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Abstract

When designing a building one must consider safety aspects. One such aspect is that
in the case of an emergency people should be able to efficiently evacuate the build-
ing. In this paper we investigate how the width-profile of a corridor leading to an exit
might affect the efficiency of evacuation. We model the dynamics of crowds using a
continuum model, leading to a one-dimensional non-linear hyperbolic conservation law,
a type of partial differential equation. The width-profile of the corridor is given by a
two-parameter function, and we seek the best choice of these parameters.

In the first part of the Msc thesis we introduce the model, along with the theory needed
to find exact solutions. In the second part we investigate how solutions behave near the
boundary, and use this to find an exact solution when the width is constant. We then
classify all stationary solution, when the width is non-constant. In the third part we
investigate the conservation law numerically, using Godunov’s method.

The numerical results suggest that the optimum choice of width-profile is to let the
corridor have a convex profile with as large width in the entry to the corridor as possi-
ble. However, if one scales the density such that the maximum rate of people entering
the corridor is constant, the variance is only temporary. The model also breaks down
as the width at the entry increases, as one can no longer assume that people only move
in one direction.






Matematik for nodsituationer

Populdrvetenskaplig sammangfattning

Du ar en arkitekt och skall designa en byggnad. Du behéver gora en utrymningsvag.
Till nédutgangen leder en korridor. Vad hénder om du &ndrar pa korridorens bredd?
Vad hénder om du gor den konisk? Dessa fragor forsoker vi i den hér rapporten svara pa.
I nodsituationer, till exempel vid brand, kan en effektiv utrymningsvag vara skillnaden
mellan liv och dod.

For att beskriva hur snabbt folk ror sig igenom korridoren anvénder vi en differential-
ekvation, d.v.s. en ekvation som beskriver hur saker dndras. Vi studerar sedan ekva-
tionen numeriskt, d.v.s. vi later datorn berdkna ungefér hur folk ror sig genom korri-
doren. Vi testar olika former pa korridoren och olika méngder folk. Vi har begréinsat
oss till korridorer som &r bredare vid inloppet och smalnar av vid utgangen. Vi finner
att det finns en viss skillnad i hur snabbt folk kan evakueras, ndr man éndrar bredden
vid inloppet. Ett bredare inlopp (dven om ndédutgangens bredd inte &ndras) ar i vissa
fall battre. Da modellen antar att folk endast ror sig framfor allt framat stdmmer mod-
ellen dock séamre 6verens med verkligheten om inloppsbredden &r for stor. Da behover
folk rora sig till stor del i sidled, och kan inte springa lika snabbt framat. Vi kan dock
anvanda oss av modellen for de mindre extrema fallen.

Simuleringarna visade pa ett mycket intressant resultat. Tatheten av ménniskor i korri-
doren blev till slut nést intill stationdr. Detta betyder att den inte &ndras allt eftersom
tiden gar. Exakt hur hog denna densitet ar har en viktig paverkan pa hur snabbt folk
kan evakueras. Det kunde till exempel vara ganska fa ménniskor vid inloppet, men
mycket tdtare folkmassa vid utgangen. Denna situation dndrades sedan inte, den var
stationdr. Detta betyder inte att folk inte gar in eller ut genom korridoren, bara att
tatheten ar konstant. Ett exempel kan ses pa figuren nedan.
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Aven om mdnniskorna rér sig framat, sa dndras inte tdatheten.

I den 6vre bilden gar folk framat i olika hastigheter. I den undre bilden har nagra sekun-
der gatt, och folk har rort sig framat. Dock har inte tdtheten &ndrats i nagon punkt,
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dven om folk rort pa sig. Resultaten antyder att detta beteende ofta dyker upp, och
har en stor paverkan pa hur snabbt folk kan evakueras. Vi kan ocksa paverka beteendet
genom att vélja olika former pa korridoren.

Det &r dock vért att podngtera att vi anvént en relativt simpel modell. Vill man fa
annu mer palitliga resultat man goéra modellen mer komplex, till exempel lata folk rora
sig i sidled. Vara resultat ar dock en bra start! De antyder att formen pa korridoren
kan gora skillnad, och denna skillnad kan vara mycket viktig i nodsituationer. Kort sagt
borde formens inverkan pa evakuering understkas narmre, med komplexare modeller.
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1 Introduction

When designing a building, there are many things to consider. One of the more impor-
tant aspects to consider is the safety in case of an emergency. If a fire would start, one
needs to be able to evacuate people as quickly as possible. In this Master’s thesis we
consider the design of a corridor, leading to an emergency exit. Is there a way to design
the corridor to minimize the time it takes to evacuate the building? This question puts
us in the realm of pedestrian dynamics, the theory and modeling of how people move
about. This subject is of course of immense importance, and has been studied more and
more over the years.

Due to their unpredictability, modeling people is a difficult task. In this Master’s thesis
we have tried to use a very simple model of pedestrian flow. This model is for example
used to model sedimentation in water treatment plants [I]. We study the width of the
corridor, assumed to be continuous, and ask whether one can choose the width profile
in a way as to maximize the evacuation of pedestrians. The model is a one-dimensional
non-linear partial differential equation, which can be written as

& (W@hple, 1) + S (W) F (ol 1)) = 0

where p(x,t) is the unknown unit-less local area fraction of pedestrians at the point x
and time ¢ in the corridor, whoch has the (normalized) width W (x). The function F
is called the fluz function and it is the non-linearity of this function which makes the
equation non-linear. The flux function can be written as

F(p) = pv(p)

where v is the unit-less velocity function. The graph of this function is also sometimes
called the fundamental diagram, and is the subject of much research also in traffic flow.
While most papers use a famous empirical function by Weidmann [2], the function might
not hold in emergency situations. In this thesis, we have instead opted to data from
Helbing et al. [3]. In their paper, they studied video recordings of a crowd disaster on
the Jamarat bridge during the Hajj on 12 January 2006 (1426H). The stampede that
occurred tragically led to the death of more than 360 people [4]. While the function from
[2] has the velocity being a decreasing function of the local density, [3] presents data
that showing that for high enough densities the velocity function decreases slower than
in [2]. This gives the flux function an entirely different shape, namely two ”bumps”
(see figure [1)). The dire situation in [3] presents a more reasonable example of what
pedestrians dynamics might look like in an emergency situation, and it is for that reason
we have chosen to use it in this Master’s thesis.
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Figure[l} Comparison with the empirical velocity function and flux function from [2] in
the blue line with the data from [3] in orange stars. Other noteworthy data are [5] in
blue dots and [6] in green circles.

This Master’s thesis is divided into three main parts. In the first part we introduce
the model as an initial-boundary value problem, and introduce the underlying theory,
for example the method of characteristics and the conditions of Rankine-Hugoniot and
Oleinik [7]. We also formulate the problem as an initial value problem on R x R, which
will help us construct exact solutions as well as guarantee uniueness. In the second part
we construct and study analytic solutions in special cases. Importantly, we discuss the
behaviour of stationary solutions. Readers only interested in the numerics could skip
this part, but note equation . The third part focuses on the numerical solution
of the problem. We review the construction of Godunov’s method [9], and mention a
theorem of convergence. We then construct a linearly constrained least-squares spline
to the data from [3]. After this, we discuss how the problem was solved numerically.
We then present some numerical results, as well as discuss their validity.



Part I
Theory

2 The model

In this Master’s thesis we use a continuum approach to model the flow of pedestrians.
We consider a corridor of length L and varying width W (&), Z € [0,L]. Let 5 be the
local density of pedestrians, measured in 1/m?. Each pedestrian has a velocity 9, mea-
sured in m/s, which is assumed to only be dependent on the local density,o = 9(5). The
velocity is assumed to vanish for high enough densities, i.e. 9(3) = 0, p > pmax- The
flux (or the flow) of pedestrians at each point is then F'(5) = ji(j) with the unit 1/(ms)

Consider an arbitrary interval [Z1,Z2]. The number of pedestrians in that interval is

/j I p(E)W (2)di.

Assuming that the density is non-uniform, the number of pedestrians in the interval will
change over time ¢, according to

T2

= | p@DW(2)dE = F(p(@1, )W (#1) = F(pli2, D)W (7). (1)

1
The terms on the right hand side are the influx and the outflux, respectively. Assuming
that F, p, W € CH([0, pmaz]), the right-hand side of this can be written as

o i T2y oo
F(p(21, )W (21) = F(p(22,1))W (22) = */~ 77 (F (A&, )W (2))dz.
Z

We can now insert this, and take the derivative with respect to ¢ under the integral, to
get )

/M O (@ W (@) + L (F(p(E HW () ) di = 0

. \ar oz AL =0

Since the choice of [Z1, T3] is arbitrary the integrand vanishes. We therefore get the first
order non-linear partial differential equation (PDE)

(ol B (@) + - (PP, DTV () =0,

This PDE needs to be coupled with initial conditions and boundary conditions. We will
leave out the boundary conditions for now, and simply write

(ol B (@) + o (P2, E

2.1 Dimensionless variables

We now make a transformation of the variables, to make them unit-less. There will be
a pattern in how we define our new variables. We start by writing

i=aL, x€[0,1].



This transforms the derivative

We likewise write

W(z) = W(L)W(&/L) = W (L)W (z).
This gives rise to the condition W (1) = 1. We also write

P(Z,t) = pmaxp(T/L,t) = pmaxp(z,t), p€[0,1].

