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Abstract

A cascade matched filtering (CMF) approach is purposed for filtering rectangular
pulse train tracking signals, with known signal characteristics, in an embedded signal
detection unit. Two adaptive detection algorithms are suggested, adapting to alter-
ations in noise signal characteristics, due to environmental changes. The end product
was an embedded tracking detection system, enabled to identify distance and direc-
tion to a tracking source, and transmit a well synchronized replica signal back to the
tracking source. The suggested filtering and detectionmethod, enhanced the tracking
distance of the system significantly.

An introduction to the topic is given in the first section of the thesis, followed by
underlying theory on the broad topic. The thesis methodology is explained and track-
ing detection system with its subcomponents are modeled and described. Then the
results from both simulation and embedded real-time data is presented, proceeding
with discussions and ultimately conclusions.

Both simulation and embedded real-time data confirms improvements by im-
plementing purposed filtering and detection techniques, by studying the SNR gain
from the filter segment, and the ROC of the detection segment. The SNR gain in
dB increases logarithmically with each added pulse period to the matched filter, and
the linearity of the matched filter is clearly visualized in the filtered output signal.
The 3-dimensional ROC curves, illustrates saturations in detection probabilities at
a certain threshold, implying a correlation between filter extension and achieving a
certain detection probability.
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Abbreviations

Digital Signal Processing
AAF Anti-Aliasing Filter
ADC Analogue to Digital Converter
ALE Adaptive Line Enhancer
AMF Adaptive Matched Filter
AOI Area Of Interest
AWGN Additive White Gaussian Noise
CMF Cascade Matched Filter
CFRFT Concise Fractional Fourier Transform
DAC Digital to Analogue Converter
DFT Discrete Fourier Transform
DSP Digital Signal Processing
FDAMF Frequency-Domain Adaptive Matched Filter
FFT Fast Fourier Transform
FIR Finite-duration Impulse Response
MF Matched Filter
MOAMF Multiple Observations Adaptive Matched Filter
NLMS Normalized Least-Mean-Square
PFA Probability of False Alarm
RLS Recursive Least-mean-Squared
ROC Receiver Operating Characteristic
SAADC Successive Approximation Analogue to Digital

Converter
SNR Signal to Noise Ratio
SOI Signal Of Interest
TOC Transmitter Operating Characteristic
TRC-IS Time Reversal Convolution and Interference Sup-

pression
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Embedded System
CMSIS Cortex Microcontroller Software Interface Stan-

dard
DMA Direct Memory Access
EOC End Of Conversion
RTCS Real-Time Control System
RTOS Real-Time Operating System

Miscellaneous
EMR Electromagnetic radiation
ESD Energy Spectral Density
LED Light Emitting Diode
LTI Linear Time-Invariant
MAP Maximum A posteriori Probability
NEP Noise equivalent power
NIR Near-Infrared
PDF Probability Density Function
RMS Root Mean Square
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1
Introduction

Automation has a great potential in the ongoing digitalization of the construction
industry, recognized as ”Construction 4.0”. Leading construction players believe that
automation within production and quality management will gain the most of the
digitalization in the construction industry [Nölling et al., 2016, p. 6 & 14]. This will
create opportunities for intelligent automation solutions for the future construction
site. Laying out construction points is a time consuming operation, which requires
high accuracy. Extending the autonomous functions in this field would save time
and money for construction companies. Intelligent tracking of active mobile targets
used for measuring and positioning will extend the operating portfolio, contribute to
faster and more stable solution. A simple model of the tracking solution is illustrated
in Fig 1.1, which is a reduced system model of later demonstrated model in Fig. 4.3.

The operating environments for optical tracking differs and are prone to various
optical interferences. This influences the performance of optical signals used for
tracking in construction environments. Optical interferences differ in characteristics
and could be categorized as intrinsic noise, signal noise, external noise, processing
noise and signal interruption [Kitchin, 2013, p. 55]. This categorization separates,
e.g., background radiation from electrical measurement noise in detectors apart from
each other. Smart filtering techniques will contribute to stable operation, increasing
detection distance and allow the tracking system to use its full potential.
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Chapter 1. Introduction

Figure 1.1 A simplification of a survey system tracking a mobile active target, each
of the blocks in the tracking detection system will be explained and studied in this
paper.

1.1 Problem Formulation

Tracking signals used in various surveying systems can have disparate signal char-
acteristics, e.g., different frequency, continuous or pulsating signals with different
pulse widths. The bandwidth of a receiver capable to operate with several surveying
systems must have a broader bandwidth. However, by increasing the bandwidth one
will decrease the signal to noise ratio (SNR) [Hamamatsu, 2011, p. 6] [Mahafza,
2013, p. 30]. Decreasing the SNR will resolve in reduced detection distance. To
maintain a relatively feasible SNR level, the bandwidth of the detector must be nar-
rowed as much as possible to restrain the noise power. This contradicts the require-
ments of the tracking systems, which operates in different frequencies and pulse
widths to change its tracking resolution [Mahafza, 2013, p.13,171]. A fixed ana-
logue filter would need an overly wide bandwidth and increasing the noise power
to impractical levels. To still fulfill the requirements, a narrowband digital adaptive
filter could be used. In this thesis a semi-adaptive Matched Filter (MF) was devel-
oped called CascadeMatched Filter (CMF). The adaptive characteristics is narrowed
down to some known signal characteristics, were practically different digital filters
are used in a search phase to detect the best performing filter and then apply this
filter template to the incoming signal.

1.2 Delimitations

Different types of disturbances could be filtered out in different ways - an incoming
optical noise signal could be filtered with an optical filter and an electrical inter-
ference with an analogue filter. These two mentioned filtering steps are part of the
received signal that is converted in the ADC for this master thesis.

12



1.3 Purpose

Figure 1.2 Incoming radiation from a tracking system incorporated with external
noise are optically filtered as a first step with a bandpass filter (left side). An analogue
anti-aliasing filter (AAF) filters out the higher frequencies in the induced electrical
signal from the photodiode. Ultimately digital filtering is applied after the analogue
to digital converter (ADC).

Studies are limited to the optical spectrum of Near-Infrared (NIR) radiation fixed
frequency pulses [Optics and photonics - Spectral bands]. The NIR radiation spec-
trum is detected with optical filtered photodiodes, where the incident energy from
the NIR photons will create a measurable photocurrent [Hamamatsu, 2011, p. 5 &
6]. No further details of optical filtering will be included nor will any studies be
performed within this topic.

The extracted analogue output voltage from the photodiode will be amplified and
converted with an analogue to digital converter (ADC) to measure and specify track-
ing characteristics. An anti-aliasing filter (AAF) is implemented to remove signals
above the Nyquist frequency. The AAF consist of an analogue low-pass filter and
filters the signal before it gets sampled by the ADC [Wittenmark et al., 2016, p. 12].
All filtering will be digital and performed with digital signal processing (DSP). The
main scope is to filter out Additive White Gaussian Noise (AWGN), signal interrup-
tion and external spurious signals from the desired signal. Hence, all different types
of noise will not be studied in this master thesis.

Research was made on finding suitable filtering techniques for RADAR sig-
nals. Two adaptive filtering techniques were compared, recursive least-mean-square
(RLS) and least-mean-square (LMS). Some insightful discoveries were made and
some lessons were gained from this research [Salminen, 2013, p. 35]. A different
filtering approach was developed for this thesis and also some signal detection tech-
niques. The embedded C code will not be disclosed in this thesis, but the underlying
concept and results will be described, displayed and discussed.

1.3 Purpose

The purpose is elucidate the contrast and importance of different detection tech-
niques and pulse period extensions of a matched filter. This thesis covers one out of
many approaches on how to filter and detect an incoming signal. A Matched Filter
(MF) was selected, since it is the optimal linear filter for instantaneously maximizing
the SNR output [Liu et al., 2017, p. 1][Mahafza, 2013, p. 143]. A concept for im-
proving the algorithm was developed to increase the detectivity of incoming pulse
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Chapter 1. Introduction

train signals, this modification was named cascade matched filter (CMF). The in-
tent is also to illustrate how detectivity algorithms can improve the detectivity and
minimize errors in the detection process.

1.4 Outline

Section 2 - Theory
Background theory of signals, detectors and filters with corresponding equations
and algorithms will be provided in this section.

Section 3 - Methodology
Explaining the steps and methods of choice, to prove and establish the system truth,
design and develop filters and detection algorithms.

Section 4 - Modeling
Deriving the tracking system model, signal and noise characteristics, the cascade
matched filter algorithm concept and detection algorithms.

Section 5 - Simulation
Simulation and performance analysis of the cascadematched filter and detection sys-
tem.

Section 6 - Real Time Operation
Real-time performance analysis of the embedded cascade matched filter and detec-
tion system.

Section 7 - Discussion
Discussion including comparison of the results from simulation and real-time oper-
ation.

Section 8 - Conclusion
Conclusions from the thesis, results and discussion section along with further inves-
tigation and future development aspects.
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2
Theory

2.1 Continuous and Discrete Time Signals

Continuous-time signals have aperiodic spectra and discrete-time signals have pe-
riodic spectra [Proakis and Manolakis, 2014, p. 275]. Thus the frequency range
is finite for discrete-time signals and infinite for continuous-time signals. The fre-
quency range for discrete-time signals is bounded between ω = [−π,+π] radians,
whereω = π corresponds to the highest rate of oscillation. Periodic signals have dis-
crete spectra and are described by Fourier series. The lines of the discrete spectrum
represents the Fourier series coefficients, where the line spacing is ∆ f = 1/Tp for
continuous-time signals and ∆ f = 1/N for discrete-time signals. Some analogy of
the equations holds for discrete time signals, where the fixed discrete time represen-
tation k is equal to a fixed time t. The variable denotation including continuous and
discrete time simultaneously is refereed by first the continuous time representation
and then the discrete time, i.e, x(t∨k). In this master thesis the desired input signal is
denoted with x(t), noise n(t) and the combined measurable signal y(t) = x(t)+n(t)
for continuous signals. To understand the signal behavior in this thesis some elemen-
tary equations are required. Lets first start with the instantaneous power pxx(t ∨ k)
for a signal x(t ∨ k) at a fixed time t for continuous time signals and k for discrete
time signals, this is defined by

pxx(t) =x(t) · x∗(t) = |x(t)|2 (2.1a)

pxx(k) =x(k) · x∗(k) = |x(k)|2 (2.1b)

where x∗(t ∨ k) denotes the complex conjugate transpose of signal x(t ∨ k) [Johans-
son, 1993, p. 40]. The average power of a signal x(t ∨ k) during a time interval

15



Chapter 2. Theory

[t0, t0 +T ]∨ [k0,k0 +N] is defined as

pxx(t0,T ) =
1
T

t0+T∫
t0

x(t) · x∗(t)dt (2.2a)

pxx(k0,N) =
1
N

N+k0

∑
k=k0

|x(k)|2 , (2.2b)

where the general formulation of the average power is

pxx = lim
T→∞

1
2T

T∫
−T

x(t) · x∗(t)dt (2.3a)

pxx = lim
N→∞

1
2N +1

N

∑
k=−N

|x(k)|2 . (2.3b)

By taking the instantaneous power over time, one will get the signal energy

exx =

+∞∫
−∞

pxx(t)dt =
+∞∫
−∞

x(t) · x∗(t)dt (2.4a)

exx =
+∞

∑
−∞

pxx(k) =
+∞

∑
−∞

|x(k)|2 (2.4b)

if two signals interact with each other they are said to be correlated. In themeasurable
signal y(t ∨ k) = x(t ∨ k)+n(t ∨ k) there might be a correlation between the desired
signal x(t ∨ k) and the noise signal n(t ∨ k)

exn(τ) =

+∞∫
−∞

x(t)n∗(t− τ)dt

enx(τ) =

+∞∫
−∞

n(t)x∗(t− τ)dt = e∗xn(−τ) (2.5a)

exn(n) =
+∞

∑
k=−∞

x(k)n∗(k−n)

enx(n) =
+∞

∑
k=−∞

n(k)x∗(k−n) = e∗xn(−n). (2.5b)

If the noise signal and the desired signal is uncorrelated then exn(t∨k) = 0 [Johans-
son, 1993, p. 40]. This results in a total measured signal energy corresponding to the
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2.1 Continuous and Discrete Time Signals

summation of the desired energy and the noise energy:

eyy = exx + exn︸︷︷︸
= 0

+enn = exx + enn

This event is unlikely to occur for the studied tracking system. For simplicity the
energy spectral density (ESD) of the signal x(t∨k) could be defined with the Fourier
Transform X(ω)

Exx = X(ω)X∗(ω) (2.6)

and the cross-energy spectral density between x(t ∨ k) and n(t ∨ k) yields

Exn =X(ω)N∗(ω) = F {x} ·F {n∗} (2.7)

=F


+∞∫
−∞

x(t)n∗(t− τ)dt

+∞

∑
k=−∞

x(k)n∗(k−n)

= F {exn}

⇔Exn(ω)
F↔ exn(t ∨ k). (2.8)

This is better known as the Wiener-Khintchine theorem [Johansson, 1993, p. 41].
This results implies that the same information about the signal exist in the correlation
sequence of a signal and its energy spectral density, whereas no phase information
exist [Proakis and Manolakis, 2014, p. 291]. The ESD represents the distribution of
signal energy over frequency. Since the Fourier transform of a signal is

X(ω) =F {x(t)}=
+∞∫
−∞

x(t)e−iωtdt (2.9)

X(ω) =F {x(k)}=
+∞

∑
k=−∞

x(k)e−iωk (2.10)

and the inverse Fourier transform is

x(t) =F−1 {X(ω)}= 1
2π

+∞∫
−∞

X(ω)eiωtdω (2.11)

x(k) =F−1 {X(ω)}= 1
2π

+∞

∑
k=−∞

X(ω)eiωk (2.12)

the discrete cross-energy density spectrum Exn extension is represented by:

Exn(ω) = F {exn}=
+∞

∑
n=−∞

exn(n)e−iωn =
+∞

∑
n=−∞

[
+∞

∑
k=−∞

x(k)n∗(k−n)

]
e−iωn
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Chapter 2. Theory

Signals with infinite energy are better observed with the cross covariance

Cxn(τ) = lim
T→∞

1
2T

T∫
−T

x(t)n∗(t− τ)dt (2.13a)

Cxn(n) = lim
N→∞

1
2N +1

N

∑
k=−N

x(k)n∗(k−n) (2.13b)

and the power cross spectrum Sxn. They are expressible together as

Sxn(ω) = F {Cxn} (2.14)

The autospectrum and autocovariance are expressible in a similar manner

Sxx(ω) = F {Cxx}= F


limT→∞

1
2T

+T∫
−T

x(t)x∗(t− τ)dt

limN→∞
1

2N+1

+N
∑

k=−N
x(k)x∗(k−n)

 (2.15)

Thus the power spectra and covariance function are related according to the Wiener-
Khintchine theorem [Johansson, 1993, p. 42].

2.2 NIR-signals and detectors

Near infra-red (NIR) electromagnetic radiation (EMR) has a wave length of 750 nm
- 1400 nm, established as one of the spectrum contiguous with the visible spectra.
The NIR spectrum is a small portion of the entire infra-red spectra, which spreads
over 750 nm - 1000 µm [D’Amico et al., 2009, p. 21-22]. Near infra-red radiation is
utilized by image intensifiers such as night vision goggles. The NIR spectra belongs
to the reflected infrared spectrum of 750 nm - 3µm, in contrast to the thermal infrared
spectrum of 3 µm - 15 µm. One of the most well known tracking technique within
the thermal infrared spectrum is the guided missile technology, more known as "heat
seeking" missiles [D’Amico et al., 2009, p. 22].

Infra-red detectors could be categorized from the essential operating mecha-
nisms [D’Amico et al., 2009, p. 25]. Photon sensors that are used for the reflec-
tive infra-red consist of the following detection category: photoconductive(intrinsic),
photoconductive(extrinsic), photovoltaic and superconducting sensors [D’Amico et
al., 2009, p. 25]. Of the mentioned NIR detection techniques, the photovoltaic sen-
sors are the only one that does not need an external power supply [D’Amico et al.,
2009, p. 25]. Thus photovoltaic sensors such as photodiodes, could be used in low
power consumption tools.

Signal-to-noise ratio (SNR) is a parameter of importance in NIR detectors [Or-
ton, 2008, p. 12]. The quantity of incident light that results in a SNR unity is called
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2.2 NIR-signals and detectors

noise equivalent power (NEP). [Hamamatsu, 2011, p. 6].

NEP =
I ·As

Vs
Vn
·
√

∆ f
=

I ·As

SNR ·
√

∆ f
[W/
√

Hz] (2.16)

As denotes the detector active area [cm2], I the irradiance [W/cm2], SNR is given
by rms value of the signal and noise voltages and ∆ f is the noise bandwidth [Hama-
matsu, 2011, p.6][D’Amico et al., 2009, p. 10]. The active detector area and irradi-
ance are illustrated in Fig. 2.1.

Figure 2.1 Illustrates how a NIR diode produces an incoming irradiance I, which
is detected by the detector active area As. The irradiance [W/cm2] is defined as the
quotient between the partial derivative of the radiant flux received Φe and the partial
derivative of the area A.

