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Abstract

In recent years, Deep Learning has proven to be an outstanding tool in the field of com-
puter vision showing promising results in different fields such as the analysis of medical
images, obstacle detection for self-driving cars, automatic image caption generation, etc.
In the case of Archaeology, the adoption of these methods in the detection of archaeolog-
ical structures from aerial images has been slower than in other fields. This is an area
not widely explored but which seems to have a big potential for the application of Deep
Learning methods, given the large amount of airborne data existing.

This work presents the results of an approach using 4 different Convolutional Neural
Networks (CNN) models based on different architectures and learning methods. Of the
models tested, 3 of them correspond to state of the art pre-trained models for which dif-
ferent techniques of transfer learning were used. The fourth one is a CNN architecture
developed specifically for this task. The Deep Convolutional Neural Networks used were
trained to carry a binary identification task, in this case, to determine whether an image
contains any kind of topographical anomalies corresponding to archaeological structures,
or not. The case studies were obtained from the southern Baltic sea region of Sweden and
Birka and these correspond to aerial images in the visible light range and infrared. The
kind of structures present on the images are burials of different shapes corresponding to
the Viking ages.

By using the Receiver Operating Characteristic (ROC) curve and Area Under the
Curve (AUC) as measurement, the selection of the model best suitable for this task
was carried out. Additionally, different augmentation techniques were tried including
the generation of images using a Deep Convolutional Generative Adversarial Networks.
Finally, an ensemble approach was tested combining the results obtained from the models
which showed the best results individually in different types of airborne data. With this
approach, a sensitivity of 76% with a specificity of 92% was achieved.
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Popular science summary

Several civilizations have flourished and decayed over the short period of time in which
humans have inhabited the third planet of a system which belongs to a yellow dwarf star
called Sun. This star has been their source of inspiration, hope, questions, and energy
and to praise it, as well as just other natural elements, they have built temples.

Many of these constructions have already crumbled, gone forever from the memory of
mankind, lost in the haze of ancient times. Some others have withstood the harshness of
the weather and other civilizations, remaining in the surface as a remembrance of archaic
ages, and as a warning about the fragile nature of human civilization, which sometimes
vanishes leaving no trace behind but a pile of rocks. However, there are some others,
which have been lost but not forever. Covered by vegetation or new human-made struc-
tures they have remained silent, waiting for someone to discover them again and tell the
secrets they’ve kept for their own for so long.

It has been almost 350,000 years of human history, and it is now maybe just the be-
ginning of a new era in which the task of detecting the remains of lost civilizations could
be delegated, to some extent, to something else than humans: artificial systems with the
ability to analyze a large amount of airborne data, looking for terrain anomalies. So far,
the methods used for this purpose rely almost completely on the analysis by a specialist.
This is a time consuming task which requires highly specialized knowledge and which may
involve interpretation biases.

These artificial systems, which are based on the use of the most astounding pro-
gramming paradigms: Artificial Neural Networks (ANNs) and Deep Learning (DL), have
already proven to be a reliable tool in the field of computer vision showing promising re-
sults in different areas such as the analysis of medical images, self-driving cars, automatic
image caption generation among many others.

Unlike conventional algorithms, DL and ANN do not have a set of rules predetermined
for the system to solve a task since the beginning, instead; given an initial set of data, the
system itself finds and recognize the patterns which are useful to make further predictions
and analysis. Just as the brain, a single artificial neuron is not capable of all the won-
ders of which the human mind is capable, but together they can achieve impressive results.

In this project, by using different architectures of a specific kind of an ANN model
called Convolutional Neural Networks (CNNs), aerial images in the near infrared and vis-
ible light ranges were analyzed to detect graves from the Viking ages. Different methods
for improving the performance were tried, including the generation of synthetic data (also
using CNNs), and the combination of different architectures with different kinds of data
in order to achieve better predictions.

The improvement and research in this methods are of great importance as nowadays
there is more data available than the one which is humanly possible to analyze. The
detection of archaeological sites is vital, as it allows the retrieval and protection of these
structures which can help in the understanding of many aspects of these ancient civiliza-
tions, and in general human history, knowledge which otherwise would be lost forever.
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Introduction

Light travels through space and reaches our eyes, it enters our optical organ and passes
through the cornea, the pupil and then strikes a photoreceptor layer, the retina. The
retina is the brain’s window to the optical perception of the universe. It is here where the
light is phototransducted to neural signals, which will be processed by our cerebral cortex
to become what we call visual perception. This amazing process happens all the time,
just in front of our eyes, or more accurately right behind them, without us realizing about
it, and yet this single process, is something that only nature has achieved to develop to
a high level of accuracy, diversity, and robustness to the external conditions. Trying to
mimic the human visual system, might be not a recent ambition, but it has been just in
the few last years when scientific research in the field of Deep Learning (DL), has come
close to making this dream become true.

It turns out an interesting and peculiar case that, the boost in artificial vision came
with the adoption of techniques which at its origins had a basis in neuroscience. This is,
the implementation of Artificial Neural Networks (ANN’) and specifically, in the field of
computer vision, the Convolutional Neural Networks (CNNs). The first models and the
principles from which this kind of networks are based on, were developed inspired by how
the visual information is processed in the brain cortex.

Nowadays, the use of these methods have proven to be an outstanding tool to solve a
wide range of problems in computer vision and with practical applications in several fields.
Among one of these novel implementations, there is the application in archaeology in dif-
ferent tasks, such as the assistance in the classification of historical pieces encountered
during excavations, the retrieval of glass pieces [1] and classification of ceramic vessels
[2] or the identification of possible excavations sites by analyzing aerial imagery [3, 4].
About this last task, it is still an area not yet widely explored, and there is still plenty
of work to be done as there are many interesting challenges that need to be addressed.
In the present work, an approach regarding this application using different deep CNNs
models is proposed. A binary classifier, which makes use of aerial images corresponding to
two different wavelength ranges to determine if the images contain or not archaeological
structures on it, is presented.
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1. INTRODUCTION

1.1 Machine Learning and Image Classification

When it comes to solving analytical and iterative problems, machines and computers have
taken over since several decades ago, showing better performances than almost any of the
human minds in tasks like doing complex numerical calculations, sorting and finding in-
formation in databases or even at playing chess, but still, the most simple and trivial tasks
in our everyday life turns into a great challenge for machines. This is in part because
the tasks that can be solved by iterative steps can be described in a set of formal algo-
rithms, and the input information for these programs is well defined and understood so
it can be processed properly. In most of the activities we carry out in our everyday lives,
even if the goals can be well defined, the number of variables and the amount of informa-
tion we perceive is overwhelmingly high and the attempt to writing an algorithm can turn
into a grueling job which may not even lead to the right solutions for all the possible cases.

Machine Learning (ML) arises as a solution to this kind of problems, in which the sys-
tem itself is capable to determine which is the useful information and which not. Given
an initial set of data, the system itself finds and recognize the patterns which are useful to
make further predictions and analysis, and all of this is done without specifically program-
ming the system to solve the task. A key element in machine learning is Artificial Neural
Network (ANN) which are one of the most astounding programming paradigms and are
inspired broadly in how the human brain works. Just as the brain, a single artificial neu-
ron is not capable of all the wonders of which the human mind is capable, but together
they can achieve impressive results. ANNs can be coupled together forming layers, and at
the same time, these layers can be coupled with other layers, resulting in more interesting
models which can achieve striking results. Deep learning can be regarded as a specific
case of machine learning [5] where more layers are added to the models, turning them
more complex and deeper [6], making an allusion of its own name.

One of the fields which have witnessed tremendous progress just in the last lustrum
is the one of image classification, where the main task is to specify a label to an image
from a previously defined set of categories. Despite it may sound trivial, the complexity
of the problem is stirring because of the big amount of information an image can have. It
was not until the last few years when a remarkable improvement in the ways of solving
the problem was achieved. In 2012 a Deep Convolutional Neural Network called AlexNet
outperformed in the ImageNet Visual Recognition Challenge, achieving an error rate of
16% [7]. Since then, the field has experienced steady progress to the point in which the
rate of error of this kind of models, have exceeded human-level performance in single shot
classification tasks [8]. It is important to mention that the task of image recognition could
vary according to the nature of the problem; broadly speaking some varieties are:

• Object identification. One or different classes are identified given an image.

• Object recognition. It involves the detection and classification of one or multiple
classes along with their position in the image.