The scaled time ¢ will be defined below. To transform the flux function F it is easier to
first transform the velocity v. We write

’E(ﬁ) = Umaxv(ﬁ/pmax) = vmaxv(p).

We then define the scaled flux function F' by writing

F(f)) = [75([7) = Pmaxpvmaxv(lo) = pmaxvmaxF(p)-

We finally define the scaled time by writing

t =tL/Vmax
and the derivative
0 Umax O
ot L ot
We can finally write the PDE ([2)) in terms of the scaled variables
Umax O [~ 10 /-~ B
v (WD (@) praxp(@, 1)) + 7 5= (WEIW (@) pmaxtmacF (pla, 1) ) =
W (L) VmaxPmax [ O 0 B
pestos (LW (@)p(ont) + 5 (W (ol 1) ) =0.

Dividing each side by the constants, we get the PDE (coupled with initial conditions)

0

& (Whple, 1) + S (W) F (1)), @€ [0,1]¢>0 (4)

p(m,O) = pO(x)v T € [Oa 1] (5)

With the transformed variables (and integrating with respect to ¢) we can now write
Equation as

2 T2

p(x, to)W (x)dx —/ p(x, t1)W(x)dx =

x1 Z1

ta
= / (F(p(z1,t))W (x1) — F(p(x2,1)))dt, x1,22 €[0,1], t2>t1. (6)
ty

The transformation of variables also gives rise to some conditions on the various func-
tions:

pel0,1, W()=1, F(0)=F()=0.
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Figure [2l Width profiles for various choices of ¢ and W(0).

2.2 Width of corridor

As will later be shown, it is preferable if the width of the corridor satisfies the condition

(sce [1])
W'(x) 1

W(z)  p+az

for some p, q. From this we can deduce the form of the width,

- 10u(¥(2)) = 4 (T1os(p +a0) ) = log(IW () = - (1 -+ 42) ~ g C)
1/q
p+qx
W(z) = .
= Wi(x) ( c >
The condition W (1) = 1 determines the constant C, leaving us with W being of the
form Y
p+ qw) !
W(z)=—— . 7
)= (228 )

We want the corridor to be narrowing off as x increases, i.e. W’(z) < 0. Together with
W (x) > 0 this sets conditions on p and ¢:

p<0,p+q=<0.
During the numerical simulations we will want a specific value of ¢ and W (0). Once
these values have been determined we can solve for p:

q

b= W- (8)
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Figure|3] General form of the flux function. The global maximum pg\z) has been marked
out.

2.3 Boundary conditions

While we could define the problem on R xR, we are interested only in the behaviour of
the solution inside the corridor. We also cannot have an infinite domain of computation.
Therefore, we need some boundary conditions. Hyperbolic PDE, especially conservation
laws, do not necessarily have solutions for Dirichlet or Neumann boundary conditions.
We therefore opt to choose another kind of boundary conditions. We choose the flux at
the boundaries to be some value. This condition is equivalent to setting a mix of Dirichlet
and Neumann boundary conditions, but with multiple options. More specifically, we set
the condition on p(0,t) that

En7 p(0+, t) S pg\ij)
min{ Fj,, minge[pg\?,p] F(o)}, p(04,t) > pys

F(p(1_.t)), p(_.t) < pl/
1 1
F(ply), p(1_,t) > ply)

F(p(0,1)) = {

F(p(1,1)) =

for some constant Fi,, where p(04,t) = limz\ o p(z,t) and p(1_,t) = lim, ~ p(x,1).
Figure [3| shows the general form of the flux function, along with global maximum pg\?.
The motivation for this form of the boundary conditions goes as follows: Suppose that
before the corridor we have a large room and that at the entrance of the corridor we
have some density pi, with F(pin) = Fin. The pedestrians will then want to flow into
the corridor with a flux Fj,. However, if the density inside the corridor is high enough,
they will not be able to, and the flux will be limited by the density inside the corridor.



We suppose that there is a large enough amount of pedestrians before the corridor that
they can pack the area before the corridor fast enough so that p;, does not change. We
suppose that after the corridor we have an exit into a large room (or outdoors to a large
field /parking lot etc.) We suppose that even if the pedestrians are at a high density
before the exit, after the exit they will be able to spread out into the large area. We
therefore make the assumptions that if the pedestrians are at a density p > pg\}), they
will nevertheless be able to exit the building at the largest flux F(pg\i[)). It should be
noted that the boundary conditions neither stem from first principles nor any empirical
data. Rather, they are picked because they seem to the author to be reasonable. It is
worth pointing out that they will also allow us to guarantee that the initial-boundary
value problem (IBVP) has a unique entropy solution, which will be shown later.

We will reformulate the boundary value problem as an initial value problem on R with
a discontinuous flux function. This will show that the problem has a unique entropy
solution. Before we do this, we first repeat some theory of hyperbolic conservation laws.

3 Method of characteristics

As there is no general theory for PDEs, they can be quite hard to solve. Fortunately,
when it comes to first order equations, we can transform the PDE to a system of ordinary
differential equations (ODE). This is called the method of characteristics. We will
describe this while applying it to our PDE. The theory below can be found in most
books on partial differential equations. A brief summary can be found in [IJ.

3.1 Smooth solutions away from discontinuities
We want to solve the PDE

W(z)pi(x,t) + (W(z)F(p(2,t))), =0
or, in another form in regions where the solution is smooth

_W(=)

pile.t) + F(pla, )pu(a,t) = F(p(e,1))

Suppose now we take a curve £ (called a characteristic)
. 2 _ (=(s)
in the -t plane, identified with R?. We also define the function

z(s) = p(&(s))-

By differentiating this function (using the notation Z = ££), we get

ds
2(s) = Vep(€(s)) - VE(s) = pi(£(s))E(s) + pu(€(s))i(s)-

Guided by this observation, we choose the functions x and ¢ implicitly such that

i(5) = F/(plE(s).

This choice gives us the nice expression

£(s) = pe(&(5))i(s) + pu(€(5))a(5) = pe(€(s)) + F'(p(€(3))p= (€(5)) () =



Using the definition of z, this gives us the system of ODE

<s> W&fé;; (2(5))
i(s) = F'(=(s)) )

IS

8-

This system of ODE can now (theoretically) be solved locally in time, given some initial
conditions. We opt to use the initial conditions

t(0) =0, z(0) = zg, 2(0) = po(xo).

One upside of this choice, specifically for ¢, is that we can identify ¢(s) = s. We can now
write the system of ODEs @ as only two equations

M) = R F(()

i(t) = F'(2(t))
with the initial conditions

z(0) = To,
2(0) = po(wo).

If we choose a constant width, i.e. W = 1, we get 2(s) = 0. This means that z is
constant along each characteristic. This of course also means that F’(z) is constant, so
the characteristics are straight lines in the plane, of the form z(t) = zo + F'(po(x0))t.
Given the initial conditions, it is now easy to construct the solutions, at least locally.
We are however interested in varying the width of the corridor. For simplicity, we choose
to restrict ourselves to functions W, such that

Wiz) 1
W(z)  p+ge

This stems from the paper by Biirger et al. [I]. The specific form above of the width
allows one to solve the initial value problem exactly in some cases. As we saw earlier,
this form gives us the two-parameter family of functions

p+qw>1/q
p+q '

W(z) = (

With this family of width functions, the system of ODE to solve becomes

; _ _Fw®)
) = T ptax(t)

i(r) = F'(=().

3.2 Discontinuities

The problem with the method of characteristics is that for non-linear PDE the charac-
teristics might cross. At that point, we can no longer use the characteristics to describe
the solution. When the characteristics cross, we will get a discontinuity in the solu-
tion. To understand how a discontinuous function can satisfy a differential equation,
we need to use the concept of weak solutions, the theory of which we will repeat below [9].

10



Suppose a function u = u(x, t) satisfies the partial differential equation
W(x)ug(z,t) + (W(z)F(u(z, 1)), =0,z € R, t > 0. (10)

We multiply this equation by any function ¢ € C3(Rx [0, 0)), that is a function which is
continuously differentiable in both arguments and vanishes outside some compact subset
of R x [0,00). Since u satisfies the equation above, we can integrate

A / D@, 1) + (W (@) F(ulx, 1)) )6 (x, £)dzdt = 0.

Integrating by parts, and noting that many of the boundary terms vanish, we end up
with

/ / (e, £)be (2, )+ W () F(u(, 1)) o (0, 1)) dardt / 6(x, 0)W (2)u(z, 0)dz.