NEP sets the detection threshold for a desired signal [Orton, 2008, p. 12]. When
the tracking NIR signal has reached the ADC, it is incorporated with intrinsic noise,
signal noise, external noise and processing noise as mentioned in Section 1. Detec-
tion of a NIR signal with a radiation detector is normally limited to the external noise
such as background noise. Generally the arising processing noise from amplifiers
could be neglected, thus the greatest improvements are performed at the detector
output and its surrounding [Orton, 2008, p. 12].
An easier interpretation of how the SNR affects the performance of a NIR detector
is the detectivity D∗.

D∗ =
√

As

NEP
=

SNR ·
√

∆ f
I ·
√

As
(2.17)

This is interpreted in a way that the SNR is proportional to the detectivity D∗ of the
detector [Hamamatsu, 2011, p. 6].
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Chapter 2. Theory

2.3 SNR

The SNR in NIR detectors can be expressed by the detection threshold of the NEP.

SNR =
I ·As

NEP ·
√

∆ f
(2.18)

This means that if the noise equivalent power (NEP) is reduced, the signal to noise
ratio (SNR) will increase. There is a limit on how much the NEP could be reduced,
so to further improve the SNR and detectivity there are two considerable actions
one can make - increase the desired signal (irradiance) and decrease the bandwidth
of the noise. If we can not control the irradiance of the received tracking signal,
the best option is to narrow the bandwidth of the noise. A third option could also
be considered, namely increasing the active detection area. It is beneficial to not
oversize the detection area if the tracking system is able to target the NIR detector.
Then the irradiating NIR tracking signal would be aimed at a small surface, hence
decreasing the likelihood of detecting external noise. If the detection area is scaled
up the detection of external noise increases.
A more general way of measuring SNR is the ratio between signal power and noise
power [Johansson, 1993, p. 42]

SNR =
exx

enn
(2.19)

This approach could also be expressed in dB according to [Kester, 2009, p. 6]

SNR = 20log(
exx

enn
) [dB] (2.20)

To determine the SNR from experiment and simulation data it is sometimes easier
to generalize the SNR from the rms values of the signal and noise

SNR = 20log10(
VFS RMS

VNOISE RMS
) (2.21)

where FS is the full-scale of the ADC value [Kester, 2005, p. 63, Chapter 2]. To
avoid signal clipping, all signals must stay within the full-scale of the ADC.

2.4 Correlation and Coherence

SNR is a harsh way of explaining the underlined problem in signal detection. Instead
somemore explainable factors are the correlation and coherence of the desired signal
x(t ∨ k) and noise signals n(t ∨ k). The correlation aspect is important in this thesis,
and the coherence was not investigated.

y(t) =x(t)+n(t) = g(t)∗u(t)+n(t) (2.22a)
y(k) =x(k)+n(k) = g(k)∗u(k)+n(k) (2.22b)
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2.5 Rectangular Pulse Train

The measurable signal x(t ∨k) is the product of the incoming signal u(t ∨k) convo-
luted with the system impulse response g(t∨k) and n(t∨k) is an incoming external
noise signal. The responding SNR from Eq. 2.19 would then be

SNR =
exx

enn
=

eyy

enn
−1 (2.23)

where the second equality holds if x(t ∨ k) and n(t ∨ k) is uncorrelated exn = 0. The
correlation coefficient ρ between the two signals x(t ∨ k) and y(t ∨ k) is defined as

ρ(τ) =
Cxy(τ)√

|Cxx(τ)|
√∣∣Cyy(τ)

∣∣ (2.24a)

ρ(n) =
Cxy(n)√

|Cxx(n)|
√∣∣Cyy(n)

∣∣ . (2.24b)

2.5 Rectangular Pulse Train

In this section the Fourier series and power density spectrum of continuous-time and
discrete-time periodic rectangular pulses are established. The rectangular pulse train
is a periodic rectangular shaped signal with pulse repetition rate Tp for continuous
time and N for discrete time. The Fourier transform of a rectangular pulse changes
with the pulse width as according to Figure 2.2.

Figure 2.2 More energy is relocated to the higher frequencies as the pulse width
decreases. The Fourier transform plots illustrates that the main lobe becomes broader
for decreasing pulse widths.
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Chapter 2. Theory

A periodic signal has infinite energy, but finite average power. Equation 2.3 de-
scribes in general the average power of a signal. However, for a periodic signal x(t),
the average power could be expressed with the Fourier series coefficients.

pxx =
1
Tp

∫
Tp

|x(t)|2 dt =
+∞

∑
k=−∞

|ck|2 (2.25)

pxx =
1
N

N−1

∑
k=0
|x(k)|2 =

N−1

∑
k=0
|ck|2 (2.26)

When prefiltering the incoming rectangular pulse train, the amount of Fourier coef-
ficients representing the incoming signal will decrease due to signal smoothing. By
carefully selecting the anti-aliasing filter, the power of the pulse will be better pre-
served for the detection filtering. Then the fact, that there is infinite energy within
the pulse train could be used to increase the SNR in the signal detection filtering, by
including several pulse periods.

Continuous-time Rectangular Pulse Train
An rectangular pulse signal x(t) is an even signal since x(t) = x(−t), which is il-
lustrated in Figure 2.3. Thus, the integration interval of the signal could be applied
as [−Tp/2,Tp/2]. The Fourier series of an periodic signal x(t), reveals some funda-
mental characteristics in the signal. The first Fourier coefficient ck = c0 represents
the DC component (average value) of the signal x(t) [Proakis and Manolakis, 2014,
p. 238]. Since the periodic signal x(t) is even, the Fourier coefficients ck are real.

c0 =
1
Tp

Tp/2∫
−Tp/2

x(t)dt =
1
tp

τ/2∫
−τ/2

Adt =
Aτ

Tp
(2.27a)

ck =
1
Tp

τ/2∫
−τ/2

Ae−ikΩtdt

∣∣∣∣∣∣∣
Ω= 2π

Tp

=
A
Tp

[
e−ikΩt

−ikΩ

]τ/2

−τ/2
(2.27b)

=
A

πF0kTp

eiπkF0τ − e−iπkF0τ

2i
=

Aτ

Tp

sin(πkF0τ)

πkF0τ
, k =±1,±2, ...

When the Fourier coefficients are inserted in the Fourier series

x(t) =
+∞

∑
k=−∞

ckeikΩt (2.28)

x(t) resembles the continuous-time periodic train of rectangular pulses. The Fourier
series sinc(θ) = sin(θ)/θ appearance shapes the curve on right side in Figure 2.2.
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2.5 Rectangular Pulse Train

Figure 2.3 An illustration of a continuous-time periodic train of rectangular pulses
with amplitude A, period Tp and pulse width τ .

The power density function Pxx for the continuous-time rectangular pulse train
becomes

Pxx = |ck|2 =


(

Aτ

Tp

)2
,k = 0(

Aτ

Tp

)2( sin(πkF0τ)
πkF0τ

)2
,k =±1,±2, ...

(2.29)

The Fourier series coefficients and power density function is plotted in Figure A.1
below. Furthermore, different rectangular pulse widths are examined, while keeping
the amplitude and pulse repetition rate fixed in Figure B.2 in Appendix B.2.

Figure 2.4 The following values are inserted in equation 2.29 τ = 0.02, A =
5, F0 = 4, Tp = 1/F0, k = 0,±1, ...,±60.
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Discrete-time Rectangular Pulse Train
The discrete-time Fourier coefficients is very similar to the continuous-time repre-
sentation. For continuous-time signals, the power density spectrum Pxx does not con-
tain any phase information [Proakis and Manolakis, 2014, p. 253]. The spectrum is
discrete and periodic, where the periodicity originates from the fundamental signal
itself. This fundamental difference between the two power density spectrum could
be observed by comparison of Figure B.2 and Figure B.3 Ṫhe Fourier coefficients
for discrete-time are

ck =
1
N

N−1

∑
n=0

x(n)e−ikΩn =
1
N

L−1

∑
k=0

Ae−ikΩn

∣∣∣∣∣
Ω= 2π

N

,k = 0,1, ...,N−1

with some geometric summation the following equation is obtained

ck =
A
N

L−1

∑
n=0

(
e−i2πk/N

)n
=

{
AL
N ,k = 0
A
N

1−e−i2πkL/N

1−e−i2πk/N ,k = 1,2, ...,N−1.
(2.30)

By using Euler’s formula, ck could be reduced for k = 1,2, ...,N−1

ck
k 6=0
=

AL
N

1− e−i2πkL/N

1− e−i2πk/N =
e−iπkL/N

e−iπk/N

eiπkL/N− e−iπkL/N

eiπk/N− e−iπk/N

= e−iπk(L−1)/N sin(πkL/N)

sin(πk/N)
.

A similar appearance as in the continuous case is then found in the discrete repre-
sentation

ck =

{(AL
N

)
,k = 0,±N,±2N, ...( A

N

)
e−iπk(L−1)/N sin(πkL/N)

sin(πk/N) ,otherwise .
(2.32)

To resemble x(n) the discrete-time periodic train of rectangular pulses, the Fourier
coefficients are inserted in the series

x(n) =
N−1

∑
k=0

ckeikΩn (2.33)
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2.5 Rectangular Pulse Train

Figure 2.5 An illustration of a discrete-time periodic train of rectangular pulses
with amplitude A, period N and pulse width of L descrete-time instances.

The power density function Pxx for the discrete-time rectangular pulse train is

Pxx = |ck|2 =


(AL

N

)2
,k = 0,±N,±2N, ...( A

N

)2
(

sin(πkL/N)
sin(πk/N)

)2
,otherwise .

(2.34)

An illustration between the continuous-time and discrete-time power density spec-
trum.

Figure 2.6 The following values are inserted in equation 2.29 A = 4, L = 3, N =
40, k = 0,±1, ...,±60.
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2.6 Anti-Aliasing Filter and Sampling Rate

The sampling theorem states that the sampling frequency should at least be twice
as high as the highest frequency component from the original signal, to avoid alias-
ing. In practice it needs to be greater than it states, since it assumes periodic input
signals which is sampled for an infinite time [Olsson and Rosen, 2005, p. 361]. An
analogue signal usually contains high frequency noise, thus making the sampling
theorem solely inefficient for avoiding anti-aliasing, especially for real-time embed-
ded digital signal processing (DSP). This would require unnecessarily high sampling
frequency, which would increase the computational complexity [Casini et al., 1975,
p. 831]. If direct memory access (DMA) is existent on the selected microcontroller,
the sampling rate will not occupy any CPU runtime. However, the sampling rate will
effect the DSP runtime, hence effecting the CPU runtime. The sampling theory in
cooperation with an anti-aliasing filter (AAF) will prevent aliasing in the sampled
signal. Unfiltered frequencies above the Nyquist frequency fN will "fold" into the
observable signals, if an anti-aliasing filter is not applied.

Figure 2.7 The graph represents how frequencies above the Nyquist frequencies FN
folds into the observable frequencies [Olsson and Rosen, 2005, p. 361]. The observ-
able frequencies fo are limited by the Nyquist frequency on the y-axis and real fre-
quencies fr is mapped on the x-axis. Frequencies fr < fs/2 will be observed as their
true frequency. The scale represents multiples of the sampling frequency fs [Olsson
and Rosen, 2005].

The observable frequency ωO after an aliasing occurs with the signal frequency ωR,
is described by the equation

ωO = |(ωR +ωN)mod(ωS) − ωN | (2.35)

where mod is the modulo operator, ωs is the sampling frequency and the ωN is the
Nyquist frequency [Wittenmark et al., 2016, p. 12]. The AAF should be designed so
it removes all frequencies above the Nyquist Frequency before the signal is sampled
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2.7 Analogue to Digital Converter

[Wittenmark et al., 2016, p.12]. The AFF consist of analogue filters, since after an
input signal is sampled, all the aliasing signals can not be separated from original
frequency signals. Subsequently the sampled signal could be sampled with a digital
filter to improve the signal information for the specified application.

Figure 2.8 The images represents the incoming input signals passing through a
low-pass anti-aliasing filter, before the signal is sampled by the ADC and sent to the
DSP

Different sampling frequencies will effect the performance of the digital filtering,
such as for matched filtering used for target detection. The performance is in relation
to multiples of the Nyquist rate (RN = 2Fc), which is two times the bandwidth, not to
get confused with the Nyquist frequency (2 fN = fs) [Casini et al., 1975, p. 830]. The
SNR is increased considerably with increasing multiples of the Nyquist Rate (RN)
until a certain point, later the performance is no longer remarkably improving in
relation to the computational complexity [Casini et al., 1975, p. 830]. A multiple of
8 is considered as a good balance between good performance and low computational
complexity [Casini et al., 1975, p. 830].

2.7 Analogue to Digital Converter

The deployed ADC in this thesis is an successive approximation analogue to digi-
tal converter (SAADC). The successive approximation ADC is commonly used in
medium-to-high-resolution sampling applications with a sampling frequency under
5megasamples per second (Msps). The bit-resolution is normally between 8 - 16 bits
and they have a low power consumption as well as form factor [Integrated, 2001].
The basic structure blocks of the SAADC could be seen in Figure 2.9 below.

The speed and accuracy of the SAADC is dependent on the comparator and the
DAC, inside the SAADC block. The comparator must resolve small differences in
Vin and VDAC within the specified time, meanwhile the DAC must settle within the
resolution of the overall converter [Integrated, 2001]. Commonly used DAC within
this block is a capacitive DAC, which by default has a sample and hold function.

The SAADC will take N comparison periods to convert an analogue signal into
a N-bit digital data, e.g., a 12-bit conversion will need 12 clock cycles to sample the
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Figure 2.9 Illustrates the basic structure of successive approximation ADC [In-
tegrated, 2001]. The SAR denotes the successive approximation register, DAC the
digital-to-analogue converter, S/H is the sample and hold function, EOC signs the
end of conversion, Clock is the system clock used for the ADC, VRe f is the reference
voltage, VDAC is the output voltage of the DAC and VIn is the analogue input voltage
[Integrated, 2001].

data. An illustrative image on how the SAR, DAC, S/H and comparator from Figure
2.9 cooperates to successively produce a digital conversion is displayed in Figure
2.11.
The result of a 12-bit ADC sample is mapped into the interval I of

I : {0,1,2,3, ...,2n−2,2n−1}|n=12(bits) = {0,1,2,3, ...,4094,4095}

For simplicity, no further differences will be made for ADC’s apart. As a result, the
SAADC will be mentioned as ADC later on.
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2.7 Analogue to Digital Converter

Figure 2.10 As a start position all the capacitors are connected to ground (GND)
[Integrated, 2001]. The Most significant bit (MSB) is then connected to the VRe f

to test if VIn >
VRe f

2 holds. If this condition holds, the comparator outputs a logical
1, otherwise a logical 0. If a logical 1 was produced the capacitor stays connected
to VRe f . Otherwise it connects back to GND again and the next significant bit gets
connected for the same condition test, until the least significant bit (LSB) has been
evaluated [Integrated, 2001].

Figure 2.11 This image illustrates how the Vin sets an reference line for the com-
parison process. WhenVDAC >Vin the comparison bit bit results in a logical zero and
when VDAC < Vin it results in a logical one. Moreover, if a logical bit is set to 1, the
value will persist in being high during all of the remaining comparison periods. Thus,
a bit summation of the VDAC will occur and used in the iterative comparison with Vin
[Integrated, 2001].
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2.8 Additive White Gaussian Noise AWGN

Additive white Gaussian noise (AWGN) is a normal distributed noise, with uniform
power spectral density, mean value µ and variance σ2. In most cases, noise can be
modeled with a Gaussian distribution e.g. shot noise in photon detectors [Liu and
Lin, 2013, p. 872]. Equation 2.36 expresses a zero-mean µ = 0 AWGN distribution.

f (x) = N (µ,σ) =
1√

2πσ2
e−

(x−µ)2

2σ2

∣∣∣∣
µ=0

=
1√

2πσ2
e−

x2

2σ2 (2.36)

AWGNwithmean value µAWGN will add its characteristics to incoming deterministic
signals. If the deterministic signal has a mean value µDS, the combined signal will
have its mean-value at µ = µDS + µAWGN , and the variance will maintain the same
properties as for the AWGN [Oppenheim and Verghese, 2010, p 248]. The expected
value E(X) or mean value µ is calculated as following

E(X) = µ =
1
N

N

∑
k=1

xk (2.37)

Where xk is the sampled value for samples between 1 to N. From the expected value,
the standard deviation can then be determent as

σ =
√

E [(X−E(X))2] =

√
1
N

N

∑
k=1

(xk−µ)2 (2.38)

2.9 Digital Filters

FIR Filter
A finite-duration impulse response (FIR) filter could be realized with both analogue
filter and digital filter. An input impulse response to a discrete FIR filter, will result
in a nonzero output for a finite sample duration, corresponding to the length of the
filter. FIR filters are usually implemented in applications where linear-phase char-
acteristics within the passband is required [Proakis and Manolakis, 2014, p. 670]. In
order to create a linear-phase FIR filter, the coefficients of the filter should be either
symmetric or antisymmetric around the centered filter coefficient(s). Therefore the
unit sample response of the linear-phased FIR filter satisfies the condition [Proakis
and Manolakis, 2014, p. 677]

h(k) =±h(N−1− k), k = 0,1, ...,N−1 (2.39)

A linear-phase characteristic will result in constant delay of any input frequency
within the passband, thus no phase distortion occurs. This particular characteristic is
advantageous for timing applications, wave shape recognition and detect amplitude
values in the time-domain for time-synchronization applications.
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2.9 Digital Filters

Figure 2.12 A block scheme of a direct form FIR filter were s(k) is the input signal
and equal to the summation of noise n(k) and desired signal x(n), y(k) the output
signal, z−1 corresponds to a delay of one time sample and {bk} denotes the set of
FIR filter coefficients.