• Image segmentation. Consists in partitioning the image into multiple segments,
or set of pixels, each one belonging to a different category.
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1. INTRODUCTION

1.2 Object Identification and Aerial Imagery

Aerial image interpretation is the process of analyzing aerial imagery with the purpose of
identifying objects, and the properties that represent them. The automation and semi-
automation of this process has been an active field in research and different techniques
have been developed [9, 10, 11, 12, 13, 14]. Some techniques rely on the analysis of low-
level and mid-level visual features detection methods, which work with the analysis of
e.g. spectral texture and structure of images or the statistical patterns formed by the
extracted local visual attributes. In recent years, high-level visual features methods, such
as the use of CNNs, have surpassed the performance of the first ones, some comparisons
have been carried showing that CNNs have had in general a performance of over 90% of
accuracy whereas when using low-level feature analysis, a maximum accuracy of 75% has
been reached [11].

Automated object identification from aerial images by itself has been a subject of
research since the late 1960s [9], and the techniques and applications of it have evolved
together with the development of ML. Between the applications that have been explored,
there is the detection of roads and buildings [15, 16, 17], estimation of forest biomass
[18], disasters damage estimation [19], detection of poverty and prediction of troublesome
areas [20] along with many others. Some characteristics that these different applications
share are that these are time-consuming tasks which require to analyze in detail large
images; they also require a highly specialized knowledge in order to identify the regions
that are really of interest, and there is an interpretation bias when determining if some
feature detected in a map is really of interest or not.

Despite the fact that aerial image classification has witnessed significant progress,
there are few major issues that hinder the complete development of it; Xia et. al, review
these issues in [21], pointing especially in the lack of a comprehensive review of all the
methods that exist nowadays and the lack of a proper benchmark datasets to evaluate
the performance of this methods.

CNNs permit handling High-Level visual information and achieve respectable perfor-
mances. It has been reported that by directly using pre-trained models, good results
can be achieved in the task of classifying aerial and remote sensing images [13, 12]. In
some other cases, pre-trained models have been used as feature extractors for fine tuning
[11, 21]. It has also been tried the development of a specific architecture for this purpose
from scratch, however, as reported in [22] where the UC-Merced and WHU-RS19 datasets
were used to train the model, the accuracy achieved was lower than the ones which make
use of the existing architectures and different transfer learning techniques. This can be
understood as these datasets comprehend only about few thousands of images and a max-
imum of 50 categories [10, 23, 24], whereas the big architectures are trained on datasets
with few million of images and several thousand of classes. Nevertheless, the digitalization
of large datasets in the last years, such as historical maps, the spread in the collection of
aerial images from different wavelengths of the electromagnetic spectrum and some other
remote sensing techniques which provide of 3D mappings of the terrain, opens the door
to the improvement of these models, and makes the task of object identification in aerial
imagery a perfect target where DL could be applied.
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1. INTRODUCTION

1.3 Aerial Imagery in Archaeology

In the specific case of archaeology, aerial imagery has been a widely applied tool since
the twentieth century. When it was first introduced, it turned out to be a revolutionary
tool for the field [25] as it allowed to highlight objects and marks which are barely or not
at all visible on the ground level. Nowadays it plays a fundamental role in all stages of
archaeological research, not only in the detection but also in monitoring and safeguarding
tasks. Regarding the detection of archaeological sites, the current goal, at least for some
part of the archaeologist community [1, 26, 27], is the automation or semi-automation of
the detection task.

The outbreak of the First World War turned aerial photography into a primary tool
in military reconnaissance, and after the war, the techniques developed during those war-
like times began to being used for non-military purposes [28], the study of archaeological
sites was one of them. The first flight taken for archaeological purposes in Europe was in
1899 in Rome to document the excavations that were in progress in the Roman Forum
[29], and since then different technologies and techniques have become part of the reper-
toire of aerial imaging in archaeology. Nowadays archaeologists do not limit themselves
to visible light photographs but also make use of photos taken in different wavelengths,
using multispectral scanning sensors and some other tools such the use of radars and LI-
DAR systems. This last one has lead to exceptional results, being one of the most notable
examples the discovery of some ancient Mayan ruins in the Guatemalan jungle [30, 31, 32].

Figure 1.1: The detection and interpretation process. Source: [26]

The detection and interpretation process of aerial imagery in archaeology, consists of
several stages as it is shown in Figure 1.1 and even if the detection step is automated
or semi-automated, the interpretation and validation of detected anomalies in the terrain
from aerial imagery remains a task for archaeologists [26]. The way in which aerial pho-
tographs are studied is by analyzing the nature of objects represented in them such as
shapes, sizes, shadows, tones, texture, and alike characteristics. The correct analysis of
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1. INTRODUCTION

these features can show the residual components of ancient landscapes [29].

A fundamental part in the detection process, is the correct identification of archaeolog-
ical traces. These are marks which appear in the photographs and are not noticeable by
themselves but indirectly when these are compared with the environment that surrounds
them. The presence of hidden structures can alter the aspect of the terrain and this kind
of traces could be detected thanks to different factors such as humidity, vegetation or the
change in the shape and appearance of the ground, some of them are shown in Figure
1.2. As defined in [29, 33], archaeological traces can be of different types, and they are
classified as follows:

1. Damp-Marks: This kind is seen as a change in the tonality of the terrain; this is
because of the fact that soil presents different tonalities depending in the humidity
of it.

2. Crop-Marks: This kind is similar to the damp-marks, with the difference that the
surface has plant coverage.

3. Soil-Marks: In this case, the marks have a different color than the surroundings.

4. Topographical Anomalies: These type of traces are noticeable in the form of
irregularities with the general conditions of the surrounding environment.

5. Legacy Marks: These are the kind of marks which have remained on the surface
and are easy to verify.

1.4 Aerial Object Identification in Archaeology

The automated and semi-automated identification of sites of archaeological interest seems
to be as revolutionary as of how aerial imagery and remote sensing was for archaeology
during the last century [25]. A large amount of aerial images and remote sensing data that
exists nowadays makes it a perfect target for the application of deep learning techniques,
however, it is an area that has not been widely explored yet. Computer vision has al-
ready proven to be a trustworthy tool for archaeology in some other areas, such as the use
of Structure from Motion (SEM) algorithms to the reconstruction of three-dimensional
scenes of excavations zones [38]. The development of better algorithms within the im-
provement of remote-sensing instruments and techniques has also proven to have a decisive
impact in the detection of archaeological sites. Even if in the successful cases, it has not
been by using a fully automated processes, it illustrates the potential of applying new
methods and techniques in sites detection.

Until now, the number of studies in which machine learning techniques have been
applied in for the detection and monitoring of archaeological sites is limited. Menze
et al. present an approach making use of the Digital Elevation Module (DEM) data
of the Shuttle Radar Topography Mission (SRTM) from the Middle East region using
machine learning algorithms. Using a Random Forest classifier operating on an eight-
dimensional partial least square (PLS) filter, their method was capable of identifying
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(a) Crop mark (b) Damp mark

(c) Topographical anomaly (d) Legacy mark

Figure 1.2: Some example images of archaeological traces. Sources:[34, 35, 36, 37] for a, b, c
and d respectively

settlement Mounds [3] with a sensitivity of 95.4 percent at a specificity of 98.8%. How-
ever, it also presented a high rate of false positives detections, which are mostly due to
natural elevations of the terrain that have the same height as the mounds. A subsequent
approach by the same author but now additionally using ASTER satellite multispectral
images [39] (which indicated the presence of anthrosol), in the area of north Syria, was
able to identify two classes: settlements and no settlements from a set of 36 tile images,
each one representing an area of 6x6 km [40, 41]. In this approach again a Random Forest
classifier was used to perform the feature selection task and resulting in the localization
of 14,312 settlements over an area of 22000 km2 [42]. In a later work the amount of false
positives was reduced by removing biased classification maps and estimating the optimal
weights for each of the images using a non-negative least square regression strategy [43].

Some other machine learning techniques which have been applied in the investigation
of damages in archaeological sites was done by Bowen et al. [44]. Using satellite images
from the pyramid fields region of Egypt, a hierarchical categorization and localization
(HCAL) algorithm was presented. This method performs, in an unsupervised step, de-
tecting motifs from the set of pictures for training and afterwards categorizing the images
according to their features detected using K-means. The members of the similar cate-
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gories are checked for mismatching and if this is true, the algorithm automatically splits
categories again until it has pure categories.