(11)
A function u = u(x,t) is called a weak solution of if it satisfies for all functions
¢ € CH(R x [0,00)). We see that weak solutions need not be differentiable, or even
continuous. It suffices that they are locally integrable. Hence, the solution might have
discontinuities. Suppose that to the left of the discontinuity the solution has the value
p1, and to the right p.. The discontinuity will then propagate with some velocity s. For
the shock to describe a weak solution of the PDE, the velocity must be given by the
Rankine-Hugoniot jump condition:

Flp) = Flp:)

= 5(/017/)1‘) = o—p
r

If py = pr, s is defined as s(p, p) = F'(p). Satisfying this condition is not enough to get
a unique weak solution, however. In order for the solution to be physically relevant, it
also needs to satisfy the Oleinik entropy condition [7]

(pl 0 ) < S( ) Yu € [plapr} if Pl < Pr
= sl u) Vu € [pe,p] i pr < 1

Viewing it geometrically, we let C' : R — R describe the secant through (p;, F'(p1)) and
(pr, F(pr)). Assuming F is C!, the entropy condition is equivalent to

< F([p,pe]) it p1 < 1
> F([pv, p]) if p1 > pr

C([m,pr]){

specifically meaning that C([p1, pr]) < F([p1, px]) if C(p) < F(p) for all p € [0, pmax) and
vice versa. A shock is only allowed (by the entropy condition) if it satisfies the condition
above. The Oleinik entropy condition comes from considering a solution to the equation

u(z,t) + F(u(z,t))s = €ty (,1)

and letting € N\, 0. The limiting function will then satisfy the Oleinik entropy condition.
The entropy condition manifests itself in the following way. Suppose there is either a
discontinuity initially, or that one has developed after some finite time. It is then possible
to construct a weak solution with a discontinuity that satisfies the jump condition.
However, that solution might not satisfy the entropy condition. The physically relevant
solution is then either a rarefaction wave (if the flux function is either convex or concave
in the interval between the solution values) or a combination of rarefaction waves and

11
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Figure 4] Two different initial data leading to either a shock (top) or a rarefaction wave
(bottom).

discontinuities satisfying the entropy condition. A rarefaction wave is continuous fan of
of straight characteristics (if W is constant). The straight line along which the solution
is p is F'(p). For an example of what a rarefaction wave might look like (if W is constant)
can be seen in the bottom right picture in figure 4l A solution on R x [0, 00) satisfying
this condition, along with the Rankine-Hugoniot jump condition, is unique [7].

4 Discontinuous flux

In order to construct solutions to the PDE, we now rewrite the IBVP defined on [0, 1]
as a IVP defined on R. To retain the same solutions, we must show that the solutions
to the IVP above satiefy the boundary conditions. This will be shown in chapter 6. We
reformulate the problem as

(W (@)p(a, ))e + (W) F(pla, 1) =0, 0<x<1,t>0
p(z, ) + Glp(x,t); Fin)e =0,  x<0,6>0
p(z,t) + H(p(x, 1)), =0, 2x>1,t>0
G(p(07,t); Fin) = F(p(0+,t)), t>0
F(p(17,1)) = H(p(1, 1)), t>0
pO(O)v z <0
p(z,0) =< po(z), O0<xz<1,
po(l), x=>1

12



where we have defined the functions

(1)
G(piFu)= {10 P=Pu o (12)
mln{ﬂna mlnge[DFin,p] F(Q)}v p > Prr

(1)

<

H(p) = Floy o= - (13)
Fpy), P> pu

We define the function

Flp,z) =< F(p), O0<z<l1
H(p), z=>1

For the definitions of Fj, and p%vl[), see section 2.3. Graphs of the functions G(-, Fi,) and
H can be seen in figures [§] and [f} We also define the width function W to have the value
W(z) =W(0)ifx <0and W(z) =W(1) =1if z > 0. We likewise define po(x) = po(0)
if x <0 and po(x) = po(1) if > 1. Using this notation, we may write the IVP as

W(x)p(z,t)e + (W(x)F(p(x,t)))e =0, zeR, t>0 (14a)

p(x,0) = po(). (14b)

Figure 5| Graphs of G(p) for two different values of Fj,.

F(p)
===H(p)

P

Figure @ Graph of H(p).

13



In order to construct the solutions, we will first review some theory from [§]. The
only things that have been added here are the sets ' (p1) and I'~(p_). We will restrict
ourselves to the constant-width case and consider the solution of the discontinuous
Riemann problem

pe(z,t) + Glp(z,t); Fin)e =0, <0,t>0 (15)
pe(z,t) + Fp(z,t), =0, x<0,t>0 (16)
G(p(07,1); Fin) = F(p(07, 1)), t>0 (17)
pi, <0
L0) = 18
p(,0) {pr’ " (18)
We define the function values

p+(t) == lim p(£0.1) (19)

+oy
p(t) = lim p+(t +€). (20)

We seek solutions to the PDE in the class
¥ = {p(z,t) : p is piece-wise smooth, p=(t) are piece-wise smooth.}.

By piece-wise smooth we mean a finite number of discontinuities on each bounded set.
Given the values p4, p— € R, we now define the auxiliary functions

Fpipy) o=  Pieelpps F(0) P S i (21)

maX'uE[er,p] F(’U)a P> P+

. F <
Gpsp_) o= 4 el F(0) o <o (22)

mlnve[pf,p] F(U)a p>p-

and the subsets (see figure

P(Fipi)={ps} Ulp:p<pp F(p+eps) > F(p;pi)¥e > 0} (23)
Up:p>pis Flp— € py) < F(p; py)Ve > 0} (24)
N(Gsp-):={p-} U{p:p<p_;Glp+ep_)<Gp;p-)¥e >0} (25)
U{p:p>p; Glp—ep) > Gp;p-)Ve > 0} (26)

We can now also define the set
I(py,p-) == F(R;pr) NG(R; po).
If I(py, p—) # 0, we define the set
U:={peR:F(p;ipy) =Glpip-)},
and if U consists on only one point, we write it as 4. We define the sets
I (py):={o €R: F(o) € F(Uspy)

I (p_):={r eR:G(r) € F(TU;py).

and T'(py,p_) :=T"(py) x I (p_). We can now formulate a lemma.
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p)
== =Flpps)

P(Fip,)  N(Fip)

P P

Figure |7} Graphs of the auxiliary functions ]3'(, ps) and F(-;p_) for specific values of
P+, p—. Also illustrated are the sets P(F';py) and N(F;p_).

Lemma 1. Let p_,py € R be given. If I(py,p—) # 0, then the set T'(py,p_) N
(P(F;ps) x N(G;p-)) consists of exactly one point. Hence, there is a well-defined
function

(pr,p-)=(p",p7) €T(py,p-) N(P(F;py) X N(G;p-)).
The solutions we seek satisfy the following condition:

Definition 2. A solution is said to satisfy condition I if given ¢t and p4(t), p—(t) € R,
then (p*(2), p~ (1)) € T(p+ (1), p—(1))-

We can find the solutions (at least locally in time) by solving the two IVP’s

v+ Fv);=0,zeR, t>0
0
M%®={% z <

P+ z>0

wi+Gw), =0,z R, t>0

p—, w<O0
M%m:{b z>0

separately, where (a,b) = c¢(p4+, p—). We then set

o) = {v(w,t), x>0

w(z,t), =<0

The same procedure holds at = 1. At this boundary the flux function is F for z < 0
and H for x > 0. Consider the discontinuous initial value problem

pi(z, ) + F(p(z,t), ) =0, z€R, t>0 (27)
p(z,0) = po(z), =€R, (28)
with
) = fl(p)’ <0
o) {h@% >0



where f; and fy are Lipschitz continuous. Theorem 5.1 and 6.4 from Andreianov et al.
[13] states that for any py € L*°(R), that is a bounded Lebesgue measurable function,
there exists a unique solution to problem . The solution will satisfy condition I' at
x = 0. Note that in the problem above, W is constant. Since W is continuous, we expect
it to hold for a non-constant W.

16



Part 1T
Construction of exact solutions

5 Geometric properties of the flux function

In order to properly describe the different cases for shock propagation, we first need to
describe certain aspects of the flux function. We define a total of six different functions,
along with five important points in the interval [0,1]. Illustrations of the points and
operators can be found in the figures below.

To make the notation slightly easier, we define I = [0,1]. We start by defining some
important points. The most obvious one is

Pmax = min{p > 0: F(p) = 0}.

After variable transform this point is scaled to 1. For the rest of the points, we assume
that they are scaled. We have mentioned the two local maxima

{0505 ={p eI F'(p)=0,F"(p) <0}

ordered s.t. F(pS&{)) > F(pg\?), the local minimum
pm=p€l:F(p)=0,F"(p) >0,
and the two inflection points
phan=p€L:F"(p) =0,F"(p) >0,
pCh=pel:F"(p)=0,F"(p) <0.
We define the function C': I — I by

Cp = supfu > p2) < s(p,u) > s(p,v) Yo € (p,u)},

and the final special point

pA = sup{pi(if)i <w:3Jv €T such that u = Cv}.

We now define the operator C* : (pi(rllf)q, pa]l — I by

C*p =inf{u < p: s(u,p) > s(v,p) Yo € (u,p)}.

We finally define the four last functions D : F((I) — [0, pgvlj)L D* : [P, F](é)] = [Pm, ,05?],

E: [Fo, FiP'] = [0, pm] and E* 2 [0, FiP] = [o7,1] by
Df = min{u : F(u) }

D*f = min{u > py, : F(u) = f},

Ef = min{u > pE&I) : F(u)

E*f = min{u > ngzf) > pm s Fu) = f1}.

17
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Figure |8| Illustrations of operators and special points.
g

18



6 Boundaries

The weak solutions of hyperbolic conservation laws can (and typically do) include dis-
continuities. How these discontinuities propagate depends on the shape of the flux
function, and the specific values of the solution at either side of the discontinuity. For
notational simplicity, we let p_ be the limit of the solution to left of the discontinuity,
and p4 the limit of the solution to the right. As we saw in chapter 3, the velocity of the
discontinuity is given by

F(p-) — F(p+)

s = 5(p4,p-) =
P—— P+

and the shock is allowed if

s(p_rpy) <s(p—,u)Vu € [p—,p1], p- <p+
Tz s(oo wu e [prp s oo Zpy

Below, we describe the local solutions at the two boundaries for different values of p_, p .
Since the two boundaries behave quite differently, we consider them separately. Since
the boundary condition at the left boundary is F(p(0,t)) = G(p(0,t); Fin), and this is
fulfilled by construction (see chapter 2), we can solve the IBVP by solving the IVP with
discontinuous flux. The same logic holds for the right boundary. We will start with
the left boundary. Once p* (or p~) is determined, one can get the solutions locally in
time using the Rankine-Huginiot and Oleinik conditions. We will give an example at
the end of the chapter. For the rest of this chapter, we will write G(p; Fi,) = G(p). Note
however that the definition of G depends on Fj,. Readers who wish to skip the proofs
should note however equations and (30).