The output y(k) from the Nth-order FIR filter is a summation of current sample up
to the Nth past samples multiplied with a specified filter coefficients i.e.

y(k) = b0s(k)+b1s(k−1)+b2s(k−2)+ · · ·+bN−1s(k− (N−1))

=

N−1

∑
n=0

bns(k−n) (2.40)

The output sequence could also be expressed by the convolution between the unit
sample response h(k) of the system and the input s(k)

y(k) =
N−1

∑
n=0

h(n)s(k−n) (2.41)

The equation form in 2.40 and 2.41 are identical, thus bn = h(n),n = 0,1, ...,N−1.
Since FIR filters have fixed values within a finite space, values outside this space are
truncated to zero. This implies that a rectangular window is always existent for a FIR
filter [Proakis and Manolakis, 2014, p. 680]. A rectangular window may implement
undesirable ringing effects in the FIR frequency impulse response H(w) [Proakis
and Manolakis, 2014, p. 682]

H(z) =
N−1

∑
n=0

h(n)z−n (2.42)

To decrease this kind of behavior, windowing is generally performed in combi-
nation with FIR filters. TheWiener filter is a well-known optimum linear filter. This
filter optimizes the filter impulse response h(n) by minimizing the mean-squared er-
ror [Proakis andManolakis, 2014, p. 881]. TheWiener filter assumes that the system
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has knowledge of the spectral characteristics of the desired signal and noise signal,
which is often not the case. To mimic the optimum filter without supplying the spec-
tral characteristics of the desired signal and noise signal, an adaptive FIR filter could
be used.

Matched Filter - MF

Instead of narrowing an bandwidth to bandpass desirable frequencies with a FIR
filter, a correlation filter could be used instead. Matched filter (MF) is a technique
where a signal template is convoluted with the input signal to detect the desired
signal. Matched filter is a standard filter technique used in radar receiver systems.
Even when noise n(k) is applied over the desired signal x(k), the MF produces the
maximum achievable SNR at its output y(t) [Mahafza, 2013, p.143]. For proof of
optimal SNR output characteristics, see [Mahafza, 2013][p. 143-145]. The optimal
characteristics of a MF lies in the property of the filter impulse response h(k), which
corresponds to a time-reversed version of the target signal h[k] = x(−k) [Oppenheim
and Verghese, 2010, p. 250]. The output y(k) is the summation of the convolutions
between the impulse response h(k) and the received finite-length L discrete-time
input signal s(k). However, since the replica signal is a time-reversed version of the
target signal theMF output is the summation of the correlations between s(k)∗x(−k)

y(k) =s(k)∗h(k) =
∞

∑
n=−∞

s(n)h(k−n), where h(k) =
{

x(−k), 1≤ k ≤ L
0 , elsewhere

(2.43)

y(k) = s(k)∗h(k)|h(k)=x(−k) = s(k)∗ x(−k) =
L

∑
n=1

s(n)x(n− k)

If the LTI system starts and samples the first data at the discrete-time k = 0, the
input signal s(k) is detectable between 1 ≤ k ≤ L. Matched filtering technique re-
quires prior knowledge of the desired tracking signal characteristics in order to de-
sign the impulse response as the time-reversed tracking signal. In combination with
an matched filter, there is generally a threshold detector to distinguish between dif-
ferent hypothesis decisions Hi. This will be explained in further detail, in Section
2.10.

32



2.9 Digital Filters

Figure 2.13 A matched filter (MF) receives the input signal s(k) composed of the
desired signal x(k) and noise n(k). The input signal s(k) is convoluted with the MF
impulse response h(k) producing the output y(k). From this output a threshold decides
what information the data represents. In communication, this could be to distinguish
between a binary zero and a one, hence theH0 andH1 at the threshold detector output.

Equation 2.41 and Equation 2.43 have similar properties, in fact with the convolution
commutativity, the matched filter is equal to the FIR filter.

y(k) = h(k)∗ s(k) =
+∞

∑
n=−∞

h(n)s(k−n),

{
n̂ = k−n n = k− n̂

lim
n→∞

n̂ =−∞ lim
n→−∞

n̂ =+∞

}

⇒
−∞

∑
n̂=+∞

h(k− n̂)s(n̂) =
+∞

∑
n̂=−∞

s(n̂)h(k− n̂) = s(k)∗h(k)

The direction of summation does not change the result and a scalar multiplication
is commutative, thus a MF is a FIR filter. In Figure 2.12 the internal block scheme
of a FIR filter is displayed, this appearance holds for the matched filter as well. In
general, there is two different approaches on how to perform the convolution. The
convolution could either be executed in the time domain or in the frequency domain,
where the convolution in frequency domain is a simple point-wise multiplication be-
tween two signals. The fast Fourier transform (FFT) converts the sampled data into
the frequency domain and allows the convolution to be performed with a computa-
tional complexity of O(NlogN), where N is the data block length. A direct usage
of Eq. 2.43 needs to perform L multiplications and L− 1 additions, where L is the
matched filter coefficients length. Therefore, if the sample data length block is of
length N, the computational complexity will be O(LN) [Kuo et al., 2013, p. 222].
For higher order matched filters, the computational complexity could be roughly
of O(N2), whereas, the usage of FFT would be faster. Fast convolution techniques
utilizes FFT in different ways, a method consists of circular convolution with zero-
padding of the shorter sequence between the filter coefficients or the sampled data
block. When data gets sampled continuously, the data block size is to big for effi-
ciently perform circular convolution with zero-padding technique, therefore overlap-
save or overlap-add methods are used on sample block lengths that is supported by
the FFT algorithm.
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2.10 Threshold Settings

From a binary communication perspective, a threshold could e.g. determine if the
filtered signal y(k) represents a binary 1 or 0. In Figure 2.13, the inequalities repre-
sentations of H0 and H1 represents a binary hypothesis test

H1 : y(k) = x1(k)∗h(k)+n(k)∗h(k) = x(k)∗h(k)+n(k)∗h(k) (2.44a)
H0 : y(k) = x0(k)︸ ︷︷ ︸

= 0

∗h(k)+n(k)∗h(k) = n(k)∗h(k) (2.44b)

whereH1 denotes the hypothesis that the desired signal x(k) is present andH0 absent,
meanwhile the additive noise signal n(k) is always present. The impulse response
h(k) of the matched filter changes the spectral shape of the white noise n(k), thus
after the filter n(k) is no longer white [Oppenheim andVerghese, 2010, p. 254]. From
the hypothesis test the output yields binary 1 if hypothesis H1 is satisfied or a binary
0 if hypothesis H0 is satisfied. If an equality occurs, i.e., H0 = H1, then the signal is
equally likely to represent a binary 0 as a binary 1 [Oppenheim and Verghese, 2010,
p. 230]. Assumed that the a priori, i.e., prior probabilities are known and denoted as

p1 = P(H1 is true) = P(H = H1) = P(H1)

p0 = P(H0 is true) = P(H = H0) = P(H0)

Assuming that the additive noise n(k) is independent of the desired signal x(k) for
each hypothesis Hi where i = {0,1}, these conditional densities are expressed as

fY |H(y|H1) = fN (s− x1)

fY |H(y|H0) = fN (s− x0)

The maximum a posteriori (i.e., posterior) probability (MAP) rule in a combined
fashion is represented by [Oppenheim and Verghese, 2010, p.230]

P(H1|S = s)

‘H1’
>
<

‘H0’

P(H0|S = s) (2.45)

For a pulse amplitude modeling (PAM) in digital communication, this expresses the
distribution of the sampled data s(k) under the respective hypothesis H0 and H1. The
desired signal amplitude x1 denotes a high/present amplitude and x0 a low/absent
amplitude.
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Figure 2.14 Illustration of the probability density functions (PDFs) for hypothesis
H1 and H0. If the receiving distance is fixed, the PDF’s expected value µ1 for hypoth-
esis H1 will stay fixed. Since the tracking distance varies the expected value µ1 will
vary as well. The expected value µ0 of the H0 distribution will change, if the NEP of
the detector is altered. Changes in temperatures is proportional with thermal or John-
son noise, which is a common consideration for changes in NEP [Optoelectronics,
2013].

The combined expression is explained as P(H1|Y = y)> P(H0|Y = y)
yields⇒ H1

and vice versa. The minimum probability of error Pe is set by the likelihood ratio
test [Oppenheim and Verghese, 2010, p. 233]

Λ(s) =
fY |H (y|H1)

fY |H (y|H0)

‘H1’
>
<

‘H0’

p0

p1
= λ ⇒ Λ(s)

‘H1’
>
<

‘H0’

λ (2.46)

where Λ(r) denotes the likelihood ratio and λ the threshold. The threshold λ could
be specified for other purposes than to minimize the probability of error Pe. It could,
e.g., be set with the probability of false alarm PFA and probability of detection PD,
according to the Neyman-Pearson lemma. The essential part of this approach is to
acquire the greatest possible PD, meanwhile ensuring that PFA stays below a prede-
fined limit. Since the Neyman-Pearson lemma bases its decisions on the conditional
probabilities PD and PFA, the need for a priori probabilities on the hypotheses are
avoided. By setting the threshold λ = PFA, monotonically incrementation of λ will
ensure optimal decision ruling for a received signal exceeding the threshold.

Probabilities: PD,Pe,PFA,PM

For a binary configuration of hypothesis as in Eq. 2.44, their exist four different
probabilities

P(‘H0’|H0)︸ ︷︷ ︸
Detection D0

, P(‘H1’|H0)︸ ︷︷ ︸
False alarm FA

, P(‘H0’|H1)︸ ︷︷ ︸
Miss M

, P(‘H1’|H1)︸ ︷︷ ︸
Detection D1
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where ‘Hi’ is the ”ruled” value and Hi is the actual value during that time instance.
There is two situations that could arise for each detection ruling of zeros and ones

1 = P(‘H0’|H0)︸ ︷︷ ︸
Detection D0

+P(‘H1’|H0)︸ ︷︷ ︸
False alarm FA

1 = P(‘H1’|H1)︸ ︷︷ ︸
Detection D1

+P(‘H0’|H1)︸ ︷︷ ︸
Miss M

These probabilities could not be mixed together in a decision ruling, nevertheless the
error terms could specify the magnitude of error in the detection process. The sum-
mation of wrongfully ruled decisions that could occur when the a priori probability
condition is met, is called the probability of error (Pe)

Pe =P(H0, ‘H1’)+P(H1, ‘H0’)
=p0P(‘H1’|H0)+ p1P(‘H0’|H1)

=p0PFA + p1PM (2.47)

A minimization of Pe could be performed, to reduce errors and optimizing the deci-
sion process, if it is possible to determine a priori probabilities of p0 and p1. How-
ever, there is often too little knowledge of establishing these probabilities. Fortu-
nately, optimizations could be performed with solely use of a posteriori probabili-
ties, such as in Neyman-Pearson approach. The probability of detection (PD) could
be split into two subcategories, detecting a zero PD0 or a one PD1 . However, since
a zero defines an absent signal, the probability of detection PD expresses the detec-
tion of an present signal. These probabilities could be derived from their probability
density functions

PDi = P(‘Hi’|H j) =
∫

Di

fY |H (y|H j)ds,∀ i = 0,1 & j = 0,1 (2.48)

The probability of false alarm (PFA) is a detection of a present signal in an absent
signal

PFA = 1−PD0 =1−P(‘H0’|H0) = 1−
∫

D0

fY |H (y|H0)ds

=P(‘H1’|H0) =
∫

D1

fY |H(y|H0)ds (2.49)

Lastly, the probability of a miss is a non-detection of a present signal

PM = 1−PD1 =1−P(‘H1’|H1) = 1−
∫

D1

fY |H (y|H1)ds

=P(‘H0’|H1) =
∫

D0

fY |H(y|H1)ds (2.50)
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An illustration of the relationship between PD1 , PFA and the threshold λ is repre-
sented in Figure 2.15.

Figure 2.15 Representation on how the threshold λ set the amount of PFA and PD1 .
The PDFs fY |H (y(0)|Hi) with signal Y = y(0) specifies the output of a matched filter
at time instance k = 0, which corresponds to the respective hypothesis Hi. Vice versa
holds for an illustration for PD0 and PM , whereas with an mirrored appearance in
y-axis.

Receiver Operating Characteristics
The receiver operating characteristics (ROC) could be used for classifier perfor-
mance assessment [Krzanowski and Hand, 2009, p. 6]. Four different joint prob-
abilities are studied, in the case of two populations - ”Positive” and ”Negative”
population. Even with different naming they are equivalent to the already mentioned
PD0 ,PD1 ,PM and PFA in Section 2.10. The analyzed signal is denoted s and the thresh-
old is donated t

False positive rate (fp)= P(s > t|N)⇒ [PFA]

True positive rate (tp)= P(s > t|P)⇒ [PD1 ]

True negative rate (tn)= P(s≤ t|N)⇒
[
PD0

]
False negative rate (fn)= P(s≤ t|P)⇒ [PM]

ROC curves displays and summarizes the performance of the classification rule in a
graphical representation [Krzanowski and Hand, 2009, p. 12]. This graph plots true
positive rate PD1 on the vertical axis and false positive rate PFA on the horizontal
axis, while the classification threshold t varies [Krzanowski and Hand, 2009, p. 12].
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Figure 2.16 General appearance of two different ROC curves, colored brown in
each ROC graph. The graph on the right side has superior performance than the graph
to the left. Ideal detection performance is when the ROC curve→ 1 on the vertical
axis PD, and simultaneously→ 0 on the horizontal axis PFA.

The variation of threshold value, creates the slope in Figure 2.16. For a well-
defined threshold t in a ROC curve, there exist a relationship between the slope and
threshold [Krzanowski and Hand, 2009, p. 22]

dy(t)
dx(t)

=
d(PD)(t)
d(PFA)(t)

=
d (P(S > t|P))

dt
· 1
(P(S > t|N))

dt

=

d
dt

(
1−

t∫
−∞

P(s|P)ds
)

d
dt

(
1−

t∫
−∞

P(s|P)ds
) =

−P(t|P)
−P(t|N)

=
P(t|P)
P(t|N)

(2.51)

2.11 SNR Gain

To determine improvement of before and after digital signal processing, the method
of SNR gain is used. The measure on detection performance based on SNR gain is a
well known technique, since the detection power is a monotonically changing with
the SNR of y(k) [Martinez and Thomas, 1986, p. 252]. This simplification is justified
by assuming that the noise n(k) is Gaussian or nearly Gaussian distributed, so that a
linear restriction on y(k) holds. By making these assumptions and proven them to be
good estimates, the MF should perform as intended. This SNR gain method is a ratio
of improvement, where values greater than 1 is improvement of signal detection,
values less than 1 is deterioration of signal detection and no improvements when it
is equal to 1. In the decibel case, the last sentence holds but the limit is not equal to
1, instead log10(1) = 0 is the comparison value.

SNRgain =
SNRa f ter

SNRbe f ore
(2.52)

=SNRa f ter−SNRbe f ore[dB] (2.53)

if the signals is converted to decibels (dB), then Equation 2.53 could be used.
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A matched filter was selected as the DSP algorithm for increasing the detectivity of
the incoming signal, since it is the linear filter with maximum instantaneous SNR
output for a given signal in noise [Martinez and Thomas, 1986, p.253]. With a sym-
metric or antisymmetric impulse response, the MF is linearly phased, meaning that
no phase distortion occurs and all frequencies within the passband filter has a con-
stant delay [Proakis andManolakis, 2014, p. 677]. Linear approaches could be made
after MF to detect signal characteristics such as frequency and timing of the incom-
ing signal x(k), as long as the noise stays relatively Gaussian distributed.

With a measurement of SNR gain and a ROC plot for the tracking distance inter-
val, a good measurement on the detection and filtering performance could be deter-
mined. The estimated desired signal strength varies with distance and noise levels
varies with incoming sunlight, thus two different approaches are used in this the-
sis to dealt with this issues, in both cases a threshold is determined. One approach
was to use the Neyman-Pearson lemma where a threshold is designed based on the
probability of false detection PFA, since keeping this value low is prioritized before
probability of detection PD1 .

An standard adjective is to minimize the probability of error Pe by using the
likelihood ratio test, which sounds like the optimized detection ruling. Both sides of
the hypothesisH0 andH1 is included, such that probability of missPM and probability
of false detection PFA is unfavorable. Thus the threshold could be set lower than
desired, in order to decrease the probability of miss PM by the cost of increasing the
PFA. Therefore, the Neyman-Pearson lemma was used, where the relation of PFA is
set as desired and the PD1 will then be given.

Since the noise characteristics varies with different illumination, adaptive al-
gorithms were developed to handle these changes. One method utilizes the noise
distribution characteristic in order to to set a minimum values for threshold λ ac-
cording to a mapped PFA. A lot of noise data were gathered in different environ-
mental conditions to be able to estimate the noise characteristics, so the threshold
could be designed. The gathering of the noise data was performed when the sam-
pling process of the embedded system was working properly. In order to detect if
the sampling worked properly, a continuous rectangular wave was generated with a
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signal generator and sampled. This procedure was tested for different repetition fre-
quencies. The embedded system used an ARM Cortex M4 to sample data, DSP data,
communication interfaces and to control sensors.

