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Abstract

When designing a building one must consider safety aspects. One such aspect is that
in the case of an emergency people should be able to efficiently evacuate the build-
ing. In this paper we investigate how the width-profile of a corridor leading to an exit
might affect the efficiency of evacuation. We model the dynamics of crowds using a
continuum model, leading to a one-dimensional non-linear hyperbolic conservation law,
a type of partial differential equation. The width-profile of the corridor is given by a
two-parameter function, and we seek the best choice of these parameters.

In the first part of the Msc thesis we introduce the model, along with the theory needed
to find exact solutions. In the second part we investigate how solutions behave near the
boundary, and use this to find an exact solution when the width is constant. We then
classify all stationary solution, when the width is non-constant. In the third part we
investigate the conservation law numerically, using Godunov’s method.

The numerical results suggest that the optimum choice of width-profile is to let the
corridor have a convex profile with as large width in the entry to the corridor as possi-
ble. However, if one scales the density such that the maximum rate of people entering
the corridor is constant, the variance is only temporary. The model also breaks down
as the width at the entry increases, as one can no longer assume that people only move
in one direction.
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Matematik för nödsituationer

Populärvetenskaplig sammanfattning

Du är en arkitekt och skall designa en byggnad. Du behöver göra en utrymningsväg.
Till nödutg̊angen leder en korridor. Vad händer om du ändrar p̊a korridorens bredd?
Vad händer om du gör den konisk? Dessa fr̊agor försöker vi i den här rapporten svara p̊a.
I nödsituationer, till exempel vid brand, kan en effektiv utrymningsväg vara skillnaden
mellan liv och död.

För att beskriva hur snabbt folk rör sig igenom korridoren använder vi en differential-
ekvation, d.v.s. en ekvation som beskriver hur saker ändras. Vi studerar sedan ekva-
tionen numeriskt, d.v.s. vi l̊ater datorn beräkna ungefär hur folk rör sig genom korri-
doren. Vi testar olika former p̊a korridoren och olika mängder folk. Vi har begränsat
oss till korridorer som är bredare vid inloppet och smalnar av vid utg̊angen. Vi finner
att det finns en viss skillnad i hur snabbt folk kan evakueras, när man ändrar bredden
vid inloppet. Ett bredare inlopp (även om nödutg̊angens bredd inte ändras) är i vissa
fall bättre. D̊a modellen antar att folk endast rör sig framför allt fram̊at stämmer mod-
ellen dock sämre överens med verkligheten om inloppsbredden är för stor. D̊a behöver
folk röra sig till stor del i sidled, och kan inte springa lika snabbt fram̊at. Vi kan dock
använda oss av modellen för de mindre extrema fallen.

Simuleringarna visade p̊a ett mycket intressant resultat. Tätheten av människor i korri-
doren blev till slut näst intill stationär. Detta betyder att den inte ändras allt eftersom
tiden g̊ar. Exakt hur hög denna densitet är har en viktig p̊averkan p̊a hur snabbt folk
kan evakueras. Det kunde till exempel vara ganska f̊a människor vid inloppet, men
mycket tätare folkmassa vid utg̊angen. Denna situation ändrades sedan inte, den var
stationär. Detta betyder inte att folk inte g̊ar in eller ut genom korridoren, bara att
tätheten är konstant. Ett exempel kan ses p̊a figuren nedan.

Även om människorna rör sig fram̊at, s̊a ändras inte tätheten.

I den övre bilden g̊ar folk fram̊at i olika hastigheter. I den undre bilden har n̊agra sekun-
der g̊att, och folk har rört sig fram̊at. Dock har inte tätheten ändrats i n̊agon punkt,
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även om folk rört p̊a sig. Resultaten antyder att detta beteende ofta dyker upp, och
har en stor p̊averkan p̊a hur snabbt folk kan evakueras. Vi kan ocks̊a p̊averka beteendet
genom att välja olika former p̊a korridoren.

Det är dock värt att poängtera att vi använt en relativt simpel modell. Vill man f̊a
ännu mer p̊alitliga resultat man göra modellen mer komplex, till exempel l̊ata folk röra
sig i sidled. V̊ara resultat är dock en bra start! De antyder att formen p̊a korridoren
kan göra skillnad, och denna skillnad kan vara mycket viktig i nödsituationer. Kort sagt
borde formens inverkan p̊a evakuering undersökas närmre, med komplexare modeller.
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1 Introduction

When designing a building, there are many things to consider. One of the more impor-
tant aspects to consider is the safety in case of an emergency. If a fire would start, one
needs to be able to evacuate people as quickly as possible. In this Master’s thesis we
consider the design of a corridor, leading to an emergency exit. Is there a way to design
the corridor to minimize the time it takes to evacuate the building? This question puts
us in the realm of pedestrian dynamics, the theory and modeling of how people move
about. This subject is of course of immense importance, and has been studied more and
more over the years.

Due to their unpredictability, modeling people is a difficult task. In this Master’s thesis
we have tried to use a very simple model of pedestrian flow. This model is for example
used to model sedimentation in water treatment plants [1]. We study the width of the
corridor, assumed to be continuous, and ask whether one can choose the width profile
in a way as to maximize the evacuation of pedestrians. The model is a one-dimensional
non-linear partial differential equation, which can be written as

∂

∂t
(W (x)ρ(x, t)) +

∂

∂x
(W (x)F (ρ(x, t))) = 0

where ρ(x, t) is the unknown unit-less local area fraction of pedestrians at the point x
and time t in the corridor, whoch has the (normalized) width W (x). The function F
is called the flux function and it is the non-linearity of this function which makes the
equation non-linear. The flux function can be written as

F (ρ) = ρv(ρ)

where v is the unit-less velocity function. The graph of this function is also sometimes
called the fundamental diagram, and is the subject of much research also in traffic flow.
While most papers use a famous empirical function by Weidmann [2], the function might
not hold in emergency situations. In this thesis, we have instead opted to data from
Helbing et al. [3]. In their paper, they studied video recordings of a crowd disaster on
the Jamarat bridge during the Hajj on 12 January 2006 (1426H). The stampede that
occurred tragically led to the death of more than 360 people [4]. While the function from
[2] has the velocity being a decreasing function of the local density, [3] presents data
that showing that for high enough densities the velocity function decreases slower than
in [2]. This gives the flux function an entirely different shape, namely two ”bumps”
(see figure 1). The dire situation in [3] presents a more reasonable example of what
pedestrians dynamics might look like in an emergency situation, and it is for that reason
we have chosen to use it in this Master’s thesis.
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Figure 1. Comparison with the empirical velocity function and flux function from [2] in
the blue line with the data from [3] in orange stars. Other noteworthy data are [5] in
blue dots and [6] in green circles.

This Master’s thesis is divided into three main parts. In the first part we introduce
the model as an initial-boundary value problem, and introduce the underlying theory,
for example the method of characteristics and the conditions of Rankine-Hugoniot and
Oleinik [7]. We also formulate the problem as an initial value problem on R×R+, which
will help us construct exact solutions as well as guarantee uniueness. In the second part
we construct and study analytic solutions in special cases. Importantly, we discuss the
behaviour of stationary solutions. Readers only interested in the numerics could skip
this part, but note equation (31). The third part focuses on the numerical solution
of the problem. We review the construction of Godunov’s method [9], and mention a
theorem of convergence. We then construct a linearly constrained least-squares spline
to the data from [3]. After this, we discuss how the problem was solved numerically.
We then present some numerical results, as well as discuss their validity.
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Part I

Theory

2 The model

In this Master’s thesis we use a continuum approach to model the flow of pedestrians.
We consider a corridor of length L and varying width W̃ (x̃), x̃ ∈ [0, L]. Let ρ̃ be the
local density of pedestrians, measured in 1/m2. Each pedestrian has a velocity ṽ, mea-
sured in m/s, which is assumed to only be dependent on the local density,ṽ = ṽ(ρ̃). The
velocity is assumed to vanish for high enough densities, i.e. ṽ(ρ̃) = 0, ρ̃ ≥ ρmax. The
flux (or the flow) of pedestrians at each point is then F̃ (ρ̃) = ρ̃ṽ(ρ̃) with the unit 1/(ms)

Consider an arbitrary interval [x̃1, x̃2]. The number of pedestrians in that interval is∫ x̃2

x̃1

ρ̃(x̃)W̃ (x̃)dx̃.

Assuming that the density is non-uniform, the number of pedestrians in the interval will
change over time t̃, according to

d

dt̃

∫ x̃2

x̃1

ρ̃(x̃, t̃)W̃ (x̃)dx̃ = F̃ (ρ̃(x̃1, t̃))W̃ (x̃1)− F̃ (ρ̃(x̃2, t̃))W̃ (x̃2). (1)

The terms on the right hand side are the influx and the outflux, respectively. Assuming
that F, ρ,W ∈ C1([0, ρmax]), the right-hand side of this can be written as

F̃ (ρ̃(x̃1, t̃))W̃ (x̃1)− F̃ (ρ̃(x̃2, t̃))W̃ (x̃2) = −
∫ x̃2

x̃1

∂

∂x̃
(F̃ (ρ̃(x̃, t̃)W̃ (x̃))dx̃.

We can now insert this, and take the derivative with respect to t̃ under the integral, to
get ∫ x̃2

x̃1

(
∂

∂t̃
(ρ̃(x̃, t̃)W̃ (x̃)) +

∂

∂x̃
(F̃ (ρ̃(x̃, t̃)W̃ (x̃))

)
dx̃ = 0.

Since the choice of [x̃1, x̃2] is arbitrary the integrand vanishes. We therefore get the first
order non-linear partial differential equation (PDE)

∂

∂t̃
(ρ̃(x̃, t̃)W̃ (x̃)) +

∂

∂x̃
(F̃ (ρ̃(x̃, t̃)W̃ (x̃))) = 0.

This PDE needs to be coupled with initial conditions and boundary conditions. We will
leave out the boundary conditions for now, and simply write

∂

∂t̃
(ρ̃(x̃, t̃)W̃ (x̃)) +

∂

∂x̃
(F̃ (ρ̃(x̃, t̃)W̃ (x̃))) = 0, x̃ ∈ [0, L], t̃ > 0 (2)

ρ̃(x̃, 0) = ρ̃0(x̃), x̃ ∈ [0, L]. (3)

2.1 Dimensionless variables

We now make a transformation of the variables, to make them unit-less. There will be
a pattern in how we define our new variables. We start by writing

x̃ = xL, x ∈ [0, 1].
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This transforms the derivative
∂

∂x̃
=

1

L

∂

∂x
.

We likewise write
W̃ (x̃) = W̃ (L)W (x̃/L) = W̃ (L)W (x).

This gives rise to the condition W (1) = 1. We also write

ρ̃(x̃, t̃) = ρmaxρ(x̃/L, t) = ρmaxρ(x, t), ρ ∈ [0, 1].

The scaled time t will be defined below. To transform the flux function F̃ it is easier to
first transform the velocity ṽ. We write

ṽ(ρ̃) = vmaxv(ρ̃/ρmax) = vmaxv(ρ).

We then define the scaled flux function F by writing

F̃ (ρ̃) = ρ̃ṽ(ρ̃) = ρmaxρvmaxv(ρ) = ρmaxvmaxF (ρ).

We finally define the scaled time by writing

t̃ = tL/vmax

and the derivative
∂

∂t̃
=
vmax

L

∂

∂t
.