Zingman et al. are one of the few ones who has used pre-trained deep CNNs to
detect ruins from aerial images but merely to compare with their handcrafted rectangu-
larity feature detector [45]. In their work they report that their method evaluated in the
mountainous regions of the Silvretta Alps presents a better performance than the CNNs
architectures tested (AlexNet, Vgg-deep-19, CaffeNet, GoogLeNet and OverFeat) using
MATLAB toolbox MatConvNet. They mention that their approach has a notorious lower
rate of false positives than the deep learning models. However, no further details are given
about the training of the models. Nevertheless, they mention that some of the models
tested, using an unbalanced dataset, with few positives and a large number of negatives,
may result in a well-performing detector. A similar study presented during the 2017 New
Forest Conference, Kramer et. al. [27, 46] suggest that the remarks stated by Zingman
may be true. In the presentation of the work it is attested that by using LIDAR data
within aerial imagery using the VGG Network pre-trained in Imagenet, the detection sys-
tem proposed achieves an 85% of validation accuracy.

The most recent studies based on CNNs and transfer learning make use of AlexNet and
ResNet18. In the first one, the authors use the network AlexNet as a feature extractor.
The images from their dataset are run through the network and then they make use only
of the features detected in the last fully connected layer. The features identified, are used
as the input for a linear Support Vector Machine (SVM) with which they proceed to the
identification of charcoal kilns from the airborne data. Their model was tested in the valley
of Lesja in Oppland County, Norway. They compare the true positive rate of detection,
false negative and false positive rates with tradittional pattern recognition methods. In
the case of the deep learning plus SVM method, the values of the rates reported are 86%,
14% and 37% respectively [47]. In the second study [4], the model ResNet18 was used for
transfer learning and implemented as feature extractor; the last layer was substituted with
an empty one corresponding to the classes they wanted to detect (Roundhouse, Shieling
hut, Small cairn and Background) and then retrained. For their studies they tiled an area
of 432 km2 corresponding to the island of Arran in Scotland in squares of 101x101 pixels.
In the case of the ones with archaeological features the structures were centered on the
tiles avoiding foreground structures in the learning set. Traditional data augmentation
techniques such as rotation, flipping, random translation and random scaling were used.
The total amount of images used in the training and validation set was of 9952, and
from these 755 correspond to the total amount of classes they were interested in detecting
(Roundhouse: 106, Shieling hut: 265, Small cairn: 384). A validation accuracy of 99.46%
was reported to be achieved after 4 training epochs. Their method was tested on two
areas: Machrie Moor and Glen Shurig, achieving in the first region a 72% of positive
identifications for the Roundhouse class and 20% for the small cairn one, however a rate
of 87% and 90% of false identifications respectively for each class, was reported. For the
second area and the Sheiling hut class, the outcome was a 26% of correct identifications
and 189% of false positives.
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Case Study

The study of graves has been a vital part in archaeology for the understanding of many
aspects of different civilization such as their social organization or their conceptions of life
and death [48, 49]. Graves and cemeteries from the Viking age provide the most evidence
of religious beliefs of pagan Scandinavia, but also about their daily life and society. It
is believed that these burials were in some way rituals to conciliate the dead and honor
the deceased so it could rest [50]. Boat-shaped burials are believed to have the purpose
of supplying the dead with equipment as well as some personal belongings which may be
useful for the after-life journey [51].

Two main datasets were provided with 5 case studies corresponding to grave fields in
the southern coast of Sweden in the Baltic sea and Birka, on the island of Björkö. The
ones corresponding to the Baltic sea area were: Hjortahammar, Hjortsberga and Byrum
in Blekinge län and Ängak̊asen in Sk̊ane.

Figure 2.1: Ängak̊asen gravfält.
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2. CASE STUDY

The site of Hjortahammar is situated in the south part of the Johannishus̊asen, a
gravel ridge surrounded by forested areas up north and the shore of the Baltic sea in
the south. The grave field consists of more than 110 iron-age graves dated to the late
iron-age. The variety of the graves found in the site are of four main kinds: boat-shaped,
triangular, round and four-sided stone settings as well as some erected stones and small
mounds. The site has been damaged over the years due to several factors such as visitors
and animal grazing, and for this reason it needs to be protected. In order to achieve this,
it has been commissioned the creation of an inventory of the graves which includes the
mapping of the area using LIDAR techniques and scannings using drones [52]. Ängak̊asen
is located in Kivik close to Simrishamn and few hundred meters from Kiviksgraven. In
this site there is a 60 m long shipping set, two rectangular stone pavements and 130 stone
pavements that mark graves, an example of the structures located there is depicted in
Figure 2.1. Hjortsberga burial site is located just next to Hjortsberga church in Ronneby
municipality, close to the village of Johannishus. The graves in this site correspond to the
early Iron Age, i.e. 400 AD. In this zone there are 55 burial mounds, eleven trusses, 13
four-sided stone pavements, five round stone pavements and 19 ship arrangements. The
aerial images in the visible light range, corresponding to this datasets from the Baltic sea
region, are shown in Figure 2.2.

The site of Birka is located on Björkö island in the lake Mälaren, it is located 30
kilometers west of Stockholm. It is regarded as the oldest town in Sweden and together
with the site of Hovg̊arden has been a UNESCO World Heritage Site [53]. The town
was founded in the mid 700’s and it was an important trading center in Northern Europe
during the 9th and 10th centuries. It was the center of the trading network in Scandinavia
during the Viking Age. Birka complex is exceptionally well preserved and is one of the
most complete and undisturbed Viking settlements [54]. The site has an extension of 226
ha, and the variety of elements in the zone correspond to several monumental mounds, a
cemetery, a harbour, a runic stone, among other elements. Of the 3,000 graves existing
there, approximately only one third has been studied. The infrared and visible light
images of this case study are shown in Figure 2.3.

2.1 The data

The data used in this project was provided by the group of Nicolo Dell’Unto from the
Department of Archaeology and Ancient History of Lund University. Each case study was
tiled in images of different sizes in Tagged Image File Format (TIFF) with a resolution of
20 cm2 per pixel. The images provided correspond to the visible light spectrum as well to
the near-infrared for some cases. To visualize each of the cases within the tagged shape
files of the archaeological traces a Geographical Information System (GIS) software was
needed. The software used for this purpose was QGIS [55]. The first 4 case studies corre-
spond to sites in the Baltic sea region whereas the last one to the island of Björkö. The
case study 1 is composed of 324 tiles with size of 100x100 pixels, 25 of them with marks
of archaeological traces of different kinds and shapes. Aerial photographs in the near
infrared, from the same zone were added giving a total of of 648 tiles, with 50 positives in
both bands of the electromagnetic spectrum. The case 2 is composed of 285 RGB image
tiles corresponding to the visible spectrum, the size of these tiles varied, in some cases to
very small sizes (e.g. 12x100 pixels) and without any significant visual information, thus
only 269 tiles were chosen to be used, from this batch only 8 tiles have signs of traces.
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2. CASE STUDY

(a) case study 1, Hjortahammar. (b) case study 2, Hjortsberga.

(c) case study 3, Byrum. (d) case study 4, Ängak̊asen.

Figure 2.2: Cases study corresponding to the Baltic sea region.
©Lantmäteriet: I2018 / 00119.

The third case study is composed only by 119 tiles of aerial photographs in the visible
spectrum with size 200x200, no tiles with archaeological traces were reported from this
batch. Case 4 is formed by a total of 438 tiles in both, visible and near infrared spectrum
and 24 tiles reported with archaeological traces. As in case 2 some of the tiles were of
very small sizes and without any significant visual information so only 400 images from
this dataset were used.

The final case study is from a different region, Birka, and it contains 2726 aerial pho-
tographs, with size of 100x00 pixels, in the visible region of the spectrum and the same
amount in the infrared. No information about the total number of tiles with positive
archaeological traces on it was provided, just the location of them, however a visual in-
spection showed that this number was of up to 200 for each case. Case 4 was chosen as
the test dataset so no further operations were applied to it. The rest of the cases were
used for data augmentation, training and validation processes. The composition of the
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2. CASE STUDY

Case Study Total number of tiles Type of data Tiles with archaeological traces

1 324 Visible + IR 50
2 1055 Visible 32
3 108 Visible 0
4 400 Visible + IR 26
5 5452 Visible + IR n/a

Table 2.1: Composition of the dataset.

case studies used in this project is summarized in Table 2.1

(a) Picture of Birka in visible light. (b) Picture of Birka in near infrared.