ARM Cortex M4 has several DMA and SAADC inside the unit, which was part
of the solution to sample data from several input channels ”simultaneously”. M4
Cortex has a 168 MHz CPU, up to 1 Mbyte flash memory, 192+4 Kbyte SRAM,
and for 3 SAADC with a maximum resolution of 12-bits, more information about
the system could be found at ARMs and STMs website [ARM, 2018][STM, 2018].
The embedded implementation and system designed will not be part of the thesis,
the results however, will be analyzed and discussed. MATLAB and Simulink were
used for several tasks including:

• Analyze noise characteristics, with distribution fitting.

• Study tracking signal intensity at different distances, calculating mean values.

• Study tracking signal characteristics such as pulse shape, duty cycle, pulse
repetition frequency.

• Recreate and simulate realistic replica of real data.

• Create a model of the embedded system in Simulink, with filtering, detection
and analysis tools.

• Design non-adaptive threshold for embedded signal detection.

• Estimate detection distance limitations.

• Serial communication, in order to receive raw and processed data from the
embedded system, for debugging the embedded C code.

• Post process data from embedded system to study the similarity of the DSP
simulations and real-time DSP.

• Design new adaptive thresholds for signal detection

• Design new algorithm for matched filtering on short duty cycle pulses with
several pulse repetitions at fixed pulse repetition frequencies.

• Analyzing the accuracy and deviation of the internal clock frequencies on each
side of the tracking system, in order to determine the reliability of repeatabil-
ity.

• Studying the accuracy of distance estimation and direction estimation, to de-
termine the tracking position.

• Studying theoretical and real SNR gain results from MF, with different filter
lengths so that several pulse periods could be included.
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• Studying the differences in SNR gain with changing sampling ratio.

Interesting characteristics and results could be made from a lot of offline analysis,
which reduced the errors in design of the embedded system. The algorithm debug-
ging was made in MATLAB, where visual output and calculations could verify
the algorithm performance. The embedded code was programmed and debugged
in ARM KIEL µVision IDE, where CMSIS-RTOS was the main implemented real-
time operating system. The real-time embedded system performance was analyzed
in MATLAB, by receiving raw as well as processed data from the Cortex M4 chip
through serial UART communication. The processed data was compared with the
simulated data and the raw data were post processed in MATLAB to compare the
results with the embedded solution.

41



4
Modeling

4.1 Tracking System Model

The optical tracking communication consists of one stationary tracking device that
transmits a rectangular pulse train with constant signal strength and one moving
receiver. The receiver interprets the received signal, synchronizes to the phase and
frequency of the incoming signal to respond to the transmitting systemwith the same
signal characteristics. The receiving part of the receiver is illustrated in Figure 4.1.

Figure 4.1 A 360 degree NIR signal detection system, with overlapping detection
view from the M numbers of photodiodes placed around in a cylindrical shape. The
red flat surfaces symbolizes the photodiodes.

Since the receiver is moving during transmission a doppler effect occurs. The
moving speed of the receiver is limited to walking speed, which from calculation
results in a neglectable frequency change in the system receiving characteristics,
explained in Appendix A.1. Since the doppler effect is neglectable, the distance be-
tween the transmitter and the receiver D could be mapped quite accurately into a
received signal strength.
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Figure 4.2 The image represents a NIR tracking system (NIR-LED), which trans-
mits NIR signals to the NIR tracking detection system. The distance D between the
tracking system and the tracking detection system, sets the intensity of the registered
signal at the tracking detection system.

The tracker detection system has M photodiodes for detecting signals an M NIR-
LED for responding to the tracker system. Each photodiode has an optical bandpass
filter (BF) fitted for NIR-signals of 850 nm. The generated analogue signal from
the photodiode is filtered with an analogue low-pass anti-aliasing filter (AAF) and
converted (ADC) into a digital signal in the microcontroller. Each sampling is per-
formed at a fixed frequency, all M input channels are scanned successively from the
ADC and transferred into a memory location by the direct memory access (DMA).
A matched filter (MF) reads from the current memory location and filters the digital
input signal. To detect an incoming signal from the M input channels, the filtered
signal is observed by an signal detector. The detector sets an threshold for detect-
ing incoming signals and informs the controller if a signal was registered above the
threshold, and which channels are receiving the desired tracking signal. The con-
troller then outputs a responding NIR signal with power proportional to the distance
D towards the tracking system position, determined by distance and direction.

Figure 4.3 The different parts in the tracker detection system displayed in a block
scheme overview. The M different inputs are first pre-filtered and sampled separately
before they are analyzed in the DSP together. The matched filter increases the desired
signal before the detector determines if a signal was received, and if so, determine its
position.
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Distance
The transmitting LEDs are modeled as spherical light sources, which emit a NIR
signal everywhere in a three-dimensional space. The intensity of the NIR signal
degrades proportionally with the inverse square law, resulting in a specific intensity
detectable at distance D for the photodetector. There is a physical limitation on how
small the intensity can be before it can not be detected by the photodetector. This is
determined by the NEP (2.2), thus when the power of the NIR signal Pyy(k) is less
or equal to the Pyy(k)≤ NEP

√
∆ f the signal will not be detectable.

IPD =
PLED

A
=

PLED

4πr2 ⇒ r =±
√

PLED

IPD4π
(4.1)

where IPD is the intensity registered at the photodiode, PLED is the initial transmitting
power at the led and r is the distance between the led and the photodiode. Bymapping
one or more signal amplitudes to a specified distance, the other distances could be
calculated with the equation above as.

∆I =Ire f − Inew =
P

4πr2
re f
− P

4πr2
new
⇒ P

4πr2
new

=

(
P

4πr2
re f −∆I

)

rnew =±
√√√√√ P

4π

(
P

4πr2
re f
− (Ire f − Inew)

)
rnew =±

√
C1

C2 +C3 · Inew
(4.2)

C1 =P, C2 =
P

r2
re f
−4πIre f , C3 = 4π

Figure 4.4 A spherical representation of the LED emitting model, where the power
of the signal is equally distributed over the spherical mantle area A = 4πr2.
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The Equation 4.2 determines the distance by using the known value of the LED
power P, predefined reference values pair of Ire f and rre f . By predefining these con-
stants the computation time will decrease. The distance is calculated with the pho-
todetector that registers the maximum intensity.

Direction
The incoming angle of the NIR signal will effect the registered intensity at the pho-
todetectors, illustrated in Fig. 4.5.

Figure 4.5 The image illustrates an IR-emitting point source in the center of the
dotted circle. The three rectangles on each side represents photodetectors in different
incoming angles. The centered photodetector on the right-hand-side receives the IR
signal along the normal to the surface of the detector, this will further on be recog-
nized as 0° deviation of the incoming angle, resulting in a calculation of the "correct"
tracking distance. With an increased incoming angular deviation Ω, the calculated
distance error will increase. More on this, see Appendix A.2.

By performing a polynomial fit with values from the photodiode data sheet, an
equation could be established to calculate the direction of the incoming signal. In
Fig. 4.6, the polynomial fit is plotted. It is fairly straight forward to calculate the
relative radiant sensitivity from a measured angle, this could be performed with the
4th-order polynomial

IR(θ) = 4.946 ·10−8θ 4−7.4704 ·10−6θ 3 +1.8930 ·10−4θ 2−2.1 ·10−3θ +1.0 (4.3)

However, the opposite is quite complicated, to extract an angle from a known relative
radiant sensitivity. There is no good polynomial fit for the inverse function, instead
a quadratic spline interpolation is proposed to fit polynomial segments to the data
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values. The quadratic spline fitting is observed in Fig. 4.6.b. and the equation is
described in 4.4.

Figure 4.6.a Figure 4.6.b

Figure 4.6 The graph in Fig. 4.6.a displays the relative radiant sensitivity as a func-
tion of angular displacement. In order to determine the the angular displacement the
inverse function of the parable in Fig. 4.6.a could be used. The appearance of the
inverse function is displayed in Fig. 4.6.b., where the parable is determined with
quadratic spline interpolation of defined specification data values.

The spline interpolation is in comparison to Eq. 4.3 quite complex. Despite that
the polynomial order of each spline segment is lower, therefore less computational
heavy, but the measured intensity must undergo some logical test before calculation.

θ(I) =



171.3708(I−0.15)2−117.1371(I−0.15)+90 ,0.15≤ I ≤ 0.2688
88,5682(I−0.2688)2−76,4365(I−0.2688)+78,5066 ,0.2688≤ I ≤ 0.45
−40,5542(I−0.45)2−44,3305(I−0.45)+67,5621 ,0.45≤ I ≤ 0.6563

−110,3008(I−0.6563)2−61,0592(I−0.6563)+56,6937 ,0.6563≤ I ≤ 0.8050
−2,4980(I−0.8050)2−93,8737(I−0.8050)+45,1706 ,0.8050≤ I ≤ 0.9163
−1324,99(I−0.9163)2−94,4295(I−0.9163)+34,6962 ,0.9163≤ I ≤ 0.9763
−26684,0(I−0.9763)2−253,4288(I−0.9763)+24,2605 ,0.9763≤ I ≤ 0.9938
−108350,7(I−0.9938)2−1187,37(I−0.9938)+11,6535 ,0.9938≤ I ≤ 1.00

(4.4)
Cubical splines were investigated, but no noticeable improvement in performance
was found. In order to determine the direction, sampled data from three diodes are
used. First all diodes were scanned to identify which photodiode has the maximum
detected signal. This diode and its neighboring two diodes will undergo a relation
calculation, where the maximum registered signal will be the reference as Imax = 1.
The two neighboring photodetectors will then have their values relatively to the new
Imax inserted in the quadratic splines equation. From Figure 4.5 the left hand side will
register a stronger signal on two of its channels and a weaker on its third, a direction
calculation is needed. On the right hand side, there will be a clear maximum detec-
tion channel, but the two others will have approximately the same registered signal
intensity, thus the incoming signal is straight in front of the channel that detected the
maximum value. Hence, no need to perform any more calculations.
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Figure 4.7 Flowchart of the direction and distance calculation. First the distance is
calculated with the strongest detected intensity IRe f . Then the direction is calculated
either by observing that the neighboring intensity is equal within a tolerance, oth-
erwise by reading out the angle of the weakest photodiode relative to the maximum
registered intensity IRe f , see Fig. 4.6 for incoming angles relative to resisted intensity.
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From the flowchart in Fig. 4.7, the calculation of the angle is determined by
the weakest registered intensity not equal to zero. By selecting the weakest detected
neighboring intensity, the angular estimation will be more accurate due to the rough
linear appearance of angle deviation from the normal to the detection surface, be-
tween 30 - 80 ° (Fig. 4.6). The weakest intensity used in these calculation is greater
than 40° and less or equal to 60°, calculations outside this interval will never occur,
since the used photodiodes will then be change to diodes whiting this interval.

4.2 Signal Model

Signal Disturbance
To characterize the noise distribution of the background noise, some samples without
an active tracking signal was sampled. Different distributions was then matched with
the registered samples to find the best fit to the sampled data distribution. A normal
distribution was found to be a good accurate approximation. Thus the disturbance in
the noise model was selected to consist of AWGN with changing parameters along
with changing operating environments. Two different examples are illustrated in Fig.
4.8.

Figure 4.8.a Figure 4.8.b

Figure 4.8 The above subfigure plotted in blue, are the sampled data from back-
ground noise radiation. The data was sampled outdoor, with the photodiodes facing
directly towards the sun, in fully sunny condition with registered light intensity of
120 000 Lux. The bottom subfigure displays the a histogram of the sampled data in
black color, with the green line plotting the normal distribution fit. In Figure 4.8.a a
greater disturbance is detected in the middle of the sampled data.

Similar data was sampled in different light conditions as in Fig. 4.8, where the
only noticeable difference was the amplitude of the noise signal. The distribution of
the signal only changed when other continuous interferences was introduced to the
system.
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Figure 4.9.a Figure 4.9.b

Figure 4.9 When sampling data in various sunlight conditions, multifarious dis-
tribution characteristics is observed. Figure 4.9.a is sampled at 60 kLux and 4.9.b
16.1 kLux. Data sampled at 60 kLux varies in amplitude with changing cloud den-
sity during the data collection. The 60 kLux value is the average value during the data
collection, thus some extreme points are visible.

By defining a well-conformed noise distribution of the system, in our case a
normal distribution, the threshold of the detection system could be set more accurate.
However, with outdoor operation the light conditions changes and so does the shape
and specifics of the normal distribution describing the background noise.

Table 4.1 Noise characteristics

Lux Value µ σ

1000 3.28 ·10−8 9.37 ·10−4

5000 1.37 ·10−6 9.13 ·10−4

16100 2.47 ·10−6 1.03 ·10−3

60000 −2.60 ·10−6 3.11 ·10−3

120000 1.44 ·10−5 1.08 ·10−2

Table 4.1 displays the normal probability distribution function characteristics
from sampled noise data. From these average values, some thresholds could be pur-
posed. Although, these values are from data where no other interferences occurs.
For other types of disturbances, the mean value and standard deviation will change.
By comparing Fig. 4.9.a and Fig. 4.9.b, the effect of other interferences are visible.
These interferences could occur in areas where multiple reflective surfaces exist and
other similar events. Figure 4.9.a with 60 kLux registered a standard deviation σ of
6.74 · 10−2, which is roughly 6 times greater than the double illuminance value of
120 kLux. This sample is therefore not representative for the 60 kLux noise char-
acteristics and not used for extracting the values in Table 4.1. However, Fig. 4.9.a
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demonstrates how the noise characteristics changes rapidly with the operational en-
vironment over time.

Tracking Signal
Tracking signals with a low duty cycle has been selected for this master thesis, since
a low duty cycle signal is more difficult to detect and synchronize to in real-time. The
rectangular pulse train makes it difficult to use convenient methods for detecting the
signal, such as fast Fourier transform (FFT), more on this in Sec. 4.3.

Since the different tracking signals are known prior to arrival, different searching
modes are activated in the beginning, to detect which tracking pulse is active. In
practice this search mode consists of various MF templates that searches for their
designed pulse train. Different pulse train templates will be tested and ultimately
looped around if no signal is jet detected. A fine tuning stage is activated when a
signal is detected, to make sure that small deviations in the internal clock system
on both side of the tracking process is corrected for. In order to display the system,
a predefined pulse characteristics is used, since searching for and synchronizing to
different pulses are not part of the thesis report.

The predefined tracking pulse is a rectangular pulse train, with a 0.37% duty
cycle, meaning that it is mostly nonactive during a pulse period. The selected fre-
quency was 33.89 Hz with a pulse width of only 108 µs long. This means that the
detection of the pulses must be accurate in relative to the discrete time frame, in
order to transmit a synchronized response. The time synchronized response signal
is a replica of the incoming tracking signal, delayed with one pulse instance, where
rising and falling edges of the received and transmitted pulses align in time. Focus-
ing now on the stated tracking pulse characteristics for the simulation and real-time
operation of the system:

Table 4.2 Pulse characteristics

Pulse physics 850 nm NIR signal
Pulse shape Rectangular
Pulse repetition frequency 33.89 Hz
Pulse width 108 µs
Pulse duty cycle 0.37 %
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Figure 4.10 Tracking signals received at different distances. The signals strength
weakens with distance and the total sampled data distribution mutates towards the
noise data distribution. Observe changes in axis scale, the zoomed in view is needed
to observe the reshaping of the total distribution.
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4.3 Matched Filter & Cascade Matched Filter

As explained in Section 2.9, the computational efficiency of the algorithm could
be improved in several different ways. There are some problems with the different
methods, that needs to be stated. As observed in Fig. 2.2, the energy is relocated
to the higher frequencies for shorter pulse widths. This will lead to frequency char-
acterization issues of detected tracking signal. This issue is visualized in Fig. 4.11.
The FFT of a rectangular pulse train with low duty cycle, will result in detection of
various harmonics and the energy will be shifted to the higher frequencies, result-
ing in difficulties of tracking the pulse repetition frequency of the signal. This issue
impacts the synchronization of the tracking detection system.

Figure 4.11 On the left hand side is raw sampled data and on the right hand side
is single-sided fast Fourier transform of the raw sampled data. Atop is a signal inside
of noise and below is sampled noise without a signal at 5000 Lux. The FFT detects
several harmonics from the rectangular pulse of 108 µs, the energy is shifted towards
the higher frequencies and the pulse repetition frequency of 33.89 Hz is not visible.

In order to utilize the characteristics of the rectangular pulse train that is being
continuously transmitted to the tracking detection system, a simplified method in
comparison with the FFT, is implemented. To improve the computational complex-
ity, the matched filter coefficients are set to the ideal case of a rectangular shape.
Meaning the MF coefficient’s length representing one pulse, are set by the num-
ber of samples that will be detectable of the rectangular pulse, with the predefined
sample rate. These coefficients are set to 1, whereas the Eq. 2.43 will reduce to a sim-
ple summation of L sampled data. This optimizes the computational complexity to
O(L), where L is the length of the MF template. The detectability could be increased
by adding the energy of the rectangular pulse train together. This means that single
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pulses from different pulse periods will be used together for cascade matched filter-
ing (CMF). Even when more pulses periods are used for filtering, the main agenda
is to detect the phase of the signal in the current pulse period. This is also one of the
reasons for optimizing the MF algorithm.

Figure 4.12 The above figure represents a traditional convolution between the de-
sired signal x(k), and the template of three pulse periods, with each pulse of length L.
The energy from each pulse is added up to the final CMF output y(k), which is three
times greater than the amplitude from each individual pulse.