We can finally write the PDE (2) in terms of the scaled variables

vmax

L

∂

∂t

(
W̃ (L)W (x)ρmaxρ(x, t)

)
+

1

L

∂

∂x

(
W̃ (L)W (x)ρmaxvmaxF (ρ(x, t))

)
=

W̃ (L)vmaxρmax

L

(
∂

∂t
(W (x)ρ(x, t)) +

∂

∂x
(W (x)F (ρ(x, t)))

)
= 0.

Dividing each side by the constants, we get the PDE (coupled with initial conditions)

∂

∂t
(W (x)ρ(x, t)) +

∂

∂x
(W (x)F (ρ(x, t))) , x ∈ [0, 1], t > 0 (4)

ρ(x, 0) = ρ0(x), x ∈ [0, 1] (5)

With the transformed variables (and integrating with respect to t) we can now write
Equation (1) as ∫ x2

x1

ρ(x, t2)W (x)dx−
∫ x2

x1

ρ(x, t1)W (x)dx =

=

∫ t2

t1

(F (ρ(x1, t))W (x1)− F (ρ(x2, t))) dt, x1, x2 ∈ [0, 1], t2 > t1. (6)

The transformation of variables also gives rise to some conditions on the various func-
tions:

ρ ∈ [0, 1], W (1) = 1, F (0) = F (1) = 0.

6



Figure 2. Width profiles for various choices of q and W (0).

2.2 Width of corridor

As will later be shown, it is preferable if the width of the corridor satisfies the condition
(see [1])

W ′(x)

W (x)
=

1

p+ qx
.

for some p, q. From this we can deduce the form of the width,

d

dx
log(W (x)) =

d

dx

(
1

q
log(p+ qx)

)
⇐⇒ log(W (x)) =

1

q
(log(p+ qx)− logC)

⇐⇒ W (x) =

(
p+ qx

C

)1/q

.

The condition W (1) = 1 determines the constant C, leaving us with W being of the
form

W (x) =

(
p+ qx

p+ q

)1/q

. (7)

We want the corridor to be narrowing off as x increases, i.e. W ′(x) ≤ 0. Together with
W (x) > 0 this sets conditions on p and q:

p < 0, p+ q ≤ 0.

During the numerical simulations we will want a specific value of q and W (0). Once
these values have been determined we can solve for p:

p =
q

W (0)−q − 1
. (8)
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Figure 3. General form of the flux function. The global maximum ρ
(1)
M has been marked

out.

2.3 Boundary conditions

While we could define the problem on R×R+, we are interested only in the behaviour of
the solution inside the corridor. We also cannot have an infinite domain of computation.
Therefore, we need some boundary conditions. Hyperbolic PDE, especially conservation
laws, do not necessarily have solutions for Dirichlet or Neumann boundary conditions.
We therefore opt to choose another kind of boundary conditions. We choose the flux at
the boundaries to be some value. This condition is equivalent to setting a mix of Dirichlet
and Neumann boundary conditions, but with multiple options. More specifically, we set
the condition on ρ(0, t) that

F (ρ(0, t)) =

{
Fin, ρ(0+, t) ≤ ρ(1)

M

min{Fin,min
%∈[ρ

(1)
M ,ρ]

F (%)}, ρ(0+, t) > ρ
(1)
M

,

F (ρ(1, t)) =

{
F (ρ(1−, t)), ρ(1−, t) ≤ ρ(1)

M

F (ρ
(1)
M ), ρ(1−, t) > ρ

(1)
M

for some constant Fin, where ρ(0+, t) = limx↘0 ρ(x, t) and ρ(1−, t) = limx↗1 ρ(x, t).

Figure 3 shows the general form of the flux function, along with global maximum ρ
(1)
M .

The motivation for this form of the boundary conditions goes as follows: Suppose that
before the corridor we have a large room and that at the entrance of the corridor we
have some density ρin with F (ρin) = Fin. The pedestrians will then want to flow into
the corridor with a flux Fin. However, if the density inside the corridor is high enough,
they will not be able to, and the flux will be limited by the density inside the corridor.

8



We suppose that there is a large enough amount of pedestrians before the corridor that
they can pack the area before the corridor fast enough so that ρin does not change. We
suppose that after the corridor we have an exit into a large room (or outdoors to a large
field/parking lot etc.) We suppose that even if the pedestrians are at a high density
before the exit, after the exit they will be able to spread out into the large area. We

therefore make the assumptions that if the pedestrians are at a density ρ ≥ ρ
(1)
M , they

will nevertheless be able to exit the building at the largest flux F (ρ
(1)
M ). It should be

noted that the boundary conditions neither stem from first principles nor any empirical
data. Rather, they are picked because they seem to the author to be reasonable. It is
worth pointing out that they will also allow us to guarantee that the initial-boundary
value problem (IBVP) has a unique entropy solution, which will be shown later.

We will reformulate the boundary value problem as an initial value problem on R with
a discontinuous flux function. This will show that the problem has a unique entropy
solution. Before we do this, we first repeat some theory of hyperbolic conservation laws.

3 Method of characteristics

As there is no general theory for PDEs, they can be quite hard to solve. Fortunately,
when it comes to first order equations, we can transform the PDE to a system of ordinary
differential equations (ODE). This is called the method of characteristics. We will
describe this while applying it to our PDE. The theory below can be found in most
books on partial differential equations. A brief summary can be found in [1].

3.1 Smooth solutions away from discontinuities

We want to solve the PDE

W (x)ρt(x, t) + (W (x)F (ρ(x, t)))x = 0

or, in another form in regions where the solution is smooth

ρt(x, t) + F ′(ρ(x, t))ρx(x, t) = −W
′(x)

W (x)
F (ρ(x, t))

Suppose now we take a curve ξ (called a characteristic)

ξ : [0, T )→ R2, ξ(s) =

(
x(s)
t(s)

)
in the x-t plane, identified with R2. We also define the function

z(s) = ρ(ξ(s)).

By differentiating this function (using the notation ż = dz
ds ), we get

ż(s) = ∇ξρ(ξ(s)) · ∇ξ(s) = ρt(ξ(s))ṫ(s) + ρx(ξ(s))ẋ(s).

Guided by this observation, we choose the functions x and t implicitly such that

ẋ(s) = F ′(ρ(ξ(s)),

ṫ(s) = 1.

This choice gives us the nice expression

ż(s) = ρt(ξ(s))ṫ(s) + ρx(ξ(s))ẋ(s) = ρt(ξ(s)) + F ′(ρ(ξ(s))ρx(ξ(s))(s) =

9



= −W (x(s))

W (x(s))
F (ρ(ξ(s))).

Using the definition of z, this gives us the system of ODE
ż(s) = −W

′(x(s))
W (x(s)) F (z(s))

ẋ(s) = F ′(z(s))

ṫ(s) = 1.

(9)

This system of ODE can now (theoretically) be solved locally in time, given some initial
conditions. We opt to use the initial conditions

t(0) = 0, x(0) = x0, z(0) = ρ0(x0).

One upside of this choice, specifically for t, is that we can identify t(s) = s. We can now
write the system of ODEs (9) as only two equations

ż(t) = −W
′(x(t))

W (x(t)) F (z(t))

ẋ(t) = F ′(z(t))

with the initial conditions

x(0) = x0,

z(0) = ρ0(x0).

If we choose a constant width, i.e. W ≡ 1, we get ż(s) = 0. This means that z is
constant along each characteristic. This of course also means that F ′(z) is constant, so
the characteristics are straight lines in the plane, of the form x(t) = x0 + F ′(ρ0(x0))t.
Given the initial conditions, it is now easy to construct the solutions, at least locally.
We are however interested in varying the width of the corridor. For simplicity, we choose
to restrict ourselves to functions W , such that

W ′(x)

W (x)
=

1

p+ qx
.

This stems from the paper by Bürger et al. [1]. The specific form above of the width
allows one to solve the initial value problem exactly in some cases. As we saw earlier,
this form gives us the two-parameter family of functions

W (x) =

(
p+ qx

p+ q

)1/q

.

With this family of width functions, the system of ODE to solve becomes

ż(t) = − F (z(t))
p+qx(t)

ẋ(t) = F ′(z(t)).

3.2 Discontinuities

The problem with the method of characteristics is that for non-linear PDE the charac-
teristics might cross. At that point, we can no longer use the characteristics to describe
the solution. When the characteristics cross, we will get a discontinuity in the solu-
tion. To understand how a discontinuous function can satisfy a differential equation,
we need to use the concept of weak solutions, the theory of which we will repeat below [9].
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Suppose a function u = u(x, t) satisfies the partial differential equation

W (x)ut(x, t) + (W (x)F (u(x, t)))x = 0, x ∈ R, t > 0. (10)

We multiply this equation by any function φ ∈ C1
0 (R×[0,∞)), that is a function which is

continuously differentiable in both arguments and vanishes outside some compact subset
of R× [0,∞). Since u satisfies the equation above, we can integrate∫ ∞

0

∫
R

(W (x)ut(x, t) + (W (x)F (u(x, t)))x)φ(x, t)dxdt = 0.

Integrating by parts, and noting that many of the boundary terms vanish, we end up
with∫ ∞

0

∫
R

(W (x)u(x, t)φt(x, t)+W (x)F (u(x, t))φx(x, t))dxdt = −
∫
R
φ(x, 0)W (x)u(x, 0)dx.

(11)
A function u = u(x, t) is called a weak solution of (10) if it satisfies (11) for all functions
φ ∈ C1(R × [0,∞)). We see that weak solutions need not be differentiable, or even
continuous. It suffices that they are locally integrable. Hence, the solution might have
discontinuities. Suppose that to the left of the discontinuity the solution has the value
ρl, and to the right ρr. The discontinuity will then propagate with some velocity s. For
the shock to describe a weak solution of the PDE, the velocity must be given by the
Rankine-Hugoniot jump condition:

s = s(ρl, ρr) :=
F (ρl)− F (ρr)

ρl − ρr
.

If ρl = ρr, s is defined as s(ρ, ρ) = F ′(ρ). Satisfying this condition is not enough to get
a unique weak solution, however. In order for the solution to be physically relevant, it
also needs to satisfy the Oleinik entropy condition [7]

s(ρl, ρr)

{
≤ s(ρl, u) ∀u ∈ [ρl, ρr] if ρl ≤ ρr

≥ s(ρl, u) ∀u ∈ [ρr, ρl] if ρr ≤ ρl.

Viewing it geometrically, we let C : R → R describe the secant through (ρl, F (ρl)) and
(ρr, F (ρr)). Assuming F is C1, the entropy condition is equivalent to

C([ρl, ρr])

{
≤ F ([ρl, ρr]) if ρl ≤ ρr

≥ F ([ρr, ρl]) if ρl > ρr

specifically meaning that C([ρl, ρr]) ≤ F ([ρl, ρr]) if C(ρ) ≤ F (ρ) for all ρ ∈ [0, ρmax] and
vice versa. A shock is only allowed (by the entropy condition) if it satisfies the condition
above. The Oleinik entropy condition comes from considering a solution to the equation

ut(x, t) + F (u(x, t))x = εuxx(x, t)

and letting ε↘ 0. The limiting function will then satisfy the Oleinik entropy condition.
The entropy condition manifests itself in the following way. Suppose there is either a
discontinuity initially, or that one has developed after some finite time. It is then possible
to construct a weak solution with a discontinuity that satisfies the jump condition.
However, that solution might not satisfy the entropy condition. The physically relevant
solution is then either a rarefaction wave (if the flux function is either convex or concave
in the interval between the solution values) or a combination of rarefaction waves and
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Figure 4. Two different initial data leading to either a shock (top) or a rarefaction wave
(bottom).

discontinuities satisfying the entropy condition. A rarefaction wave is continuous fan of
of straight characteristics (if W is constant). The straight line along which the solution
is ρ is F ′(ρ). For an example of what a rarefaction wave might look like (if W is constant)
can be seen in the bottom right picture in figure 4. A solution on R× [0,∞) satisfying
this condition, along with the Rankine-Hugoniot jump condition, is unique [7].

