kervall, Hanna, 2017: EGS framtidens geotermiska system. (15 hp)
- 514. Walheim, Karin, 2017: Kvartsmineralogins betydelse för en lyckad luminiscensdatering. (15 hp)
- 515. Aldenius, Erik, 2017: Lunds Geotermisystem, en utvärdering av 30 års drift. (15 hp)
- 516. Aulin, Linda, 2017: Constraining the duration of eruptions of the Rangitoto volcano, New Zealand, using paleomagnetism. (15 hp)
- 517. Hydén, Christina Engberg, 2017: Drumlinerna i Löberöd - Spår efter flera isrörelseriktningar i mellersta Skåne. (15 hp)
- 518. Svantesson, Fredrik, 2017: Metodik för kartläggning och klassificering av erosion och släntstabilitet i vattendrag. (45 hp)

- 519. Stjern, Rebecka, 2017: Hur påverkas luminiscenssignaler från kvarts under laboratorieförhållanden? (15 hp)
- 520. Karlstedt, Filippa, 2017: P-T estimation of the metamorphism of gabbro to garnet amphibolite at Herrestad, Eastern Segment of the Sveconorwegian orogen. (45 hp)
- 521. Önnervik, Oscar, 2017: Ooider som naturliga arkiv för förändringar i havens geokemi och jordens klimat. (15 hp)
- 522. Nilsson, Hanna, 2017: Kartläggning av sand och naturgrus med hjälp av resistivitetsmätning på Själland, Danmark. (15 hp)
- 523. Christensson, Lisa, 2017: Geofysisk undersökning av grundvattenskydd för planerad reservvattentäkt i Mjölkalånga, Hässleholms kommun. (15 hp)
- 524. Stamsnijder, Joaen, 2017: New geochronological constraints on the Klipriviersberg Group: defining a new Neoarchean large igneous province on the Kaapvaal Craton, South Africa. (45 hp)
- 525. Becker Jensen, Amanda, 2017: Den eocena Furformationen i Danmark: exceptionella bevaringstillstånd har bidragit till att djurs mjukdelar fossiliserats.(15 hp)
- 526. Radomski, Jan, 2018: Carbonate sedimentology and carbon isotope stratigraphy of the Tallbacken-1 core, early Wenlock Slite Group, Gotland, Sweden. (45 hp)
- 527. Pettersson, Johan, 2018: Ultrastructure and biomolecular composition of sea turtle epidermal remains from the Campanian (Upper Cretaceous) North Sulphur River of Texas. (45 hp)
- 528. Jansson, Robin, 2018: Multidisciplinary perspective on a natural attenuation zone in a PCE contaminated aquifer. (45 hp)
- 529. Larsson, Alfred, 2018: Rb-Sr sphalerite data and implications for the source and timing of Pb-Zn deposits at the Caledonian margin in Sweden. (45 hp)
- 530. Balija, Fisnik, 2018: Stratigraphy and pyrite geochemistry of the Lower–Upper Ordovician in the Lerhamn and Fågelsång
 -3 drill cores, Scania, Sweden. (45 hp)
- 531. Höglund, Nikolas, 2018: Groundwater chemistry evaluation and a GIS-based approach for determining groundwater potential in Mörbylånga, Sweden. (45 hp)
- 532. Haag, Vendela, 2018: Studie av mikrostrukturer i karbonatslagkäglor från nedslagsstrukturen Charlevoix, Kanada. (15 hp)
- 533. Hebrard, Benoit, 2018: Antropocen vad, när och hur? (15 hp)
- 534. Jancsak, Nathalie, 2018: Åtgärder mot kusterosion i Skåne, samt en fallstudie av erosionsskydden i Löderup, Ystad kommun. (15 hp)

