
Finite element modeling of strained nanowire
heterostructures

Alexander Wyke

Bachelor thesis
Spring term 2018

Supervisors
Assistant professor Jesper Wallentin

Doctoral student Susanna Hammarberg
Division of Synchrotron Radiation Research

Faculty of Science
Department of Physics

1



Abstract

When two materials with different lattice constants are grown together, this
generates stress between them, and therefore strain. This strain causes them to
have different thermal and electrical properties, and this is especially important on
the nanoscale where changes have large impacts.

This project is intended to see if COMSOL can be used as a tool to model how
materials respond to lattice mismatch induced strain. One nanowire consisting of
three segments was generated. One middle segment of indium phosphide surrounded
by indium gallium phosphide, based on locally made nanowires. It is also intended
to serve as a base point for further direct research based on data points generated
from the project’s simulations.

The COMSOL Multiphysics’ engine is used to generate simulations of nanowires
using a Finite Element Method. The goal with this work is as a demonstration of
how this can be easily replicated in the future. The variables tested were wire radius,
the thickness of the middle InP, and percentage gallium in the InGaP segments.

The results of the simulations match the theory well, but due to time and scope
constraints they could not be compared to the experimental nanowires used as a
foundation for the project, so this should be treated as a first step in determining
how useful COMSOL is for practically modelling nanowires.
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1 Introduction
In just about every modern computing device, from a simple calculator to a supercom-
puter, transistors are the most vital, basic component. Since the transistors used in the
first computers, there have been many innovations regarding material, size, and function.
These innovations have reduced the size of a computer from what might fit in a room to
what can easily fit in a pocket. The computer industry is approaching the limit of what
size reduction can do, and material science seems to be the most likely path forward;
using new materials or new forms with useful properties.

Strain is of interest to this as it affects how all transistors behave. Strain is caused
by a lattice mismatch, or differences in how the atoms are spaced, that can occur when
combining two different materials, and this affects the electrical and thermal properties of
the components. Knowing what temperature and currents a transistor can handle before
performance starts declining is of course of great importance when making a device.

Strain is also highly relevant in strain engineering, which aims to induce strain in
semiconductors to improve performance.

The idea behind this work is examining if there is a natural and straightforward way
to simulate the strain caused by lattice mismatch. This is done in an attempt to mimic
lab-grown nanowires. These are structures on the scale 10-1000 nm where it extends
further into one dimension than it does the two others. The simulations of the nanowires
can be compared to theoretical models and the behavior of the actual lab nanowires to
determine the accuracy of the model.

The program COMSOL is used to generate a model, and MATLAB is then used to
process the results. COMSOL was chosen because of the ease with which models can be
produced and altered to test additional variables, and because it can serve as a platform
for examining things like heat dependency if anything is built on this project. MATLAB
is used because COMSOL only treats the continuous case. The data is exported into
MATLAB and each point can then be handled discretely, allowing future examination as
to whether these points can be treated like atoms when it comes to diffraction patterns.

The specific model being generated is an 800 nm long nanowire consisting of three
segments, arranged as InGaP, InP, InGaP. This configuration was chosen because this
kind of wire has been grown locally, and would therefore be simple to compare to.
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1.1 Acronyms and Abbreviations

QM - quantum mechanics
InP - indium phosphide
InGaP - indium gallium phosphide
FEM - Finite Element Method
PDE - Partial Differential Equation
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2 Theory

Classically, materials are described as consisting of atoms taking up discrete points in
space. With the advent of quantum mechanics, a description which was much more
complicated and accurate was formed. This work avoids the quantum interpretation
and aims at simplifications by assuming the materials are classical, and through the use
of numerical approximations. In the case of strain, there are no significant quantum
mechanical effects within the material, which means the classical case can be considered
without any noticeable information loss. In the classical assumption, atoms are discrete
and interact only with the closest neighbours. In the one-dimensional case, this could be
analogous to a string of beads, as has been depicted in figure 1. The simulations treat only
the three-dimensional case. The one-dimensional case is used for explaining the underlying
theory, and the two-dimensional case is used to illustrate the effects of a lattice mismatch
and strain. This is done for simplicity of presentation, and their implications extend into
further dimensions.