4 Discontinuous flux

In order to construct solutions to the PDE, we now rewrite the IBVP defined on [0, 1]
as a IVP defined on R. To retain the same solutions, we must show that the solutions
to the IVP above satiefy the boundary conditions. This will be shown in chapter 6. We
reformulate the problem as

(W (x)ρ(x, t))t + (W (x)F (ρ(x, t)))x = 0, 0 < x < 1, t > 0

ρ(x, t)t +G(ρ(x, t);Fin)x = 0, x < 0, t > 0

ρ(x, t)t +H(ρ(x, t))x = 0, x > 1, t > 0

G(ρ(0−, t);Fin) = F (ρ(0+, t)), t > 0

F (ρ(1−, t)) = H(ρ(1−, t)), t > 0

ρ(x, 0) =


ρ0(0), x < 0

ρ0(x), 0 < x < 1

ρ0(1), x > 1

,

12



where we have defined the functions

G(ρ;Fin) =

{
Fin, ρ ≤ ρ(1)

M

min{Fin,min%∈[DFin,ρ] F (%)}, ρ > ρ
(1)
M

, (12)

H(ρ) =

{
F (ρ), ρ ≤ ρ(1)

M

F (ρ
(1)
M ), ρ > ρ

(1)
M

. (13)

We define the function

F(ρ, x) :=


G(ρ;Fin), x < 0

F (ρ), 0 < x < 1

H(ρ), x > 1.

For the definitions of Fin and ρ
(1)
M , see section 2.3. Graphs of the functions G(·, Fin) and

H can be seen in figures 5 and 6. We also define the width function W to have the value
W (x) = W (0) if x < 0 and W (x) = W (1) = 1 if x > 0. We likewise define ρ0(x) = ρ0(0)
if x < 0 and ρ0(x) = ρ0(1) if x > 1. Using this notation, we may write the IVP as

W (x)ρ(x, t)t + (W (x)F(ρ(x, t)))x = 0, x ∈ R, t > 0 (14a)

ρ(x, 0) = ρ0(x). (14b)

Figure 5. Graphs of G(ρ) for two different values of Fin.

Figure 6. Graph of H(ρ).
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In order to construct the solutions, we will first review some theory from [8]. The
only things that have been added here are the sets Γ+(ρ+) and Γ−(ρ−). We will restrict
ourselves to the constant-width case and consider the solution of the discontinuous
Riemann problem

ρt(x, t) +G(ρ(x, t);Fin)x = 0, x < 0, t > 0 (15)

ρt(x, t) + F (ρ(x, t))x = 0, x < 0, t > 0 (16)

G(ρ(0−, t);Fin) = F (ρ(0+, t)), t > 0 (17)

ρ(x, 0) =

{
ρl, x < 0

ρr, x > 0
. (18)

We define the function values

ρ±(t) := lim
δ↘0

ρ(±δ, t) (19)

ρ±(t) := lim
ε↘0

ρ±(t+ ε). (20)

We seek solutions to the PDE in the class

Σ = {ρ(x, t) : ρ is piece-wise smooth, ρ±(t) are piece-wise smooth.}.

By piece-wise smooth we mean a finite number of discontinuities on each bounded set.
Given the values ρ+, ρ− ∈ R, we now define the auxiliary functions

F̂ (ρ; ρ+) :=

{
minv∈[ρ,ρ+] F (v), ρ ≤ ρ+

maxv∈[ρ+,ρ] F (v), ρ > ρ+

, (21)

Ǧ(ρ; ρ−) :=

{
maxv∈[ρ,ρ−] F (v), ρ ≤ ρ−
minv∈[ρ−,ρ] F (v), ρ > ρ−

, (22)

and the subsets (see figure 7)

P (F ; ρ+) := {ρ+} ∪{ρ : ρ < ρ+; F̂ (ρ+ ε; ρ+) > F̂ (ρ; ρ+)∀ε > 0} (23)

∪{ρ : ρ > ρ+; F̂ (ρ− ε; ρ+) < F̂ (ρ; ρ+)∀ε > 0} (24)

N(G; ρ−) := {ρ−} ∪{ρ : ρ < ρ−; Ǧ(ρ+ ε; ρ−) < Ǧ(ρ; ρ−)∀ε > 0} (25)

∪{ρ : ρ > ρ−; Ǧ(ρ− ε; ρ−) > Ǧ(ρ; ρ−)∀ε > 0}. (26)

We can now also define the set

I(ρ+, ρ−) := F̂ (R; ρ+) ∩ Ǧ(R; ρ−).

If I(ρ+, ρ−) 6= ∅, we define the set

Ū := {ρ ∈ R : F̂ (ρ; ρ+) = Ǧ(ρ; ρ−)},

and if Ū consists on only one point, we write it as ū. We define the sets

Γ+(ρ+) := {σ ∈ R : F (σ) ∈ F̂ (Ū ; ρ+)

Γ−(ρ−) := {τ ∈ R : G(τ) ∈ F̂ (Ū ; ρ+).

and Γ(ρ+, ρ−) := Γ+(ρ+)× Γ−(ρ−). We can now formulate a lemma.
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Figure 7. Graphs of the auxiliary functions F̂ (·; ρ+) and F̌ (·; ρ−) for specific values of
ρ+, ρ−. Also illustrated are the sets P (F ; ρ+) and N(F ; ρ−).

Lemma 1. Let ρ−, ρ+ ∈ R be given. If I(ρ+, ρ−) 6= ∅, then the set Γ(ρ+, ρ−) ∩
(P (F ; ρ+)×N(G; ρ−)) consists of exactly one point. Hence, there is a well-defined
function

c(ρ+, ρ−) = (ρ+, ρ−) ∈ Γ(ρ+, ρ−) ∩ (P (F ; ρ+)×N(G; ρ−)) .

The solutions we seek satisfy the following condition:

Definition 2. A solution is said to satisfy condition Γ if given t and ρ+(t), ρ−(t) ∈ R,
then (ρ+(t), ρ−(t)) ∈ Γ(ρ+(t), ρ−(t)).

We can find the solutions (at least locally in time) by solving the two IVP’s

vt + F (v)x = 0, x ∈ R, t > 0

v(x, 0) =

{
a, x < 0

ρ+, x > 0

wt +G(w)x = 0, x ∈ R, t > 0

w(x, 0) =

{
ρ−, w < 0

b, x > 0

separately, where (a, b) = c(ρ+, ρ−). We then set

ρ(x, t) =

{
v(x, t), x > 0

w(x, t), x < 0

The same procedure holds at x = 1. At this boundary the flux function is F for x < 0
and H for x > 0. Consider the discontinuous initial value problem

ρt(x, t)x + F(ρ(x, t), x)x = 0, x ∈ R, t > 0 (27)

ρ(x, 0) = ρ0(x), x ∈ R, (28)

with

F(ρ, x) =

{
f1(ρ), x < 0

f2(ρ), x > 0
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where f1 and f2 are Lipschitz continuous. Theorem 5.1 and 6.4 from Andreianov et al.
[13] states that for any ρ0 ∈ L∞(R), that is a bounded Lebesgue measurable function,
there exists a unique solution to problem (27). The solution will satisfy condition Γ at
x = 0. Note that in the problem above, W is constant. Since W is continuous, we expect
it to hold for a non-constant W.
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Part II

Construction of exact solutions

5 Geometric properties of the flux function

In order to properly describe the different cases for shock propagation, we first need to
describe certain aspects of the flux function. We define a total of six different functions,
along with five important points in the interval [0, 1]. Illustrations of the points and
operators can be found in the figures below.

To make the notation slightly easier, we define I = [0, 1]. We start by defining some
important points. The most obvious one is

ρmax = min{ρ > 0 : F (ρ) = 0}.

After variable transform this point is scaled to 1. For the rest of the points, we assume
that they are scaled. We have mentioned the two local maxima

{ρ(1)
M , ρ

(2)
M } = {ρ ∈ I : F ′(ρ) = 0, F ′′(ρ) < 0}

ordered s.t. F (ρ
(1)
M ) > F (ρ

(2)
M ), the local minimum

ρm = ρ ∈ I : F ′(ρ) = 0, F ′′(ρ) > 0,

and the two inflection points

ρ
(1)
infl = ρ ∈ I : F ′′(ρ) = 0, F ′′′(ρ) > 0,

ρ
(2)
infl = ρ ∈ I : F ′′(ρ) = 0, F ′′′(ρ) < 0.

We define the function C : I → I by

Cρ = sup{u > ρ
(2)
infl : s(ρ, u) ≥ s(ρ, v) ∀v ∈ (ρ, u)},

and the final special point

ρ∆ = sup{ρ(2)
infl < u : ∃v ∈ I such that u = Cv}.

We now define the operator C? : (ρ
(1)
infl, ρ∆]→ I by

C?ρ = inf{u < ρ : s(u, ρ) ≥ s(v, ρ) ∀v ∈ (u, ρ)}.

We finally define the four last functions D : F (I)→ [0, ρ
(1)
M ], D? : [Fm, F

(2)
M ]→ [ρm, ρ

(2)
M ],

E : [Fm, F
(1)
M ]→ [ρ

(1)
M , ρm] and E? : [0, F

(2)
M ]→ [ρ

(2)
M , 1] by

Df = min{u : F (u) = f},
D?f = min{u > ρm : F (u) = f},
Ef = min{u > ρ

(1)
M : F (u) = f},

E?f = min{u > ρ
(2)
M > ρm : F (u) = f}.
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Figure 8. Illustrations of operators and special points.
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6 Boundaries

The weak solutions of hyperbolic conservation laws can (and typically do) include dis-
continuities. How these discontinuities propagate depends on the shape of the flux
function, and the specific values of the solution at either side of the discontinuity. For
notational simplicity, we let ρ− be the limit of the solution to left of the discontinuity,
and ρ+ the limit of the solution to the right. As we saw in chapter 3, the velocity of the
discontinuity is given by

s = s(ρ+, ρ−) :=
F (ρ−)− F (ρ+)

ρ− − ρ+

and the shock is allowed if

s(ρ−, ρ+)

{
≤ s(ρ−, u)∀u ∈ [ρ−, ρ+], ρ− < ρ+

≥ s(ρ−, u)∀u ∈ [ρ+, ρ−], ρ− ≥ ρ+

.

Below, we describe the local solutions at the two boundaries for different values of ρ−, ρ+.
Since the two boundaries behave quite differently, we consider them separately. Since
the boundary condition at the left boundary is F (ρ(0, t)) = G(ρ(0, t);Fin), and this is
fulfilled by construction (see chapter 2), we can solve the IBVP by solving the IVP with
discontinuous flux. The same logic holds for the right boundary. We will start with
the left boundary. Once ρ+ (or ρ−) is determined, one can get the solutions locally in
time using the Rankine-Huginiot and Oleinik conditions. We will give an example at
the end of the chapter. For the rest of this chapter, we will write G(ρ;Fin) = G(ρ). Note
however that the definition of G depends on Fin. Readers who wish to skip the proofs
should note however equations (29) and (30).

