A study of classification methods to
identify sound signals of a washing machine

Chiharu Kazama
chiharu_k74@hotmail.com

Supervised by :
Claus Fihrer & Najmeh Abiri

April 28, 2019

Contents

Acknowledgements

Popularvetenskaplig Sammanfattning pa Svenska

1

2

Introduction

Fourier Series

2.1 Sinusoid Functions
2.2 Fourier Series
2.3 Fourier Coefficients
2.4 FEuler’'sFormula
2.5 Exponential Form 0 0oL
2.6 Orthogonmality

Discrete Fourier Transform

3.1 Fourier Transform
3.2 The Dirac Delta Function
3.3 The Comb Function
3.4 Discrete Fourier Transform
3.5 How to Interpret DFT Spectral Results
3.6 Computationof DFT

Cooley-Tukey FFT Algorithm
4.1 Matrix Form
4.2 Mathematical Expression

Audio Classification

5.1 Washing Machine o o
5.2 Experiment Environment 000
5.3 Sampling and Sound Editing

5.3.1
5.3.2
5.3.3
5.3.4

Sampling & Time Domain Aliasing
Convolution Theorem
Frequency Domain Aliasing
Sampling Theorem

10
11
12
12

14
14
17
18
18
20
22

25
25
27

5.4 Spectral Analysis with Audacity
5.5 Short-Time Fourier Transform
5.6 Window Functions
5.7 Feature Extraction,
5.8 Problems

6 To Machine Learning
6.1 Outline of Deep Neural Network
6.2 Keras e
6.3 Environment oo
6.4 Deep Learning with Keras
6.4.1 Making the Dataset
6.4.2 Making the Neural Network Model
6.4.3 Training the Model
6.4.4 Model Evaluation.
6.5 Random Search for Hyperparameters
6.6 Results.

7 Conclusion

Appendix:

A Dirichlet Condition

B Python Code - STFT

C Python Code - Making Dataset

D Python Code - Random Search

68

69

71

73

Acknowledgements

This thesis becomes a reality with the kind support and help of many individ-
uals. T would like to first thank Professor Claus Fihrer for his encouragement
throughout this project, as well as Najmeh Abiri for her great support. Your
counsel always gave me lots of inspirations.

I also thank to James Hakim and Amanuel Workneh who kindly helped with my
computer related queries. It is a pleasure to thank my friends, Xénia Edvinsson,
Hilda Lidén and Sam Sarwat Hanna Gergis who gave me brilliant advise.

I will forever be thankful to Siobhan Correnty. This work would not have been
possible without you. Meeting you is one of the best things that ever happened
to me in my life.

Finally, my deep and sincere gratitude to my family for their understanding,
support and love.

Popularvetenskaplig Sammanfattning pa Svenska

Syftet med denna uppsats ar att undersoka och klassificera ljud fran en tvattmaskin.
Ett tvattmaskinsprogram har olika faser, t ex vattenfyllning, tvéttning, cen-
trifugering, etc. Varje fas har ett eget ljud, darfor kan vi anta vilken av
faserna det ar fran ljudet, &ven om vi inte ser tvéttmaskinen. Néar ljudet ’a’
skiljer sig fran ljudet 'b’, ska vagformen av ’a’ vara annorlunda jamfért med
vagformen av 'b’. Detta innebér att de frekvenser som utgor vagformerna &r
annorlunda.

Formeln for att fa ut frekvenskomponenter i en vagform ar Fourier-transformen.
Fourier-transformen delar upp en vagform i frekvenskomponenter genom en
kombination av enkla sinusvagor. Vi kan dven rekonstruera den ursprungliga
vagformen fran dessa komponenter.

Denna uppsats bestar av tre delar. Den forsta studien fokuserade pa Fourier-
transformerna. Speciellt den diskreta Fourier-transformen (DFT) och den snabba
Fourier-transformen (FFT) eftersom ljudsignalen analyseras av en dator som
hanterar endast diskreta varden. Den andra, vi studerar ljud-extraktions metoder
och diskuterar problemen. I sista delen, uppvisas ljudklassificering med en mask-
ininlarningsmetod, kallad ”supervised learning” med djupa neurala natverk.
En av hyperparameteroptimeringar, "random search” forklaras och anvéands for
klassificering av flera klasser.