Figure 1: Classical atoms in one dimension

2.1 Stress and strain in one dimension

Stress in a solid leads to its deformation or strain. If stress is applied, a point in the
material x is displaced by u depending on the amount of stress applied to the material
by for example pulling one end while keeping the other stationary. This is illustrated in
figure 2, where a section of length X is strained to length U, making the relative length
of the section e = dU

dX
. The strain e is unitless and measured as difference relative to the

original length of the strained object.

Figure 2: Example of one-dimensional strain, where a one-dimensional
chain of atoms are strained by a factor u.

2.2 Stress in three dimensions

In three dimensions, the stress σ (force per unit area) can be described with a symmetric
second-degree tensor representing the stress along different axes. This tensor is displayed
in equation 1.
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σ =

σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

 =


σ1
σ2
σ3
σ4
σ5
σ6

 (1)

Stress can be described using only three components; uniaxial, shear and hydrostatic
stress. Uniaxial stress is stress along the first, second, and third axis, represented by σ11,
σ22, and σ33 in the matrix, and σ1, σ2, and σ3 in the column vector. Shear stress is stress
along a plane spanned by two axes, represented by σ12, σ23, and σ34. Hydrostatic stress,
or pressure, is uniaxial stress over all three axes at the same time, where the components
are identical σ11 = σ22 = σ33. The equation describing strain then becomes 2.

σ =

σ11 0 0
0 σ11 0
0 0 σ11

 =


σ1
σ1
σ1
0
0
0

 (2)

2.3 Strain in three dimensions

Strain is a direct result of stress on a material, and is the deformation that alters the
properties of a material. The strain generated by uniaxial stress (σ1, σ2 or σ3) is either
compressive strain, which is a decrease in length parallel to the direction of compression,
or tensile strain, which is an increase in length parallel to the tension. The strain cor-
responding to shear stress is called shear strain. A rectangular object being deformed
through shear strain would take on the shape of a parallelogram. In this case, the ratio
of deformation is measured perpendicular to the surface being considered.

To describe the strain another tensor is needed, similar to the stress tensor. The
strain tensor is described by equation 3, and each element eij of the matrix is described
by equation 4. In this equation, i, j = 1, 2, 3 represent the first, second and third dimension
respectively, and dui

dxj
is an extension from the one dimensional case.

The tensor can be simplified into a column vector with six components, the same
number of independent components the tensor has. As before, the diagonal components
e11, e22 and e33 correspond to e1, e2 and e3 in the column vector. 1

2
(e32 + e23) corresponds

to e4, 1
2
(e13 + e31) corresponds to e5, and 1

2
(e12 + e21) corresponds to e6.

 e11
1
2
(e12 + e21)

1
2
(e13 + e31)

1
2
(e12 + e21) e22

1
2
(e32 + e23)

1
2
(e13 + e31)

1
2
(e32 + e23) e33

 =


e1
e2
e3
e4
e5
e6

 (3)

eij =
1

2
(
dui
dxj

+
duj
dxi

) (4)
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For i = j, or exx, eyy, ezz, this is the tensile or compressive strain. The sum of these
gives the change in volume V .

∆V

V
=

3∑
i=1

eii (5)

eij when i 6= j is the resulting rotation around the axis not used. e12 = −e21 is the
counter-clockwise rotation around the z-axis.

2.4 Poisson’s ratio

Compressive and tensile strain both go under the term linear strain, caused by uniaxial
stress. Lateral strain is the strain resulting from the same uniaxial stress, in all direction
perpendicular to the stress. Poisson’s ratio v is unitless and tells us the ratio between
lateral strain el and axial strain es, and is expressed in equation 6. The minus in the
equation is convention to make Poisson’s ratio positive. Most materials vary between
0 ≤ v ≤ 0.5, with cork v ≈ 0, showing little expansion when compressed. Rubber has
v ≈ 0.5 and expands laterally at a much greater rate. Some auxetic and anisotropic
materials display a negative and greater than 0.5 Poisson’s ratio respectively, but this
project restricts itself to 0 ≤ v ≤ 0.5.

v = − el
es

(6)

2.5 Young’s modulus

Axial stress gives rise to axial strain. The axial strain of an object tells us the change in
length compared to the original length of the material. Young’s modulus E, described in
equation 7, tells us the ratio between the axial stress σ (force per unit area) a material is
experiencing, and the resulting axial strain ε. It is in a sense an expression of the stiffness
of a material, where the larger Young’s modulus is, the stiffer and more resistant to the
effects of stress a material is.