6.1 Left boundary

We now solve the Riemann problem

ρt + F (ρ)x = 0, x > 0, t > 0

ρt +G(ρ)x = 0, x < 0, t > 0

ρ(x, 0) =

{
ρ−, x < 0

ρ+, x > 0

with G as in equation 12. Note that we can also write

G(ρ) = F̌ (ρ;DFin).

This also shows that Ǧ(ρ; ρ−) = G(ρ) for any ρ− ∈ [0, 1]. We classify the solutions using
a few propositions. For the solutions, we are only interested in finding ρ+. The basic
solution is to find where Ǧ(·; ρ−) = G(·) and F̂ (·; ρ+) intersect, and picking ρ+ whose
flux equals the flux at the intersection, subject to some constraints. See figure 9. In
order to minimize the work we have to do, we now first prove a lemma.

Lemma 3. For a discontinuous flux function f defined by

f(ρ, x) =

{
G(ρ;Fin), x < 0

F (ρ), x > 0

with Fin ∈ [0, F
(1)
M ], I(ρ+, ρ−) 6= ∅ for any ρ+, ρ− ∈ R.
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Figure 9. Example of how Ǧ(·; ρ−) = G(·) and F̂ (·; ρ+) intersect.

Proof. Using the definitions, we note that Ǧ(·; ρ−) and F̂ (·; ρ+) are both continuous. We

also note that Ǧ(0; ρ−) = Fin ≥ 0, Ǧ(1; ρ−) = 0, F̂ (0; ρ+) = 0 and F̂ (1; ρ+) = F
(1)
M > 0.

By using the intermediate value theorem, we find that there must be some point ρ where
Ǧ(ρ; ρ−) = F̂ (ρ; ρ+). Therefore, by the definition of I(ρ+, ρ−), it is nonempty.

Note that since I(ρ+, ρ−) 6= ∅, P (F ; ρ+)∩ Γ+(ρ+) only contains one point. Hence, if
we think we have a suitable candidate for ρ+, we only need to check that it is in this
set.

Proposition 4. If ρ+ ∈ [0, ρ
(1)
M ], then ρ+ = DFin.

Proof. Since F̂ ([0, ρ
(1)
M ]; ρ+) = [0, F

(1)
M ] and

Ǧ([0, ρ
(1)
M ]; ρ−) = G([0, ρ

(1)
M ]) = F̌ ([0, ρ

(1)
M ];DFin) = {Fin}

with Fin ≤ F (1)
M , there is at least one ū ∈ [0, ρ

(1)
M ] such that

F̂ (ū; ρ+) = Ǧ(ū; ρ−),

using the intermediate value theorem. Note that at this point, F̂ (ū; ρ+) = Ǧ(ū; ρ−) =

Fin. Hence, Γ(ρ+) ⊇ {σ ∈ R : F (σ) = Fin} 3 DFin. Since ρ+ ∈ [0, ρ
(1)
M ], the definition

of P (F ; ρ+) gives that it includes [0, ρ
(1)
M ]. Therefore,

DFin ∈ Γ+(ρ+) ∩ P (F ; ρ+).

As stated above, this shows that ρ+ = DFin.

Proposition 5. If ρ+ > ρ
(1)
M and Fin < F̌ (ρ+;DFin), then ρ+ = DFin.

Proof. Notice again that Ǧ(ρ; ρ−) = G(ρ) = F̂ (ρ;DFin) = Fin for ρ ∈ [0, ρ
(1)
M ]. Since

DFin ≤ ρ(1)
M < ρ+ we get two properties. Firstly,

F̂ (DFin; ρ+) = min
%∈[DFin,%+]

F (ρ).
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This can be seen using the definition of F̂ (·; ρ+). Secondly, F (ρ+) ≥ G(ρ+) = F̌ (ρ+;DFin).
The second property gives that Fin < F (ρ+). Note that F is continuous and has only
the local minimum F (ρm) = Fm in [0, 1]. Therefore, the first property together with the
second gives that

F̂ (DFin; ρ+) = min%∈[DFin,ρ+] F (%) =

{
min{Fin, Fm, F (ρ+)}, ρm ∈ [DFin, ρ+]

min{Fin, F (ρ+)}, else
=

=

{
min{Fin, Fm}, ρm ∈ [DFin, ρ+]

Fin, else
.

If ρm ∈ [DFin, ρ+], then ρ+ ≥ ρm and F̌ (ρ+;DFin) ≤ Fm, since F̂ (·; ρ−) is non-
increasing. But since

Fin < F̌ (ρ+;DFin) ≤ Fm,
we get that min{Fin, Fm} = Fin if ρ+ ≥ ρm. Hence, F̂ (DFin; ρ+) = Fin. Therefore,
DFin ∈ Ū and Fin ∈ F̂ (Ū ; ρ+). This gives that

Γ+(ρ+) ⊇ {σ ∈ R : F (σ) = Fin} 3 DFin.

Since Fin < F (ρ+), DFin < ρ+ and F is strictly increasing in a neighborhood of DFin.
Therefore, the definition of F̂ (ρ; ρ+) gives that F̂ (DFin + ε; ρ+) > F̂ (DFin; ρ+) ∀ε > 0.
Hence, DFin ∈ P (F ; ρ+), so DFin ∈ Γ+(ρ+) ∩ P (F ; ρ+). Again, this shows that ρ+ =
DFin.

Proposition 6. If ρ+ ∈ [ρ
(1)
M , ρm) ∪ [E?Fm, 1] and Fin ≥ F̌ (ρ+;DFin), then ρ+ = ρ+.

Proof. Using the defintion we see that F̂ (ρ+; ρ+) = F (ρ+). Assuming first that Fin ≥
Fm, we also notice that

Ǧ(ρ; ρ−) = F (ρ), ρ ∈ [EFin, ρm] ∪ [E?Fm, 1].

If ρ+ ∈ [ρ
(1)
M , EFin), then F (ρ+) > F (EFin) = Fin, which contradicts the assumptions

of the theorem. Hence,
ρ+ ∈ [EFin, ρm) ∪ [E?Fm, 1]

and
Ǧ(ρ+; ρ−) = F (ρ+) = F̂ (ρ+; ρ+).

Therefore, ρ+ ∈ Ū , and F (ρ+) ∈ F̂ (Ū ; ρ+).

Let’s now assume that Fin < Fm. Then, for ρ ∈ [E?Fin, 1],

Ǧ(ρ; ρ−) = G(ρ) = F̌ (ρ;DFin) = min
%∈[DFin,ρ]

F (%) = min{F (DFin), F (ρ)} = F (ρ).

The last equality follows from the fact that since Fin < Fm, F ′(ρ) < 0 for ρ ≥ E?Fin.
Therefore, F (ρ) < F (E?Fin) = Fin = F (DFin).

If ρ+ ∈ [ρ
(1)
M , E?Fin), then F (ρ+) > F (E?Fin) = Fin, which again contradicts the

assumptions of the proposition. Hence, ρ+ ∈ [E?Fin, 1] and

Ǧ(ρ+; ρ) = F (ρ+) = F̂ (ρ+; ρ+).

By the definition of Ū , ρ+ ∈ Ū , and F (ρ+) ∈ F̂ (Ū ; ρ+). Therefore,

Γ+(ρ+) ⊇ {σ ∈ R : F (σ) = F (ρ+)} 3 ρ+.

Since ρ+ ∈ P (F ; ρ+), we have that ρ+ ∈ Γ+(ρ+) ∩ P (F ; ρ+). This shows that ρ+ =
ρ+.
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Proposition 7. If ρ+ ∈ [ρm, E
?Fm) and Fin ≥ Fm, then ρ+ = ρm.

Proof. Since ρ+ ∈ [ρm, E
?Fm) and by the definition of F we see that F (ρ+) ≥ Fm.

Hence,
F̂ (ρm; ρ+) = min

%∈[ρm,ρ+]
F (%) = Fm.

Since Fin ≥ Fm, we have that

Ǧ(ρm; ρ−) = G(ρm) = F̌ (ρm;DFin) = min
%∈[DFin,ρm]

F (%) = min{Fin, Fm} = Fm.

Therefore, ρm ∈ Ū , and F̂ (Ū ; ρ+) 3 Fm. Hence,

Γ+(ρ+) ⊇ {σ ∈ R : F (σ) = Fm} 3 ρm.

If ρ+ = ρm, then ρm ∈ P (F ; ρ+). If ρm < ρ+ < E?Fm, then F (ρ+) > Fm so,

F̂ (ρm + ε; ρ+) > F (ρm) ∀ε > 0.

Hence, ρm ∈ P (F ; ρ+). This shows that ρm ∈ Γ+(ρ+)∩P (F ; ρ+). This again shows that
ρ+ = ρm.

Consider now the value of F (ρ+) given ρ+. We can see that if the assumptions
in propositions 5 and 6 are satisfied, F (ρ+) = Fin. If the assumptions of proposition
7 are satisfied, F (ρ+) = F (ρ+). Finally, if the assumptions of proposition 8 are ful-
filled, F (ρ+) = Fm. Note however that if the assumptions of proposition 8 are fulfilled,
F (ρ+) = F (ρ+) and F̌ (ρ+;DFin) = Fm. All in all,

F (ρ+) =


Fin, ρ+ ≤ ρ(1)

M

Fin, ρ+ > ρ
(1)
M , Fin < F̌ (ρ+, DFin)

F (ρ+), ρ+ > ρ
(1)
M , Fin ≥ F̌ (ρ+;DFin)

If ρ+ > ρ
(1)
M , then

F̌ (ρ+;DFin) = min
%∈[DFin,ρ+]

F (%) = min{Fin, min
%∈[ρ

(1)
M ,ρ+]

F (%)}.

Therefore, we can write F (ρ+) as

F (ρ+) =

{
Fin, ρ+ ≤ ρ(1)

M

min{Fin,min
%∈[ρ

(1)
M ,ρ+]

F (%)}, ρ+ > ρ
(1)
M

. (29)

We can see that this matches the left boundary condition in section 2.3. It is also worth
to point out that by construction, F (ρ+) = G(ρ+).

6.2 Right boundary

We now solve the Riemann problem

ρt +H(ρ)x = 0, x > 0, t > 0

ρt + F (ρ)x = 0, x < 0, t > 0

ρ(x, 0) =

{
ρ−, x < 0

ρ+, x > 0.
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Figure 10. Example of how F̌ (·; ρ−) and Ĥ(·; ρ+) = H(·) intersect.

where H is given from previously. It is easy to see that we can write

H(ρ) = F̂ (ρ; 0).

We can then also see that Ĥ(ρ; ρ+) = H(ρ) for any ρ+ ∈ R. We classify the solutions
using a few propositions. For the solutions, we are only interested in finding ρ−. Analo-
gous to previous section, the basic solution is to find where F̌ (·; ρ−) and Ĥ(·; ρ+) = H(·)
intersect, and picking ρ− whose flux equals the flux at the intersection, subject to some
constraints. See figure 10.

Like in previous section, we first prove a lemma.

Lemma 8. For a discontinuous flux function f defined by

f(ρ, x) =

{
F (ρ), x < 0

H(ρ), x > 0,

I(ρ+, ρ−) 6= ∅ for any ρ+, ρ− ∈ R.

Proof. We start by noting that

Ĥ(0; ρ+) = H(0) = 0,

Ĥ(1; ρ+) = H(1) = F
(1)
M ,

F̌ (0; ρ−) = max
%∈[0,ρ−]

F (%) ≥ F (0) = 0 and

F̌ (1; ρ−) = 0.