6.1 Left boundary

We now solve the Riemann problem

pt+ F(p)z = 0, x>0,t>0
ot +G(p) = 0, r<0,t>0
p—, <0
p(x,0) = {
P+ z>0

with G as in equation Note that we can also write
G(p) = F(p; DFip).

This also shows that G(p; p_) = G(p) for any p_ € [0, 1]. We classify the solutions using
a few propositions. For the solutions, we are only interested in finding p*. The basic
solution is to find where G(-;p_) = G(-) and F(-;p, ) intersect, and picking p* whose
flux equals the flux at the intersection, subject to some constraints. See figure 0] In
order to minimize the work we have to do, we now first prove a lemma.

Lemma 3. For a discontinuous flux function f defined by

) G(p; Fin), <0
flp,x) = {F(p)’ £>0

with Fip, € [0, F\p], I(py, p-) # O for any py,p— €R.
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—F(p)
== =F(ppy)
- - —G[M -F.ir.')

- . PUFpy)
°

Figure @ Example of how G(-;p_) = G(-) and F(-; p;) intersect.

Proof. Using the definitions, we note that G(-; p_) and F'(+; p4.) are both continuous. We
also note that G(0; p_) = Fy,, > 0, G(1;p_) =0, F(0; p4) = 0 and F(1;p,) = FIS) > 0.
By using the intermediate value theorem, we find that there must be some point p where

G(p; p=) = F(p; p+). Therefore, by the definition of I(p4, p—), it is nonempty. O

Note that since I(py,p_) # 0, P(F;p+)NTF(py) only contains one point. Hence, if
we think we have a suitable candidate for p, we only need to check that it is in this
set.

Proposition 4. If p, € [O,pg\if)], then p*™ = DF,,.

Proof. Since F([O,pg\}[)];er) = [O,FJS)] and
G([0, pif )i p-) = G([0. 93 ) = F((0, 95} DFin) = {Fin}

with F, < FE), there is at least one @ € [0, pg\}l)] such that

F(u; py) = G(u; p-),
using the intermediate value theorem. Note that at this point, F (;
Fi. Hence, T'(p+) 2 {oc € R: F(0) = Fin} © DFj,. Since py € [0,p
of P(F;py) gives that it includes [0, pg\y]. Therefore,

pr) = G(u;p-) =
(], the definition

DFy, € TF(p4) N P(F;py).
As stated above, this shows that p™ = DE,,. O
Proposition 5. If p; > pg\y and Fy, < F(py; DFy), then pt = DF,.

Proof. Notice again that G(p;p_) = G(p) = F(p; DFy,) = F, for p € [O,pg\if)]. Since
DFy, < ps\}[) < p4+ we get two properties. Firstly,

F(DFiy; = min  F(p).
( p+) 0€[DFin,04] )
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This can be seen using the definition of F(-; py). Secondly, F(p4) > G(ps) = F(p4; DFy).
The second property gives that Fi, < F(p4). Note that F is continuous and has only
the local minimum F(p,,,) = Fy, in [0, 1]. Therefore, the first property together with the
second gives that

R . . _Jmin{Fy, Fon, F(p+)},  pm € [DFin, p4]
F(DF1n7p+) - manE[DFin,p+] F(g) - {min{En,F(p+)}, elSe -

o min{-Finva}v Pm € [DFin’p+]
| i, else ’

If p € [DFin,ps], then py > pp and F(py; DFy) < F,, since F(-;p_) is non-
increasing. But since §
En < F(p+;DEn) S Fm7

we get that mm{Fln,Fm} = Fi, if py > pm. Hence, F(DFin;p+) = Fi,. Therefore,
DF, €U and F, € F(U p+). This gives that

I't(py) 2 {oc €R: F(o)=F;,} > DF},.

Since Fi, < F(p4), DFin < py and F' is strictly increasing in a neighborhood of DFj,.
Therefore, the definition of F(p; py) gives that F(DFy, 4 €; p1) > F(DF; py) Ve > 0.
Hence, DF},, € P(F;p.), so DFy, € T (py) N P(F;py). Again, this shows that pt =
DFy. U
Proposition 6. If p, € [pg\i[), pm) U[E*Fy,, 1] and Fy, > F(py; DFy), then pt = p,.

Proof. Using the defintion we see that F'(py;p.) = F(py). Assuming first that Fj, >
F,,, we also notice that

G(p;p—) = F(p), p € [EF, pm] U [E*Fp, 1].

If py € [psvlj), EFy), then F(py) > F(EF,,) = Fin, which contradicts the assumptions
of the theorem. Hence,
P+ € [EFin, pm) U [E*Fp,, 1]
and § .
G(p+ip-) = Fp+) = F(p+;p4)-
Therefore, py € U, and F(py) € F(U; py).

Let’s now assume that Fi, < F,,. Then, for p € [E*Fiy, 1],

G(p;p-) = G(p) = F(p; DFin) = B Fo) = min{F(DFin), F(p)} = F(p)-

The last equality follows from the fact that since Fi, < F,,, F'(p) < 0 for p > E*F,.
Therefore, F(p) < F(E*Fiy,) = Fip = F(DFy).

If pr € [pgvll),E*Fin), then F(py) > F(E*F,) = Fi,, which again contradicts the
assumptions of the proposition. Hence, p; € [E*F,, 1] and

Glpyspy=Flpy) = Flpyipy)-

By the definition of U, py € U, and F(p) € F(U; p, ). Therefore,

I"(ps) 2 {0 €R: F(o) = Fp4)} > ps-

Since p, € P(F;p.), we have that p. € I'"(py) N P(F;py). This shows that pt =
P+ O
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Proposition 7. If py € [pm, E*F,,) and Fy, > F,, then p™ = py,.

Proof. Since p1 € [pm,E*F,,) and by the definition of F we see that F(py) > F,.
Hence,

F(pmip+) = min F(g) = Fp,.

0E[pm,p+]
Since Fi, > F,,, we have that
G(me p-)=G(pm) = F(Pm; DFy,) = min F(o) = min{Fy, Frn } = Fin.
QE[DFiu;P'm]

Therefore, pp, € U, and F(U; py) 3 F,,. Hence,
I't(py) 2{c €R: F(0)=Fu} 2 pm.

If py = pm, then p,, € P(F;p4). If py < py < E*Fy,, then F(py) > Fyy, so,

F(pm + € p1) > F(pm) Ve > 0.

Hence, p,, € P(F;py). This shows that p,, € Tt (py)NP(F;ps). This again shows that
+
P = Pm- O

Consider now the value of F(pT) given p,. We can see that if the assumptions
in propositions 5 and 6 are satisfied, F(p™) = F},. If the assumptions of proposition
7 are satisfied, F(p*) = F(p,). Finally, if the assumptions of proposition 8 are ful-
filled, F(p™) = F,,,. Note however that if the assumptions of proposition 8 are fulfilled,
F(p*) = F(py) and F(py; DFy) = Fy,. All in all,

(1)

Fina P+ SpM
1 .
F(p+) = Fina P+ > Pg\/[), EII < F(p+7DFin)

F(ps), py+ > p\7s Fin > F(ps; DFy)

If py > pg\y, then
F(py;DFy,) = min F(p) = min{F,, min F(o)}.
e€[DFin,p+] 0€lpy p+]

Therefore, we can write F(p™) as

Fin, p+ < pg\})
Flpt) =1 " | | (29)
min{ Fiy, min, o) F(o)}, ps> pg\?

We can see that this matches the left boundary condition in section 2.3. It is also worth
to point out that by construction, F(p*) = G(p™).

6.2 Right boundary

We now solve the Riemann problem

pe+H(p)r=0, >0, t>0
pe +F(p)z=0, <0, t>0

-, =<0
p(z,0) = {p
P+, x>0.
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N{F:p_)

Figure Example of how F(-;p_) and H(-;p4) = H(-) intersect.

where H is given from previously. It is easy to see that we can write

H(p) = F(p; 0).

We can then also see that H(p; p1) = H(p) for any p, € R. We classify the solutions
using a few propositions. For the solutions, we are only interested in finding p~. Analo-
gous to previous section, the basic solution is to find where F'(-; p_) and H(-; p,) = H(-)
intersect, and picking p~ whose flux equals the flux at the intersection, subject to some

constraints. See figure [I0]
Like in previous section, we first prove a lemma.

Lemma 8. For a discontinuous flux function f defined by

_JF(p), <0
f(p,x)—{H(p)’ £>0

I(p4,p-) # 0 for any p4,p— € R.
Proof. We start by noting that

H(0;p1) = H(0) =0,

H(1p1) = H(1) = Fy/,

F(0;p_) = max F(g) > F(0) =0 and
0€[0,p-]

P—

F(1;p_) =0.

Since F'(-;p_) and H(-; p; ) are both continuous, the intermediate value theorem gives us
that there is at least one @ € [0, 1] such that H(@; p4+) = F(@; p—). Therefore, I(p4, p_) #

0.