E =
σ

ε
(7)

2.6 Describing a crystal structure

Crystals are materials with a regular, periodic arrangement of atoms. One way to for-
malize the periodicity description is through a Bravais lattice B = n1a1 + n2a2 + n3a3,
where ni is an integer, and ai is a primitive vector, where all three form a three-dimensional
lattice. In figure 3, a two-dimensional example can be viewed. If extended into three di-
mensions the third vector a3 would be extruding towards the viewer.

For this work, only a cubic lattice is considered, where all angles θ = 90o, and the
vectors a1 = a2 = a3.

The smallest possible repeating pattern in a cubic lattice does not necessarily cor-
respond to a pattern with one particle in each corner, as in the case of figure 3. The
internal structure of particles within the smallest repeating pattern can be much more
complicated but is not directly described through a Bravais lattice.

The description used for crystalline materials is all under the assumption that there
are no anomalies or structural defects. The perfect Bravais lattice spans all directions
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Figure 3: A two-dimensional Bravais lattice where the angle θ = 90o and the primitive
vectors a1 6= a2

to the edge of the material, with no abnormalities. If there is a defect in a crystal,
its properties are altered from the idealized version, especially regarding the change in
properties that emerge from strain. Imperfections can be a foreign atom that does not fit
into the otherwise perfect lattice or more macroscopic effect such as cracks or edges. The
materials examined in this work is assumed not to have any such defects.

2.7 Lattice mismatch

Different crystals have different lattices dependent on its atomic properties, for example
size and how its constituent atoms bond.

A lattice can have three lattice constants as they need to be described in three direc-
tions, much like the Bravais lattice. In the simplest and most common case of a cubic
lattice, they can be described using only one constant as n1 = n2 = n3. Both InP and
InGaP are cubic crystal systems and therefore have only one lattice constant. The differ-
ence between the InP and InGaP lattice constant is linearly dependent on the percentage
of indium and gallium in a sample, varying between 5.8687 Å for pure indium phosphide
and 5.4505 Å for pure gallium phosphide.[1]

Heterostructures are created when a material is grown on another. This process is
called heteroepitaxy. One material functions as a base for deposition of another layer
through a variety of methods employed in the field of nano-science. The interface between
two materials forming a heterostructure is referred to as a heterojunction.

When two materials with different lattice constants form a heterostructure, both ma-
terials try to adapt to each other’s lattices. This generates stress along the heterojunction,
which results in the materials being strained. An example of this can be seen in figure
4, where the strain causes some atoms in the lattice to be uncoupled, leading to an edge
dislocation. A change in temperature can also generate stress. If two materials bonded
together expand at different rates, the differences between their lattices increase with
temperature, leading to strain.
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Figure 4: Lattice mismatch illustration with edge dislocations

2.8 Finite Element Method

Physical problems dependent on several variables can be described well using Partial
Differential Equations (PDE’s). A PDE of the function f(x1, ..., xn) has the general
formula 8.

F (x1, ..., xn, f,
du

dx1
, ...,

du

dxn
,
d2u

dx1dx1
,

du

dx1dxn
, ...) = 0 (8)

COMSOL solves a time-independent PDE displayed in equation 9, based on Hooke’s
law, where ∇ · S is the divergence of the stress tensor displayed in equation 1, F is body
force per unit volume, ρ is the mass density, and u is the displacement.

∇ · S + F = ρ
d2u

dt2
= 0 (9)

The S in equation 9 is composed of the stresses and strain present in the material,
displayed in equation 10.