Figure 2.3: Aerial Images from Birka site.
©Lantmäteriet: I2018 / 00119.
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3

Method

3.1 Convolutional Neural Networks

Convolutional Neural Network (CNN)s are a type of feed-forward ANN or Multilayer Per-
ceptrons (MLPs) which are mainly applied in the analysis of images or grid-like structures
[5]. The input for this kind of networks could be time series (1D), audio data processed
after some operations (like a Fourier transform), images (2D) and volumetric data such
as scans or video data (3D). The output, usually, is a list with the score for each class
used during the training. This type of deep neural networks have millions of parameters
[56, 57] and training these models from scratch requires a large amount of labeled data
and also a large amount of computer power. CNNs just as any Deep Forward Network are
formed by several hidden layers, but with the advantage that the number of parameters
to be self-adjusted is lower, which means a reduction in the amount of training data and
computational training time.

CNNs are organized in groups of units called layers, and there are different types of
architectures which refers to the overall structure of the network. However it is possible
to mention some layers which are present in most of this architectures. The fundamental
structure of a CNN consists of three stages; (in the literature sometimes these three steps
are counted as a single layer stage, and sometimes each stage is considered separately, in
the present work the first option is used) a Convolutional stage, a Detector stage, and a
Pooling stage, this is depicted in Figure 3.1.

3.1.1 Convolutional Layers

As its name suggests, CNNs use the convolution operator, which is performed in the first
stage of every convolutional layer several times in parallel. When working with images
the convolution operation can be defined as:

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n) ∗K(i−m, j − n) (3.1.1)

Where I is the image as the input and K a two-dimensional kernel. In practice convo-
lutional kernels are small, usually of a size 3x3, 5x5 or 7x7 the biggest. Additionally to
the size of the kernel, two other parameters should be defined. The first one, the stride
with which the filter is slid must be defined, the typical value for this is 1, meaning the
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3. METHOD

Figure 3.1: Components of a Convolutional Neural Network Layer, Source: [5]

Figure 3.2: Typical architecture of a CNN. Source: [58]

kernel will move 1 pixel at every step, but other values are also possible but rarely used.
The second parameter is called padding and this refers to padding with zeros the border
of the image, but it is not always needed. This parameter is mainly used by architectures
which do not make use of the Pooling stage as it allows to control the spatial size of the
output.

Unlike standard deep feedforward networks, CNNs weights are shared across an input,
i.e. the same kernel weights are used at every position in the input, in this case, the pixels
of an image. An easy way to understand it is considering kernels as “filters” which are
applied to the image, and depending on the values of the kernel it can cause a wide range
of effects.

By using different filters, the network will learn which ones are significant to detect
relevant visual features such as edges, orientations, colors etc. or more complicated char-
acteristics, in the case of layers in the higher levels. The output from this stage is a
2-dimensional array for each kernel.

The output from the convolution then goes through a set of activation functions in
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3. METHOD

what its called the detection stage which uses a non-linear function, resulting in what is
usually known as activation map. The most common operation used here is the rectified
linear function (ReLU). The operation is defined as:

f(x) = max(0, x) (3.1.2)

In summary, the convolutional layer has the following hyperparameters;

• The number of kernels n

• The filters size kw × kh × d(i−1)

• The stride s

• The padding p

• The activation function

Where d is the depth or the number of channels, e.g. for RGB images d = 3, and the
subindexes w and h are the width and the height respectively.

When working with images, the input of a CNN can be considered a volume of size
w×h× d, the same goes for the output of a convolutional layer, where instead of d being
the depth, it is now n, the number of kernels.

3.1.2 Pooling Layer

The output from the activation stage goes to a stage called Pooling where a downsampling
operation is performed. This operation helps to reduce the spatial size while maintaining
the important information, this helps to reduce the number of parameters needed and
hence the computation that needs to be performed, however not all the architectures use
this stage, some architectures use only convolutional steps, with increase stride to reduce
the size of the representation [59]. There are different kinds of pooling which depending
on the data and features will perform better than others, still average and max pooling
have shown to be the ones which, in general perform better, a graphical representation
of both is shown in Figure 3.3. Max pooling is good for tasks in which the separation of
features which are very sparse is needed [60].

3.1.3 Fully Connected Layer

This is a layer which can be regarded as a typical multi-layer perceptron and as its names
indicates, each neuron in this layer is connected to every neuron in the previous layer. The
outputs from the previous convolutional and pooling layers can be seen as the features
detected, the fully connected layer makes use of this features to effectuate the task of clas-
sification the input to the given classes of the dataset. It is important to mention that the
input to the FC layer a flattening step is needed, this turns the pooled feature maps from
the previous stage into a long input vector. The Softmax function is used as activation
function in this layer for classification tasks as it takes a vector of the real-valued scores
and give as result a vector of values between zero and one, the sum of all of them should
be one.
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Figure 3.3: Representation of max pooling and average pooling operation in a 4x4 matrix
with stride 2.

3.1.4 Hyperparameters

In most of Machine Learning algorithms, there are a set of parameters which can be tuned
to control the algorithm’s behavior. In the case of CNNs the hyperparameters which can
be adjusted to modify the performance of the network when training it are the following
ones:

Dropout
It refers to temporarily remove some of the nodes in a network where the removed nodes
are chosen randomly, given a probability p to keep the nodes. This technique can be used
in any layer except the output layer.

L2 norm regularization

This type of regularization technique consists of adding a constraint c on the node
weight vectors, in order to hinder them to grow larger than it. The penalty term is added
to the error function which scales with the size of the weights. This induces the network
to keep the weights small.

In addition, there are other sets of parameters that are needed to be adjusted before
training such as the batch size, the number of training steps and test intervals.

3.2 Transfer Learning

Training a model from scratch requires a large number of computational resources as well
as a fair amount of labeled data, it also can take a considerable time (up to 2 or 3 weeks)
even using several GPU units [61]. Transfer learning is a method which allows making the
process more efficient by using a model which has already been trained, and depending
on the task there could be different scenarios for transfer learning:

• Feature extractor. In this case, only the last layer is retrained to adjust to the
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new dataset, and it makes use of the features that have already been detected in
the original data set.

• Fine tuning. In this case, not only the last layer of the CNN is retrained, but
also the weights of the network (not necessarily all, in most of the cases only the
high-level ones in the last layers of the network) [62].

3.3 Data Augmentation

In many cases the data set available may not generalize to all the conditions, making the
system to overfit on the training data [57]. In the case of images, the conditions of a
certain class depicted in the picture can change in many ways such as translations, size,
illumination etc. thus, it would be desirable to have a model which is invariant, i.e. a
model which can make classifications regardless of these changes. The way to solve this
kind of difficulties is by creating synthetic data, which covers a broader set of conditions
but preserves the fundamental labeled information, this is called data augmentation. By
doing this, it is expected that the network can generalize during the training the truly
significant features and perform correct classifications in a different dataset from which it
was trained.

Data augmentation can be done in two ways, offline or on the fly. The first one refers
to enlarge the data set before performing the training of the network, and this option is
usually taken when the original data sets are small. The resulting data set will have a
size proportional to the number of operations performed in the original one. The second
way of performing data augmentation is on the fly; in this case the operations are carried
out as the data, rearranged in mini-batches, is feed to the model for training. This kind
of data augmentation is preferably used for large data sets.

When it comes to data augmentation in images, there a several techniques that can
be used, some of them are shown in table 3.1:

Type of
Augmentation

Description Augmentation Factor

Flip Flipping the images horizontally and
vertically

2

Rotation When the orientation of the class is
not vital, the image can be rotated at
any angle, however this may lead to a
change in the size of the image after

rotation, so a re-scaling operation may
be applied afterwards.

3
(δ = 90 ∈ [0, 360] )

Brightness It can be defined as the relative
amount of energy output from a

source light to another reference point. ∼ 20
(δ = 0.05 ∈ [0, 1] )
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Type of
Augmentation

Description Augmentation Factor

Contrast It is defined as the difference of
intensity between the maximum and
minimum value of the pixels in an

image. This difference can be
increased or reduced randomly.

∼ 20
(δ = 0.05 ∈ [0, 1] )

Saturation It refers to the amount of a “pure”
color in an image, it can be

represented as the amount of gray in
proportion to the hue.

∼ 20
(δ = 0.05 ∈ [0, 1] )

Hue Hue can be seen as the “shade” of the
colors in an image. The strength of

the effect can be adjusted randomly in
the whole picture.

∼ 50
(δ = 0.02 ∈ [0, 1])

Relative
luminance

It is described as the amount of light
transmitted or reflected in a particular

area, i.e. the radiant flux density
weighted by the luminosity function

(the average sensitivity of human
visual perception of brightness).

∼ 18
(δ = 0.05,∈ [0.6, 1.5] )

Noise A neural network could go trough
overfitting when it tries to learn
features that appear with high

frequency but which are not useful.
By adding the right amount of noise,

e.g. gaussian noise, the high frequency
features are distorted, and then the
performance during the training can
improve. This is also helps to add

noise robustness to the system.