With a low duty cycle, a rectangular pulse train template will mostly consist of
zeros. In order to not extend the computational complexity massively, by multiplying
and adding zeros in the system, a smarter algorithm is used, namely cascadematched
filtering (CMF). This smart algorithm is adaptable to pulse length, frequency and
even number of pulse periods. The CMF algorithm will decrease the usage of mem-
ory storage, allowing more data to be sampled and stored in the system. Normally
a signal replica is declared in the system storage, allocating memory space. Then
by multiplying the MF template with the sampled data and summarizing every time
instance together, the MF output y(k) is calculated. If several pulse periods would
be used for this method, as for the CMF, the need for data storage would increase
and computational complexity would increase massively.

Using pointers in a smart way and setting the MF coefficients to 1, allows the
algorithm to only use pointers to map sampled data instances that shall be summa-
rized together. Furthermore, these pointers represents the CMF template but will
only increase with the length of a pulse width L, for each pulse period M the algo-
rithm is extended with. Normally a MF would increase to the size of N ·M, where
M is the number of used pulse periods and N is the number of sample instances that
represents one complete pulse period.
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Figure 4.13 A standard MF illustration in a block scheme, where the filter coeffi-
cients length is N ·M, were N is the filter length to filter a complete sampled pulse
period, and M is the number of pulse periods that is included in the filtering. Sam-
pled signal instances are denoted by s(k), the impulse response coefficients hk, output
signal y(k) and the delay of one discrete time unit is denoted with z1. In this example
a pulse width L of 3 discrete samples where selected, thus h0 = h1 = h2 = 1 and
h3 = ... = hN−1. What is not visible is that this sequence will repeat itself for M
times, where M is the amount of pulse periods that one desires for filtering with a
CMF approach.

Figure 4.14 The CMF filter has the length of L = 3 and M pulse periods are used.
Figure 4.13 represents the normalMF, where the filter coefficients length isN ·M, and
the smart filter length in this case has a filter coefficient length of L ·M = 3M. This
reduces memory and also the computational complexity of the CMF, since L ≤ N,
and in this thesis L << N because of the low duty cycle. Sampled signal instances
is denoted s(k) and the impulse response coefficients hk are instead pointers to the
elements that should be summed together.

The example in Figure 4.14 of the CMF results in the following computation

y(k) =s(k)+ s(k−1)+ s(k−2)+ ...+ s(k− (N)(M−1))+
s(k− (N +1)(M−1))+ s(k− (N +2)(M−1))

This implementation also means that the frequency, duty cycle and number of pulse
periods used for CMF could be changed during real-time operation. The filtering
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process includes shifting of the pointers on step to an older sample, until the con-
secutive pointers has moved to the end of one pulse period. Hence a CMF template
with, e.g., 10 pulse periods would always produce a filtered signal within one pulse
period, no matter how many pulse periods are used for filtering. Meaning that the
M amount of pulse periods are always mapped into 1 pulse period, this reduces the
computational time additionally. Instead of performing (NML) multiplications and
M(N−1)(L−1) additions, the CMF will only perform M(N−1)(L−1) additions.
In this thesis a CMF approach will be used instead of a MF approach. There is not
much of a difference between the CMF and MF when filtering pulses of one pulse
period. The deviation starts when CMF and MF filters more than one pulse period
at the time.

4.4 Non-adaptive Threshold

Different photodetectors/input ”channels” will be receiving a signal with either only
noise or noise with the desired signal. The detector stage determines which channel
has received a signal or not, by comparing registered signal values to a threshold, set
by the detector. By defining λ in relation to selected PFA, a fixed threshold could be
determined. As seen from Section 4.2, the noise varies in time, when exposed to a
time-varying transmitting and receiving medium space, such as an outdoor environ-
ment. In order to guarantee a good performing system with use of a fixed threshold,
the value of the threshold λ needs to be set as high as the worst case noise environ-
ment. The procedure ensures that operation requirements are met even in worst case
scenarios, however, this entails that operations are only as good as the worst case.

Figure 4.15 The incoming Gaussian distributed signal x(k) is detected if x(k)> λ .
Threshold λ is designed from the noise characteristics, so that the PFA is as speci-
fied. The probability of detectability for different distances could then be determined,
where signals with distribution outside the threshold will have 100% detectability.
For example, transmitted signals x(k) at a certain distance D, which produce a mean
value such that x(k) = µ95

1 (k), will have a PD1 = 0.95 and PM = 0.05. The amplitude
of the detected signal will be saturated at one point, for signal detection this is not a
problem, but for determining distance up close this is an issue.
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From Table 4.1, different values of standard deviation σ was declared. To ad-
dress the problem of setting a threshold value λ , the Neyman-Pearson lemma was
selected. A PFA value of 1− 3σ = 100%− 99.73% = 0.27% was selected for 120
kLux to ensure that a low False Alarm Probability was maintained for various types
of operating environments. The probability of false alarm PFA is prioritized above
probability of detectionPD, so that the probability of false alarm is as low as possible.
A synchronization of the pulse is performed continuously, so if no data is detected
for a short time, the tracking detection system will still be able to transmit a synchro-
nized pulse train response. The tracking system will receive the synchronized pulse
train as usual, unaware of the fact that the tracking detection system is not receiving
any signal.

On an outdoor construction site, there will be a lot of blocking interferences, such
as people crossing in-front of the system. If the systemwould synchronize to a ”false”
detected pulse, the tracking system would not receive the pulse train information,
since the exposure/receiving time of the tracking system is matched with its own
synchronized transmitting pulse.

4.5 Adaptive Threshold

Noise environments change greatly for outdoor performance, thus utilizing an adap-
tive threshold could increase the tracking detection performance. On a clear sunny
day, the received illuminance will be different from all directions. If a photodetector
faces the sun directly, it could receive values of 120 kLux, but the opposite side could
receive, e.g., a 10th of that value. If the threshold was set to handle the worst case of
120 kLux, then a lot of detection possibilities on long distances would be missed, if
the receiving signal was traveling towards the sun. An adaptive filter could handle
changes in signal receiving direction, light conditions and interferences.

The different adaptive thresholds in this thesis is designed from scratch, and uti-
lizes all of thementioned fact that was stated between the noise signal and the desired
signal. The adaptive filter could be adjusted to desired performance by tweaking
some parameters, like a PID-controller. In Fig. 4.16, a general view of the detector
is illustrated. All of the adaptive algorithms uses post data to determine the threshold
characteristics.

The adaptive filters utilizes the memory storage of the output data from the filter,
there for it does not use any more memory, but the adaptive filter needs computa-
tional time. The main purpose is to analyze the noise characteristic in order to set a
threshold, which guarantees at least a predefined PFA. The adaptive filter will try to
make the system more robust to future sudden changes in the noise characteristics,
hence setting the threshold higher than needed for the predefined PFA. The extra el-
evation of the threshold is set with assistance of the maximum detected value on the
channel. The minimum level of threshold is set by the PFA with a moving standard
deviation calculation or a moving maximum for the second adaptive approach.
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4.5 Adaptive Threshold

Figure 4.16 Illustration of the to mayor subcomponents for the adaptive thresh-
old. A logical operator the adaptive algorithm. The logical operator operates on the
threshold level and simply scrutinizes the channels for a tracking signal. The adaptive
algorithm receive information from other channels and stores past sampled data, to
adapt to changes in the noise characteristics.

Figure 4.17 The adaptive threshold only observes its own channel, where the mov-
ingmaximum (MM) is determined, themean value and themoving standard deviation
(MSD). The MM sets the above limit while the MSD is multiplied with a constant
to set the PFA as desired. Then the value set by the Kλ MSD+MMV is subtracted
from the MM to define the region, where only signal should exist. This value is then
multiplied with a constant, that could be seen as a percentage of where the threshold
should ”levitate” in the pure signal region. The value created by the Kλ MSD, will be
added in the end, to offset the ”signal region” right.

A constant Kλ set for the first approach the probability of false alarm level by
PFA = 1−Kλ ·σ . This value will be added in the last step of the algorithm but also
subtracted from the maximum detected amplitude, this value symbolizes the pure
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signals region between the lowest threshold level to the highest. By then multiplying
this pure signal region with a constant Kp, a elevation of the threshold could be
defined. This value is then added in the last step, to set the adapted threshold level.

The adaptive filter approach in Fig. 4.17, works best for signals with low duty
cycles and noise distribution close to normal distribution. If the sampled raw data
is subtracted with the moving mean value already before filtering, the moving mean
value in the adaptive threshold is not needed.

In environment where the noise characteristics changes suddenly, a value of
Kλ ≈ 0.7 is tested to give good results. The other approach in Fig. 4.18, calculates
the moving maximum on all channels. Then two different channels are compared to
set a threshold. The relationship between the comparing channels are specified from
the angular intensity seen in Fig. 4.6, where channel j = channeli+2. If then the max-
imum signal amplitude is detected on channeli the signal should be barely visible on
channel j, thus setting the threshold slightly higher than the maximum noise level.
Since the pulse repetition repetition frequency is set to 33.89 Hz it is very likely that
next signal will be detected on this channel or one of its neighbor, therefore these
channels are inspected first.

Figure 4.18 This adaptive filter works exactly like the adaptive threshold from fig-
ure 4.17. However, the estimation of the noise characteristics is made from another
channel. The other filtered channel y j(k) could sample raw noise data to make the es-
timate of the noise characteristics better. This method will also work good for signals
with greater duty cycle, since increasing the duty cycle will make the total distribu-
tion less similar to the noise distribution. Then calculating the maximum value of the
noise on a neighboring channel where the tracking signal x(k) is absent, represents
the noise on channel yi(k) better in normal operation.
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5
Simulation

The simulation was constructed to match the real system in both functionality and
characteristics of the system. The noise and tracking signal characteristics was de-
termined from real data collection, and displayed in Table 4.1 and Table 4.2. Data
simulated outside of Simulink was specified as in Table 5.1, presented in Fig. 5.1
- 5.7. Results presented in Figure 5.8 and onward in Section 5, appear from a sig-
nal amplitude of 1.2 · 10−2 and a noise amplitude of 3.2 · 10−2. These noise values
reflects the highest amount of noise and a tracking signal from roughly 50 meters
distance.

The effect of increased detectability with adding several pulse periods was ob-
served and the importance of adaptive threshold was studied. SNR gain was used to
compare results between different filter lengths and the detector probability was stud-
ied. The threshold settings probabilities was determined by simulating several times
for time periods of 10 seconds, then counting and calculating the probabilities. The
time frame of 10 seconds was analyzed with the selected pulse repetition frequency
in mind, since the resolution of 33.89Hz during 10 seconds will be 1/338 = 0.3%,
which would be enough to determine if the probabilities is within 3σ = 99.7%. Sev-
eral samples were made to determine the mean value of the probabilities, since this
approach is the same as sampling for longer time instances, but it makes it easier to
count.

Ptot(X) =
1
n

n

∑
i=1

P1(x)+ · · ·+Pn(x) =
X1
m + · · ·+ Xn

m
n

=
X1 + · · ·+Xn

nm

SNR can be calculated in several ways, the approach of calculating the energy of
the signal and noise, and then converting the result into dB was used. This makes
it easier to interpret and also compare the different results from simulation and the
embedded real-time solution. Since the energy of a pulse increases with increased
pulse width and signal amplitude, the terms of SNR should be carefully compared
between different studies. Thus for simplifying the analysis comparison, one pulse
characteristic was selected as stated in Table 4.2. An SNR value of negative dB
values, does not imply that the signal amplitude is buried inside the noise amplitude.
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Hence, SNR is not sufficient for determine if the signal is detectable or not. The SNR
gain is used in order to get a measurement in how good the performance is increased,
since SNR after filtering is not sufficient for determine the performance.

For detectivity another approach is needed, therefore a threshold is needed. If
the right threshold settings are determined, the system will be able to know when
a pulse is detected or not. Since the incoming signal intensity decreases with the
inverse square law by increasing distance, and the filter amplifies this signal linearly,
there will be a break point where the filter length cannot be extended further and the
signal will not be able to be amplified above the noise amplitude for detection.

Table 5.1 Fixed pulse characteristics for simulation, representing tracking distance
of 100 meters on a cloudy day.

Pulse shape Rectangular
Pulse repetition frequency 33.89 Hz
Pulse width 108 µs
Pulse duty cycle 0.37 %
Signal amplitude 5 ·10−3

Noise amplitude 3 ·10−3

5.1 Cascade Matched Filter

Performance Analysis
In an early attempt to illustrate the power of the filtering technique of the cascade
matched filter (CMF), Figure 5.1 is firstly illustrated in this section. The CMF output
when extending with one pulse at the time until 300 pulses are included in the filter.
Ramp-up and ramp-down behaviors are visible in the Fig. 5.1. By extending with
more pulse periods, a better result is achieved. The peak of the triangle indicates the
output where the predefined maximum amount of 300 pulses was used in the MF.
If a fixed number of pulse periods are used for CMF, then the ramp up will only
happen in the beginning of the process and then a stationary level will occur. When
the tracking signal gets lost, the ramp down will occur.
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5.1 Cascade Matched Filter

Figure 5.1 Cascade matched filter (CMF) with a filter length extension up to 300
pulse periods.

Figure 5.2 illustrates the filtering performance from Fig. 5.1 in terms of SNR
gain. The SNR gain curve appears in a logarithmically scale in y-axis from the con-
version into dB, otherwise the linear amplification is visible from the filter output
seen in Fig. 5.1.

Figure 5.2 SNR gain for signal and noise characteristics representing a tracking
distance of 100 meters. The filter output signal to noise ratio increases with each
added pulse period used for the CMF template.

The negative and positive values in SNR from before and after filtering is not
enough to determine if the desired signal is filtered such that it is detectable by the
system. From Fig. 5.3, one can observe that SNR before filtering is negative, even if
the tracking signals amplitude is above the noise floor. The desired signal is therefore

61



Chapter 5. Simulation

already detectable without the need for filtering. After more than 15 filter lengths,
the SNR at the output of the filtering is greater than zero. Therefore the SNR gain is
solely used to compare the filtering results, presenting the most important aspect of
the filtering results.

Figure 5.3.a Figure 5.3.b

Figure 5.3 The SNR before and after filtering, where the simulation adds more
pulse periods of the incoming signal, in order to extending the filtering length. Small
magnitude variations are visible in the plots, as a result of the Gaussian distributed
noise energy.

In comparison to Fig. 5.2, the linear representation of the SNR gain performance
is illustrated in Fig 5.4. This illustrates the linear behavior in the CMF filter.

Figure 5.4 By applying Eq. 2.52.a instead of Eq. 2.52.b the conversion into dB is
omitted, subsequently the linearity of the filter could be distinguished in the SNR
gain plots.
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5.1 Cascade Matched Filter

The selected sampling rate effects the CMF results, which makes this parameter
interesting to study. The relationship from increasing the sampling frequency and
achieving the same SNR gain with fewer pulse periods in the CMF filter is observed
in Fig. 5.5. The opposite holds as well, if the system needs lower sampling frequency
to function, the filter length can be extended to achieve the same performance as with
higher sampling frequency. The enhancement of SNR gain in regards of increasing
the sampling rate, in multiples of 2, is illustrated in Fig. 5.5. The sampling rate is
doubled in-between the curves, except the start point from 44100 Hz to 100 kHz.
Thus, the sampling rates are 44.1 kHz, 100 kHz, 200 kHz, 400 kHz and 800 kHz.
The implication of increase sampling rate is furthered illusutrated in Fig. 5.6 and
5.7.

Figure 5.5 SNR gain curves for sampling rates of 44.1 kHz, 100 kHz, 200 kHz,
400 kHz and 800 kHz, where the higher the sampling rate results in greater SNR
gain. Thus, the 44.1 kHz sampling rate curve us the bottom curve and the 800 kHz
sampling curve is atop.
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Figure 5.6 The require filter length multiple to achieve the same SNR gain, as data
sampled with twice the sampling rate, is displayed in the y-axis and the filter length
extension on the x-axis. The observed frequencies of 100 kHz, 200 kHz, 400 kHz and
800 kHz has a mean value of 1.93 multiples needed, to achieve same SNR gain.

Figure 5.7 The mean value of 13.74 dB difference, between data sections sampled
with twice the sampling rate, illustrates the relative filter output performance, by in-
creasing the sampling rate with a factor of 2. By only utilizing one pulse period in the
CMF, a system sampling with twice the sampling rate, will result in an improvement
of almost 14 dB in the filter output.
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5.1 Cascade Matched Filter

Performance Analysis - Simulink
In all of the following parts of Section 5, the simulation was performed with only one
pulse period of the rectangular pulse train. This means that the CMF results are the
same as for a MF. With this in mind, the performance of the filtering could still get
better. However, it illustrates the importance of filtering the incoming signal before
detection. In Figure 5.8, both noise and the desired tracking signal is present in the
incoming signal, but the tracking signal is undermined by the registered noise.

Figure 5.8 The tracking signal (yellow) and noise signal (gray) plotted on-top of
each other, where the amplitude of the desired tracking signal is approximately half
of the noise signal.

The summation of the two signals is visible in Fig. 5.8 as the incoming signal,
were no evident distinction between the two signals can be made, nor a distinction
between solely the noise signal in Fig. 5.8 and the incoming signal in Fig. 5.9.

Figure 5.9 The combined signal from Figure 5.8 where the tracking signal is buried
inside the noise signal, thus no visible tracking signal could be distinguished.