S = C : εel (10)

C is a 4th order 6 by 6 stiffness tensor unique to each material and εel denotes the tensor
of initial strain the wire is experiencing. In this work, the initial strain is only dependent
on the difference in lattice constant between the two materials. A : B = AijBij denotes
the inner product of two tensors.

In general PDE’s are not solvable analytically except for very simple cases, and this is
the case with this equation as well. The Finite Element Method (FEM) is used to reach
a numeric approximation. The geometry over which we wish to calculate the displace-
ment gets divided into simple subdomains and equation 9 is solved for each individual
subdomain.
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3 Method

The physics modelling software COMSOL was used to generate a model of a nanowire
and perform calculations on this geometry. MATLAB was then used to process the results
and generate graphs.

3.1 COMSOL

In COMSOL Multiphysics’, there is a standard workflow for creating a model. Using
the Computer-Aided Design software (CAD), you start by designing the geometry of
the object by assigning parameters such as height, width or radius. Then the material
parameters are added, such as density or heat capacity.

There is already an extensive material database included in the COMSOL packages,
but the materials used in this project were not included in the database, so the values
used were found online[1]. The three parameters that a strain and deformation model
needed were density, Young’s Modulus, and Poisson ratio. More parameters can be added
depending on the type of study you are designing.

There also needs to be some initial values, such as which parts are free to move or
expand, depending on if something counts as locked to another section or simply locked
in space. As the FEM requires at least one part of the object to be spatially locked, the
base of the wire was fixed in place. The study was performed under the assumption that
the strain is not time-dependent.

The geometry created for the study is split up into smaller elements, called a mesh.
The mesh is used to perform the calculations with the FEM. The mesh is highly adaptable
regarding size and shape of sections, allowing for some areas to be solved in greater detail.
Selecting the shape of the mesh is an important balancing act, as an extreme towards
either too small or too large elements can cause the calculations not to converge.

3.2 COMSOL Recipe

3.2.1 Geometry

The first thing COMSOL needed to operate was model parameters. The geometrical
parameters specified were the radius and length of each wire segment. A wire consisted
of alternating segments of InGaP, InP, InGaP, with the specific values used viewable in
table 1. The InP segment length was made variable to keep the wire a constant length
and therefore more easily comparable. All wires started growing at z = 0 and expanded
height-wise in the positive z direction, and radially from (x, y) = (0, 0).

Several versions of the model were created in COMSOL, varying wire diameter, the
percentage of gallium in the outer sections, and length of the midsection. Versions were
created where there were two InP sections to see how much they affected each other,
as the wires the simulations were shaped after had several sections of differing length
on the same wire. As the distance between these segments in the experimental wires
was several 100 nm and the strain from the InP segments did not affect each other until
close to 50 nm, it was determined that they could be treated as isolated segments. As the
results for modelling only one at a time were accurate and provided a significantly reduced
computation time, the only variations with multiple segments of InP that were attempted
were done to confirm that their effect was negligible. Therefore each simulation featured
only contains one midsection of a different material.
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Wire radius 88 nm
Total length 800 nm

InP segment length 45 nm
InGaP segment length (Total-InGaP)/2

Table 1: Values used for the geometry

Two work planes were defined in the model, spanning the XY plane, located 50 nm
from either side of the middle segment. These are later used to broaden the fine area
in the mesh. To allow easy comparison between samples the total length of the sample
was kept constant between runs, and to do this while varying the middle segment length
the two InGaP segment lengths had to be defined as the difference between the middle
segment length and the total length.

3.2.2 Material parameters

The InGaP’s percentage of Germanium (x=15%) was used in the formula for determining
density, Young’s modulus and Poisson ratio with the highest possible accuracy.[1]

InGaP InP Unit
Density 4.81− 0.67 · x 4.81 g/cm3

Young’s Modulus (6.11 + 4.19 · x)1011 6.11 · 1011 dyn/cm2

Poisson’s ratio 0.36− 0.05 · x 0.36 1

Table 2: Values used for the Base case

When comparing the effects of the gallium percentage in the InGaP segment, the InP
segment was assumed to have a lattice constant of 5.8687 Å, and the InGaP segment
5.8687-0.4182x Å, where x is the % gallium in the segment.[1]

3.2.3 Mesh

A rough and a fine mesh were created during the model creation. The rough mesh
was created to get a ballpark estimate of how the results would look without having a
computation time of 10-20 minutes per variation using the finer mesh. This turned out to
be a balancing act because if the mesh is too rough the results never actually converge.
COMSOL still attempts the calculation and gets stuck in a seemingly infinite loop. Once
everything had been tested and determined to work, only the fine mesh was used to
generate results.