- 535. Zachén, Gabriel, 2018: Mesosideriter redogörelse av bildningsprocesser samt SEM-analys av Vaca Muertameteoriten. (15 hp)
- 536. Fägersten, Andreas, 2018: Lateral variability in the quantification of calcareous nannofossils in the Upper Triassic, Austria. (15 hp)
- 537. Hjertman, Anna, 2018: Förutsättningar för djupinfiltration av ytvatten från Ivösjön till Kristianstadbassängen. (15 hp)
- 538. Lagerstam, Clarence, 2018: Varför svalde svanödlor (Reptilia, Plesiosauria) stenar? (15 hp)
- 539. Pilser, Hannes, 2018: Mg/Ca i bottenlevande foraminiferer, särskilt med avseende på temperaturer nära 0°C. (15 hp)
- 540. Christiansen, Emma, 2018: Mikroplast på och i havsbotten - Utbredningen av mikroplaster i marina bottensediment och dess påverkan på marina miljöer. (15 hp)
- 541. Staahlnacke, Simon, 2018: En sammanställning av norra Skånes prekambriska berggrund. (15 hp)
- 542. Martell, Josefin, 2018: Shock metamorphic features in zircon grains from the Mien impact structure - clues to conditions during impact. (45 hp)
- 543. Chitindingu, Tawonga, 2018: Petrological characterization of the Cambrian sandstone reservoirs in the Baltic Basin, Sweden. (45 hp)
- 544. Chonewicz, Julia, 2018: Dimensionerande vattenförbrukning av grundvatten samt alternativa vattenkvaliteter. (15 hp)
- 545. Adeen, Lina, 2018: Hur lämpliga är de geofysiska metoderna resistivitet och IP för kartläggning av PFOS? (15 hp)
- 546. Nilsson Brunlid, Anette, 2018: Impact of southern Baltic sea-level changes on landscape development in the Verkeån River valley at Haväng, southern Sweden, during the early and mid Holocene. (45 hp)
- 547. Perälä, Jesper, 2018: Dynamic Recrystallization in the Sveconorwegian Frontal Wedge, Småland, southern Sweden. (45 hp)
- 548. Artursson, Christopher, 2018: Stratigra-

phy, sedimentology and geophysical assessment of the early Silurian Halla and Klinteberg formations, Altajme core, Gotland, Sweden. (45 hp)

- 549. Kempengren, Henrik, 2018: Att välja den mest hållbara efterbehandlingsmetoden vid sanering: Applicering av beslutsstödsverktyget SAMLA. (45 hp)
- 550. Andreasson, Dagnija, 2018: Assessment of using liquidity index for the approximation of undrained shear strength of clay tills in Scania. (45 hp)
- 551. Ahrenstedt, Viktor, 2018: The Neoproterozoic Visingsö Group of southern Sweden: Lithology, sequence stratigraphy and provenance of the Middle Formation. (45 hp)
- 552. Berglund, Marie, 2018: Basaltkuppen ett spel om mineralogi och petrologi. (15 hp)
- 553. Hernnäs, Tove, 2018: Garnet amphibolite in the internal Eastern Segment, Sveconorwegian Province: monitors of metamorphic recrystallization at high temperature and pressure during Sveconorwegian orogeny. (45 hp)
- 554. Halling, Jenny, 2019: Characterization of black rust in reinforced concrete structures: analyses of field samples from southern Sweden. (45 hp)
- 555. Stevic, Marijana, 2019: Stratigraphy and dating of a lake sediment record from Lyngsjön, eastern Scania - human impact and aeolian sand deposition during the last millennium. (45 hp)
- 556. Rabanser, Monika, 2019: Processes of Lateral Moraine Formation at a Debriscovered Glacier, Suldenferner (Vedretta di Solda), Italy. (45 hp)
- 557. Nilsson, Hanna, 2019: Records of environmental change and sedimentation processes over the last century in a Baltic coastal inlet. (45 hp)
- 558. Ingered, Mimmi, 2019: Zircon U-Pb constraints on the timing of Sveconorwegian migmatite formation in the Western and Median Segments of the Idefjorden terrane, SW Sweden. (45 hp)

LUNDS UNIVERSITET

Geologiska institutionen Lunds universitet Sölvegatan 12, 223 62 Lund