∼ 50
(δ = 0.02 ∈ [0, 1] )

Table 3.1: Overview of augmentation techniques. The augmentation factors were calcu-
lated for typical situations. δ is the size of the difference between different values in the
ranges stated.

In some cases, the techniques previously stated cannot be generalized to the variety of
conditions in which natural data could exist, as it is not portrayed in the data available
for training. Nonetheless, this is not an obstacle as nowadays there are some techniques
which can solve this issue, such as the use of Generative Adversarial Networks[63], or the
use of Autoencoders [64].
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3.3.1 Generative Adversarial Networks

Generative Adversarial Network (GAN) are a type of generative models which learn to
capture the statistical distribution of some input data, allowing to synthesise samples
from the learned distribution. This is achieved during a competition process inspired in
a game-like scenario between two networks, the generator and the discriminator. The
first one tries to create realistic samples while the discriminator tries to discern if the
generated data is real or not. Since its first appearance [65] many other models based on
its working principle have been proposed and these have been applied in different tasks
such as the generation of images, image editing, style transfer and even for fast-simulation
of particle detectors and modeling of particle cascades [66].

One of the main issues with conventional data augmentation techniques is that in some
cases the data generated generalizes poorly. Some recent work has shown that GANs im-
prove the performance of image classifiers systems and it turns particular useful when the
amount of data of the class which need to be classified is limited [63]. Research in this
area has also shown that GANs are suitable for representation learning [67]. In the spe-
cific case of aerial imagery GANs are an active area of research, some of the applications
which have been published with this type of networks are the prediction of ground level
layout from aerial images [68], the image to image translation from maps to aerial images
[69, 70], or the way around from aerial images to maps [71].

Figure 3.4: Graphical representation of a GAN network, the discriminator D and the
generator G are usually implemented using ANNs. Image source: [67]

The GAN model used in this project to generate images was based in the Deep Gen-
erative Adversarial Network (DCGAN) architecture proposed in [72]. This model does
not makes use of a standard CNN architecture, as it does not make use of pooling stages,
instead it applies transposed convolutions which upsample (generator) or downsample
(discriminator) the previous layer as if a pooling operation would be applied. The ReLU
activation function is used in the generator after every convolutional layer and in the
output layer the tanh function is used. In the case of the discriminator the leaky rectified
activation is used in every layer.
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Figure 3.5: Architecture of the Generator used to produce aerial images with archaeolog-
ical traces on them. Source: [72]

3.4 K-fold cross validation

Cross validation is a sampling method which is useful to evaluate models when the amount
of data is limited. In this procedure the parameter k indicates the number of groups in
which the total data used will be divided, the use of it in general allows to obtain results
less biased, as each model is tested in different sets of data. When the dataset is divided
is important to take into account that the data is evenly distributed in each of the k
datasets.

Figure 3.6: Graphical representation of K-fold cross validation.
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4

Implementation and Results

Given the nature of the dataset obtained for this task (see table 2.1), in which there
are only a total of 108 sample images with archaeological traces, the classification task
was chosen to be carried out in a binary way despite the fact that the images with ar-
chaeological structures belong to different kinds of traces and different shapes. It is also
important to mention that because of the way in which the tiling of the aerial images was
done (dividing the whole aerial images uniformly in squares of constant size despite their
content), in some of the cases the archaeological structures appear divided in different
tiles, and in some other cases there is more than one single structure in the tiles.

The classification models were developed to determine whether an image contain any
kind of archaeological structure, of the ones existing in the training dataset, or not.

4.1 Performance Measurements

When working with classification tasks involving neural networks, the most commonly
used performance measurement is the accuracy and loss, these ones are usually displayed
against another hyper-parameter such as the epoch, however, depending on many facts
such as the specific task, the intrinsic characteristic of the dataset etc. in some cases these
may not provide a proper evaluation of how the system is performing.

For the case of the DCGAN, used to generate images for the training dataset, the
accuracy was the performance measurement used for the training and validation process.
For the specific classification task of this project, in which the class that we are more
interested in detecting represents barely the 5.7 % of the total data (see section 2.1). A
system which would classify all the image tiles in the set as negatives, could reach an
accuracy of over 94% meaning that this performance measurement is inefficient. An al-
ternative to it is the use of ROC curve.

The Receiving Operation Characteristic (ROC) curve is a graph that shows the ability
of a classifier to perform a prediction as a threshold parameter is varied. The curve is
the result of plotting the True Positive Rate (TPR), also know as sensitivity, against the
False Positive Rate (FPR), defined as
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TPR =
TP

TP + FN
(4.1.1)

FPR =
FP

FP + TN
(4.1.2)

where TP are the true positives, TN the true negatives, FP, the false positives and FN
the false negatives. The specificity is related to the FPR as 1 − FPR. ROC curves, are
particularly useful for selecting classifiers based on their performance [73].

The Area Under the Curve (AUC) is simply the area under the ROC curve and it is
a measure of the discriminability of a pair of classes.

4.2 Data augmentation results

Data augmentation was performed in two ways: using typical augmentation techniques
showed in Table 3.1 and by generating images with archaeological structures using a DC-
GAN based method (see section 3.3.1). Each of them was tested separately. The case
study 4 was chosen as test dataset so no further operations were carried out in the image
tiles from it. This left the training and validation dataset with only 82 images containing
archaeological structures, to deal with this, some images with archaeological structures
from case study 5 were added to this dataset. The composition of the dataset used for
data augmentation was of 207 images containing archaeological structures and 1405 with-
out.

An advantage of the aerial imagery type of data is that the features which we were
interested in detecting do not depend on the orientation, giving a wide margin to apply
image transformation methods. As the dataset is not very big, it was decided to apply
offline-data augmentation (see section 3.3).

The way in which the first data augmentation dataset was obtained was by first ap-
plying the rotations, and then flipping them vertically, this gave a total of 8 different
images. The final step was to choose randomly two of these 8 images and again randomly
choosing two of the other 6 operations to be applied on the two chosen ones. The dataset
was augmented by a factor of 10, having a final composition of 2070 images with positive
traces and 14050 without. This was the dataset with which all the subsequent tests and
experiments were performed.

In the case of the method based on the use of a DCGAN model, it was trained for
250 epochs, taking as the real data samples the 82 images reported to have archaeological
structures. The system was trained for 2500 epochs obtaining a final accuracy of 0.9997
and generating a total of 52 synthetic images which were added to the positive class.
Some of the images generated are shown in the appendix D. The attempt to select a
model using this dataset did not succeeded so it was used only during the test stage once
the final selected models were already tuned.
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4.3 Model selection

In this project a 4-fold cross validation was used in the augmented dataset based on
classical techniques. The split of the data was done after data augmentation with each
different subset containing around 510 images of the class with archaeological structures.

The split during the k-fold process was carried out separately on each of the two
classes by randomly choosing one of the images and then randomly moving it to one of
the new 4 datasets. Once this procedure was done one of the k groups was chosen to
be the validation set whereas the remaining 3 were chosen as training set. In the final
step an evaluation on the test dataset, which did not belong to the k-fold dataset, was
performed.

Four different models were implemented and optimized to detect the desired class.
Three of the models were based in already existing architectures and one was devel-
oped from scratch. The pretrained models used were Inception V3 [74], VGG16 [75] and
ResNet50 [76], all of this models have been trained on the dataset ImageNet which is an
image database with more than 100,000 classes and with an average of 1000 images for
each class [77]. It is important to notice that each of them have different architectures
and in the case of Inception V3 and ResNet50 they make use of different convolutional
modules than the ones presented in section 3.1. A further explanation of these modules
and a brief description of the architectures can be found in the appendix A.

For each pretrained model fine tuning and feature extraction techniques were tried.
The first one was done by changing the last fully connected layer for one with the total
number of classes which were intended to be classified, in this case 2, and then fine-tune
different number of layers in the network. The layers chosen to be fine-tuned were from the
very last one up to the last 3 layers of each network. In the case of the feature extraction
method, an additional convolutional block was added and trained, this was composed by
a Global Average Pooling Layer, a Fully connected layer with ReLU activation function
and dimensional output size x, which was determined using cross validation, and finally
a fully connected layer with softmax activation function and size equal to the number of
the classes desired to detect. All of the different training methods were run using Adam
optimization algorithm with a learning rate of 0.001.