Note that since I(p4,p—) #, N(F;p—) NI~ (p_) only contains one point. Hence, if
we think we have a candidate for p~, we only need to check that it is in this set. Notice

that H(p) = FIE/}) for p > pg\?.
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Proposition 9. Ifp_ < ps\}l), then p~ = p_.

Proof. Since p_ € N(F;p_), we only need to show that p_ € I'"(p_). We note that F

is non-decreasing in [0, pg\lﬂ. Since p_ < pﬁvl,)

F(p;p-) = max F(o) = F(p_), p€0,p4]].

QE[P;P—]

Since H(p_) = H(p_) = F(p_; ps\}[)) = min W) F(0) = F(p_). Therefore, p_ € U,

0€[p— Py,
and
I~ (p_) 2 {r €R: F(r) = F(p_)} 3 p_.
Hence, p— € I'"(p—) N N(F; p—), which shows that p~ = p_. O

Proposition 10. If p_ > pg\}[) then p~ = pg\}[).

Proof. Note that since p_ > pg\?, there is an interval [pg\}), pg\y + ¢) in which

F(p;p-) = max F(p)=F(p).
0€[p,p-]
As long as § > 0 is small enough, F’ < 0 in (pg\}[), pg\? + ). Therefore, pg\? € N(F;p_).
We also have that g .
F(ph)ip-) = max F(o)=Fy.
Qe[pzu ,p*]

Note also that for any p.,

H(ps04) = HOS) = B3 o)) = FLP.

Hence, pgblf) € U, and

T~ (p-) 2 {r €R: F(r) = Fi;} 5 p}).

Therefore, pg\? € N(F;p_)UI " (p_), and hence p~ = pg\z). O

We can see that

o JFpo), oo <ol
F(p~) = {F(l) S f\{[) ) (30)
M p* pM

which matches the right boundary condition in section 2.3.

6.3 Example of solution

Suppose that W = 1, i.e. that the width of the corridor is constant. The method of
characteristics then produces solutions composed of only straight lines. By using the
propositions from previous sections along with the Rankine-Hugoniot and Oleinik con-
ditions, we can therefore solve the PDE, given an initial pedestrian distribution. We
give an example below.

We let the initial distribution be po(z) = po for = € [0,1]. We choose some value
such that Fi, < F'(po). We start at ¢t = 0. At the left boundary (x = 0) we use proposi-
tion 4] to see that p™ = DF,, < pg. We are then faced with the Riemann problem with
p1 = DF;, and p,. = pg. We can see from figure [L1] that this gives rise to an allowable
shock, with positive velocity.
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= = = Allowable shock

DF,, 0

= = = Allowable shock
= = =Rarefaction wave

P CTP PO

Figure Allowable shocks and rarefaction waves present in the example solution.

At the right boundary (x = 1) we use proposition to see that p~ = p%}). We then
have to solve the Riemann problem with p; = pg and p, = pg\?. Here, the solution is
more complicated. Starting from the left, we first get a shock with negative velocity
from pg to C*pg. After this, we get a rarefaction wave from C*pg to pg\}l). This solution
propagates until the two shocks (one emanating from the left boundary and one from
the right) meet at some time ¢;. Since the velocities of the two shocks are s(DFiy, po)
and s(pg, C*pg), the time to the collision is given by

1 1
t1 = — .
' <S(DFimP0) S(Poac*ﬂo))

When the shocks collide, they turn into one shock with py = DF;,, and p, = C*pg, which
is allowed. Since C*py < po and F(C*pg) > F(po), the velocity will be larger than for the
previous left shock. However, as this shock propagates, it will go through the rarefaction
wave, and p, will decrease. However, since all the values in the rarefaction wave are

inside [pg\}[), C* pol, the shock will always be allowed. Since F’ < 0 in (pg\}f), C*po), as py
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[C] Constant value
ES Rarefaction wave
\ —  Shock

DF;,

Figure Example solution when W = 1. The domains in which the solution is
constant or there is a rarefaction wave are marked out, separated by shocks.

decreases F'(p,) will increase. This will increase the velocity continuously, as it passes
through the rarefaction wave. Finally, the shock will collide with the right boundary.
Using proposition |§| we can see that p~ = DFj, = p_, so the solution will be constant.
Hence, after the shock collides with the right boundary, the solution is constant at
p= DFin.

7 Stationary solutions

While it is hard to construct all different classes of solutions for the general case, we can
find some interesting cases. One such class of cases are the solutions that are stationary
in time. To describe these we consider the PDE in integral form, see Equation @ If
the solution is stationary in time, the left-hand side vanishes, and

/t (F(plarn, )W (1) — F(plara, )W (ar2))dt = 0

for any z1,x2 € [0,1] and any t1,t2 > 0. Since t; and ty are arbitrary, the integrand
must vanish, that is

F(p(z1,t))W(x1) — F(p(xa,t))W(x2) =0, z1,22 €[0,1], ¢ >0.
Since x1 and x5 are also arbitrary,
F(p(z,t))W(z) = ®ss, =z €10,1] (31)
for some constant ®gg. While p might be discontinuous, we still require it to be piece-
wise smooth. Since p(z,t) is by assumption stationary in time, we simply write p(z,t) =

p(x). Since W is non-increasing, F'(p(z)) is maximized when z = 1. We then get
F(p(x)) = ®gs. This sets a restriction on ®gg, namely Pgs € [0, F(pﬁ\?)] Since W'(z) >
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d Pgg

ZF = _

dx (p(2)) W (x)?
in the weak sense. Since F is not injective, the above equations do not determine p(x)

uniquely. If we can give an interval, in which p is located, we can however locally invert
F. We divide [0, 1] into four (non-disjoint) intervals

W'(z) >0

Il = [Oapg\i[)]v 12 = [pg\}[)apm]a 13 = [p7n7pg\24)]7 14 = [/)551); ]

Depending on p, F is either non-decreasing or non-increasing. We have
F'(p)
F'(p)

We can now get two different behaviours. Since %F(p(x)) = F'(p(x))p'(x) > 0, we get

0, peliUls
0, ,OEIQUI4.

IN IV

plx) >0, pelLUI;
/ 0, pc Is U Iy.

in the weak sense. We can also locally invert F(p(z)) = V{{;?;), giving us

1
D (vi?;)) . el =10

1
E(w5). pehiioml I

D* V?f’;)), p € (pm: 7] C I3
E*

2
w5 ), pe (R C

B~
—
8
S—
|
NN

Referring to the local solutions at the boundaries (see chapter 6), we can now state
some extra constraints. In order for the solution to be able to remain stationary at
the boundaries we need that p*™ = p,. This gives us a few options. If p(0) € [0, pﬁvl)}

and Fy, = F(p(0)), then p™ = DF(p(0)) = p(0), so the solution is constant. If p(0) €

(pg\if),pm] U [E*F,,,1] and F,, > G(p(0)), then p™ = p,, so the solution is constant.
Hence, p(0) € [0, pm] U [E*Fp, 1] =: Istars. At o = 1, proposition shows that for
p~ = p— to hold it is sufficient and necessary that p(1) € [0, pg\i[)] =
these observations in a lemma.

: Iong. We summarize

Lemma 11. Suppose p is a solution to @ which is stationary in time. Then p(0) €
Lstart = [0, o] U [E*Fy, 1] and p(1) € Iong = [O,pgvlj)]. For xz € (0,1), p satisfies

(). peboll=1
o (1)
(@) = E(W?fé)), p € (PrrsPm] C Iz (32)
PAE) = D* [ 2ss (2) I
W) P € (pmap]yj] C i3
E* (;5;;) . pe (P c L.

7.1 Discontinuities

In this section we investigate the possibility of discontinuities in a stationary solution.
We will assume the discontinuity is stationary and happens at = zp, with p(zp) = pp
and p(xf;) = pf. Since we want the discontinuity to be stationary, we also require
F(pp) = F(p) := Fp. We assume that W is injective. We can then invert it and get
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)

I I I Iy

Figure Illustration of the different kinds of allowed stationary discontinuities. Also
illustrated are the different intervals in which F is injective.

Table

Range of Fp s p$
[0, Fpn) DF, | E°Fp

(P} DFw | pm
DF,, | E*F,,
Pm E*Fpn
(F.,F?) | DFy | D*Fp
EF, | D*Fp
EF, | E*Fp
GOy | DED | EEP
Py | EFy)

FP FY1 | bRy, | ERp
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Stationary solution of type I

plx)

Stationary solution of type 11

Figure Graphs of the stationary solutions of type I — I, with &g = FIE/}). The
graphs to the right show the fluxes of of the smooth parts, as well as the discontinuities.

Tp = W‘l(%s'f‘). The options for p and p$ for a given Fp are stated in tablebelow.
These are derived by using the Oleinik entropy condition.
Using the constraints in the previous subsection along with the possible discontinu-

ities, we can now describe the different types of stationary solutions. For simplicity,

(1)
we assume that gy = Fzﬁ/}) and that W(0) > iﬂi This ensures that we can use all

possible discontinuities. If one decreases Pgg, this will forbid all but the first two kinds
of solutions. This follows from the fact that F/(p(1)) = ®gg and p(1) € [0, ps\}[)]. Hence, if

Pgg < FI(V}), then p(1) = D®gg < pg\?. Since there are no possible discontinuities ending

up at [0, pg\?], there can be no discontinuities in the solution.