Chapter 1

Introduction

The purpose of this thesis is to study the classifying sounds of a washing ma-
chine. A washing machine program has different stages e.g., water-filling, wash-
ing, spinning, etc. Each stage makes a different sound, therefore we can presume
the stage from the sound, even though we don’t see the washing machine. Fre-
quencies are the building blocks of sounds. When a certain sound ’a’ is different
from another sound called 'b’, then the waveform of ’a’ should be different from
'b’. This implies that the frequencies which make up the waveforms are also
different. If we could extract the features of each stage by their frequencies,
then it may be possible to determine the stage of the washing program from a
remote place, without seeing or hearing the washing machine.

Examining frequencies in the frequency domain is simply a different way of
looking at a signal, compared to the traditional way of in the time domain. The
advantages of using frequency representation of a signal are first, the frequency
domain makes it simpler and clearer to see the information of the waveform
compared to the time domain. Besides frequency representation needs a smaller
space of storage. Second, the signal often needs to be processed, for example,
through noise removal. For removing noise among synthesized sounds, we first
find the frequency of the noise and then remove the frequency in the frequency
domain. Then you can hear the sound without the noise. In many cases,
modifications like this are easier to do in the frequency domain than in the time
domain.

The tool for getting out frequency components of a waveform is the Fourier
transform. The Fourier transform decomposes a waveform into frequency com-
ponents by a combination of simple sinusoidal functions. We can even recon-
struct the original waveform from these decomposed components. To put it
simply, if we put a fruit juice into a Fourier transform machine then we get
out information about all the ingredients which make up the fruit juice and

the quantities. If we put all the ingredients back into the Fourier transform
machine then we can reproduce the fruit juice. The Fourier transform is a
wonderful tool!

An input signal of a Fourier transform can be either continuous or discrete and
it can be either periodic or aperiodic. The combinations of these two features
creates the four types of Fourier transforms, described below and illustrated in
Figurel.l.

Time domain Example Signal Type of transform Frequency domain

continuous

aperiodic /\/\' Fourier transform continuous aperiodic
(FT)

continuous periodic J\/\J\/\J\/\ Fourier series discrete aperiodic
(FS)

L - -~

R Discrete time Fourier transform continuous periodic
discrete aperiodic] _'.-_.--u.. (DTFT)
discrete periodic . .t .- Discrete Fourier transform discrete periodic
R (DFT)

Figure 1.1: The four types of Fourier transform. Figure adapted from [2].

In this thesis we mostly focus on the Discrete Fourier transform (DFT) but for
the start, in Chapter 2, we discuss the Fourier series which is the foundation
of the Fourier transform. We explain how it is possible to express a compli-
cated wave function with the sum of simple wave functions and the required
conditions.

In Chapter 3, when we study a signal on a computer, the signal has to be
discretized. Then the input signal has discrete values. Here we derive DFT and
focus specifically on how to interpret the DFT result because the result does
not give us an actual amplitude.

In Chapter 4, we show how the fast Fourier transform (FFT) works. FFT is an
efficient implementation of DFT. We get the same result but faster.

In Chapter 5, we describe the design of our experiment for classifying the sounds
of a washing machine. We show some feature extraction methods and discuss
about the problems.

In Chapter 6, we use machine learning to classify the sounds of the stages of the
washing machine program. We explain the basic concept of a neural network
and how we found hyperparameters for our models.

In Chapter 7, we have our conclusions.

Chapter 2

Fourier Series

2.1 Sinusoid Functions

When you listen to an orchestra, all instruments produce vibrations that prop-
agate through the air then reach your ears. A vibration can be modeled by
a sinusoidal waveform. A sinusoid (i.e., sine or cosine function) is a smooth
periodic oscillation and can be expressed in terms of time by the form;

y(t) = Asin(Qt + @) or
y(t) = Acos(Qt + ¢) (2.1)

where

A = peak amplitude (non negative)
Q = angular frequency (radians/second)
¢ = phase shift (radians)

t = time (seconds).