Taking as performance measurement in the validation dataset the Area Under the
Curve (AUC), it was determined which option from the transfer learning methods, fine-
tuning or feature extraction, was the best for all of the 3 different pretrained models
tested. Fine-tuning the last layer showed the best results in the validation stage, how-
ever further analysis in the test dataset resulted in poor performances so the option was
discarded. The feature extractor option which did not show impressive results in the
validation dataset, but still fairly good ones was further explored for each of the archi-
tectures. In this case, an addition of a Dropout module just before the Global Average
Pooling Layer and L2 norm regularization in the fully connected layer was tried. The
values for these last two options were randomly chosen and again using k-fold validation
the one with the best results was chosen for the proceeding tests. Only in the case of
ResNet50 adding dropout showed to have better results than by not doing it, the value
selected for it was 0.5. The size of the output for the fully connected layer was 1024, 2048
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and 256 for Inception V3, VGG16 and ResNet50 retrained models, respectively and the
L2 norm regularization value for which the models had a better performance were: 0.001
for VGG16 and ResNet and 0.008 for Inception.

An alternative method, following the approach presented in [78] where a CNN model
is proposed to classify ceramic shards was carried out. Even though it has been shown
that the performance of deep CNNs is correlated to the number of layers in the network,
creating deep networks is not as simple as adding layers [79] and currently there is not
a formal theory which can tell how to choose the optimal number of parameters, such as
number of layers, size and number of kernels per layer, learning rate, etc. In the case of
the CNN model developed it was initially based on [9], and then additional convolutional
blocks were added; as proposed in [75] it was chosen to have a fixed size of the kernels in
every Convolutional and Max Pooling layers. The final number of convolutional blocks
(see figure 3.1) was determined using k-fold validation, each of the different k-models
were trained in a CNN with different number of convolutional blocks. For every block
the ReLU activation function was used, except in the last one were the softmax function
was implemented. The size of the kernels for all the blocks was set to 3 followed by a
MaxPooling operator with stride 2 and pool size of two. The final composition of the
proposed CNN is shown in Table 4.1.

Table 4.1: Architecture proposed.

Layer Details Parameters Output size

Input Image - 100x100x3
Conv2D 512 kernels size = 3x3 14336 98x98x512

Activation ReLU
MaxPooling2D pool size = 2x2, stride=2 0

Conv2D 256 kernels size = 3x3 1179904 47x47x256
Activation ReLU

MaxPooling2D pool size = 2x2, stride=2 0
Conv2D 128 kernels size = 3x3 29504 21x21x128

Activation ReLU
MaxPooling2D pool size = 2x2 0

Conv2D 64 kernels size = 3x3 73792 8x8x64
Activation ReLU

MaxPooling2D pool size = 2x2 0
Conv2D 256 kernels size = 3x3 295168 2x2x256

Activation ReLU
Dropout value = 0.5

MaxPooling2D pool size = 2x2 0
Flatten -
Dense 256 256 65792

Activation ReLU
Dense 2 2 514

Activation softmax

Output
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4.4 Results in the test dataset

Once the optimal values were found for each of the models, they were tested in the case
study 4 by making predictions using the trained networks. The predictions were carried
for each of the two types of aerial images available (infrared and visible light) separately.
This final training and testing procedure was done with 3 different datasets, the original
dataset, the dataset using classical data augmentation and the dataset which contained
the images generated using the DCGAN network. For all of them, the ROC curve was
plotted and the AUC calculated.

As it is possible to see from the ROC curves in Figure 4.1, two of the models (VGG16
and Inception V3) present promising results, in both cases a TPR of 0.8 is obtained before
reaching a FPR of 0.2 regardless the dataset in which they were trained. In the case of
ResNet50 the graph suggest that the network has gone in over-fitting as the model obtain
scores of AUC over 0.91 in the validation dataset, however its performance in the test
dataset goes down to values of 0.605 and 0.864 in the best cases. Further investigations in
the methods of tuning the parameters of this network are needed. For the model proposed
a similar behavior in its performance is observed, again the scores in the validation dataset
showed to be a reliable model, having an AUC value above 0.9. By looking at the graphics
and the predictions obtained with this network, depicted in the images in the appendix C,
it seems that the network has learned to detect very specific features of the training sets
which are not generalizable. This results in bad predictions, like cropland and bushes,
and it gives a hint of which were the features learned from the training dataset, such as
round shapes and contrasts between the foreground and background objects. This may
suggest that the network is not deep enough, as it can detect akin characteristics but
cannot discriminate the specific ones which correspond to real archaeological structures
from similar objects.

Even if the ROC curves show the point at which certain TPR value is reached against
the value of certain FPR, they do not tell us which is the threshold value for which this
specific rates were reached. In the majority of binary classification systems usually the
threshold to determine whether an image belong to the desired class or not is set to 0.5.
However, for the case of the architectures tested separately, this “threshold value” may
not be the best choice. An investigation on the variation of this number was done. Ad-
ditionally, given that the location of each of the different archaeological structures was
provided for the case study 4, the reckoning of the number of detections for each of the
different archaeological shapes existing in this case study (ship, circular and square) was
done. By doing this it was also intended to determine which ones were easier and harder
to detect. It is also important to notice that as mentioned before in the section 2, because
of the way in which the tiling was done, some of the structures were split in different
images and in some other cases more that one single structure appears in one image. The
results shown in table 4.2 mean the number of tiles in which a structure or a part of that
kind of structure was detected, not the number of structures detected, actually the total
number of structures existing in case study 4 is six.

The threshold values chosen were c ≥ 0.5, just as a typical classifier, c ≥ 0.3 and
c ≥ 0.1. The results for the case in which data augmentation was used are shown in table
4.2. A graphical representation of them is depicted in the Appendix C.
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Figure 4.1: ROC curves obtained for the test dataset using for the training-validation
process different datasets (no augmentation, DCGAN method and typical data augmen-
tation) in different models. Left column: data from visible light images. Right column:
near infrared images. The models used, from top column to bottom column: Inception
V3, VGG16, ResNet50 and the proposed CNN.
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Type of Structure detected, c > 0.5 detected, c > 0.3 detected, c > 0.1
Infrared Visible Infrared Visible Infrared Visible

In
ce

p
ti

on
V

3 Ship 0 2 0 3 2 3
Circular 1 2 1 2 2 2
Square 2 2 2 2 2 2

Total true positives 3 6 3 7 6 8
False positives 6 12 9 14 21 20

V
G

G
16

Ship 4 0 4 0 4 1
Circular 4 1 5 1 5 2
Square 4 0 4 2 4 2

Total true positives 12 1 13 3 13 5
False positives 40 6 57 11 100 25

R
es

N
et

50

Ship 0 0 0 0 4 4
Circular 0 1 1 1 5 5
Square 0 0 0 1 4 4

Total true positives 0 1 1 2 13 13
False positives 0 6 9 9 187 187

P
ro

p
os

ed
C

N
N Ship 4 0 4 0 5 0

Circular 5 0 5 0 5 0
Square 4 0 4 0 4 1

Total true positives 13 0 13 0 13 1
False positives 168 18 168 25 170 38

Table 4.2: Tiles detected using classical data augmentation for different threshold values.
The number of detections for each shape correspond to the tiles detected in which a
structure or part of a structure of this type is contained, not the number of structures
detected.

As it can be seen in Table 4.2, the rate of false positives for VGG16 and Inception V3
is low up to a threshold value of 0.3. This suggest that even if the models might not be
that efficient at detecting archaeological traces, they are good at determining the aerial
landscapes which definitely do not correspond to archaeological structures. This shows
that in 90% of the tiles which correspond to the negative class, the probability assigned
by the classifier of belonging to the positive class is below to 0.1, or what is the same,
they are classified with a probability above 0.9 of belonging to the negative class.

A more detailed exploration was carried out to see how the percentages of true detec-
tions and false positives change for c < 0.1. In this case the value c was varied from 0.001
to 1 in steps of 0.001 and at each step counting the number of detections for each type of
structure. The results obtained using InceptionV3 and VGG16 are shown in Figure 4.2
and Figure 4.3 respectively. The results from these figures provide valuable information
to understand how the use of different data augmentation techniques during the training
process can affect the ability of a system to make predictions, something that seems hard
to distinguish from the ROC curves. Furthermore we can compare how these two models
behave to it.
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(a) Infrared results, without using data
augmentation.

(b) Visible light results, without using data
augmentation.

(c) Infrared results, using DCGAN as data
augmentation.

(d) Visible light results, using DCGAN as
data augmentation.

(e) Infrared results, using classical data
augmentation.

(f) Visible light results, using classical data
augmentation.