We now describe the six different types of solutions below. For the solutions we as-
sume for simplicity that W (z) is an affine function and W(z) > 1 for + < 1. Changing
the shape of W(z) changes how fast the solution changes, but not the jumps. Note
also that changing W (0) changes the values of F'(p(0)) = V?;?S), and hence also p(0). In
figures and [I5] we have plotted the stationary solutions. We chose to use the affine
width function

W(x) =8 —Tz.

To simplify inverting the flux function we used the polynomial
F(z) = —472* 4 1002 — 6922 + 162

This flux function is the one plotted in the right parts of figures [14] and
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I

(1)
We now start with p(0) € [O,pg\?] and set p(z) = DV?}?;) for0 <z <ap=W-1! (?f‘g )

where Fp € [F,, FI(V})) We then have a discontinuity with pf; = EFp, and set p(x) =

o)
E%, zp < x < 1. Hence,

W ) ST TD
p(x) = F((fﬁ)
WJZ’,I), zp <z < 1.

1I

For this solution we start with p(0) € [E*F,,,1]. We the have an allowed shock from
60

pgfj) to EFZS). This discontinuity happens at zp = W1 (FM ) . We hence set

Fyy
BB <
r < Tp
Wi(z)>
plz) = iR
EW]E;)’ rzp <z <1

111

e)
We now start with p(0) € [0, ,05&1)] with a jump from DF,, to p,, at zp = W! FM) .

We then have a jump from pp = D*F(p(zp/)) to pfy = EF(p(zp/)), where F(p(zp/)) €
[Frn, F](\;)] We set

D%, 0<z<azap
I B O
p(l’)— D W(z)’ rp < T < Tpr

)
Em, Tpr < X § 1.
v

For this solution, we first start with a solution like type I'V. However, instead of the jump
D*F(p(zp/)) to EF (p(zp)), we instead have a jump D*F(p(xp/)) to E*F(p(zp)). We

1
then have a jump from pg\? to EF]S) at xpr = W1 (?&) . We then get the solution
M

arey)
DM 0<zx<uap

D*W]\(4z)7 rp < T < Tp/

1
E*—WJE’Z), :va<x<W_1< Z)

zpr < x < 1.
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o)

1 Stationary solution of type II1
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(2) ™
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0 rp
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1 Stationary solution of type IV
" Wiag) g
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Figure Graphs of the stationary solutions of type IT] —V, with &gg = Fﬁ). The
graphs to the right show the fluxes of of the smooth parts, as well as the discontinuities.
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Part 111
Numerics

8 Godunov’s method

We now present the theory behind one of the most famous numerical methods for cal-
culating numerical solutions to hyperbolic conservation laws, Godunov’s method. This
method, proposed in 1959 is derived from approximating the solution with a piecewise
constant solution, and then solving the arising Riemann problems. We will present
only the description of the method, along with some basic accompanying theory. More
in-depth theory can be found in e.g. [9], or any other book on numerical methods for
conservation laws.

Let p = p(x,t) be a weak solution to the conservation law in equation We now
divide the computational domain x € [0,1] int N cells [z;_1,z;] where z; = j/N for
j=1,...,N. From this choice we define Az = 1/N. We also define t,, = nAt for some
choice of At. Using the integral formulation of the conservation law in equation [6] we
know that

tnt1

/% W(w)p(m,tn+1)dw:/%j W (x)p(z,t,)dr + W (zj—1)F(p(zj_1,t))dt

t’Vl
tni1

- [ WPl )t
tn

We now make the approximation

[ Wt tde Wi [ ol o

=

1 Tj

where Wj—1/2 = Az aj_

 W(z)dz. Defining W; := W (z;), the expression above sim-
plifies to

T T tni1
ij1/2/ p(T, tny1)dr = Wj—1/2/ p(z,tn)dz + Wj—l/ F(p(zj-1,t))dt
Tj—1 Tj—1 t

Jj— Jj—

tnt1
s [ Fpta )i
tn
We now define the numerical solution P to be piece-wise constant
1 i
P(x,t) = -t:zi/ W(x)p(x,t)dx, x € (xj-1,x;).
(z,t) = p;(t) W,_1 20z - (z)p(z,t) (Tj-1,7;)

After also defining p}} := p;(t,), we can (after dividing by AzW;_,5) write the expres-
sion above as

tni1
Wj,l/QA.’E /tn

In order to calculate p?“, we need to solve the Riemann problem, i.e. equation —
for t € [tn, tnt1] with the initial condition

pi-1, T<Tj
p(@,tn) = { ’ ’
Pis T >Tj.

Pt =pl + (Wi—1F(p(xj-1,t))dt — W;F(p(z;,t))] dt.
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The solution to this problem can be described by characteristics and discontinuities,
each traveling at a finite speed below some value V. Hence, if Az > VAtf, no lines
emanating from the neighbouring Riemann problems can cross the line z = x;. (For the
exact value of V, see section 8.1 below.) Therefore, assuming VA—Axt <1, p(xj,t) will be
constant for ¢ € [t,,t,+1]. This means that we only need to solve the Riemann problem
for t € [tn,t, + €] with 0 < e < At to calculate p?“. By considering all cases and using
the construction of the entropy solution from section 3.2 one can show that F'(p(x;,t))

will be given by the Godunov numerical flux

ming. <,<p.., F(p)y  pj < pjt1
FjG = FG(P?vP?+1) = Pimp=pitt 7 ’ J j .
MaXp;>p>pji1 (p)7 Pi > Pji+1

Once these fluxes have been calculated, we can calculate p}”l as

At
il G s G
Py =)= W, 120z (”Jlj ”3*113’71)'

J

Theorem 6.4 from Andreianov et al. [I3] shows that the numerical solutions converge
to some limit function as Az, At — 0, as long as At satisfies the CFL condition

1
~max<{ max |G (o; Fin)|, max |EF'(o)|, max |H’ .
{ s 160 )l s 1700, e 117 (0)
This solution satisfies the Rankine-Hugoniot and Oleinik conditions. Again, this assumes
that W is constant, but we expect it to hold for a continuous W.

9 Approximating the flux function

In this section we describe the approximation of the flux function, based on the data
from [3]. We want to approximate the function F' on the interval [z1,2n] given the
data (z;, Fl)f\il We assume that the x; are distinct and order the data so that x; > x;
whenever ¢ > 7. We do this by approximating F' by a piece-wise cubic polynomial, with
certain regularity conditions.

We partition [z1,2zy] into m intervals Iy = [Ty, ,2n,,,], k = 1,...,m where z,, = 2,
and Z,,,,, = Ty, such that each interval contains at least four points. We define the
spline function S on I by

S(x) := Sp(x) := ag + bpx + cpa® + dpa®, x €I, k>1. (33)

Note that for Equation to be well-defined, we need S to be at least continuous
at the points x,,, k = 1,..., N. (We will later also require that S € C?[0,zy].) We
extend S such that S(x) = Si(z) for x € [0,21]. We also extend S to [zy,00) by
defining implicitly S(z) = Sy (z) for € [N, ZTmax] Where Zpax is the smallest positive
x such that S(z) = 0. We finally set S(z) = 0 for £ > xy.x. While extending S by
S might lead to a function which does not intersect the z-axis for any = > 0, in this
case it works. If one want to make sure that this does not happen, one can extend S
by a second degree polynomial with the same value, first and second derivative at x,, .
Note that since S € C?[z1,zn], we also get S € C?([0, Zmax]). Suppose we want S to
interpolate F' at the data points. For each interval, this gives rise to the systems of
equations

ALQ =Fy,
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where

2 3
1 z, x x
k1 np+1 ng+1 _
Ak _ ] c R(”kJrl nk-l—l)><47
2 3
1 I"kﬂ Ink+1 Nk41
ag Fnk
F'n. .+1
Q=% ert, Fo=| " | ermnmn
Cl ’
d
k F7lk+1

We now write these systems of equations as one linear system
AQ=F,
where

A= diag(Al, ey Am) c R(N+m71)><4m

)

Q? F,
Q F,

Q=| P ler™ F=| | ecrVtmn1
QL F,,

Assuming each I, does not contain exactly four points, this is an over-determined system.
(In any case, requiring continuity will make it over-determined). Hence, it will in general
not have a solution. We therefore seek to minimize

1AQ — F|2.

We however also want S to have certain properties. Firstly, we want S(0) = 0, since

this is a characteristic feature of the flux function. We secondly want S € C?([z1, xn]).
Thirdly, we require

<0, 0<z<al),

§"(z){ >0, 2z <z<a?

infl infl

<0, 22, <z<an

for some specified xl(if){,xg% € [x1,zn] with xl(if)i < xl(izl All these conditions can be

written as linear equalities and inequalities. We do this below.

9.1 Linear equalities

Here we formulate the conditions that S(0) = 0 and S € C?([x1,xx]) as linear inequal-
ities.

I S(0)=0

This is the easiest condition to formulate, as we only require a; = 0. We write this
however as

FoQ=0, Fy=(1,0,0,..,0) € R"**m (34)
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IT Continuity

For continuity, we need that
Sk(xnk+1) :Sk+1($nk+1)7 k=1,2..m—-1
or equivalently

2 3 2 3
(ag + bpwp, , + Ky, T+ dkxnkﬂ) — (ar41 + bpgp12n,,, + Ch+1Ty, ., + dk+1l‘nk+1) =0,

k=1,2,....,m—1.