Since F̌ (·; ρ−) and Ĥ(·; ρ+) are both continuous, the intermediate value theorem gives us
that there is at least one ū ∈ [0, 1] such that Ĥ(ū; ρ+) = F̌ (ū; ρ−). Therefore, I(ρ+, ρ−) 6=
∅.

Note that since I(ρ+, ρ−) 6=, N(F ; ρ−) ∩ Γ−(ρ−) only contains one point. Hence, if
we think we have a candidate for ρ−, we only need to check that it is in this set. Notice

that H(ρ) = F
(1)
M for ρ ≥ ρ(1)

M .
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Proposition 9. If ρ− ≤ ρ(1)
M , then ρ− = ρ−.

Proof. Since ρ− ∈ N(F ; ρ−), we only need to show that ρ− ∈ Γ−(ρ−). We note that F

is non-decreasing in [0, ρ
(1)
M ]. Since ρ− ≤ ρ(1)

M

F̌ (ρ; ρ−) = max
%∈[ρ,ρ−]

F (%) = F (ρ−), ρ ∈ [0, ρ
(1)
M ].

Since Ĥ(ρ−) = H(ρ−) = F̂ (ρ−; ρ
(1)
M ) = min

%∈[ρ−,ρ
(1)
M ]

F (%) = F (ρ−). Therefore, ρ− ∈ Ū ,
and

Γ−(ρ−) ⊇ {τ ∈ R : F (τ) = F (ρ−)} 3 ρ−.

Hence, ρ− ∈ Γ−(ρ−) ∩N(F ; ρ−), which shows that ρ− = ρ−.

Proposition 10. If ρ− > ρ
(1)
M then ρ− = ρ

(1)
M .

Proof. Note that since ρ− > ρ
(1)
M , there is an interval [ρ

(1)
M , ρ

(1)
M + δ) in which

F̌ (ρ; ρ−) = max
%∈[ρ,ρ−]

F (ρ) = F (ρ).

As long as δ > 0 is small enough, F ′ < 0 in (ρ
(1)
M , ρ

(1)
M + δ). Therefore, ρ

(1)
M ∈ N(F ; ρ−).

We also have that
F̌ (ρ

(1)
M ; ρ−) = max

%∈[ρ
(1)
M ,ρ−]

F (%) = F
(1)
M .

Note also that for any ρ+,

Ĥ(ρ
(1)
M ; ρ+) = H(ρ

(1)
M ) = F̂ (ρ

(1)
M ; ρ

(1)
M ) = F

(1)
M .

Hence, ρ
(1)
M ∈ Ū , and

Γ−(ρ−) ⊇ {τ ∈ R : F (τ) = F
(1)
M } 3 ρ

(1)
M .

Therefore, ρ
(1)
M ∈ N(F ; ρ−) ∪ Γ−(ρ−), and hence ρ− = ρ

(1)
M .

We can see that

F (ρ−) =

{
F (ρ−), ρ− ≤ ρ(1)

M

F
(1)
M , ρ− > ρ

(1)
M

, (30)

which matches the right boundary condition in section 2.3.

6.3 Example of solution

Suppose that W ≡ 1, i.e. that the width of the corridor is constant. The method of
characteristics then produces solutions composed of only straight lines. By using the
propositions from previous sections along with the Rankine-Hugoniot and Oleinik con-
ditions, we can therefore solve the PDE, given an initial pedestrian distribution. We
give an example below.

We let the initial distribution be ρ0(x) = ρ0 for x ∈ [0, 1]. We choose some value
such that Fin < F (ρ0). We start at t = 0. At the left boundary (x = 0) we use proposi-
tion 4 to see that ρ+ = DFin < ρ0. We are then faced with the Riemann problem with
ρl = DFin and ρr = ρ0. We can see from figure 11 that this gives rise to an allowable
shock, with positive velocity.
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Figure 11. Allowable shocks and rarefaction waves present in the example solution.

At the right boundary (x = 1) we use proposition 10 to see that ρ− = ρ
(1)
M . We then

have to solve the Riemann problem with ρl = ρ0 and ρr = ρ
(1)
M . Here, the solution is

more complicated. Starting from the left, we first get a shock with negative velocity

from ρ0 to C?ρ0. After this, we get a rarefaction wave from C?ρ0 to ρ
(1)
M . This solution

propagates until the two shocks (one emanating from the left boundary and one from
the right) meet at some time t1. Since the velocities of the two shocks are s(DFin, ρ0)
and s(ρ0, C

?ρ0), the time to the collision is given by

t1 =

(
1

s(DFin, ρ0)
− 1

s(ρ0, C?ρ0)

)
.

When the shocks collide, they turn into one shock with ρl = DFin and ρr = C?ρ0, which
is allowed. Since C?ρ0 < ρ0 and F (C?ρ0) > F (ρ0), the velocity will be larger than for the
previous left shock. However, as this shock propagates, it will go through the rarefaction
wave, and ρr will decrease. However, since all the values in the rarefaction wave are

inside [ρ
(1)
M , C?ρ0], the shock will always be allowed. Since F ′ < 0 in (ρ

(1)
M , C?ρ0), as ρr
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Figure 12. Example solution when W ≡ 1. The domains in which the solution is
constant or there is a rarefaction wave are marked out, separated by shocks.

decreases F (ρr) will increase. This will increase the velocity continuously, as it passes
through the rarefaction wave. Finally, the shock will collide with the right boundary.
Using proposition 9 we can see that ρ− = DFin = ρ−, so the solution will be constant.
Hence, after the shock collides with the right boundary, the solution is constant at
ρ ≡ DFin.

7 Stationary solutions

While it is hard to construct all different classes of solutions for the general case, we can
find some interesting cases. One such class of cases are the solutions that are stationary
in time. To describe these we consider the PDE in integral form, see Equation (6). If
the solution is stationary in time, the left-hand side vanishes, and∫ t2

t1

(F (ρ(x1, t))W (x1)− F (ρ(x2, t))W (x2))dt = 0

for any x1, x2 ∈ [0, 1] and any t1, t2 > 0. Since t1 and t2 are arbitrary, the integrand
must vanish, that is

F (ρ(x1, t))W (x1)− F (ρ(x2, t))W (x2) = 0, x1, x2 ∈ [0, 1], t > 0.

Since x1 and x2 are also arbitrary,

F (ρ(x, t))W (x) = ΦSS, x ∈ [0, 1] (31)

for some constant ΦSS. While ρ might be discontinuous, we still require it to be piece-
wise smooth. Since ρ(x, t) is by assumption stationary in time, we simply write ρ(x, t) =
ρ(x). Since W is non-increasing, F (ρ(x)) is maximized when x = 1. We then get

F (ρ(x)) = ΦSS. This sets a restriction on ΦSS, namely ΦSS ∈ [0, F (ρ
(1)
M )]. Since W ′(x) ≥
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0,
d

dx
F (ρ(x)) = − ΦSS

W (x)2
W ′(x) ≥ 0

in the weak sense. Since F is not injective, the above equations do not determine ρ(x)
uniquely. If we can give an interval, in which ρ is located, we can however locally invert
F . We divide [0, 1] into four (non-disjoint) intervals

I1 = [0, ρ
(1)
M ], I2 = [ρ

(1)
M , ρm], I3 = [ρm, ρ

(2)
M ], I4 = [ρ

(2)
M , 1].

Depending on ρ, F is either non-decreasing or non-increasing. We have

F ′(ρ) ≥ 0, ρ ∈ I1 ∪ I3
F ′(ρ) ≤ 0, ρ ∈ I2 ∪ I4.

We can now get two different behaviours. Since d
dxF (ρ(x)) = F ′(ρ(x))ρ′(x) ≥ 0, we get

ρ′(x) ≥ 0, ρ ∈ I1 ∪ I3
ρ′(x) ≤ 0, ρ ∈ I2 ∪ I4.

in the weak sense. We can also locally invert F (ρ(x)) = ΦSS

W (x) , giving us

ρ(x) =



D
(

ΦSS

W (x)

)
, ρ ∈ [0, ρ

(1)
M ] = I1

E
(

ΦSS

W (x)

)
, ρ ∈ (ρ

(1)
M , ρm] ⊂ I2

D?
(

ΦSS

W (x)

)
, ρ ∈ (ρm, ρ

(2)
M ] ⊂ I3

E?
(

ΦSS

W (x)

)
, ρ ∈ (ρ

(2)
M , 1] ⊂ I4.

Referring to the local solutions at the boundaries (see chapter 6), we can now state
some extra constraints. In order for the solution to be able to remain stationary at

the boundaries we need that ρ+ = ρ+. This gives us a few options. If ρ(0) ∈ [0, ρ
(1)
M ]

and Fin = F (ρ(0)), then ρ+ = DF (ρ(0)) = ρ(0), so the solution is constant. If ρ(0) ∈
(ρ

(1)
M , ρm] ∪ [E?Fm, 1] and Fin ≥ G(ρ(0)), then ρ+ = ρ+, so the solution is constant.

Hence, ρ(0) ∈ [0, ρm] ∪ [E?Fm, 1] =: Istart. At x = 1, proposition 10 shows that for

ρ− = ρ− to hold it is sufficient and necessary that ρ(1) ∈ [0, ρ
(1)
M ] =: Iend. We summarize

these observations in a lemma.

Lemma 11. Suppose ρ is a solution to (6) which is stationary in time. Then ρ(0) ∈
Istart = [0, ρm] ∪ [E?Fm, 1] and ρ(1) ∈ Iend = [0, ρ

(1)
M ]. For x ∈ (0, 1), ρ satisfies

ρ(x) =



D
(

ΦSS

W (x)

)
, ρ ∈ [0, ρ

(1)
M ] = I1

E
(

ΦSS

W (x)

)
, ρ ∈ (ρ

(1)
M , ρm] ⊂ I2

D?
(

ΦSS

W (x)

)
, ρ ∈ (ρm, ρ

(2)
M ] ⊂ I3

E?
(

ΦSS

W (x)

)
, ρ ∈ (ρ

(2)
M , 1] ⊂ I4.

(32)

7.1 Discontinuities

In this section we investigate the possibility of discontinuities in a stationary solution.
We will assume the discontinuity is stationary and happens at x = xD, with ρ(x−D) = ρ−D
and ρ(x+

D) = ρ+
D. Since we want the discontinuity to be stationary, we also require

F (ρ−D) = F (ρ+
D) := FD. We assume that W is injective. We can then invert it and get
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Figure 13. Illustration of the different kinds of allowed stationary discontinuities. Also
illustrated are the different intervals in which F is injective.

Table 1

Range of FD ρ−D ρ+
D

[0, Fm) DFD E?FD

{Fm} DFm ρm
DFm E?Fm
ρm E?Fm

(Fm, F
(2)
M ) DFD D?FD

EFD D?FD

EFD E?FD

{F (2)
M } DF

(2)
M EF

(2)
M

ρ
(2)
M EF

(2)
M

(F
(2)
M , F

(1)
M ] DFD EFD

28



Figure 14. Graphs of the stationary solutions of type I − II, with ΦSS = F
(1)
M . The

graphs to the right show the fluxes of of the smooth parts, as well as the discontinuities.

xD = W−1(ΦSS

FD
). The options for ρ−D and ρ+

D for a given FD are stated in table 1 below.
These are derived by using the Oleinik entropy condition.