The amplitude is the measure of distance and direction from zero. Therefore
signal amplitudes can be negative values as well [7]. However when you express
this mathematically, you use positive values. The angular frequency 2 measures
angular displacement per second. Its units are therefore degrees or radians per
second. Radians are used throughout this thesis when otherwise not mentioned.
Qt shows how many radians are displaced in ¢t seconds. There is a relationship
between angular frequency, period and frequencys;

Q(rad/sec) = 2% = 27Tf (22)

T = period(seconds): the time it takes for a wave to oscillate once

f = frequency(Hz): the number of times a wave oscillates in one second

The phase shift ¢ given in radians tells us the position of the sinusoid at ¢t = 0.
Sinusoids can be expressed in a unit circle using a rotated vector. For example,
a 10 Hz cosine wave means, the cosine wave oscillates 10 times per second or
the rotated vector in the unit circle rotates 10 times per second. Using (2.1),
it can be written y(t) = cos(2w - 10t). The python code of the function with
amplitude 0.8 and the plot appear below:

A=0.8 #Amplitude
f=10 #Frequency
phi=0 #Phase
t=np.arange(0, 1, 0.001) #Time

y=Axnp.cos (2xnp.pi*f*xt+phi) #Function y(t)

= =
S @

]
=

Magnitude

Amplitude

o
N

oo T
0o 02 04 06 08 10 0 10 20 30 40 50

Time Frequency(Hz)

Figure 2.1: Plot of y(¢) = 0.8 cos(2x - 10t). The waveform (left) in the time domain
and the spectrum (right) in the frequency domain.

This can be called a monochromatic wave, meaning the wave has only one fre-
quency component. In this case, it is easy to find all the information (amplitude,
frequency and phase) from its plot in the time domain. However, it is difficult
to find such a waveform in a real sound. A real sound can be composed by
thousands of sinusoids. Even a combination of three sinusoids, like the one we
have in Figure 2.2 makes it very difficult to see directly all components of the
function in the time domain.

=
@

Amplitude
Magnitude
=
9

=
=

oo T u
(1) 02 04 06 08 10 0 10 20 30 40 50

Time Frequency(Hz)

Figure 2.2: Plot of a sinusoid with amplitudes a1 = 0.8, a2 = 1.0, a3 = 0.6, frequencies
f1 =10, f2 = 20, f3 = 40. The waveform (left) and the spectrum (right).

2.2 Fourier Series

Jean Baptiste Joseph Fourier (1768-1830), a French mathematician and physi-
cist submitted a paper in 1807 to the Institut de France on the use of sinusoids
to represent temperature distributions. In the paper he stated that any con-
tinuous signal with finite period can be represented as the sum of an infinite
series of properly chosen sinusoidal wave functions at different frequencies [2].
This is called Fourier Series now and this is the foundation of the Fourier trans-
form.

In order for us to be able to find the Fourier series of a function, there are certain
conditions that must be satisfied. Johann Peter Gustav Lejeune Dirichlet (1805-
1859) [17] derived these conditions and they are called the Dirichlet conditions.
Since the functions considered in this thesis are sound signals, they are assumed
to be smooth and continuous. The Dirichlet conditions can be found Appendix
A.

Theorem 2.2.1. (Fourier series) A periodic continuous function x(t) with the
period T can be expressed by the summation of sinusoids with frequencies that
are integer multiples of the fundamental frequency fo.

1 2 3
z(t) = ap + a1 COS(QFTt) + as COS(27TTt) + a3 COS(?ﬂ'Tt) + ...

1 2
+ b sin(ZWTt) + by sin(27rft) + b3 sin(ZW%t) + ...

=ag+ »_(ak cos(2m fokt) + by sin(27 fokt)) (2.3)
k=1
Fundamental frequency fy is given by fo = % All ag,ag, b, k = 1,2,...,00

correspond to the amplitude of the sinusoids.
Since period T is given, the fundamental frequency fy is determined. The
theorem says that the function z(t) can be expressed by the sum of sinusoids

with frequencies [Qo, 2Q0, 380,40 ...] where Q¢ = 27fy. fo has the biggest
period of all the decomposed sinusoids and one time oscillation in 7. 2f; has
exactly 2 times as many oscillations in T and 3 fy has exactly 3 times as many
oscillations in T'. This is necessary if the function x is to be periodic, otherwise
the pattern would not repeat[1]. If there is even one sinusoid that doesn’t exactly
fit in the period T, the function z will not repeat its shape every T seconds.
Therefore, the frequencies need to be integer multiples of fj.

2.3 Fourier Coefficients

In this section, we will determine amplitudes ag, ax, by by using area as discussed
in [1].