We define
ng) = (1, Trpgrs lek+17xik+l) € R1X4v k=1,2.,m-1
and
K(()n 7K(()1)
(2 (2
Ko — K, Ky € R(m—1)x4m

(m—1) (m—1)
KO’V?L 7K0m

We can then formulate the continuity condition as
KoQ=0 (35)

IITI Continuous first derivative

To ensure that S € C*([0, Taz]), we require

SIQ (Ink+1 ) = Sllc+1 (Ink+1)
or equivalently

2
Nk41

(bk =+ 2Ck‘rnk+1 + 3dix ) — (bk+1 + 2Ck+1xnk+1 + 3dk+1$2 ) =0.

N41

We define
KM = (0,1,22,,,,,322,_ ) e R4

Nk41

and analogously

1 1
I(g ) —-I(g )
I:gZ) I:§2)

K, c R(m—l)x4m'

m—1 m—1
Ky og(mY
We can then write the condition of S € C([0, Zymaz]) as

K:Q = 0.
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IV  Continuous second derivative

We finally also need to ensure that S € C2[0, Zyax], SO We Tequire

I/c/(xﬂk+1) = Sl/c/Jrl (mnk+1)

or equivalently
(QCk -+ GdkxnkJrl) — (20k+1 + 6dk+1xnk+l) =0.

We therefore define
KM =(0,0,2,62,,,,) e R, k=1,2,...,m—1

and
Kél) —K(Ql)
(2) (2)
K, — K, -K; € R(m—1)x4m_
Kémfl) _Kémfl)
We can now formulate the condition as

K»Q = 0.

We can now write all these linear inequalities as one by defining

Fy
_ | Ko (3m—2)x4m
K= K, eR
K>
and requiring that
KQ =0.

9.2 Convexity/concavity

We now need to formulate the convexity/concavity conditions, i.e.

<0, 0<z<azM

" ) o7 o)
5%(x) { =0, Tinpt ST S Ty -
<0, xfi)ﬂ <z<uwy

To this end, we define the convexity function ¢ : [0, Zmax] — {1,0, —1} by

0, rT=x n)ﬂ
W(@)= -1, al), <z <all,
0 T = x(z)
) infl
17 :Ez(i)]‘l <z S Tmazx

Consider the interval I;. We can then write the condition as
W(xp)(2e + 6dix;) <0, ng <1< ngq.
We define the matrix

K™ =(0,0,2,6z,) e R 1<n< N
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and

Yy, ) K)
K (ni+1)
K(k) _ w(xnk-i-l)K * c R(nk+1_nk+1)><4~
¢(znk+1)K(nk+l)
We finally define the matrix
KO
K (2)
K _ K . c R(N+m71)x4m.
K

The convexity/condition can finally be written as

KQ<o0.

9.3 Linearly constrained least-squares problem

We now find S by first choosing xl(izl and xl(le suitably. Let Q be the solution of the
problem
min [|[AQ' — F||»

Q/€R4m
subject to
KQ =0
KQ<0
and define S : [0, Zymaz] — Ry by
Si(x), z€[0,4]
S(z) =< Sk(x), =€l

Sm(z), = €[N, Tmaz]-

The minimization problem is called a linearly constrained least-squares problem.

9.4 Implementation details

We get the data from [3]. The data is extracted by using an online tool to calibrate
axes, and manually mark the data points. The program then generated the numerical
data. It should therefore be pointed out that the data is an approximation to the data
from [3]. However, the small errors are not important, as we are more interested in
the general form of the flux function, rather than exact numerical accuracy. By looking

at the data, we choose suitable ml(izl, :zcl(jt)q We then start by choosing the knots to be

thi(l) 2 and x N, where

» i

(1) (1)
X = max \T; :xr; < X
i 1Sj§N{ J J inflS>
2

1

; (2)
min {T; :T; > T; .
1Sj§N{ J J infl

We have then defined three intervals. For each interval, we check whether there are
more than eight points in the interval. If so, we add a new knot at n = nx + 4, so as to
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split the interval. We do this until there are no intervals with more than seven points.
Note also that for setting up the matrices A and K, each knot belong to two intervals.
The linearly constrained least-squares problem is solved using Matlab’s built-in function
1sqlin. The results can be seen in the figure below. From this spline we can find the
values of ppax and vyax. The constant phax was found by applying a bisection algorithm
to the spline function. To find vy,ax We remember that the flux function can be written
as

E(p) = pv(p),
and hence
F'(p) = v(p) + pv'(p).
Empirical data (from [3]) shows that the velocity is maximized as p — 0. Given this

assumption, we can write

Vmax = v(0) = F'(0).

Given our spline function, this is simply the coefficient ;. When we have found ppax
and vyax, we can then scale the spline coefficients by dividing by pmax¥max to arrive at
the unit-free flux function described in chapter 2.1.

2 T T T T T

Linearly constained Least-squares spline
+  Data from Helbing(2007)

15
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— 05 s i o b
T b S TN
3 ﬁﬁ# a
-
+

i i I i i
0 2 4 6 8 10 12

Local density (Umz)
Figure Linearly constrained least-squares spline along with the data.

9.5 Remark

Splines (and in particular cubic splines) are often used to interpolate functions. When
this is done, the regularity conditions are put into the matrix A, and one solves the
system AQ = F. This works since the system becomes square (being an interpolation
problem). However, for the over-determined system, we only find the best least-squares
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approximation Q. This means that, if we put the regularity conditions into the matrix
A, the equations would in general not hold, only hold approximately. Since we require
regularity, we instead formulate it as a constraint on the system.

10 Numerical simulation

We saw in chapter 8 that using Godunov’s method (defining the numerical solution to
be piece-wise constant with P(z,t,) := p} for x € (z;_1,2;)) we arrive at the numerical

method At
ntl oo 20 (W FS W FC ). 36
Py Pj IVj—l/zAm ( It J-1 7_1) (36)

where we use the Godunov numerical flux

PG . )M <o, Fp), pj < P
! maxy,>p>p;10 F(0), P > pj

and approximate W;_; /o &~ W(x; — Az/2). In this section, and the following ones, we

will use F' to mean the spline flux function, instead of using S. In the present case, the

flux function is bimodal, i.e. two "bumps”. This means that the function has two local
(1)

maxima, and one local interior minimum. The local maxima are denoted by p;,/ and
pﬁ), where F(pg\il)) > F(pg\?). The local (interior) minimum is denoted by p,,. We can

now give a direct formula for G

min(F(pm), F(p;), F(pj+1)); pj < pj+1s Pm € [pj; pj+1]

min(F(p;), F(pj+1)), Pj < pj+1s Pm & [Pjs Pj+1]

FE = S F(pl)), pi > pists Py, € [pjs1,p5]
F(Pg\?)» Pj > Pj+1; ngf) € [pj+1, 05l Pg\if) ¢ [pj+1, 05l
max(F(p;), F(pj+1)); pi > pivts PS7 057 € i1 pj]

As initial conditions, we integrate numerically using the trapezoidal rule

1 Zj 1
M= A / * po(@)de xS (po(aj1) + po(;))

[\]

Finally, we need to handle the boundary flux conditions numerically. We use the same
boundary fluxes as defined in section 2.3. We therefore set

min(Fin, F(p7)), T < pm
min(Fy, FmaF(p{L»a P > Pm

" (pn),  ponv <Y
Fﬁ:Fﬁ(PN): { Flp )) PN>P( )
M

FS — FE () — {

and apply equation . 36| for Pyt and p”'H

10.1 Non-uniform mesh

For large values of W(0) coupled with large values of ¢, |W’'(z)| becomes very large as
x approaches 1. By construction we know that

W' (z) = W) 1 <p+qx>1/q—1.

ptaqr ptqg\p+tgq

(37)
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We insert the formula [§] for p given ¢ and W(0). To increase readability, we define
¢ = W(0)~ 7. Note that as W(0) and ¢ are large, ¢ > 0 is small. We then get

/_ —
W (z) = 1 (&-ﬁ-%)lq 1:_11—C(1—(1—C)$>1/q 17

hta\ F5+a q ¢ ¢

and in particular for x = 1
w' (1) = _15
7 ¢
Notice that this becomes very negative as ( — 0. Therefore, in order to retain some
accuracy of the numerical solution, when W (0) and ¢ are large, we need a very small
Az. However, since |W’'(x)| is only large for x close to 1, we opt to use a non-uniform
mesh. This is done in the following way:

Pick a small number ¢, and a natural number N. N should be the number of cells,
if they were to be chosen equidistant. Then perform algorithm

Algorithm 1 Nonuniform mesh

1: $0:0,$1:1/N

2. X = [.1‘0,.1‘1]

3: N=1

4: while zy <1 —€do

5: d: W(:EN)—W(.’EN,1)
TN—ZN-1

6: if |d| > N/2 then

T IN+1 = TN — 14

8: =2

9: while zxy41 > 1 do

10: t=1+1

11: IN4+1 =N+ m

12: else

13: .13N+1=J}N+1/N

14: X = [3307 -~-7$N+1]

15: N =length(X) -1
16: if zx <1 —10"7 then
17: X = [mo,...,xN,l]

10.2 Evacuated pedestrians

Our main objective is to study the amount Q(t) of evacuated pedestrians during the
time 0 to t. We calculate Q(t,) by using the formula

nAt nAt
Qt.) =Qudt) = [ WOF((L )= [ Fle(1,m)dr
0 0
where the last equality holds since W(1) = 1. We approximate the integral using a
Riemann sum and use the numerical flux F§ at time kAt

n—1

B nAt ~ -
Qltn) = / Flp(,m)dr ~ Y FG (o)At

k=0
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W(x)

_5 1 1 1 1 1 1

Figure Example of non-uniform mesh for width profile with W(0) = 8.0,
The parameters were set to N = 50, e = 0.01.
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10.3 Stationary flow

We will in the next chapter want to compare the flux of our numerical solutions to the
flux of a stationary solution. As we saw in chapter 7, a stationary solution p = p(x) can
be described by

W(z)F(p(z)) = Pss
for some constant ®gg. We can determine ®gg by noting that ®gs = F(p(0))W(0). The

numerical solution P has the value P(0,nAt) = p7. Hence, we compare F(P(z,t)) with
v{{;?i) where we set ®gg = F(p7)W(0).