Using the constraints in the previous subsection along with the possible discontinu-
ities, we can now describe the different types of stationary solutions. For simplicity,

we assume that ΦSS = F
(1)
M and that W (0) >

F
(1)
M

Fm
. This ensures that we can use all

possible discontinuities. If one decreases ΦSS, this will forbid all but the first two kinds

of solutions. This follows from the fact that F (ρ(1)) = ΦSS and ρ(1) ∈ [0, ρ
(1)
M ]. Hence, if

ΦSS < F
(1)
M , then ρ(1) = DΦSS < ρ

(1)
M . Since there are no possible discontinuities ending

up at [0, ρ
(1)
M ], there can be no discontinuities in the solution.

We now describe the six different types of solutions below. For the solutions we as-
sume for simplicity that W (x) is an affine function and W (x) > 1 for x < 1. Changing
the shape of W (x) changes how fast the solution changes, but not the jumps. Note
also that changing W (0) changes the values of F (ρ(0)) = ΦSS

W (0) , and hence also ρ(0). In

figures 14 and 15 we have plotted the stationary solutions. We chose to use the affine
width function

W (x) = 8− 7x.

To simplify inverting the flux function we used the polynomial

F (x) = −47x4 + 100x3 − 69x2 + 16x.

This flux function is the one plotted in the right parts of figures 14 and 15.
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I

We now start with ρ(0) ∈ [0, ρ
(1)
M ] and set ρ(x) = D ΦSS

W (x) for 0 ≤ x < xD = W−1

(
F

(1)
M

FD

)
where FD ∈ [Fm, F

(1)
M ). We then have a discontinuity with ρ+

D = EFD, and set ρ(x) =

E
F

(1)
M

W (x) , xD < x ≤ 1. Hence,

ρ(x) =

D
F

(1)
M

W (x) , 0 ≤ x < xD

E
F

(1)
M

W (x) , xD < x ≤ 1.

II

For this solution we start with ρ(0) ∈ [E?Fm, 1]. We the have an allowed shock from

ρ
(2)
M to EF

(2)
M . This discontinuity happens at xD = W−1

(
F

(1)
M

F
(2)
M

)
. We hence set

ρ(x) =

E?
F

(1)
M

W (x) , 0 ≤ x < xD

E
F

(1)
M

W (x) , xD < x ≤ 1.

III

We now start with ρ(0) ∈ [0, ρ
(1)
M ] with a jump from DFm to ρm at xD = W−1

(
F

(1)
M

Fm

)
.

We then have a jump from ρD′ = D?F (ρ(xD′)) to ρ+
D = EF (ρ(xD′)), where F (ρ(xD′)) ∈

[Fm, F
(2)
M ]. We set

ρ(x) =


D

F
(1)
M

W (x) , 0 ≤ x < xD

D? F
(1)
M

W (x) , xD < x < xD′

E
F

(1)
M

W (x) , xD′ < x ≤ 1.

IV

For this solution, we first start with a solution like type IV . However, instead of the jump
D?F (ρ(xD′)) to EF (ρ(xD′)), we instead have a jump D?F (ρ(xD′)) to E?F (ρ(xD′)). We

then have a jump from ρ
(2)
M to EF

(2)
M at xD′′ = W−1

(
F

(1)
M

F
(2)
M

)
. We then get the solution

ρ(x) =



D
F

(1)
M

W (x) , 0 ≤ x < xD

D? F
(1)
M

W (x) , xD < x < xD′

E?
F

(1)
M

W (x) , xD′ < x < W−1

(
F

(1)
M

F
(2)
M

)
E

F
(1)
M

W (x) , xD′′ < x ≤ 1.

30



Figure 15. Graphs of the stationary solutions of type III − V , with ΦSS = F
(1)
M . The

graphs to the right show the fluxes of of the smooth parts, as well as the discontinuities.
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Part III

Numerics

8 Godunov’s method

We now present the theory behind one of the most famous numerical methods for cal-
culating numerical solutions to hyperbolic conservation laws, Godunov’s method. This
method, proposed in 1959 is derived from approximating the solution with a piecewise
constant solution, and then solving the arising Riemann problems. We will present
only the description of the method, along with some basic accompanying theory. More
in-depth theory can be found in e.g. [9], or any other book on numerical methods for
conservation laws.

Let ρ = ρ(x, t) be a weak solution to the conservation law in equation 4. We now
divide the computational domain x ∈ [0, 1] int N cells [xj−1, xj ] where xj = j/N for
j = 1, ..., N. From this choice we define ∆x = 1/N . We also define tn = n∆t for some
choice of ∆t. Using the integral formulation of the conservation law in equation 6, we
know that∫ xj

xj−1

W (x)ρ(x, tn+1)dx =

∫ xj

xj−1

W (x)ρ(x, tn)dx+

∫ tn+1

tn

W (xj−1)F (ρ(xj−1, t))dt

−
∫ tn+1

tn

W (xj)F (ρ(xj , t))dt.

We now make the approximation∫ xj

xj−1

W (x)ρ(x, t)dx ≈Wj−1/2

∫ xj

xj−1

ρ(x, t)dx

where Wj−1/2 := 1
∆x

∫ xj

xj−1
W (x)dx. Defining Wj := W (xj), the expression above sim-

plifies to

Wj−1/2

∫ xj

xj−1

ρ(x, tn+1)dx = Wj−1/2

∫ xj

xj−1

ρ(x, tn)dx+Wj−1

∫ tn+1

tn

F (ρ(xj−1, t))dt

−Wj

∫ tn+1

tn

F (ρ(xj , t))dt.

We now define the numerical solution P to be piece-wise constant

P (x, t) = ρj(t) :=
1

Wj−1/2∆x

∫ xj

xj−1

W (x)ρ(x, t)dx, x ∈ (xj−1, xj).

After also defining ρnj := ρj(tn), we can (after dividing by ∆xWj−1/2) write the expres-
sion above as

ρn+1
j = ρnj +

1

Wj−1/2∆x

∫ tn+1

tn

[Wj−1F (ρ(xj−1, t))dt−WjF (ρ(xj , t))] dt.

In order to calculate ρn+1
j , we need to solve the Riemann problem, i.e. equation (2)-(3)

for t ∈ [tn, tn+1] with the initial condition

ρ(x, tn) =

{
ρj−1, x < xj

ρj , x > xj .
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The solution to this problem can be described by characteristics and discontinuities,
each traveling at a finite speed below some value V. Hence, if ∆x > V∆t, no lines
emanating from the neighbouring Riemann problems can cross the line x = xj . (For the
exact value of V , see section 8.1 below.) Therefore, assuming V∆t

∆x < 1, ρ(xj , t) will be
constant for t ∈ [tn, tn+1]. This means that we only need to solve the Riemann problem
for t ∈ [tn, tn + ε] with 0 < ε ≤ ∆t to calculate ρn+1

j . By considering all cases and using
the construction of the entropy solution from section 3.2 one can show that F (ρ(xj , t))
will be given by the Godunov numerical flux

FGj = FG(ρnj , ρ
n
j+1) :=

{
minρj≤ρ≤ρj+1

F (ρ), ρj ≤ ρj+1

maxρj≥ρ≥ρj+1 F (ρ), ρj > ρj+1

.

Once these fluxes have been calculated, we can calculate ρn+1
j as

ρn+1
j = ρnj −

∆t

Wj−1/2∆x

(
WjF

G
j −Wj−1F

G
j−1

)
.

Theorem 6.4 from Andreianov et al. [13] shows that the numerical solutions converge
to some limit function as ∆x,∆t→ 0, as long as ∆t satisfies the CFL condition

∆t

∆x
≤ 1

2
max

{
max
%∈[0,1]

|G′(%;Fin)|, max
%∈[0,1]

|F ′(%)|, max
%∈[0,1]

|H ′(%)|
}
.

This solution satisfies the Rankine-Hugoniot and Oleinik conditions. Again, this assumes
that W is constant, but we expect it to hold for a continuous W.

9 Approximating the flux function

In this section we describe the approximation of the flux function, based on the data
from [3]. We want to approximate the function F on the interval [x1, xN ] given the
data (xi, Fi)

N
i=1. We assume that the xi are distinct and order the data so that xi > xj

whenever i > j. We do this by approximating F by a piece-wise cubic polynomial, with
certain regularity conditions.

We partition [x1, xN ] into m intervals Ik = [xnk
, xnk+1

], k = 1, ...,m where xn1
= x1

and xnm+1 = xN , such that each interval contains at least four points. We define the
spline function S on Ik by

S(x) := Sk(x) := ak + bkx+ ckx
2 + dkx

3, x ∈ Ik, k ≥ 1. (33)

Note that for Equation (33) to be well-defined, we need S to be at least continuous
at the points xnk

, k = 1, ..., N . (We will later also require that S ∈ C2[0, xN ].) We
extend S such that S(x) = S1(x) for x ∈ [0, x1]. We also extend S to [xN ,∞) by
defining implicitly S(x) = Sm(x) for x ∈ [xN , xmax] where xmax is the smallest positive
x such that S(x) = 0. We finally set S(x) = 0 for x > xmax. While extending S by
Sm might lead to a function which does not intersect the x-axis for any x > 0, in this
case it works. If one want to make sure that this does not happen, one can extend S
by a second degree polynomial with the same value, first and second derivative at xnN

.
Note that since S ∈ C2[x1, xN ], we also get S ∈ C2([0, xmax]). Suppose we want S to
interpolate F at the data points. For each interval, this gives rise to the systems of
equations

AkQk = Fk,
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where

Ak =


1 xnk

x2
nk

x3
nk

1 xnk+1 x2
nk+1 x3

nk+1
...
1 xnk+1

x2
nk+1

x3
nk+1

 ∈ R(nk+1−nk+1)×4,

Qk =


ak
bk
ck
dk

 ∈ R4, Fk =


Fnk

Fnk+1

...
Fnk+1

 ∈ Rnk+1−nk+1.

We now write these systems of equations as one linear system

AQ = F,

where

A = diag(A1, ...,Am) ∈ R(N+m−1)×4m,

Q =


QT

1

QT
2
...

QT
m

 ∈ R4m, F =


F1

F2

...
Fm

 ∈ RN+m−1.

Assuming each Ik does not contain exactly four points, this is an over-determined system.
(In any case, requiring continuity will make it over-determined). Hence, it will in general
not have a solution. We therefore seek to minimize

‖AQ− F‖2.

We however also want S to have certain properties. Firstly, we want S(0) = 0, since
this is a characteristic feature of the flux function. We secondly want S ∈ C2([x1, xN ]).
Thirdly, we require

S′′(x)


≤ 0, 0 ≤ x ≤ x(1)

infl

≥ 0, x
(1)
infl ≤ x ≤ x

(2)
infl

≤ 0, x
(2)
infl ≤ x ≤ xN

for some specified x
(1)
infl, x

(2)
infl ∈ [x1, xN ] with x

(1)
infl < x

(2)
infl. All these conditions can be

written as linear equalities and inequalities. We do this below.

9.1 Linear equalities

Here we formulate the conditions that S(0) = 0 and S ∈ C2([x1, xN ]) as linear inequal-
ities.

I S(0) = 0

This is the easiest condition to formulate, as we only require a1 = 0. We write this
however as

F0Q = 0, F0 = (1, 0, 0, ..., 0) ∈ R1×4m. (34)
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II Continuity

For continuity, we need that

Sk(xnk+1
) = Sk+1(xnk+1

), k = 1, 2, ...,m− 1

or equivalently

(ak + bkxnk+1
+ ckx

2
nk+1

+ dkx
3
nk+1

)− (ak+1 + bk+1xnk+1
+ ck+1x

2
nk+1

+ dk+1x
3
nk+1

) = 0,

k = 1, 2, ...,m− 1.