At first, to find out ag, we observe the area enclosed by the horizontal axis and
each sinusoid in (2.3). We take the integral in the period T for both sides of
(2.3). Note that the area of all individual sinusoids in >~ (ax cos(2m fokt) +
by, sin(27 fokt)) will be zero in the period since they fit perfectly in the period
T. Therefore the area of ag over T which is ag - T is equivalent to the area of

x(t). Solving for ag we obtain ag = 5 fOT x(t) dt.

To find aj and by, we use area again as a tool.

We start with a;. As we mentioned above, the area for ay cos(27 fot) enclosed by
the horizontal axis in the period T is zero. Now we would like the area for every
sinusoid to become zero except this component, a; cos(27 fot). The only way we
can make the area of aj cos(2m fot) # 0 and all the other terms’ area zero is by
multiplying by cos(27 fot). Now the area of z(t) cos(27 fot) is equal to the area of
a1 cos(27 fot) cos(2m fot). Solving for a; we obtain a; = 2 fOT x(t) cos(2m fot) dt.
Similarly, we can repeat this process for other aj and b;. Multiplying by the
sinusoids associated with the given coefficient extracts the area as % and makes
the other terms disappear. A denotes for a; and bg.

Vi) v2(t) y3()

04 08

03 06
02 04 08
01 0z S os
00 20
02 go

02 -0 0z

00
-01

Amplitude
Amplitude
p

03 06 o1

-0 08 00
oo 02 o 5 08 10 [X) 02 o 5 08 10 00 02 0.

05 08 10

4 o 4 o 4
Time Time Time

Figure 2.3: From the left, yi1(t) = Acos(2rft)sin(27ft) the area is 0, y2(t) =
cos(27 ft) cos(27 fit) the area is 0, ys(t) = Acos(2m ft)cos(2m ft) the area is L.

So finally we introduce Fourier coeflicients as below.

10

Theorem 2.3.1. (Fourier coefficients) When we say that (2.3) is the Fourier
series representation of x, the constants ag, a; and by are given as follows;

T
ag = %/0 x(t) dt
T
ay = %/0 x(t) cos(27 fokt) dt (2.4)
o (T

b, = T/ x(t) sin(27 fokt) dt, kel?2, -, o0.
0

ag with zero frequency stands for DC component which is the average value of
the signal over the period T. Note here the integration interval is used as [0, 7T
but it can be [-Z, Z] or [T}, T3], as long as period T is the time it takes the
waveform to repeat itself.

2.4 Euler’s Formula

Euler’s formula is one of the most famous formulas in all of mathematics and
physics. It provides a link between the complex exponential and trigonome-
try.
e’ = cos(#) + j sin(f)
e 7% = cos(h) — jsin(h) (2.5)

e is the base of the natural logarithm, j is the imaginary unit which has identity
j = +/—1. Euler’s formula can be used to obtain a lot of useful results or
identities. For example;

) 70 4 =30
§=Re(el?) = T
oS e(e’”) 5
) Jjb _ =30
sinf = Im(e??) = c 2; (2.6)

11

2.5 Exponential Form

Using the preceding expressions, (2.3) of the Fourier series can be written in
complex exponential form;

x(t) = ao + Z(ak cos(2m fokt) + by, sin(27 fokt))

k=1
o0
_ Ak o om fokt —j2nfokt bi jomfokt _ _—j2mfokt
= g+ Y [(€T 4 eI o Ch (etrhikt — miznhokt)
k=1
= ao + i[‘i’“(eﬂ'%“ LB e Lt
2 2
k=1
=..ap — jb ay + jb
_ k= Jbk jampy Gk +Jbk _jamgy
—ao—l—Z[5 ¢ + 5 ¢ 7T]
k=1
o0 — 00
- 270 - 270
:60+cheJTkt+ Z cped T
k=1 k=—1
o0
= Z cped TRt (2.7)
k=—o0
where
_ag — jbg
="
__ap+jbg
C—k:Ck:T (2.8)
ao
CO—?.

The Fourier coefficient in complex exponential form can be calculated by using
(2.4) and (2.8) as;

I 2
ck = ?/ z(t)eTFR At ke (—o0,0). (2.9)
0

2.6 Orthogonality

In Section 2.3, we found the Fourier coefficients by extracting a certain area
enclosed by the horizontal axis by multiplying by the sinusoids associated with
the given coefficient, making the other areas zero. In this section, we will express
this using inner product and orthogonality. Since the Fourier coefficients (2.4)
are the same as (2.9), we show with complex exponential form.