For the fine mesh used, the maximum element size was 40 nm. The minimum element
size was the radius/10. This was done to keep the number of data points consistent when
doing iterations with different radius, as maintaining a constant element size meant the
number of elements along the nanowire varied. The area of the InGaP segment, as well as
50 nm around the segment, had a geometry scaling of 4.5 in all direction, making it finer.
A maximum element growth rate of 1.5 controlled the transition between the coarser and
finer parts of the mesh and allowed for coarser mesh sizes in the less interesting areas.
There was no need to have an extra fine transition as the areas around the segment were
designed to be finer already. The curvature factor was 0.6, where the lower the value the
finer the mesh along curvature. This offers a higher resolution of the curved areas which
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in the cylindrical case is along the entire geometry. The resolution of narrow regions
controls the number of layers in the mesh in narrow regions. This was set to 0.5 as there
were no narrow regions of interest within the structure.

The model geometry generated and used can be viewed in figure 5a. Along the wire,
four XY planes are defined. The two center planes define the middle segment, and the
two outer planes define the area of greater interest. In figure 5b, the mesh can be viewed.
When the radius and middle segment thickness were altered for the study, the mesh neces-
sarily had to adapt to fit these new shapes, and therefore the mesh is not microscopically
identical in all cases.

As the results did not have the same geometry, the data points generated did not have
the same spatial distribution. It was therefore not possible to export the data into a single
file except in the case of varying percentage gallium in the sample, where the geometry
of the mesh was identical.

(a) A slice of the base sample’s geometry. (b) A slice of the base sample’s mesh.

Figure 5: Nanowire model generated in COMSOL Multiphysics. The blue sections are
InGaP, the grey sections are InP.
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4 Results
MATLAB was chosen as a processing tool because it was of interest to continue with a
discrete model. COMSOL provides a good model creation tool, but comparing results
leaves something to be desired. Having individual data points and several ways to plot
and overlay them means it is easier to construct a good visual representation of the results
in MATLAB. MATLAB also allows you to examine the values and properties at different
points whereas COMSOL is limited to visual comparison.

In figure 6 the results from the strain on a 45 nm midsection, 15% gallium, 88 nm
radius sample are visible. This is the "base" sample, used as a reference point for when
altering variables. When varying midsection thickness, gallium percentage or radius, all
but the chosen variable remain those of the base sample. The results are consistent
with previous similar simulations[4] and expectations of symmetry about the origin. The
magnitude of displacement is as expected given a strain around 1.2%. All simulations
were made with the wire growing along the positive Z-axis. As there was no meaningful
distinction between the symmetrical X and Y axes, the Y-axis was omitted from the
graphical results. In COMSOL, a slice of the geometry was extracted at y = 0, and the
resulting displacement heat maps can be seen in figures 6a and 6b.

Heat maps of the same sample were generated in MATLAB for the sake of comparison
in figure 6c and 6d. In these figures, each data point is a point in space associated with
three displacement values. Comparing the MATLAB figures to the COMSOL figures
shows that MATLAB can generate an accurate representation of the data exported from
COMSOL. What MATLAB makes clearer is how few data points there are outside the
area of interest. This is because one point of data is generated for each element in the
mesh, see figure 5b. COMSOL does not display this, and instead gives the illusion of fully
continuous data.