Filtering the incoming signal with on pulse period, results in the filter output
visible in Fig. 5.10. From this output a separation between the former incoming
tracking signal and noise signal is made. By feeding this signal forward to a detection
stage, a detection of the tracking signal could be made as well as an synchronization
to the tracking signal frequency.
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Figure 5.10 After matched filtering the incoming signal displayed in Figure 5.9
with a filter length of one pulse period, the tracking signal is distinguishable from the
noise signal by observing the filter output. The signal is influenced by the noise signal,
making the amplitude of the filtered tracking signal alternating a lot, sometimes it dips
down in the noise signal, making it more difficult to detect an active tracking pulse.

SNR
The performance of the filter in this thesis is measured with SNR gain, since differ-
ent tracking distances will generate different levels of SNR before and after filtering
the incoming signal. This makes it more difficult to compare the performance of
the filter, if not the SNR gain is used. The SNR gain will only give the relative im-
provement, therefore, staying objective in the filter performance for different tracking
distances. By comparing the SNR gain before filtering from Fig. 5.3.a and Fig. 5.12,
one can observe how different tracking distances of a fixed signal intensity generates
different SNR values.

Figure 5.11 Registered SNR gain after filtering the incoming signal, where the filter
length consists of one pulse period. The positive value differentiates an improvement
after filtering the incoming signal on the order of approximately 25, which is a ratio
between the tracking signal and noise signal. This is interpreted as a signal to noise
ratio improvement of 25 times the value before filtering.

Dissimilarities are apparent from comparing Fig. 5.3.a and Fig. 5.13 to each other
as well.
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Figure 5.12 The high negative value here in dB, indicates that the energy of the
noise is much greater than the tracking signal, but observe that the amplitude is only
half of the noise signal.

However, in contrast the SNR gain from Fig. 5.2 and Fig. 5.11 are equal for one pulse
period, approximately 25 dB of improvement.

Figure 5.13 The negative value is somewhat misleading, thus the SNR gain is a
better measurement in improvement, since the negative value after filtering is only
indicating that the energy of the noise signal is still stronger than the tracking signal
after filtering.

5.2 Threshold Performance

The exact same noise and tracking signal is used for the threshold comparison be-
tween the MSD and MM adaptive threshold. The signals is filtered by the CMF with
one pulse period in the filter, whereas the filter output therefore stays the same for
the comparison between the two different adaptive thresholds. The fixed threshold is
the same in both simulations, hence the same probability in the Table 5.2 and Table
5.3. By using the same tracking and noise signal in the simulation of MSD and MM
adaptive threshold, these two thresholds are also comparable in performance.

Adaptive Filter - Moving Standard Deviation
The difference between a fixed threshold and an adaptive threshold is illustrated in
Fig. 5.14. The moving standard deviation (MSD) technique is used as the adaptive
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threshold for this simulation. The MSD adaptive threshold performs at its best when
the tracking signals has a low duty cycle, see Table 4.2, then the combined signal
characteristics is determined by the noise signal as illustrated in Fig. 4.10. The adap-
tive filter appears to walk up an down along the tracking signal, thus increasing the
detection of the incoming tracking signal in comparison to the fixed threshold. The
result after the detection stage is displayed in the two upcoming figures in Fig. 5.15
and Fig. 5.16.

Figure 5.14 The tracking signal (yellow) is amplified and plotted on-top of the fil-
tered output signal from the CMF (blue), the ”fixed” threshold is plotted in black
color and the adaptive filter is plotted in red.

Non-Adaptive Threshold
With a non adaptive threshold, the threshold stays fixed in relative to the signal char-
acteristics over time. This is apparent in Fig. 5.14, but also that this is true to a fixed
signal characteristics. In the beginning a ramp-up occurs, which also changes the
fixed value of the threshold, this is not considered to be adaptive in this thesis, since
the signal characteristics changes during this part.

Figure 5.15 Detection stage output, where the output is either a high or a low signal.
The green line is the detection of the tracking signal, the red line indicating missed
detection. By studying the plot up-close the different detection probabilities can be
determined. Where the green line appears a bit thicker, it has occurred a false alarm,
and the lack of this signal at some ”gaps” indicates that the signal was missed, plotted
in red. By counting these two factors, all probabilities can be determined.
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Adaptive Threshold MSD
The movement of the moving standard deviation adaptive threshold is illustrated in
Fig.5.14. The adaptive threshold (red line) changes even if the signal characteristics
is not changed over time. The algorithm tries to stay away from the noise floor as
much as possible, to avoid false alarm detection when sudden peaks in the noise
signal occurs. TheMSD adaptive filter also tries to not miss detection of the tracking
signal when sudden drops in the tracking signal occurs.

Figure 5.16 As in Fig. 5.15, the green line is the detection stage output of detected
tracking signal and the red line is indicating missed detection. A thicker green line
indicate a false alarm and a signal ”gap” indicates missed signal detection, plotted in
red. The probability in tracking signal detection has increased from Fig. 5.15.

Probability
A visual comparison from Fig. 5.15 and Fig. 5.16 gives an indication that the de-
tectivity of the tracking signal has improved. It is however difficult to determine the
exact probabilities from an visual inspection. In Table 5.2 these probabilities are
displayed.

Table 5.2 Probabilities from simulations, calculated by counting the amount of
missed detection and false alarm. By Calculating these values, Detection for signal
an non-signal could be determined. In focus is the PFA and PD1 .

Adaptive Threshold MSD Fixed Threshold
PM 4.72% 25.96%
PD1 95.28% 74.04%
PFA 6.19% 9.44%
PD0 93.81% 90.56%

Adaptive Filter - Moving Maximum
The difference between a fixed threshold and an moving maximum (MM) adaptive
threshold is illustrated in Fig. 5.17. By comparing Fig. 5.17 and 5.14, similarities
in the adaptive threshold appearance could be made. The adaptive threshold posi-
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tion looks identical in an holistic perspective, but when zoomed in view, they appear
to be positioned differently. In comparison to the MSD adaptive threshold, the MM
adaptive threshold is dependent on another sampling channel, including another pho-
todetector for the threshold calculation illustrated in Fig 4.18. This filter performs
good even when the tracking signal has a higher duty cycle than for the tracking
signal characteristics in this thesis, this is the advantage of this adaptive threshold
over the MSD adaptive threshold. The MM adaptive threshold detection stage result
is displayed in the two upcoming figures in Fig. 5.18 & 5.19

Figure 5.17 The moving maximum technique is used as the adaptive threshold for
this simulation. The result after the detection stage is displayed in the two upcoming
figures in Fig. 5.18 & 5.19.

Non-Adaptive Threshold
The identical fixed threshold performance between the simulations is displayed by
comparing Fig. 5.15 with Fig. 5.18.

Figure 5.18 The green line is the detection stage output of detected tracking signal
and the red line is indicating missed detection. A thicker green line indicate a false
alarm and a signal ”gap” indicates missed signal detection, plotted in red

Adaptive Threshold MM
Detection stage controlled by an adaptable threshold, where the moving maximum
is used. The moving maximum ”scans” a neighboring channel with no incoming
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signal, to detect the noise level, and adapt the threshold after this altering value. The
output is either a high or a low signal.

Figure 5.19 The green line is the detection stage output of detected tracking signal
and the red line is indicating missed detection. A thicker green line indicate a false
alarm and a signal ”gap” indicates missed signal detection, plotted in red

Probability
The probability of detection seems to be improved from the fixed threshold. In fact,
all of the probabilities are better than for the fixed threshold, the same holds for the
MSD adaptive filter.

Table 5.3 Probabilities from simulations, calculated by counting the amount of
missed detection and false alarm. By Calculating these values, Detection for signal
an non-signal could be determined. In focus is the PFA and PD1 .

Adaptive Threshold MM Fixed Threshold
PM 7.96% 25.96%
PD1 92.04% 74.04%
PFA 4.13% 9.44%
PD0 95.87% 90.56%

The MSD adaptive filter has a PD1 = 95.28% and PD0 = 93.81% in comparison
of PD1 = 92.04% and PD0 = 95.87%. This means that the MSD adaptive threshold
has better detectivity of active pulses than the MM adaptive threshold, but the op-
posite holds for detectivity of non-active tracking pulses. Therefore the false alarm
probability of the MM adaptive threshold is less than for the MSD adaptive thresh-
old.

71



6
Real-Time Operation

The vast difference between simulation and real-time operating system is the sam-
pling procedure. In the simulation the sampling process always registers a data sam-
ple at the given discrete time, however, in reality this could be more difficult than
expected. It was discovered that the system needed to have an complete DMA data
handling process, in order to never miss a data sample, with a high sampling fre-
quency. A semi-complete DMA solution, where the sampling was performed with
DMA and the CPU handles the sampled buffer array, frequently missed to register
data samples. This eventually affected and limited the performance of the DSP.

Instead of increasing the SNR gain by extending the number of pulses utilized in
the pulse train, the results deteriorate with the number of extensions. This limits the
SNR improvements to the extent that it only worked with a single pulse, instead of a
pulse train for the DSP. This contradicts the purpose of using several pulse periods
to improve the DSP performance. Therefore this needed to be solved before further
development and analysis could be made, the problem is illustrated in Fig. 6.1.

A triangular wave was generated and sampled in order to detect if sampling fail-
ure occurred. To ease the detection of failure, a difference calculation was made and
plotted under ”Error detection sequence” in Fig. 6.1. On the left hand side is an
zoomed out version where data is sampled and transmitted from the Cortex M4 to
MATLAB. The zoomed-in version of the error is displayed on the right-hand side,
where several samples are missing from the triangular sequence. The plot is some-
how misleading, since it appears that the triangular wave amplitude change for that
instance. However, an interrupt in sampling is not displayed, when the DMA transfer
values from the AD to the memory array.

The angular estimation was never analyses in depth. However, an IR-camera was
used in studies of detecting if the right transmitting diodes was turned on, since the
three IR-LED facing the tracking signal should be turned on and the other IR-LEDs
should be turned off. This was studied with IR-cameras, and confirmed to be work-
ing. The tracking detection system was put in a corner, whilst receiving a tracking
signal transmitting towards the corner, and the system managed to respond with a
replica signal without detecting itself, only the received tracking system. This means
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Figure 6.1.a Figure 6.1.b

Figure 6.1 A triangular wave of 1 kHz was sampled with a semi-complete DMA
solution. The sampling is interrupted at around 10 000 sample instances.

that the tracking detection system was not transmitting anything in the opposite di-
rection of the incoming tracking signal. The tracking system, confirmed that a signal
connection was established during the test.

The accuracy in estimating the tracking distance was found to be inaccurate,
but sufficient for controlling the signal output, see Fig. 6.2. The main goal was to
be able to control the output of the IR-LED in relation to the tracking signal, such
that saturation was avoided, and that the power was increased for longer tracking
distances.

Figure 6.2 Distance estimate of the tracking systems distance from the tracking
detection system. The red crosses define the real position, and the blue curve defines
the estimated position, in relation to received tracking signal intensity.
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6.1 Cascade Matched Filter

The cascade matched filter performance is illustrated in this section, with a first
filter length up to 10 pulse periods displayed. Then an extension up to 300 pulses
is presented. We introduce 3-dimensional graphs in an attempt to compress more
information into fewer graphs. Figure 6.3.a displays the SNR before any filtering is
performed, thus the pulse period along the y-axis does not affect the SNR, but the
SNR changes with distance from the tracking source along the x-axis. The SNR after
filtering is changed on both x- and y-axis, where the improvement is still difficult to
observe.

Figure 6.3.a Figure 6.3.b

Figure 6.3 Figure 6.3.a illustrates the SNR at the CMF input and Figure 6.3.b the
SNR at the CMF output. The tracking distance is illustrated along the x-axis, the
y-axis indicates the filter length, and the SNR is plotted in the z-axis

Figure 6.4 The improvement in performance is more visible in this comparison
plot between before and after filtering, where the difference between the two planes
is the SNR gain. This plot also illustrates how much greater energy the noise signal
contains in comparison to the desired tracking signal, when the tracing distance is
increased.
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Since pure SNR is not a good indicator on improved performance, the SNR gain
is used instead. By combining the two plots, as in Fig. 6.4, the improvement is illus-
trated as the gaps in-between the surfaces. This graph is still not evidential enough
for illustrating the filtering performance.

Figure 6.5 plots the SNR gain solely, displaying only the improvement in perfor-
mance. Ideally, the surface plot should not contain any descending parts along the
x- and y-axis, meaning, with changing distance and filter length. Greater descending
along the filter length axis (y-axis) for a fixed distance, depends on tracking signal in-
terruptions as in Fig. 6.10. The smaller spikes generated along the filter length axis
is due to the normal distribution of the tracking signal. The tracking signal inten-
sity and characteristics is considered to be stable, but the noise signal is altering the
tracking signal amplitude. Thus, by increasing the filter length, the SNR gain is not
increased homogeneously. Inconsistencies in improved performance with extending
the filter length, visible at longer tracking distances, is due to errors in signal and
noise separation in the energy calculation of both signals.

Figure 6.5 Different SNR gain is illustrated along the z-axis in the 3-dimensional
graph. The tracking distance varies along the x-axis and the CMF filter length with
full pulse periods along the y-axis.

Figure 6.6 and 6.11, display the CMF output at each discrete time instance for an
entire pulse period. Even if several pulse periods have been used for the CMF tem-
plate, the output duration will only be for one pulse period. By applying a threshold
to this output, the exact time of signal occurrence can be determined, hence the
tracking detection system can synchronize with the incoming tracking signal.
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Simulation implies that the SNR Gain curve should be the same for all input
power of the tracking signal, indicating that the curve projection from a registered
tracking signal at 102meters, fulfill the estimated SNR gain performance. Therefore,
this tracking signal was used in the real-time operation section for comparison in
performance.

In Figure 6.6, the compressed CMF output of one pulse period with extending
the filter length to include several pulse periods at 102 meters tracking distance is
illustrated. The linear appearance of the CMF is observable in this plot and also
what the SNR gain improvement describes in actual filtered signal output. Along
the x-axis is the the sample instance in time, where on pulse period at the assigned
sampling frequency is roughly 1301 samples. The rising edge of the pulse, occurs
almost in the beginning of the pulse period.

Figure 6.6 Along x-axis is the 1301 registered sample instances, with changing
filter output intensity visualized in z-axis respective to filter length transitions in y-
axis.

Thus far, the filter length extension was limited to 10 pulse periods with an in-
crement of 1 pulse period between the filter lengths. The following graphs contains
filter lengths up to 300 pulse periods, starting from 10 pulse periods, the filter lengths
is then incremented with 10 pulse periods at the time. Similar figures to Fig. 6.4 -
6.6 is illustrated in Fig. 6.7, 6.8 & 6.11, where the tracking distance is the same but
the filter length is changed as well as the outputs in z-axis.
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Figure 6.7 Two surface plots of SNR before and after filtering an incoming tracking
signal at 102 meters distance. The above surface plot is from after filtering, whereas
the lower surface plot is from before filtering.

Figure 6.8 with extended filter length of Fig. 6.5. At lower filter lengths at roughly
40 meters, the surface descends, this is due to signal interruption displayed in Fig.
6.10. By increasing the filter length even further, the effect of the signal interruption
is surpassed and the SNR gain is incremented.

Figure 6.8 Different SNR gain is illustrated along the z-axis, the tracking distance
varies along the x-axis and the CMF filter length with full pulse periods along the y-
axis. The filter vary from 10 pulse periods up to 300 pulse periods in the CMF filter
template.
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When extending the CMF length beyond the 10 pulse periods, the signal inter-
ruption appear more distinctively. The generated SNR gain values at 95 meters is
hidden below the SNR gain surface. In order to display the impact from the interfer-
ence in Fig. 6.8, the 3-dimensional graph is rotated to Fig. 6.9.

Figure 6.9 Same plot as in Figure 6.8, however the surface plot is rotated to display
the surface descend at 95 meter, created by signal interruption.

From observing Fig. 6.8 one can suspect that a signal interruption has occurred
at the tracking distance of 95 meters. This is even more evidential when observing
the raw sampled signal in Fig. 6.10.b.

Figure 6.10.a Figure 6.10.b

Figure 6.10 Signal interruption of the desired tracking signal displayed in Fig.
6.10.b at a distance of 95 meters from the tracking source. The received tracking
signal from 102 meters is displayed in Fig. 6.10.a. The thick blue plotted area is the
noise signal and the many small spikes are the received tracking signal.
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Figure 6.11 visualizes the compressed CMF output filter extension between the
filter length of 10 - 300 pulse periods, with an increment of 10 pulse periods, at 102
meters tracking distance. The tracking signal appears to be amplified more than the
noise signal, making the noise signal weaker in comparison to the tracking signal
for each filter extension.

Figure 6.11 Along the x-axis is the the sample instance in time, and the pulse period
at the assigned sampling frequency is roughly 1301 samples. The tracking signal
detectivity is increasing linearly with every extended filter length of including one
more pulse period in y-axis.

6.2 Threshold Performance - ROC

The three dimensional receiver operating characteristics (ROC) plot, visualizes the
different threshold performances during different filtering conditions and tracking
distances. As usual the probability of detection and probability of false alarm are
plotted with changing threshold values, for the third dimension, different signal in-
tensities/tracking distances are set to calculate the individual possibilities. Worst and
best case additive noise are applied for fixed filtering lengths, or fixed additive noise
is applied with changes in the filter length are plotted in this section. Every fifth
intensity step on the surface curves are plotted in black color.
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Figure 6.12 Step size of the tracking signal intensity in this plot is 0.0016. The
surface of the green/yellow plot belongs to detection of signals with maximum noise
illuminance of 120 kLux, at the detection overlap area. The second surface plot in
light orange/violet is the detection overlap area after CMF with 10 pulse periods.