We define

K
(k)
0 = (1, xnk+1

, x2
nk+1

, x3
nk+1

) ∈ R1×4, k = 1, 2, ...,m− 1

and

K0 =


K

(1)
0 −K

(1)
0

K
(2)
0 −K

(2)
0

. . .
. . .

K
(m−1)
0 −K

(m−1)
0

 ∈ R(m−1)×4m.

We can then formulate the continuity condition as

K0Q = 0 (35)

III Continuous first derivative

To ensure that S ∈ C1([0, xmax]), we require

S′k(xnk+1
) = S′k+1(xnk+1

)

or equivalently

(bk + 2ckxnk+1
+ 3dkx

2
nk+1

)− (bk+1 + 2ck+1xnk+1
+ 3dk+1x

2
nk+1

) = 0.

We define
K

(k)
1 = (0, 1, 2xnk+1

, 3x2
nk+1

) ∈ R1×4

and analogously

K1 =


K

(1)
1 −K

(1)
1

K
(2)
1 −K

(2)
1

. . .
. . .

K
(m−1)
1 −K

(m−1)
1

 ∈ R(m−1)×4m.

We can then write the condition of S ∈ C1([0, xmax]) as

K1Q = 0.
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IV Continuous second derivative

We finally also need to ensure that S ∈ C2[0, xmax], so we require

S′′k (xnk+1
) = S′′k+1(xnk+1

)

or equivalently
(2ck + 6dkxnk+1

)− (2ck+1 + 6dk+1xnk+1
) = 0.

We therefore define

K
(k)
2 = (0, 0, 2, 6xnk+1

) ∈ R1×4, k = 1, 2, ...,m− 1

and

K2 =


K

(1)
2 −K

(1)
2

K
(2)
2 −K

(2)
2

. . .
. . .

K
(m−1)
2 −K

(m−1)
2

 ∈ R(m−1)×4m.

We can now formulate the condition as

K2Q = 0.

We can now write all these linear inequalities as one by defining

K =


F0

K0

K1

K2

 ∈ R(3m−2)×4m

and requiring that
KQ = 0.

9.2 Convexity/concavity

We now need to formulate the convexity/concavity conditions, i.e.

S′′(x)


≤ 0, 0 ≤ x ≤ x(1)

infl

≥ 0, x
(1)
infl ≤ x ≤ x

(2)
infl

≤ 0, x
(2)
infl ≤ x ≤ xN

.

To this end, we define the convexity function ψ : [0, xmax]→ {1, 0,−1} by

ψ(x) =



1, 0 ≤ x < x
(1)
infl

0, x = x
(1)
infl

−1, x
(1)
infl < x < x

(2)
infl

0, x = x
(2)
infl

1, x
(2)
infl < x ≤ xmax

.

Consider the interval Ik. We can then write the condition as

ψ(xl)(2ck + 6dkxl) ≤ 0, nk ≤ l ≤ nk+1.

We define the matrix

K̃(n) = (0, 0, 2, 6xn) ∈ R1×4, 1 ≤ n ≤ N
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and

K̂(k) =


ψ(xnk

)K̃(nk)

ψ(xnk+1)K̃(nk+1)

...

ψ(xnk+1
)K̃(nk+1)

 ∈ R(nk+1−nk+1)×4.

We finally define the matrix

K̂ =


K̂(1)

K̂(2)

. . .

K̂(m)

 ∈ R(N+m−1)×4m.

The convexity/condition can finally be written as

K̂Q ≤ 0.

9.3 Linearly constrained least-squares problem

We now find S by first choosing x
(1)
infl and x

(2)
infl suitably. Let Q be the solution of the

problem
min

Q′∈R4m
‖AQ′ − F‖2

subject to

KQ = 0

K̂Q ≤ 0

and define S : [0, xmax]→ R+ by

S(x) =


S1(x), x ∈ [0, x1]

Sk(x), x ∈ Ik
Sm(x), x ∈ [xN , xmax].

The minimization problem is called a linearly constrained least-squares problem.

9.4 Implementation details

We get the data from [3]. The data is extracted by using an online tool to calibrate
axes, and manually mark the data points. The program then generated the numerical
data. It should therefore be pointed out that the data is an approximation to the data
from [3]. However, the small errors are not important, as we are more interested in
the general form of the flux function, rather than exact numerical accuracy. By looking

at the data, we choose suitable x
(1)
infl, x

(2)
infl. We then start by choosing the knots to be

x1, x
(1)
i , x

(2)
i and xN , where

x
(1)
i = max

1≤j≤N
{xj : xj < x

(1)
infl},

x
(2)
i = min

1≤j≤N
{xj : xj > x

(2)
infl}.

We have then defined three intervals. For each interval, we check whether there are
more than eight points in the interval. If so, we add a new knot at n = nk + 4, so as to
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split the interval. We do this until there are no intervals with more than seven points.
Note also that for setting up the matrices A and K̂, each knot belong to two intervals.
The linearly constrained least-squares problem is solved using Matlab’s built-in function
lsqlin. The results can be seen in the figure below. From this spline we can find the
values of ρmax and vmax. The constant ρmax was found by applying a bisection algorithm
to the spline function. To find vmax we remember that the flux function can be written
as

F (ρ) = ρv(ρ),

and hence
F ′(ρ) = v(ρ) + ρv′(ρ).

Empirical data (from [3]) shows that the velocity is maximized as ρ → 0. Given this
assumption, we can write

vmax = v(0) = F ′(0).

Given our spline function, this is simply the coefficient b1. When we have found ρmax

and vmax, we can then scale the spline coefficients by dividing by ρmaxvmax to arrive at
the unit-free flux function described in chapter 2.1.

Figure 16. Linearly constrained least-squares spline along with the data.

9.5 Remark

Splines (and in particular cubic splines) are often used to interpolate functions. When
this is done, the regularity conditions are put into the matrix A, and one solves the
system AQ = F. This works since the system becomes square (being an interpolation
problem). However, for the over-determined system, we only find the best least-squares
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approximation Q. This means that, if we put the regularity conditions into the matrix
A, the equations would in general not hold, only hold approximately. Since we require
regularity, we instead formulate it as a constraint on the system.

10 Numerical simulation

We saw in chapter 8 that using Godunov’s method (defining the numerical solution to
be piece-wise constant with P (x, tn) := ρnj for x ∈ (xj−1, xj)) we arrive at the numerical
method

ρn+1
j = ρnj −

∆t

Wj−1/2∆x

(
WjF

G
j −Wj−1F

G
j−1

)
. (36)

where we use the Godunov numerical flux

FGj :=

{
minρj≤ρ≤ρj+1 F (ρ), ρj ≤ ρj+1

maxρj≥ρ≥ρj+1 F (ρ), ρj > ρj+1

.

and approximate Wj−1/2 ≈ W (xj −∆x/2). In this section, and the following ones, we
will use F to mean the spline flux function, instead of using S. In the present case, the
flux function is bimodal, i.e. two ”bumps”. This means that the function has two local

maxima, and one local interior minimum. The local maxima are denoted by ρ
(1)
M and

ρ
(2)
M , where F (ρ

(1)
M ) > F (ρ

(2)
M ). The local (interior) minimum is denoted by ρm. We can

now give a direct formula for Gj

FGj =



min(F (ρm), F (ρj), F (ρj+1)), ρj ≤ ρj+1, ρm ∈ [ρj , ρj+1]

min(F (ρj), F (ρj+1)), ρj ≤ ρj+1, ρm /∈ [ρj , ρj+1]

F (ρ
(1)
M ), ρj > ρj+1, ρ

(1)
M ∈ [ρj+1, ρj ]

F (ρ
(2)
M ), ρj > ρj+1, ρ

(2)
M ∈ [ρj+1, ρj ], ρ

(1)
M /∈ [ρj+1, ρj ]

max(F (ρj), F (ρj+1)), ρj > ρj+1, ρ
(1)
M , ρ

(2)
M /∈ [ρj+1, ρj ]

.

As initial conditions, we integrate numerically using the trapezoidal rule

ρ0
j =

1

∆x

∫ xj

xj−1

ρ0(x)dx ≈ 1

2
(ρ0(xj−1) + ρ0(xj)).

Finally, we need to handle the boundary flux conditions numerically. We use the same
boundary fluxes as defined in section 2.3. We therefore set

FG0 = FG0 (ρn1 ) =

{
min(Fin, F (ρn1 )), ρn1 ≤ ρm
min(Fin, Fm, F (ρn1 )), ρn1 > ρm

FGN = FGN (ρnN ) =

{
F (ρN ), ρN ≤ ρ(1)

M

F (ρ
(1)
M ), ρN > ρ

(1)
M

.

and apply equation 36 for ρn+1
1 and ρn+1

N .

10.1 Non-uniform mesh

For large values of W (0) coupled with large values of q, |W ′(x)| becomes very large as
x approaches 1. By construction we know that

W ′(x) =
W (x)

p+ qx
=

1

p+ q

(
p+ qx

p+ q

)1/q−1

. (37)

39



We insert the formula 8 for p given q and W (0). To increase readability, we define
ζ = W (0)−q. Note that as W (0) and q are large, ζ > 0 is small. We then get

W ′(x) =
1

q
ζ−1 + q

(
q
ζ−1 + qx
q
ζ−1 + q

)1/q−1

= −1

q

1− ζ
ζ

(
1− (1− ζ)x

ζ

)1/q−1

,

and in particular for x = 1

W ′(1) = −1

q

1− ζ
ζ

.

Notice that this becomes very negative as ζ → 0. Therefore, in order to retain some
accuracy of the numerical solution, when W (0) and q are large, we need a very small
∆x. However, since |W ′(x)| is only large for x close to 1, we opt to use a non-uniform
mesh. This is done in the following way:

Pick a small number ε, and a natural number N . N should be the number of cells,
if they were to be chosen equidistant. Then perform algorithm 1.

Algorithm 1 Nonuniform mesh

1: x0 = 0, x1 = 1/N
2: X = [x0, x1]
3: N = 1
4: while xN < 1− ε do
5: d = W (xN )−W (xN−1)

xN−xN−1

6: if |d| > N/2 then
7: xN+1 = xN − 1

4d
8: i = 2
9: while xN+1 ≥ 1 do

10: i = i+ 1
11: xN+1 = xN + 1

2i|d|(N+1)

12: else
13: xN+1 = xN + 1/N

14: X = [x0, ..., xN+1]
15: N = length(X)− 1

16: if xN < 1− 10−7 then
17: X = [x0, ..., xN , 1]

10.2 Evacuated pedestrians

Our main objective is to study the amount Q(t) of evacuated pedestrians during the
time 0 to t. We calculate Q(tn) by using the formula

Q(tn) = Q(n∆t) =

∫ n∆t

0

W (1)F (ρ(1, τ))dτ =

∫ n∆t

0

F (ρ(1, τ))dτ

where the last equality holds since W (1) = 1. We approximate the integral using a
Riemann sum and use the numerical flux FGN at time k∆t

Q(tn) =

∫ n∆t

0

F (ρ(1, τ))dτ ≈
n−1∑
k=0

FGN (ρkN )∆t.
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Figure 17. Example of non-uniform mesh for width profile with W (0) = 8.0, q = 4.0.
The parameters were set to N = 50, ε = 0.01.
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10.3 Stationary flow

We will in the next chapter want to compare the flux of our numerical solutions to the
flux of a stationary solution. As we saw in chapter 7, a stationary solution ρ = ρ(x) can
be described by

W (x)F (ρ(x)) = ΦSS

for some constant ΦSS. We can determine ΦSS by noting that ΦSS = F (ρ(0))W (0). The
numerical solution P has the value P (0, n∆t) = ρn1 . Hence, we compare F (P (x, t)) with
ΦSS

W (x) where we set ΦSS = F (ρn1 )W (0).