10.4 CFL condition

The Courant-Friedrichs-Lewy (CFL) condition is a restriction on At which guarantees
numerical stability. Biirger et al. [I2] derived a CFL condition for the model above
when the mesh is uniform:

Az
At <
= M pmax

where

M =

{ Wi Win }
max 9 ’
3=0,1/2,1,3/2,...N=1/2 | Wjyt1/2” Wit1/0

Brmax = Jnax, |F'(0)].

Since W' < 0, we know that W; > Wj+1/2 > W;41. Hence, we can write

W
M= max { J }
j=0,1/2,1,3/2,....N—1/2 W7’+1/2

11 Results

We now wish to investigate whether there is a way to choose p and ¢ (actually, W (0)
and ¢) such as to maximize the total amount of evacuated pedestrians @ after some
time ¢. For simplicity we let the initial distribution of pedestrians be uniform, and the
choice of Fj, be constant in time. We have not found an efficient, or even feasible, way
to optimize the choice of parameters. We instead picked various values of py and Fi,.
The values of pg were spread out, to hopefully cover a representative sample of solutions.
For each choice of pg, there were (whenever possible) two choices of F}y, : one such that
Fin < F(po) and one such that Fi, > F(pg). Once py and Fj, were chosen, two sets of
simulations were performed.

In the first set, W(0) = 2 and ¢ took on the values 0.1, 1.0 and 4.0. In the second
set, ¢ = 4.0 and W(0) took on the values 2, 4 and 8. Once the simulations were per-
formed, we calculated the total amount of evacuated pedestrians as a function of time,
and plotted the results against one another. In figures below we show a represen-
tative sample of the various plots. All the plots can also be found in the appendix. In
each figure we have also plotted the flux function for reference.

In figure [18| ¢ was varied while keeping W (0) constant at W(0) = 2. The different
choices of ¢ give different width profiles, which can be seen in figure 2l We see that the
amount of evacuated pedestrians only differ if F(pg) < Fin, and even if F(pg) > Fin,
it only varies slightly. In both the top left and bottom left plots, the difference has an
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upper limit, which is very small in the grand scheme of things. After a while, the rate
of evacuation is constant, independent of ¢. The difference is at what time this constant
is reach, and this gives rise to the small difference. However, even if the difference is
small, a larger value of ¢ seems to give a slightly better result.

g is varied and p is chosen s.t. entry-width is constant at W(0) = 2

- - - -
py=0 ,F, =F(02) po=rly) F, =F(02)
=12 =12
] ]
[ = c
o o
= 08 £ 0.8
o o
S S
2 06 2 06
(=} (=
n=) =)
o 0.4 O 0.4 q=04
m m
B 0.2 3 0.2 9=10
I%i E q=4.0
0 0
0o 0 2 4 6 8 10
time ¢ time ¢
Py = b, »F, =F(0.01) Py = Py +Fy, =F(0.3)
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= =
(] (1]
= = 08
[73] ol
S =
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[=N [=N
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e
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0.1 0.2 0.3 Y 0.6 Pen 2 09 1

7

Figure Amount of evacuated pedestrians as a function of time, for various initial
conditions and in-fluxes. For each choice of initial condition and in-flux, three different
simulations were performed at different values of q.

In figure W (0) was varied while keeping ¢ constant at ¢ = 4. While we see that
again Q(t) only varies if F/(pg) < Fin, this time the difference is significant. While the
rate of evacuation becomes constant at some point, the constant is different for different
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values of W(0), and so the difference increases as time increases. A larger value of W (0)
gives a better result. Since the difference in the top-left figure is so small, figure 4 shows
a piece of the diagram zoomed in. Again, more results can be found in the appendix.
To explain the variance in Q(¢) when changing ¢ or W(0), we plot the solution at time
t = teng, the largest value of ¢ for each simulation. In the figures below, the solution
at t = tenq is compared to the theoretical stationary solution. Since we are primarily
interested in the flux, we plot the flux of the two solutions (simulated and stationary).
We see that the two solutions agree pretty well with one another. Therefore, to explain
the difference in @ we need only study the properties of the stationary solutions, see
chapter 7.

In this chapter we found that the class of stationary solutions is given implicitly by
F(p(x)) = V;{;f;) for some constant 0 < $gg < FJS). Note that W (1) = 1 for all choices
of p and ¢, by design. Suppose we are given some fixed F'(p(0)). Keeping this fixed, we see
that ®gg is proportional to W(0). Note therefore that F'(p(1)) = V;{;?i‘) = Pgg x W(0).
Hence, a larger choice of W(0) is better. We also see that this choice is independent of
q, as long as W(0) is kept fixed.

A reasonable thought is that it is not interesting to compare solutions with different
W(0) and the same F},. Suppose that the actual flux-density coming into the corridor is
Fi,. Then, the total flux into the corridor is ®;, := F;,W(0). Hence, a more reasonable
comparison might be between solutions where ®;, is constant. This comparison is done
in figure This graph resembles the bottom left graph in figure The difference is
that while the outflux is eventually equal for all solutions, it takes longer for them to
stabilize. The figures 22| and 23] suggest the the solutions tend to stationary solutions,
since ®(z) is approximately constant. Hence, keeping ®;,, constant the choice of W (0)
and ¢ eventually do not affect the flow. They can however affect the transient flow.
While figure [18| suggests that ¢ has little effect, figure [21] suggests that W (0) can have
a large effect. This effect can also be seen in figure 24 where the outflow is plotted as a
function of time.

In the previous simulations the initial distributions were all constant. To demon-
strate that the apparent convergences towards the stationary solutions do not depend
on the initial distribution being constant, we also performed a simulation with a piece-
wise constant initial distribution. The initial distribution can be seen in figure 25 below,
and the value of ®(x) can be seen in figure

44



g is constant at 4 and p is chosen s.t. entry width varies
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Figure Amount of evacuated pedestrians as a function of time, for various initial
conditions and in-fluxes. For each choice of initial condition and in-flux, three different
simulations were performed at different values of W (0).
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q is constant at 4 and p is chosen s.t. entry width varies
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12 Discussion

We saw in the previous section that it appears that the amount of evacuated pedes-
trians is maximized by maximizing W(0) and to a lesser extent maximizing g. This
seems to come as a consequence of the solutions approaching the stationary solutions.
If one wishes to compare the same value of ®;, = Fi,W(0), the values of ¢ and W(0)
eventually have no effect on the outflux. However, they (in particular W(0)) affect the
transient flows, with larger values of ¢ and W (0) leading temporarily to larger outfluxes.

Note however that when setting up the model we assumed that pedestrians only move
forwards, in one direction, and that movement side-to-side in negligeble. For large values
of W(0) the width of the corridor is far from constant. Hence, the movement side-to-side
is not negligeble. For pedestrians close to the walls, the movement becomes dominated
by side-to-side movement as they approach x = 1. Therefore, the velocity (and hence
the flux) in the forward direction will be much smaller than what the model suggests.
This might have a large impact on the amount of evacuated pedestrians.

These observations suggest that the model breaks down for large values of W (0). In
order to get a more accurate simulation of the pedestrian movement, one would have to
extend this model to 2D. This has been done, most noticably in [10]. By necessity, in
2D one has to determine in what direction the pedestrians will move. One then has to
define a potential, and the model becomes much more complex. While interesting, this
is outside of the scope of this Master’s thesis.

It is also noteworthy to point out that the forms of the fluxes G and H on each side
of the computational domain are chosen so as to given what seems like a reasonable
influx and outflux. These fluxes are not approximated from any data or derived from
first principles. Hence, one would also need to test whether these fluxes coincide with
the reality of pedestrian evacuation.
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Part IV
Appendix

A More figures

g is varied and p is chosen s.t. eniry-width is constant at W(0) = 2

- |2 - i =
py=pd F_=F(0.01) po=pd F, =F(0.03)
= 25 = 2
S G —
w2 0 e
S 518
= =
@15 = @
= =} 1
@ @
[=} 1 (=}
E q=01 E q=01
Sos q=10 gos5 q=10
a q=40 o q=40
- =3
w o w o
0 10 20 30 40 50 1] 10 20 30
time t time ¢
py =092 ,F_=F(0.01)
= 25
Q‘ =
@ 2
o
= 2
@15
=
g
= 1
£ q=0.1
g 0.5 g=1.0
8 =40
=
W oo
0 10 20 30 40 50
time t
0.15 T T T T T T T T T T T T
01+ S — -
. - “\
i .
0.05 B
\l\\-‘-\-\_\-\_\_‘_‘—\—\___——___\_""-\_
-‘““\._\
D 1 1 1 1 1 1 1 1 1 1 1 1 \‘
0.1 0.2 0.3 f’u] 0.6 P S8 09 1

7

Figure Amount of evacuated pedestrians as a function of time, for various initial
conditions and in-fluxes. For each choice of initial condition and in-flux, three different
simulations were performed at different values of q.
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simulations were performed at different values of W (0).
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