Figure 6.12 - 6.15 are 3-dimensional ROC representations, were the PD and PFA
is plotted as a function of received tracking signal intensity, which is normalized to
the raw sampling saturation limit. As in standard ROC curves, different threshold
values is applied to the sampled data, such as in Fig. 6.6, in order to plot the PD
and PFA at different thresholds at varying signal intensities. In Fig. 6.12 one can
observe a slight change of ROC characteristics, when cascade matched filtering the
incoming signal with 10 pulse periods. This makes the detection much better for the
filtered version (orange/violet surface), but it is not obvious from only studying the
ROC curve in Fig. 6.12. This graph actually only takes the noise signal amplification
into account, since the noise amplitude is amplified after the CMF, the ROC gets
worse after filtering. From studying Table 6.1, the same probability between the non-
filtered and filtered ROC curves, is registered at almost double the intensity value for
the filtered ROC. However, by filtering the tracking signal, the intensity/amplitude is
increased from its original value. From observing Fig. 6.6, the tracking amplitude is
registered as more than 10 times greater than the original amplitude. So if the ROC
is degraded with double the amount, then the tracking signal amplification by 10
times still improves the detectivity. The SNR gain improvement from filtering the
signal, testifies the separation between the tracking and noise signal.
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Filtering with more pulse periods increases the standard deviation of the distri-
bution, thus the overlap areas is greater for each added pulse period in the CMF,
however the SNR gain increased for each added pulse period and so does the de-
tectability. In Figure 6.13, the maximum noise level without filtering the incoming
signal is now compared with a CMF containing 100 pulse periods.

Figure 6.13 Step size of tracking signal intensity is 0.004. The surface of the
green/yellow plot belongs to detection of signals with maximum noise illuminance
of 120 kLux without filtering, at the detection overlap area. The second surface plot
in light orange/violet is the detection overlap area after CMFwith 100 pulses periods.

From Fig. 6.15, the difference in detection overlap area is quite huge. A detec-
tion made with an adaptive filter without filtering would be able to detect a track-
ing signal at 100 meters in low background noise radiation with PD = 99.24% and
PFA = 0.3165%. The fixed threshold would not stand a chance at this distance with a
PD = 0.9872% and a PFA = 0.33%. Similar detectability characteristics for the fixed
threshold, as the adaptive threshold at 100 meters, was found at 30 meters distance.
This is a huge deterioration in performance and an implication that fixed threshold
could decrease the detection performancemassively. Since comparing the ROC from
different filter lengths, is a bit more difficult, a simple example is set by studying Fig.
6.14. In this graph, non-filtered data with different noise levels are compare to each
other, clarifying how the ROC graph work. An increment of the noise level at the
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detection stage input, will degrades the ROC. In this case the same tracking distance
will generate the same tracking signal amplitude at the tracking detection stage in-
put, then the ROC performance is in direct relation to the detection probability of
the two cases. This notes the importance of the adaptive threshold, since otherwise
the ROC of the orange/violet surface will never be achieved.

Figure 6.14 A 3-dimensional ROC comparison for best and worst noise character-
istics, with a step size of 0.0016 in signal intensity. The black dotted line occurs after
5 steps, hence after 0.008 in signal intensity. The green/yellow surface plot is the
same as in Fig. 6.13, which illustrates the worst case noise illuminance of 120 klux.
The light orange/violet surface plot represents the best case noise illuminance of 500
lux.

By determine a PFA and a PD, a point on each ROC surface is returned. This point
is set to a value precisely before ROC saturation. By comparing the ROCs between
each other, this point lets us know at what signal intensity the same probability occur.
This comparison is visible in the Table 6.1.
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Table 6.1 The same detection probability for different incoming signal to the detec-
tion stage. First column is the best case noise illuminance, second column the worst
case noise illuminance. The two last columns are filtered signals with filter lengths
of 10 pulse periods and 100 pulse periods, these filtered signals contains noise illu-
minance of 120 klux.

500 lux 120 klux 10 pulse periods 100 pulse periods
5 ·10−3 8 ·10−2 14 ·10−2 4 ·10−1

Same ROC surface plot as in Fig. 6.14 is illustrated in Figure 6.15, with a signal
intensity step size of 0.0001. There is a great difference in ROCperformance between
worst case noise values and lowest values, this is apparent from above Fig. 6.15.

Figure 6.15 The lowest measured outdoor noise illuminance of 500 lux, is plot-
ted in light orange/violet, and maximum noise illuminance of 120 klux is plotted in
green/yellow.

Same 3D ROC plot as in Fig. 6.15, is illustrated in Figure 6.16, where only ob-
serving the x- and y-axismakes the ROC curvesmore visible. The solely the intensity
level before ROC saturation occurs, at the lowest noise level, is plotted in Fig. 6.16.
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This illustrate how poor the ROC for a fixed threshold would be in comparison to an
adaptive threshold.

Figure 6.16 Step size of tracking signal intensity is 0.0001. The good performance
of the adaptive threshold is observed, as is the poor performance of the fixed thresh-
old, at the same distance. The adaptive threshold improves quickly with increased
tracking signal intensity, whilst the fixed threshold never really has the time to im-
prove to a satisfying state.

6.3 Guaranteed Detection By Filter Length Extension

Since the ROC comparison between different filter length was quite difficult to make,
another approach was made to visualize the filter length performance in relation to
detectivty. By combining above results from the linearity of the CMF and the inverse
square law of the tracking signal intensity, a 3-dimensional diagram describing re-
quired filter length for specific tracking distance and noise levels can be derived and
plotted. Each filter length having the capability of sustaining detection up to a cer-
tain distance, after this point the noise level will be greater than the tracking signal
level.
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Figure 6.17 On the z-axis, the required filter length for tracking signal detection
is plotted. Along the x-axis, denoting noise level, the linear increment of the filter is
detectable, specially in the atop plot at longer tracking distances. The required filter
length increment, for compensating the inverse square law signal power decrement
by increased distance, is visible in the y-axis, denoting the tracking distance. By ob-
serving one filter length at the time, the appearing curve shape also describes the
decrement of the signal power, allowing signals to be tracked for longer distances
with lower noise level than in higher noise level environment. Atop and bottom dia-
grams illustrates filter length extensions up to 120 and 10 pulse periods respectively.
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Discussion

There are a lot of advantages that could be utilized from the pulse characteristics.
The fact that the duty cycle is low, implies that the distribution fit of the data matches
the noise distribution quite well, as seen in Fig. 4.10. From this characteristic, some
adaptive detection thresholds were effectively designed, displayed on Section 4.5.
The MF of a rectangular pulse with low duty cycle, has quite an impact on the com-
putational complexity, more on this in Section 4.3. The key utilization of the low
duty cycle, was the ability to extend several filter length while allocating small por-
tions of the memory, and fast filter operation. By introducing the cascade matched
filter (CMF) and excluding the perfect replica template, fast filter extensions and
operations was achieved.

By cascade matched filtering the tracking signal the amplitude is increased lin-
early, however, the SNR-gain in dB, is increased logarithmically. This is apparent
by comparing Figs. 6.6 & 6.11 with Figs. 6.5 & 6.8. Without converting the SNR
into dB, the SNR increment linearly with filter length extension. By analogizing Fig.
6.11 with Fig. 5.1, one can see the similarities from simulation to real time filtering
when it comes to filtering output. Hence, the strong similarities between Fig. 6.8
and Fig. 5.2. The signal separation, between noise and tracking signal for real data,
is the main issue behind the jagged behavior in the surface plot. Otherwise, we can
see continuous filter output improvements, by adding pulse periods to the CMF.

There is a low-level limit called NEP, of which the filter can not under any cir-
cumstances amplify the incoming tracking signal. Until this low level of power is
reached, improvements could be made, so that the amplitude of the tracking signal
is greater than the amplitude of the noise signal. At a certain stage, an extension of
the filter length will saturate the detection probabilities. This is observable in, e.g.,
Fig. 6.13, where the green surface plot does not change for greater values than 0.08
in signal intensity. When this improvement is achieved, an extension of operational
distances is exclusively made by utilizing better detection algorithms. This implies
following, instead of setting a fixed threshold for each filter length, and then amplify
the tracking signal such that the signal amplitude surpasses the threshold limit and
noise signal with the exact probability of false alarm. The tracking signal amplitude
is already amplified above the noise amplitude, so an adaptive filter with predefined
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detection probability should be able to detect the tracking signal from the noise sig-
nal and also adapt to changes in the noise data.

In Fig. 6.17, a graph of the detection performance is illustrated with different
noise environments. This figure indicates that with an adaptable detection algorithm,
the signal detection could be improved greatly. Deterioration of the ROC, by increas-
ing the length of the filter, is compensated by the greater increment of signal ampli-
fication by the filter. In other words, the ROC does not stabilize until greater signal
intensities, meanwhile the filter compensates for this by amplifying the tracking sig-
nal intensity even greater so the desired tracking signal intensity threshold could be
set by the adaptable detection stage.

For example, Fig. 6.13 illustrates great detection probabilities at a signal intensity
of 0.4, when a filter length of 100 pulse periods are used. However, by observing the
signal intensity after filtering a tracking signal at 102 meters distance, the tracking
signal registers an amplitude of 1.64, which is 4 times greater than the threshold
guaranteeing great detection probabilities. With 10 pulses of filter length, perfect
signal detection probabilities are found at a signal intensity of 0.14, this is a better
match with the registered signal of 0.17, therefore it would be enough with 10 pulse
periods in the filter. This will guarantee almost no false alarm detection with a fixed
threshold in all environmental conditions. However, with an adaptive detection stage,
a filter length with one pulse period would be enough for the same tracking distances
in many cases.

From Fig. 6.17, a quandary appears. The signal intensity is decremented by
distance with the inverse square law, while the filter increments linearly with fil-
ter length extension. Hence, the filter will not be able to draw level with the fast
decrement of the signal power. Thus, there is a defined limit by filter execution time
and memory allocation space, which will define the maximum tracking distance.
Heavy noise level alternations, when tracking signals at longer distances, will there-
fore create rapid changes in required filter lengths for signal detection. Although,
The CMF method allows quick extensions and contraction of the filter length, it is
recommended to keep the filter length greater than needed during heavy noise level
alterations.

7.1 Simulation

From simulating different noise and tracking signal amplitude relationships, the SNR
gain curve seen in Fig. 5.2, always stays the same. This means that from simulation,
the tracking signal amplification is consistent and also unrelated to the tracking dis-
tance. The SNR gain increases with increased sampling frequencies, but so does
also the memory allocation. The ratio in sampling is proportional to the ratio of
filter length needed to achieve the same SNR gain, so an increment in sampling fre-
quency of a factor 2 means that half of the filter length is needed to achieve the same

87



Chapter 7. Discussion

SNR gain, this is illustrated in Fig. 5.6.

SNRgain ∝ fsample ·L f ilter

A twofold increment in sampling rate, results in a constant SNR gain increment of
14 dB, for each applied filter length extension, illustrated in Fig. 5.7. In conclusion,
by incrementing the sampling rate from 100 kHz to 800 kHz, the SNR gain for each
filter length extension has roughly increased by 42 dB and the filter length only
needs to be 1/8 of the length to achieve the same SNR gain results. Hence, a system
sampling with 800 kHz, requires a filter length of 30 pulse periods to fulfill the same
filter output as a system sampling with 100 kHz operating with a filter length of 240
pulse periods, comparison seen in Fig. 5.5.

The faster the sampling rate of the system, the faster the system can adapt to
noise alternations or changes in tracking distances. The longer the tracking distance
or the greater the noise signal gets, the more pulse periods are needed in the filter
to amplify the tracking signal above the noise level. By allocating memory for sev-
eral consecutive pulse periods, matching the upper limit of selected filter length, the
tracking detection system will not be effected in filter performance. If no prealloca-
tion is performed, then there will be a delay before the filter can achieve the right
filtering performance, such as adapting to noise signal alterations. If the sampling
frequency can not be incremented, then the pulse period repetition frequency can
be incremented to obtain the same result. From Eq. 2.53, 2.19 & 2.20 the following
interrelation could be stated

SNRgain = 20 · log10

(
yxx

exx

enn

ynn

)
This relationship says that we can either improve the detectivity by amplifying the
desired tracking signal yxx or suppressing the noise signal ynn by filtering. Neither
MF nor the CMF does any noise suppression, but aims to only amplify the desired
tracking signal. Since the noise signal is zero mean value Gaussian distributed, the
noise signal will not be suppressed on a longer time average, but for small time
instances it will be suppressed and sometimes amplified. The noise suppression is
fully up to the stochastically behavior of the noise signal, illustrated in Fig. 5.7, where
the different sampling incidents will lead to different SNR gain results.

Fig. 5.8 illustrates the incoming noise and tracking signal with amplitudes of
3 ·10−2 and 8 ·10−3 respectively, the output of the CMF after filtering the combined
signal in Fig. 5.9, is demonstrated in Fig. 5.10. The filter length is of one pulse period,
capable of amplifying the tracking signal above the noise level, which is a factor 3
3/4 greater in amplitude than the tracking signal. This amplification correlates to a
SNR gain of 25 dB, observable in Fig. 5.11, resulting in an average output amplitude
of 6 · 10−2, which is a factor of 7.5 in amplitude improvement. Even if the average
is more than beyond the output noise amplitude of 3 · 10−2, the tracking signal is
still influenced by the stochastically noise signal, such that the output of the tracking
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signal sometimes disappear into the noise signal. For this reason, the tracking signal
amplitude average needs to be amplified, to more than double of the noise amplitude,
to be able to guarantee tracking signal detection in the system at all time, as long as
the tracking signal power and noise power remain constant over time.

Since this is not very likely to happen in a real time operation, it is important to
have the ability to change the detection algorithm parameters during operation.With-
out having a detection system adjustable to noise changes, system information will
be disregarded, this is illustrated by the detection stage output for the fixed threshold
in Fig. 5.15. The Gaussian distributed noise signal, characterized from real sampled
data, is enough to change the fixed threshold in such a way, that 20% of the infor-
mation will be overlooked. These detection statistics is represented in Table 5.2 and
the runtime changes in the fixed threshold is illustrated in Fig. 5.14, as well as the
MSD adaptive threshold. From solely observing Fig. 5.14, one can observe how the
threshold is continuously updated and tries to catch every change in tracking signal
behavior.

Fig. 5.16 illustrates how the signal detection has increased for the detection stage
and Table 5.2 confirms this statement. When transitioning to aMSD adaptive thresh-
old from a fixed threshold, the probability of miss was lowered with a factor of 5 rep-
resenting 15.68%, although the probability of false detection increased with a factor
of 5 representing 1.18%. There are some parameters that one can tune for the adap-
tive threshold such as update rate, sample window and parameter weighting. This
will change the detection output and its statistics. The selected parameters, was se-
lected in such a way that the signal detection was improved on the cost of increasing
the probability of false alarm, to a still satisfying extent.

Since probability of false alarm will not be zero, there must be an algorithm in
the detection system which will catch these occurrences. If the probability of false
alarm is high, then the system will be occupied on correcting errors instead of the
designed function. Therefore, with this threshold transition, the systemwill deal with
false alarm detection every 2nd second in lieu of every 10th second. As long as the
system can handle these deadlines, neither is better then the other. However, for pulse
synchronization perspective, it is better to have a greater probability of signal detec-
tion, because more data is used to estimate the frequency drifting of the tracking
pulse synchronization. If the signal detectivity is to low, then the time synchroniza-
tion of the signals might get unsynchronized, an the tracking communication is lost.

When signal interruption occurs for longer time instances, e.g., blocked signal
path, unsynchronized tracking communication or bad signal detectivity of the detec-
tion stage, a search mode will be initiated to find a tracking signal. This is expected
to only occur when the signal gets blocked by an obstacle for a longer time period,
thus if the detectivity is to low of the system, then the system will enter the tracking
search stage while in normal operation mode. Causing the system to operate in an
unstable manner, switching between operational mode and search mode. Hence, if
the deadline of handling false alarm could be sustained, then a better detectivity is
preferred.
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TheMM adaptive threshold, performs great even if the duty cycle of the tracking
pulse is substantially longer than for the used tracking signal model. From simula-
tions analyzing the difference between a fixed threshold compared to a MM adaptive
threshold, seen in Fig. 5.17 and Table 5.3, almost the same great improvement in de-
tectivity is noted, with an increment of false alarm. The false alarm probability is
still relatively low in comparison to the signal detection probability, implying that
an false alarm rejection algorithm should still be stable, and the false alarm is esti-
mated to occur every second. If this falls into the deadline limit, the system is still
performing better than with a fixed threshold. One thing which is not simulated is
the effect of moving the tracking detection system between several narrow obstacles
on a sunny day, which would drastically change the noise level.

7.2 Real-Time Operation

By studying Fig. 6.7 and Fig. 6.4, one can notice that the lower surface represent-
ing the SNR before filtering is increasing with shorter tracking distances, since the
tracking signal intensity increases. The SNR surface after filtering varies a lot in
shape, this is due to small details i.e. as Gaussian noise distribution impacting the
tracking signal and blocked tracking signal. The shape of the SNR gain surface after
filter will be projected on the SNR gain surface illustrated in Fig. 6.5, 6.8 & 6.9. A
tracking signal blockage is illustrated in Fig. 6.10.b for the tracking distance of 95
meters. This blockage of 10 tracking pulses, from a passing object, gets projected in
the SNR gain surface plots. SNR gain surface plot is expected to sustain the same
SNR gain along the x-axis, representing the tracking distance, this is apparent in
these plots. This is due to the pulse shape alteration, from low-pass anti-aliasing
filtering. This filter transforms the output from rectangular pulses to slightly more
triangular appearing pulse. This is why the closer distances related to greater reg-
istered signal intensity, will loose more signal power in relation to the signals from
greater tracking distances, resulting in lower SNR gain performance for the closer
tracking distances.