For clarity, the graphs have been split into the X (figure 6a and 6c) and Z (figure 6b
and 6d) components of the displacement when generating this heat map.
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(a) Displacement in the x direction in the
y=0 plane of a nanowire. The displace-
ment is symmetric about the center of the
plane. The figure is exported from COM-
SOL, where the nanowire was simulated

(b) Displacement in the z direction in the
y=0 plane of a nanowire. The displace-
ment is symmetric about the center of the
plane. The figure is exported from COM-
SOL, where the nanowire was simulated

(c) Displacement in the x direction from the
same data as (a), but plotted using MAT-
LAB’s scatter plot function

(d) Displacement in the z direction from the
same data as (b), but plotted using MAT-
LAB’s scatter plot function

Figure 6: Simulation of displacement in a nanowire with length 800 nm and radius 88
nm, in the x and z direction as represented by COMSOL and MATLAB

4.1 Reference sample

Figure 7 shows the behavior of the reference sample, where 7a is the displacement along
the X-axis, and 7b is the displacement along the Z-axis. This does not represent the
maximum displacement in the sample, but the displacement generated along the 1/4
point in the x and y dimensions. The data is therefore gathered around (44,44,z) (nm).
As the measurements are taken on both sides of the center (400 nm) along the z direction,
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but only on the positive side of the center in the x direction, both the positive and negative
displacements are visible in the z direction, but only the positive in the x direction. A
measurement taken along (-44,-44,z) would have an identical graph of displacement in z,
but inverted in x. Along the (44,44,z) line the displacement in the x-direction peaks at
0.07 nm in the middle of the nanowire, and the displacement in the z-direction has one
peak on either side of the middle, at 0.03 nm closest to the base of the wire, and -0.04
on the other side. These peaks are the regions of interaction between the two materials
and contract sharply, leading to a positive peak to the left of the center and a negative
peak to the right of the center. The point of symmetry between these peaks is located at
around -0.005 nm as the nanowire is spatially locked in one end. When it then contracts
it moves all matter outside the middle a tiny bit, yielding a displacement of the same
magnitude at all points to the right of the middle.

(a) Simulated displacement in the x direc-
tion of a nanowire grown in the z direction

(b) Simulated displacement in the z direc-
tion of a nanowire grown in the z direction

Figure 7: Reference nanowire, a simulation with a radius of 88 nm, a middle segment
thickness of 45 nm, and the InGaP segments containing 15% gallium, measured along (44
nm, 44 nm, z).

4.2 Varying the radius of the sample

Increasing the radius of the sample means that there is a larger area over which the
different materials interact, which causes more strain and therefore more displacement.
The amount of displacement is proportional to the area of the sample, and so is not linear
but follows the radius squared.

The displacement in the x-direction has a narrow peak with the same general shape
as the reference sample, as can be seen in figure 8a. There is no significant widening of
the peak relative smaller radii. The effect of increasing the radius gets less pronounced
the more the radius increases, where the difference between 40 nm and 20 nm is much
greater than between 140 nm and 100 nm.

The z-direction displacement also behaves similarly to the reference sample, as can be
seen in figure 8b. As the radius increases, the peaks get larger, and the point of symmetry
gets more negative.
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(a) Displacement in the x direction when
varying radius

(b) Displacement in the z direction when
varying radius

Figure 8: Simulated displacement of a nanowire grown in the z direction. All values apart
from the radius were kept constant, and measured along (44 nm, 44 nm, z).

4.3 Varying segment thickness

When varying the thickness of the middle segment, the greatest change is the width of
the area affected, as can be seen in figure 9. At a heterojunction, the materials attempt
to adapt to each other, and the more support behind it a material has the more resistant
it is to adapt, which leads to an increased strain. The thicknesses for the middle segments
were chosen because these were the values from the nanowires the study was based on.

The displacement in the x-direction has a wider peak the thicker the sample is, as
can be seen in figure 9a. This is not so much that the effects penetrate deeper out from
the heterojunctions, but because the heterojunctions themselves are pushed away from
the middle of the nanowire. The magnitude of displacement increases with thickness,
but the effect eventually tapers off. The displacement difference between 170 nm and
80 nm is smaller than between 80 nm and 45 nm. At some point, there will be no
appreciable difference when increasing the thickness, as this means there is just more
material unaffected in between the heterojunctions.