Figure 4.2: Percentage of detections by changing the threshold parameter c. The model
was trained using transfer learning with Inception V3.
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(a) Infrared without using data augmenta-
tion.

(b) Visible light without using data aug-
mentation.

(c) Infrared using DCGAN as data augmen-
tation.

(d) Visible light using DCGAN as data aug-
mentation.

(e) Infrared using traditional data augmen-
tation.

(f) Visible light using traditional data aug-
mentation.

Figure 4.3: Percentage of detections by changing the threshold parameter c. The model
was trained using transfer learning with VGG 16.

The first characteristic to notice is that when no data augmentation is implemented, in
general, Inception V3 has a better sensitivity than VGG16, but the rate of false detections
is also higher, and as the threshold parameter is lower, the number of false negatives in-
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creases faster. On the other hand with VGG16 the percentage of false positives is steady,
keeping a value below 0.1% even when c is in the order of e−5, however the sensitivity is
also poor. This suggests that without data augmentation VGG16 is really not learning
but classifying almost all (if not all) the tiles as negatives, which still would mean a high
value of accuracy whereas Inception V3 is learning insufficiently. When the synthetic
images, generated with the use of the DCGAN, are used as data augmentation method
the results does not seem to change so much for neither of the models, just a slight im-
provement for Inception in the detection of the circular structures, which may be related
on the appearance of the images generated (see Appendix D).

The best improvement is observed when data augmentation, using typical techniques,
is used to train the models. The performance of VGG16 for both kind of images rises
significantly, but in the case of the infrared images, the classification improves remarkably,
reaching a sensitivity of almost 100%, however the rate of false positives increases as well
to a value above 30%. In the case of Inception V3, the use of data augmentation seems
to lead to better results in visible light images.

In the case of the detection of different structures, it was not found any shape which
was easier to detect, but as it is possible to see from figures C.2, C.3, C.4 and C.5, the
structures which are even noticeable at ground level, were easily detected by the different
networks. Furthermore, many of the false detections obtained were of images which could
be called “controversial”, as these contained rocks, or set of rocks which resemble this
kind of archaeological structures. Some examples of real detections, false positives and
false negatives are shown in Figure 4.4.

By looking at the numbers in table 4.2 and the figures 4.2 and 4.3 it is possible to
reaffirm that the model which shows a better performance in the prediction of images
with archaeological structures in the infrared is VGG16 while in the visible light range,
the one which showed the best performance is Inception V3. In all of the cases, the use
of typical methods of data augmentation improved the performance of detection in the
system, however not in a consistent way for both models, i.e. the improvement is not
the same in both wavelengths range. A final test was carried out, in this the results ob-
tained for each wavelength were combined according to the set from which the system was
trained. By doing this the detection rate was enhanced and thus it was only considered
the classification output with a threshold value c ≥ 0.5, the results of each combination
for VGG16 and Inception V3 trained on the augmented dataset are shown in table 4.3
and 3 of the images obtained are shown in figures 4.6, 4.7 and 4.8.

Model (data) % true positives % false positives
Inception V3 (Infrared+Visible light) 0.38 0.01

VGG16 (Infrared+Visible light) 0.69 0.08
VGG16 (Infrared)+Inception (Visible light) 0.76 0.04

Inception V3 (Infrared)+VGG16 (Visible light) 0.23 0.01

Table 4.3: Percentage of true positives and false positives detection for the different
combinations of VGG and Inception V3 trained on the data augmented dataset and
taking as threshold value c = 0.5.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4.4: Some example of predictions, (a)-(d) true positive predictions, (e)-(h) false
positives, (i)-(l) false negatives. ©Lantmäteriet: I2018 / 00119.

From the final outputs we can say that by combining different predictions results from
different airborne data, in this case images in the infrared and visible spectrum, it is
possible to reach an acceptable percentage of true detections. In the specific case study it
also presents a very low percentage of false positives, having a maximum value of 8% with
the best ensemble, a number which outperforms the studies which have been carried out
using similar techniques [4, 45]. This improvemet in the performance can also be noticed
from the ROC curves and AUC depicted in Figure 4.5, in four of the ensembles, the AUC
is above 0.90 which is a better result than when the classifier perform predictions in a
single wavelength. Specifically it is possible to say that the combination of the models
VGG16 for the detection in the infrared, with Inception V3 for the detection in the visi-
ble light range, achieves a sensitivity of 76% and a specificity of 96%. This suggest that
the combination of different models for different airborne data is the way in which the
detection of archaeological should be implemented.

As it is possible to see, still some false positives are present even by using this method.
Following the steps presented in Figure 1.1 a investigation on location was carried to vi-
sualize with precision what was causing these results. As reference, the system with the
overall best performance shown in Figure 4.6 was taken. From the images of the explo-
ration in the location we can see that some of the structures detected as false positives
are indeed natural structures which are very similar to the structures of the graves, being
these sets of rocks organized in a kind of geometrical shapes (Figure 4.9(a)-(b)). In some
other cases, this corresponds to mounds inherent to the terrain (Figure 4.9(c)-(d)). For
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Figure 4.5: ROC curves obtained with the ensembles.

the false negatives it is a bit harder to try to determine why does the network fail to detect
the complete structure as in the location it is also hard to recognize the archaeological
structure, but at least a part of it is correctly detected (Figure 4.9(c)-(d)). If it is intended
to develop a system which can deal with this controversial false positives, more data with
this kind of images is needed so the network(s) can learn to distinguish the correct ones
and reduce the number of these false positives.

Figure 4.6: Combined results of the predictions using Inception V3 in the visible light
data and VGG16 in the infrared. The tiles in green indicate correct detections, red missed
detections and blue false positives. ©Lantmäteriet: I2018 / 00119.
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Figure 4.7: Combined results of the predictions in the infrared and visible light obtained
using VGG16. The tiles in green indicate correct detections, red missed detections and
blue false positives. ©Lantmäteriet: I2018 / 00119.

Figure 4.8: Combined results of the predictions in the infrared and visible light obtained
using Inception V3. The tiles in green indicate correct detections, red missed detections
and blue false positives. ©Lantmäteriet: I2018 / 00119.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.9: False detections corresponding to controversial images. Figures (a)-(d) corre-
spond to false positives detected from the aerial images and its comparison at the location.
Figures (e)-(f) are corresponding to a part of an structure which was not completely de-
tected in all the tiles resulting in a false negative. (a),(c) & (e) ©Lantmäteriet: I2018 /
00119.
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Summary and Conclusion

In this project 4 different networks were tested trying to address the task of detecting
archaeological sites using airborne data. Due to the nature of the dataset, even if it
contained different kinds of archaeological structures on it, it was decided that the classi-
fication task would determine if there is or not an archaeological trace in the images. For
the same reason of having in total a small number of images with archaeological structures
against the ones without, the ROC curve and the AUC were chosen as the performance
measurement method during the parameter selection process. Three of the models tested
were state of the art deep CNN architectures for which different techniques of transfer
learning were tried, and the last one was a CNN model constructed from scratch. The
pretrained models used were Inception V3, VGG16 and ResNet50, and for each of them,
different parameters were adjusted in order to maximize the number of detections and
reduce the number of false positives. The selection process was performed by doing 4-fold
cross validation.

Once the models were tuned for this specific task, a comparison of the predictions ob-
tained by training the systems in different datasets was carried out. The datasets tested
were the original one and two others in which different data augmentation techniques
were implemented. The first data augmentation method was done by using common im-
age transformation techniques; the second one was done by adding samples of images with
archaeological traces generated using a DCGAN model.

These results were compared in the test dataset for two different kinds of aerial im-
agery, infrared and visible light images, in order to see how the use of different data
augmentation techniques could influence in the predictions of the models on different
type of airborne data.

The models which showed the best performance in both, infrared and visible light
were the ones based in VGG16 and Inception V3 architectures. For all of the pretrained
models it was found that the best results when making predictions in the test dataset
was achieved by using the systems as feature extractors and then adding a set of layers
containing a pooling stage, and two fully connected layers. In the case of the proposed
CNN it was found that a model with 5 convolutional blocks has the best results. The
network reached values of AUC over 0.91 in the validation dataset, however in the test
dataset its performance decreased to a value of 0.86 in the best case.
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By varying the threshold value of the predictions obtained in the test dataset it was
found that the two models which in general performed better than the others, were good
at detecting, with a high degree of accuracy, images which do not have archaeological
structures. A deeper analysis of this, showed that the use of DCGAN model as data aug-
mentation technique increased slightly the amount of true detections but also increased
the amount of false positives, which may be related to the quality of the images gen-
erated. For all the cases the use of typical data augmentation techniques improved the
amount of detections of images with archaeological traces substantially while diminish-
ing the amount of false positives. Specifically it was found that the use of this kind of
data augmentation was particularly good to improve the performance of detections using
VGG16 in the infrared and Inception V3 in the visible light range.