As mentioned in Section 6.1, simulation implies that the SNR gain curve will
be the same for varying tracking signal inputs. By observing Fig. 5.2 and Fig. 6.8,
the best fit from simulation to real-time operation is registered at 102 meters track-
ing distance. By studying the incoming signal of a tracking process at 102 meter
distance, in Fig. 6.6 and 6.11, some interesting observations can be noted. The am-
plification of noise is less than the amplification of the tracking signal, for all filter
lengths. This means that if the registered tracking signal power is greater than NEP,
it will be possible to amplify the tracking amplitude above the noise amplitude by
filter the tracking signal. The mapping from several pulse periods into a single filter
output period, proves to give great results in determine the pulse discrete-time oc-
currence in sampling instances. By studying Fig. 6.15 and Fig. 6.16, the importance
of adaptive threshold performance is displayed. By not using an adaptive threshold,
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the tracking distance can reduce massively from 100 meters to 30 meters in worst
case reality. Since the signal intensity reduces with the inverse square law, this indi-
cates massive deterioration in performance by not selecting an adaptive threshold.

Table 7.1 Value statements from an incoming tracking signal at 102 meters dis-
tance.

Filter length 10 pulse periods 100 pulse periods Ratio
ROC [Max noise] 0.14 0.4 2.86

CMF [Noise signal amplitude] 0.036 0.088 2.45
CMF [Tracking signal amplitude] 0.17 1.64 9.61

CMF [SNR gain] 65.6 107 1.63

Observing the difference in above Table 7.1, indicates that filter length exten-
sions will not increase the noise floor as much as the signal amplitude. This yields
better detection probabilities by extending the filter length, which is presented by the
moderate incremental of signal intensity threshold of the ROC by extending the fil-
ter length, and strong increment of signal amplitude and increasing SNR gain. The
SNR gain increases logarithmically, indicating that the amplification in signal en-
ergy of the tracking signal in contrast to the noise signal will increment slowly with
high values of filter length extension. The linear improvement on noise and tracking
signal after filtering, does not increase equally, according to Table 7.1 the desired
tracking signal is increased almost 4 times more than the noise signal. This implies
that even if the SNR gain, is increasing logarithmically in dB and slowly for greater
filter lengths, the detection will still be increased linearly as long as the registered
signal power is greater than the NEP.

Without converting the SNR gain into dB, the linear increment the SNR gain is
perceptible. From simulation, the slope is estimated to be 4.9 times linear growth, in
comparison to the 4 times linear growth from the real time data. By mapping real-
time sampled data from post processing into a 3 dimensional graph as in Fig. 6.17,
plotting required filter length for each tracking distance for different noise levels, we
can extract the required parameters to achieve a tracking signal connection for the
system. This figure illustrates the linearity of the filter, by observing the trend on the
x-axis, interpreted as more filter lengths are needed to get the same tracking distance
performance when the noise level is increased. This impacts the computational time
increasing the time complexity, reducing the reaction time of the tracking system
output signal level control. The last mentioned point, is due to the fact that the track-
ing position speed is indirectly low-pass filtered, by a resemblance with a moving
average filter.

Extending the filter length means decreasing the cutoff frequency and lowering
the bandwidth of the reaction time for adjusting the tracking signal amplitude output.
This is not a problem since the received tracking signal intensity changes very little at
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longer distances, where greater filter lengths might be needed, illustrated in Fig. 6.2.
The inverse is applicable on the output of the tracking signal of the tracking detection
system. The output has a maximum power and this is applied after a certain tracking
distance, which already occurs before the distance gets above 10meters in this thesis,
therefore there will be no output intensity changes at e.g. 200 meters. If this needs to
be regulated for longer distances as well, then one needs to perform speed estimates
of the moving tracking position, to set the right filter length at the right time and not
incrementing/decrementing the filter length by one for each filter length adjustment.

In the same graph Fig. 6.17, the inverse square law of the signal power for chang-
ing tracking distances is observable along the y-axis, where the curve gets drastically
steeper for higher noise levels. It is at this level, the minimal performance limit in
tracking distance, for the system is defined. With a non-adaptive detection stage,
the systems maximum and minimum performance limits will be equal and defined
after the minimum performance limit, lastly the computational complexity will al-
ways be equal to the worst case. As a fixed threshold is adapted to stay stationary
the whole time throughout operation, the right probabilities must be met. Thus, the
system must be adjusted to match the ROC of the heavy noise environment. The
ROC for the detection stage will therefore have the same poor performance even for
tracking signals within a low noise level environment. To achieve the great detection
stage performance, the filter needs to increase its filter length more than needed, to
meet the detection probabilities. In this case, the system detection will not be adap-
tive, and therefore the filter length is needed to be established in beforehand, and
stay fixed. Moreover, if the filter length is extended the noise level will also be am-
plified, then the systems false alarm probability will increase drastically, creating a
non-functional system.

The filter length needs to be established, so that the longest tracking distance
specified will be able to be detected. This means that shorter tracking distances will
generate an output amplitude of the tracking signal which will be much greater in
relation to the noise signal amplitude, comparable to the CMF output in Fig. 6.11
for greater filter lengths. The ROC will stay the same at all time for a fixed threshold
system. As an example, in Fig. 6.13 the orange/violet surface illustrates the ROC for
a detection system with a filter length of 100 pulses in the CMF, a fixed threshold
would be equal to setting a fixed signal intensity at this surface. This will map to
specific detection probabilities, and these will stay the same as well as the signal
intensity limit. As the noise level varies so does the ROC of an adaptive detection
stage as well, entailing that the space in-between the orange/violet ROC surfaces
in Fig. 6.14 and Fig. 6.13 will be used, as from a non-adaptive detection system.
By utilizing the space in-between these surfaces, some fixed detection probabilities
could be achieved even with changing tracking signal intensities, allowing the filter
length for the CMF to adjust adaptively, decreasing the time complexity of the filter
section, subsequently extending the operational time of the system when operating
on a battery power supply.
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The general outcome from the results are that some trade-offs are needed to be made.
With increased filter length, such as adding several pulse periods, will increase the
computational time, allocation of memory storage but also improve the detectability.
At some point, the memory gets full or the filter length extension will not be able to
perform within the operating time frame, thus misses its deadline. A recommenda-
tion is to first determine the important details, such as deadlines, memory storage,
noise variations.

The deadline for this thesis was the internal clock synchronization of both sys-
tems, where the tracking detection system sets its internal clock after the tracking
system. The clock of the embedded tracking detection systems was of lower quality
than of the tracking system, so the system was found to be able to hold a rectangular
pulse train synchronized for 6 seconds before the pulses was not overlapping each
other any longer. The system was working good with 80% overlap, so this resulted
in 6 · (1−0.8) = 1.2 seconds of deadline before the performance was visibly deteri-
orating. The system needed to be re-synchronized, before the deadline was missed.
The deadline was never an issue, however, the memory space only allowed 8 con-
secutive pulse periods with a sampling frequency of 100 kHz, hence resulting in a
system limitation. Thus a more advanced threshold could be developed to increase
the detectability, since the deadline was always met. From the results and discussion
sections, the applied threshold has a large impact on the detectability, and could thus
extend the operating distance further. Another compressed algorithm was also de-
veloped to increase the amount of stored pulse periods in the same memory space
as before, allowing more pulse periods for the cascade matched filtering. This algo-
rithm is illustrated below and it enabled an increment from 8 pulse periods to 536
pulse periods.
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8.1 Further Investigation

Extending detectability in other interferences
The system is not only effected by outdoor illumination from the sun. Other light
sources such as spotlights on a construction site or an indoor light source, produces
other interferences. These light sources is very common and have sinusoidal distur-
bances from the AC frequency. A CMF template was designed in order to prevent
the system from these interferences, where instead of a designing symmetric im-
pulse response coefficients and tracking pulses, antisymmetric characteristics was
designed. The antisymmetric design retains the linear phase property and improves
the disturbance rejection from these sinusoidal interferences. By adjusting the AAF,
an inverted duplicate of the signal could be constructed, such that the pulse first has
a positive peak, and directly afterwards a negative peak. A sinusoidal interference
should cancel out when the area underneath these two pulses are equally great. This
system was not investigated in detail, but an embedded version and offline code was
developed. The results will be displayed and commented upon, however no more ex-
ample will be displayed, since limited tests on this solution under these interferences
was performed.

Figure 8.1.a Figure 8.1.b

Figure 8.1 Antisymmetric characteristics by the AAF, MF and CMF is observable
by notating the positive and negative peak illustrated in the right diagram. In the left
diagram, the desired signal is buried inside of the sinusoidal noise, except from three
consecutive visible signals. Cascade matched filtering of this signal with antisym-
metric impulse response coefficients, suppresses the noise and increases the desired
signal. Fig. 8.1.b displays a traditional convolution between a template and the raw
signal in blue and in green is the CMF output.

From Fig. 8.1.b, the CMF includes 8 pulse periods in the filter template, but
maps the result only into one pulse period. The result is the same as with the tradi-
tional template convolution, but the memory storage and time complexity is much
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smaller. The traditional convolution will have a ramp-up and ramp-down phase of
the filtered desired signal, this is due to the fact that the template is shifted in to
the raw signal for convolution, and the maximum peak aligning with the green plot,
represents the position where the 8 template pulses is fully shifted in and convoluted
with the underlying signal from the raw data.

Fig. 8.1 illustrates how the sinusoidal noise is reduced but the same great detec-
tivity as before is retained, implying a noise reduction as well as an amplification
of the desired signal. For further investigation, different signal frequencies could
be examined to cover several alternating current interferences in multiple countries.
Different designs options on the antisymmetric characteristic could be explored a bit
further and the impact of different noise levels could examined.

Extending filter length and pulse periods
In the embedded code, a mode was implemented which sampled in smaller portions
around the pulse location when a signal was detected and synchronized to. By nar-
rowing the sampling time to the estimated location of the tracking pulse, the memory
storage was able to contain several pulse periods, in fact 536 pulse periods was then
able to be stored, in stead of the 8 pulses. Moreover, by sampling in a narrowed area
around the estimated tracking pulse location, the pulse repetition frequency appears
to increase enormously but the other characteristics stays the same. This has the ad-
vantage of not storing unnecessary data, not containing the signal, and increasing
the filter SNR gain further by extending the filter length with more pulse periods.

Figure 8.2 Instead of ceaseless sampling, a special sampling process could be en-
tered where sampling is performed in narrowed discrete time frames, so that several
pulse periods could fit into the memory for DSP. The pulse repetition frequency in-
creases put the other pulse characteristics stays intact.
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Practically, this means that the timer triggering the ADC sampling is configure
in N-pulse mode, and the DMA is operating when an EOC is performed by the ADC.
This means that the N-pulse mode is sampling N repeatedly instances before waiting
to next pulse period. The N instances is set to 4 times the pulse length of L, so that a
phase change of the tracking signal could be detected. Figure 8.2 shows the principle,
where N in the image denotes the pulse period and not the N in the N-pulse mode
sampling. The memory array stored by the DMA will then be able to contain 536
pulses instead of 8. The CMF time complexity is of order O(L ·M), so for example
a pulse length of 10 using all the pulse periods will have a time complexity of 5360.
This still makes the system fast and being able to run within the deadline, but the
adaptive threshold could not use the moving standard deviation approach, instead
the second alternative could be used were only moving maximum to determine the
threshold. Further investigation on operational distances, robustness to noise etc is
needed for this algorithm approach.

8.2 Future development

For future investigation and development it would be interesting to implement an
extending Kalman filter (EKF), for the tracking process. If a system model could be
clearly identified, the signal characteristics would be strongly connected to selected
variables of interest.

For further development, more advanced programming of the Simulink simula-
tions could bemade, so the CMF could be used with different thresholds. The current
simulation filters with one full pulse period, since increasingwithmore pulse periods
is not possible due to allocating to much memory space. The traditional approach
by creating a matched filter template could not be used to create the CMF. Further
simulation features could be added such as plotting a 3D ROC curve of the detection
performance and 3D SNR curves of the filter performance. More analysis on the
accuracy of distance and angle estimation, could be made. In simulation mode, the
performance between different sampling frequencieswas observed, although in real-
time operation it was never analyzed in depth. With increased sampling frequency,
comes better resolution and more sampled data for each active pulse. Since the MF
and CMF output is the sum of convoluted data, the more of the pulse that is summed
together, the greater the filtered output gets. A study could be made on the trade-off
between increased SNR filter output in relation to memory allocation, when increas-
ing the sampling frequency. Moreover, investigate if the Gaussian distribution of the
noise signal remains the same for increased sampling frequencies, proving that the
simulated estimation of SNR gain improvement remains true.
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A
Calculus

A.1 Neglectable doppler effect

The doppler effect occurs when either or both receiver and transmitter moves during
a transmission. The equation below describes how the received frequency is changed
when the transmitter is stationary and the receiver is moved during transmission in
a transmission medium.

fR =
c

nλ

c
n ± vR

c
n

= fT

c
n ± vR

c
n

= fT K|
K=

c
n±vR

c
n

(A.1)

where fR is the received frequency [Hz], fT is the transmitted frequency [Hz], vR is
the speed the receiver is moving in [m/s], c is the speed of light in vacuum [m/s],
n is the density of the transmission medium [kg/m3], λ is the wave length of the
transmitted signal. Equation A.1 implies that the frequency is changed with a factor
of K. For normal walking speed and hectic walking speed this factor will not change
the received frequency outside the receiving characteristics tolerances for the system.
The factorK for a typical walking speed of 1.4m/s in air [Mohler et al., 2006][Levine
and Ara, 1999] would result in a difference of 6.03818 ·10−9 [Hz] in frequency. For
fast walking speed of 2.2 m/s [Mohler et al., 2006] the factor K result in a difference
of 9.48856 ·10−9 [Hz]. These changes have no significant changes in the receiving
characteristics inside of this thesis scope.
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Appendix A. Calculus

A.2 Neglectable incoming angle

The incoming signal strength does not change noticeably for a half angle of 20°, as
seen in Fig. 4.6. So how about the actual distance miscalculation? It turns out that the
incoming angle does not affect the system noticeably if the device is much smaller
in comparison to the measured distance.

Figure A.1 Reduced model of Fig. 4.5, which illustrates the calculation steps for
the equation A.2.

h2 =((r+d)sin(φ))2 +(D+(r+d)(1− cos(φ)))2

h =

√
((r+d)sin(φ))2 +(D+(r+d)(1− cos(φ)))2 (A.2)

h =
√

a2 +D2 +2Db+b2

lim
D→∞

h = lim
D→∞

√
a2 +D2 +2Db+b2 = D, if a « D & b « D (A.3)

In our case a & b << 1 and D is typically much greater than 1. When the ratio of
true and "false" distance is plotted as a change of distance and also incoming angle
φ , the following result in Fig. A.2 is observed.
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A.2 Neglectable incoming angle

Figure A.2 Ratio between true distance and detected distance. The maximum an-
gle of 20° of misplacement at a close distance, will result in the greatest error. The
percentage of error is very small, and decreases to zero as the distance increases. The
error will be roughly 1.2% at 1 meter distance and decreasing exponentially to 0.4%
at 3 meters. The error ratio is displayed in Fig. A.3

Figure A.3 The graph illustrates how the error of distance detection decreases ex-
ponentially with increased tracking distance, when the incoming angle of the tracking
signal is fixed at 20°. The first plotted value is at 1 meters distance, corresponding to
an error of 1.2%. If the tracking module would have less than 9 photodetectors, then
the worst case incoming angle is greater then 20°, subsequently the errors will also
be greater than in the plotted graph.
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B.1 Simulation Model - Simulink

B
Matlab

B.1 Simulation Model - Simulink

Figure B.1 The Simulink model used for simulations. The blue areas defines the
used signals and their filters, the green areas defines different thresholds that could
be switched manually between simulations and the yellow areas is for observations
and calculations.
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Appendix B. Matlab

B.2 Rectangular Pulse Train

Continuous-time

Figure B.2 This is the continuous-time plot of the Fourier coefficients and power
density spectrum. The following values are inserted in Eq. 2.29, where A = 5, F0 =
4, Tp = 1/F0, k = 0,±1, ...,±60. The following τ values are used starting from the
top to the bottom, τ = 0.01,0.02,0.06
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B.2 Rectangular Pulse Train

Discrete-time

Figure B.3 This is the discrete-time plot of the Fourier coefficients and power den-
sity spectrum. The following values are inserted in Eq. 2.29, where A = 4, N =
40, k = 0,±1, ...,±60. The following L values are used starting from the top to the
bottom, L = 3,4,5
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Appendix B. Matlab

Since the discrete-time Fourier transform is periodic the repetition will occur
every N ∗m = 40 ∗m sample, where m = Z. The period of a discrete-time Fourier
transform X(ω) is 2π

X(ω +2πn) =
∞

∑
k=−∞

x(k)e−i(ω+2πn)k =
∞

∑
k=−∞

x(k)e−iωke−i2πnk

=
∞

∑
k=−∞

x(k)e−iωk = X(ω)
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