10.4 CFL condition

The Courant-Friedrichs-Lewy (CFL) condition is a restriction on ∆t which guarantees
numerical stability. Bürger et al. [12] derived a CFL condition for the model above
when the mesh is uniform:

∆t ≤ ∆x

Mφmax

where

M := max
j=0,1/2,1,3/2,...,N−1/2

{
Wj

Wj+1/2
,
Wj+1

Wj+1/2

}
,

φmax := max
%∈[0,1]

|F ′(%)|.

Since W ′ ≤ 0, we know that Wj ≥Wj+1/2 ≥Wj+1. Hence, we can write

M = max
j=0,1/2,1,3/2,...,N−1/2

{
Wj

Wj+1/2

}
.

11 Results

We now wish to investigate whether there is a way to choose p and q (actually, W (0)
and q) such as to maximize the total amount of evacuated pedestrians Q after some
time t. For simplicity we let the initial distribution of pedestrians be uniform, and the
choice of Fin be constant in time. We have not found an efficient, or even feasible, way
to optimize the choice of parameters. We instead picked various values of ρ0 and Fin.
The values of ρ0 were spread out, to hopefully cover a representative sample of solutions.
For each choice of ρ0, there were (whenever possible) two choices of Fin : one such that
Fin < F (ρ0) and one such that Fin > F (ρ0). Once ρ0 and Fin were chosen, two sets of
simulations were performed.

In the first set, W (0) = 2 and q took on the values 0.1, 1.0 and 4.0. In the second
set, q = 4.0 and W (0) took on the values 2, 4 and 8. Once the simulations were per-
formed, we calculated the total amount of evacuated pedestrians as a function of time,
and plotted the results against one another. In figures 18-23 below we show a represen-
tative sample of the various plots. All the plots can also be found in the appendix. In
each figure we have also plotted the flux function for reference.

In figure 18 q was varied while keeping W (0) constant at W (0) = 2. The different
choices of q give different width profiles, which can be seen in figure 2. We see that the
amount of evacuated pedestrians only differ if F (ρ0) < Fin, and even if F (ρ0) > Fin,
it only varies slightly. In both the top left and bottom left plots, the difference has an
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upper limit, which is very small in the grand scheme of things. After a while, the rate
of evacuation is constant, independent of q. The difference is at what time this constant
is reach, and this gives rise to the small difference. However, even if the difference is
small, a larger value of q seems to give a slightly better result.

Figure 18 Amount of evacuated pedestrians as a function of time, for various initial
conditions and in-fluxes. For each choice of initial condition and in-flux, three different
simulations were performed at different values of q.

In figure 19 W (0) was varied while keeping q constant at q = 4. While we see that
again Q(t) only varies if F (ρ0) < Fin, this time the difference is significant. While the
rate of evacuation becomes constant at some point, the constant is different for different
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values of W (0), and so the difference increases as time increases. A larger value of W (0)
gives a better result. Since the difference in the top-left figure is so small, figure 4 shows
a piece of the diagram zoomed in. Again, more results can be found in the appendix.
To explain the variance in Q(t) when changing q or W (0), we plot the solution at time
t = tend, the largest value of t for each simulation. In the figures below, the solution
at t = tend is compared to the theoretical stationary solution. Since we are primarily
interested in the flux, we plot the flux of the two solutions (simulated and stationary).
We see that the two solutions agree pretty well with one another. Therefore, to explain
the difference in Q we need only study the properties of the stationary solutions, see
chapter 7.

In this chapter we found that the class of stationary solutions is given implicitly by

F (ρ(x)) = ΦSS

W (x) for some constant 0 ≤ ΦSS ≤ F
(1)
M . Note that W (1) = 1 for all choices

of p and q, by design. Suppose we are given some fixed F (ρ(0)).Keeping this fixed, we see
that ΦSS is proportional to W (0). Note therefore that F (ρ(1)) = ΦSS

W (1) = ΦSS ∝ W (0).

Hence, a larger choice of W (0) is better. We also see that this choice is independent of
q, as long as W (0) is kept fixed.

A reasonable thought is that it is not interesting to compare solutions with different
W (0) and the same Fin. Suppose that the actual flux-density coming into the corridor is
Fin. Then, the total flux into the corridor is Φin := FinW (0). Hence, a more reasonable
comparison might be between solutions where Φin is constant. This comparison is done
in figure 21. This graph resembles the bottom left graph in figure 18. The difference is
that while the outflux is eventually equal for all solutions, it takes longer for them to
stabilize. The figures 22 and 23 suggest the the solutions tend to stationary solutions,
since Φ(x) is approximately constant. Hence, keeping Φin constant the choice of W (0)
and q eventually do not affect the flow. They can however affect the transient flow.
While figure 18 suggests that q has little effect, figure 21 suggests that W (0) can have
a large effect. This effect can also be seen in figure 24 where the outflow is plotted as a
function of time.

In the previous simulations the initial distributions were all constant. To demon-
strate that the apparent convergences towards the stationary solutions do not depend
on the initial distribution being constant, we also performed a simulation with a piece-
wise constant initial distribution. The initial distribution can be seen in figure 25 below,
and the value of Φ(x) can be seen in figure 26.
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Figure 19. Amount of evacuated pedestrians as a function of time, for various initial
conditions and in-fluxes. For each choice of initial condition and in-flux, three different
simulations were performed at different values of W (0).
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Figure 20. Zoomed-in piece of top-left diagram in figure 19.

Figure 21. Amount of evacuated pedestrians as a function of time. For the various
solutions, Φin = W (0)Fin is kept constant. The initial distribution was ρ0 = ρm.
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Figure 22. Graphs of Φ(x) = F (ρ(x, tend))W (x) where tend = 40. The numerical
solutions were generated with the parameters W (0) = 2, ρ0 = ρm and Fin = F (0.01).
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Figure 23. Graphs of Φ(x) = F (ρ(x, tend))W (x) where tend = 200. The numerical
solutions were generated with the parameters q = 4, ρ0 = ρm and Fin = F (0.01).
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Figure 24. Outflux of pedestrians as a function of time. For the various solutions,
Φin = W (0)Fin is kept constant. The initial distribution was ρ0 = ρm.

Figure 25. Initial distribution corresponding to numerical solutions in figure 26.
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Figure 26. Graphs of Φ(x) = F (ρ(x, tend))W (x) where tend = 50 with initial distribution
as in figure 5 and Fin = F (0.2). The parameter q was set to q = 4.
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12 Discussion

We saw in the previous section that it appears that the amount of evacuated pedes-
trians is maximized by maximizing W (0) and to a lesser extent maximizing q. This
seems to come as a consequence of the solutions approaching the stationary solutions.
If one wishes to compare the same value of Φin = FinW (0), the values of q and W (0)
eventually have no effect on the outflux. However, they (in particular W (0)) affect the
transient flows, with larger values of q and W (0) leading temporarily to larger outfluxes.

Note however that when setting up the model we assumed that pedestrians only move
forwards, in one direction, and that movement side-to-side in negligeble. For large values
of W (0) the width of the corridor is far from constant. Hence, the movement side-to-side
is not negligeble. For pedestrians close to the walls, the movement becomes dominated
by side-to-side movement as they approach x = 1. Therefore, the velocity (and hence
the flux) in the forward direction will be much smaller than what the model suggests.
This might have a large impact on the amount of evacuated pedestrians.

These observations suggest that the model breaks down for large values of W (0). In
order to get a more accurate simulation of the pedestrian movement, one would have to
extend this model to 2D. This has been done, most noticably in [10]. By necessity, in
2D one has to determine in what direction the pedestrians will move. One then has to
define a potential, and the model becomes much more complex. While interesting, this
is outside of the scope of this Master’s thesis.

It is also noteworthy to point out that the forms of the fluxes G and H on each side
of the computational domain are chosen so as to given what seems like a reasonable
influx and outflux. These fluxes are not approximated from any data or derived from
first principles. Hence, one would also need to test whether these fluxes coincide with
the reality of pedestrian evacuation.
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Part IV

Appendix

A More figures

Figure 27. Amount of evacuated pedestrians as a function of time, for various initial
conditions and in-fluxes. For each choice of initial condition and in-flux, three different
simulations were performed at different values of q.
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Figure 28. Amount of evacuated pedestrians as a function of time, for various initial
conditions and in-fluxes. For each choice of initial condition and in-flux, three different
simulations were performed at different values of W (0).
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Figure 29. Graphs of Φ(x) = F (ρ(x, tend))W (x) where tend = 12 with ρ0 = 0 and
Fin = F (0.2). The entry-width was set to W (0) = 2.
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Figure 30. Graphs of Φ(x) = F (ρ(x, tend))W (x) where tend = 10 with ρ0 = ρ
(1)
M and

Fin = F (0.2). The entry-width was set to W (0) = 2.
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Figure 31. Graphs of Φ(x) = F (ρ(x, tend))W (x) where tend = 10 with ρ0 = ρm and
Fin = F (0.3). The entry-width was set to W (0) = 2.
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Figure 32. Graphs of Φ(x) = F (ρ(x, tend))W (x) where tend = 50 with ρ0 = ρ
(2)
M and

Fin = F (0.01). The entry-width was set to W (0) = 2.
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Figure 33. Graphs of Φ(x) = F (ρ(x, tend))W (x) where tend = 30 with ρ0 = ρ
(2)
M and

Fin = F (0.03). The entry-width was set to W (0) = 2.
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Figure 34. Graphs of Φ(x) = F (ρ(x, tend))W (x) where tend = 50 with ρ0 = 0.92 and
Fin = F (0.01). The entry-width was set to W (0) = 2.

59



Figure 35. Graphs of Φ(x) = F (ρ(x, tend))W (x) where tend = 50 with ρ0 = 0 and
Fin = F (0.2). The parameter q was set to q = 4.
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Figure 36. Graphs of Φ(x) = F (ρ(x, tend))W (x) where tend = 50 with ρ0 = ρ
(1)
M and

Fin = F (0.2). The parameter q was set to q = 4.
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Figure 37. Graphs of Φ(x) = F (ρ(x, tend))W (x) where tend = 40 with ρ0 = ρm and

Fin = F (ρ
(1)
M . The parameter q was set to q = 4.
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Figure 38. Graphs of Φ(x) = F (ρ(x, tend))W (x) where tend = 300 with ρ0 = ρ
(2)
M and

Fin = F (0.01). The parameter q was set to q = 4.
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Figure 39. Graphs of Φ(x) = F (ρ(x, tend))W (x) where tend = 120 with ρ0 = ρ
(2)
M and

Fin = F (ρ
(1)
M ). The parameter q was set to q = 4.
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Figure 40. Graphs of Φ(x) = F (ρ(x, tend))W (x) where tend = 120 with ρ0 = 0.92 and
Fin = F (0.005). The parameter q was set to q = 4.
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Figure 41. Graphs of Φ(x) = F (ρ(x, tend))W (x) where tend = 120 with ρ0 = 0.92 and

Fin = F (ρ
(1)
M ). The parameter q was set to q = 4.
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