Finally, it was found that the detection of archaeological sites from aerial imagery
improves substantially when the predictions obtained from different type of data, in this
case infrared and visible light images, were combined. Specifically it was found that the
combination of the VGG16 model for the detections in the infrared within Inception V3
model in the visible light range achieves a rate of true positive detections of 76 % with
a rate of false positives of 4 % which outperforms the previous studies which have used
similar methods.

The results obtained in this work suggest that the combination of different models
applied to different types of data is the best technique for this kind of application. The
use of this method can reduce the rate of false positives and still keep a good rate of true
detections, dealing with one of the main issues exposed by the archaeological community,
which is the high numbers of false positive detections.

In this project different CNN architectures were tried and each of them showed dif-
ferent performances. Even if the pretrained models showed a better performance in the
test dataset than the model developed for this specific task this opens the possibility to
the creation of deeper models specialized for this kind of duties. The alternative of creat-
ing specialized CNN could be enhanced by the creation of an archaeological benchmark
database in which different models could be trained and tested; at the same time this
could boost the adoption of this kind of techniques by the archaeologist community.

It was also shown that the alternative of using a DCGAN model to generate aerial
images with archaeological structures is possible. Even if the results with this kind of
technique were not exceptional, this opens the door to carry more detailed investigations
in this area. Furthermore, GAN based models have more applications than the genera-
tion of images. An interesting approach would be the use of GANs for image to image
translation purposes. A hypothetical case could be the generation of training data for
regions with an specific kind of terrain, in which the real locations of archaeological sites
is scarce, from another site with similar archaeological structures but different kind of
ground.

With the completion of this work, it possible to assert that the detection of archaeo-
logical structures from aerial imagery using deep learning may not be a trivial task, but
it is possible.
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Appendix A

Architectures

In this section a brief description of the pretrained models used is presented.

A.1 VGG16

VGG16 [75] is a 16-layers CNN model which was developed by the Visual Geometry
Group from the Department of Engineering Science of Oxford University for the ILSVRC-
2014 competition. The top-5 classification error achieved by the model was of 7.5 % on
the validation set and 7.4 % on the test one, wining the first and the second places
in the localisation and classification tracks respectively. The main characteristic of this
network is that the parameters at each convolutional block are fixed, having all of them a
convolutional filter of size 3x3. A graphical representation of it is depicted in figure A.1.

Figure A.1: Graphic representation of the VGG model.
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A.2 Inception

Inception network can be considered a milestone in the way in which Deep CNN’s models
were developed. Before it, the standard way in which most of CNN’s were build was by
stacking convolutional layers, aiming to obtain better performances. One of the main
advantajes of this model is that it requires abut 3 times less parameters in comparison to
VGG16, therefore the computational cost for training this network is also less.

The proposal presented in [74] makes use of different convolutional sizes in parallel
which previously, pass through a 1x1 convolution, this step has two main purposes: adding
more non-linearity by having a ReLu operation just after every 1x1 convolution and also
to reduce the dimensions inside the inception module, the output of each convolution is
concatenated before passing to the next module as depicted in figure A.2.

A difference between its processors V1 and V2 is that it also makes use of Batch
Normalization to the network and it uses of RMSProp Optimizer.

Figure A.2: Inception Module
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A.3 ResNet50

Residual Networks, introduced in [76] and developed by Microsoft Research present a
change in the paradigm of how to construct CNN models. This kind of model won the
1st place in the LSVRC 2015 classification competition with top-5 error rate of 3.57. The
core idea behind this models is the use of Residual Blocks.

In this type of networks a mapping H(x) is fitted in another underlying mapping
F (x) = H(x)x as it is shown in figure A.3. The core idea is that multiple non-linear
layers can approximate the residual function F (x). The connection of the input to the
output is called an identity mapping. Residual learning is implemented to every stacked
layer. Considering the building block as

y = F (x, {Wi}) + x (A.3.1)

With F (x, {Wi}) the residual map to be learned. The operation F + x is performed
by shortcut connection and the addition is followed by an activation function σ. The
addition between feature maps requires the output of the input layer of the residual block
to be the same size as the one of the last layer of the residual block.

Figure A.3: Residual block. Image source: [79]
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Previous studies in detection of
archaeological sites using machine
learning.

Method Objects to detect TPR FPR Location of the data
used

Pre-trained
CNN (Alexnet)

+ SVM [47]

Charcoal burning
platforms

70% 72% Valley of Lesja,
Oppland County,

Norway.

Pre-trained
CNN

(ResNet18) [4]

Roundhouses,
Shielling huts and

Small cairns

39% 122% Island of Arran,
Scotland.

Pre-trained
CNN’s tested

separately
(AlexNet,
VGG19,
CaffeNet,

GoogLeNet,
OverFeat) [45]

Square structures 100% 124% Silvretta Alps,
Switzerland.

Table B.1: Studies in which machine learning techniques have been used for archaeological
object identification in aerial imagery
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Appendix C

Images Obtained

In this appendix the images obtained by using different models in the test set for both,
infrared and visible light are shown. As reference point, the image of the test area in
visible light, is showed in figure C.1 where the tiles containing archaeological structures
are coloured in purple.

Figure C.1: Case study 4 in visible light with the tiles with archaeological traces marked
in purple. ©Lantmäteriet: I2018 / 00119.
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(a) No data augmentation.

(b) Classical data augmentation.

(c) Data augmentation using DCGAN method.

Figure C.2: Results obtained using VGG16 in aerial images in the visible light range for
different data augmentation techniques. The tiles are colored according to the classifi-
cation score for the positive class: blue > 0.5, light blue ∈ [0.3, 0.5], yellow ∈ [0.1, 0.3].
©Lantmäteriet: I2018 / 00119.
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(a) No data augmentation.

(b) Classical data augmentation.

(c) Data augmentation using DCGAN method.

Figure C.3: Results obtained using VGG16 in aerial images in the infrared range for
different data augmentation techniques. The tiles are colored according to the classifi-
cation score for the positive class: blue > 0.5, light blue ∈ [0.3, 0.5], yellow ∈ [0.1, 0.3].
©Lantmäteriet: I2018 / 00119.
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(a) No data augmentation.

(b) Classical data augmentation.

(c) Data augmentation using DCGAN method.

Figure C.4: Results obtained using Inception V3 in aerial images in the visible light
range for different data augmentation techniques. The tiles are colored according to
the classification score for the positive class: blue > 0.5, light blue ∈ [0.3, 0.5], yellow
∈ [0.1, 0.3]. ©Lantmäteriet: I2018 / 00119.
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(a) No data augmentation.

(b) Classical data augmentation.

(c) Data augmentation using DCGAN method.

Figure C.5: Results obtained using Inception V3 in aerial images in the infrared range
for different data augmentation techniques. The tiles are colored according to the classi-
fication score for the positive class: blue > 0.5, light blue ∈ [0.3, 0.5], yellow ∈ [0.1, 0.3].
©Lantmäteriet: I2018 / 00119.
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(a) No data augmentation.

(b) Classical data augmentation.

(c) Data augmentation using DCGAN method.

Figure C.6: Results obtained using ResNet50 in aerial images in the infrared range for
different data augmentation techniques. The tiles are colored according to the classifi-
cation score for the positive class: blue > 0.5, light blue ∈ [0.3, 0.5], yellow ∈ [0.1, 0.3].
©Lantmäteriet: I2018 / 00119.
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(a) No data augmentation.

(b) Classical data augmentation.

(c) Data augmentation using DCGAN method.

Figure C.7: Results obtained using the proposed CNN in aerial images in the visible
light range for different data augmentation techniques. The tiles are colored according
to the classification score for the positive class: blue > 0.5, light blue ∈ [0.3, 0.5], yellow
∈ [0.1, 0.3]. ©Lantmäteriet: I2018 / 00119.
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Images generated using a Deep
Generative Adversarial Networks

The Deep Generative adversarial model used was based on [72], the training was carried
using only the original training dataset of positives images, i.e. 82 images in total for
training. The system was trained for 250 epochs obtaining a final loss of 0.004274 for the
discriminator and 0.56293 for the generator. The system in the last epoch reached an
accuracy of 0.9997. Some of the images generated are shown in figure D.1

Figure D.1: Some samples of the images generated using DGANs
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