The displacement in the z-direction follows similar patterns where the displacement
locations are pushed away from the middle, as can be seen in figure 9b. A more gentle
slope is introduced between peaks as the heterojunctions affect each other less, and the
strain can be distributed over the distance. The difference in magnitude is much less
pronounced than in the case of radius as a variable. At 80 nm thickness, the magnitude
of displacement is smaller than for 45 nm and 19 nm thickness.
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(a) Displacement in the x direction for five
different middle segment thicknesses

(b) Displacement in the z direction for five
different middle segment thicknesses

Figure 9: Simulated displacement of a nanowire grown in the z direction. All values apart
from the thickness of a middle segment of InP and the surrounding InGaP segments were
kept constant. The displacement was measured along (44 nm, 44 nm, z).

4.4 Altering percentage of gallium

Varying the percentage of gallium in the sample showed the greatest effects, compared to
radius and middle segment thickness. With 0% gallium, the wire is essentially only one
long segment of InP, with no difference in the lattice constant and therefore no strain.
As the percentage of gallium in the sample increases, the lattice constant for the outer
segments increases, and the rising difference between the two lattice constants give rise
to a linearly increasing strain.

The magnitude of displacement reached up to 2.5 nm in the x-direction (figure 10a),
and 4 nm in the z-direction (figure 10b) with 100% gallium in the outer segments, com-
pared to 0.07 nm and 0.04 nm respectively for the reference sample. The displacement in
both the x and z directions behave similarly to the displacement when varying thickness
of the middle segment and radius, only much larger. Like previously, when looking at
displacement in the z-direction, the magnitude of peaks and center point location vary,
but the most important effect is the displacement of the sample as a whole occurring to
the right of the middle, which completely dwarfs any differences in peak magnitude.
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(a) Displacement in the x direction when
varying gallium percentage

(b) Displacement in the z direction when
varying gallium percentage

Figure 10: Simulated displacement of a nanowire grown in the z direction. All values apart
from the percentage gallium in the outer segments were kept constant. The displacement
was measured along (44 nm, 44 nm, z).

5 Conclusions

At the level of growth and precision involved in making nanowires, it is not only possible
but rather straightforward to make a simulation of them. As there is no issue with
impurities the flawless simulation model is closer than what might be achievable when
creating structures on a macro scale; this means COMSOL and its uniform handling of
materials is applicable for this specific scenario. COMSOL is therefore most useful when
predicting results from the slower more expensive methods of creating nanowires, which
are used because they produce better results. The results have not been compared to
experimental nanowires as this was outside the scope of this work. There is still the
possibility that the FEM has a large enough difference to reality as to not make it viable.
The continuous elements of matter making up the mesh is different enough from the
atomic model that this may play a role at this scale.

Most of the results were as expected from established theory. Varying the segment
thickness generated one abnormal result where the displacement magnitude was reduced
with increasing thickness. This could be due to an anomaly along that particular part of
the nanowire, but this was not examined further due to time constraints. The anomaly
cannot be easily spotted when examining the data in a more complete but less easily
displayed way.

The limiting factor in producing results with this method was time, as this project
was limited in scope and computing power. A finer mesh would assuming convergence of
results always mean a more accurate picture presented.

6 Outlook

The aim of this work was not to challenge previously established findings or to be a
giant leap in the progress of material physics. The question is whether this software
combination is a useful tool for the future, and to serve as inspiration for what worked for
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future inquiries along the same lines. The models generated proved to follow established
theory and leaves several questions to be investigated for the future. How useful is the
discrete data for further simulations? Can this method be effective for more simulation
space, like varying materials or temperature of the sample? This could all be answered
in time but was not due to the limitations of the project.

The recipe and methods used are included in such detail to allow easy replication, so
the hope is that future research gains something useful from what is used in this work
and that it can allow further questions to be both asked and answered in the future.
The theory included is kept focused and simple so that no outside reading apart from
COMSOL documentation is necessary for project reproduction.

Apart from the general hope that this inspired future research, the data generated
is also going to be used as a foundation for further studies. Under the assumption that
the data points extracted from COMSOL behave atomically, can X-ray diffraction be
accurately simulated?
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