12

Definition 2.6.1. (Inner product) Inner product of two complex functions
D, (), D, (x) is defined as integral over some interval a < x < b,

b
< P, 0, >:/ Or (2)P,(z) dx (2.10)

where ®* (z) is the complex conjugate of ®,,(z).
We introduce the Kronecker delta;

Definition 2.6.2. (the Kronecker delta)

Sy — 4L AIm=m (2.11)
0 if m#n.

In order to express the orthogonality of two complex functions, we have;

Definition 2.6.3. (Orthogonal functions)When the two complex functions are
orthogonal to each other, the integral in (2.10) is zero whenever m # n and not
zero when m = n. Using the Kronecker delta,

b
/ O ()P, () dz = 10, | = constant (2.12)

Let us check if our sinusoids are orthogonal functions.

L
‘2m c2m _s2n . 2m
<eijt7€]Lnt> / eijtejLntdt
0

L
:/ eI T (=t gy
0

o
_ L itm=n (2.13)
0 ifm#n

Now it is clear that the sinusoids are orthogonal functions and therefore it is
possible to extract the area by multiplying as described above to make the other
areas zero.

In the Fourier series, we use the set of orthogonal functions S € C(C). Therefore
a periodic and continuous function can be created by taking linear combinations
of the elements of S.

2n

_34 _942m _g2m j2m p2m
S={ - e MLt UL cIT! 1Tt T ..} (2.14)

13

Chapter 3

Discrete Fourier
Transform

3.1 Fourier Transform

We have seen a method for decomposing a periodic continuous function. Figure
3.1 shows a function in the time domain and in the frequency domain. The
abbreviation FS stands for Fourier series.

2nfo=2n/T, = Q,

FS i
—

‘ | | ©
-30,-20, -Q, 0 Q, 20, 30,

Figure 3.1: A wave function in the time domain (left) and the frequency domain

(right) after applying F'S between [%TO,%]. The frequency resolution i.e., the spacing

between frequencies in the frequency domain is 27 fo = Q. Figure adapted from [35].

In this section, we observe the spectrum for non-periodic functions. Many real
sounds are not perfectly periodic. The strategy we use here is as follows: begin
with a non-periodic function and let the period get very large, i.e., T — oo.
assume here that the function repeats over an infinite period of time [1]. The
Fourier transform can be viewed as an extension of the Fourier series to non-
periodic functions.

14

Assume that we extract a single period of the waveform in Figure 3.1 and
extend the entire period to [—Tp,Tp] (Figure 3.2) without changing the wave-
form.

2n/2T, = Qq/2
iy w f\ FS : |
JWIA“ | fllﬂllau i fll‘|.|“t — HI Ill @
v v v 2300 -20, -Q, 0 Q, 20, 30,
'Tu .i-u
Figure 3.2: Period 2Ty = [—To, To] gives the frequency resolution %. Figure repro-

duced from [35].

As the waveform is the same but the period now is double, the spacing between

frequencies, i.e., the frequency resolution becomes narrower, % Similarly, if we
make the period larger [—2T}, 2Tp] then the frequency resolution becomes now
Q

Uy

2n/4Ty = Oy /4
ol ‘ I
ﬂ‘ﬂt S Rl @
krh’ 30,20, -Q, 0 0, 20, 30,
-0 (——Z:Tn 2L|'n -
Figure 3.3: period 4Ty = [—2Tv, 2Tp] gives the frequency resolution %. Figure repro-

duced from [35].

How about if we have period Ty — oo? As the Ty increases, fp decreases.
Therefore, the frequency resolution becomes smaller with no gaps between the
frequencies when the limit Ty — oo. Thus, all frequencies become known when
To — oo [1]. This is the idea of the Fourier transform.

To derive the Fourier transform, once again we bring back the equations for the

15

Fourier series and the Fourier coefficient.

w(t)= Y cped FH (3.1)

k=—o00

T
1 2 om
%:T/ s(t)e=I FH g (3.2)

S|

Since we can write % as Af, (3.2) becomes;

o = Af/2 w(t)e—92TRATt 4y (3.3)

S

k A f is the fundamental frequency fo multiplied by integer k& so we denote as
fr. Taking the limit Af — 0 corresponds to T' — oo thus we set (3.3) into (3.1)
then;

00 T
2
= i —j2mfit G2 fit
z(t) k_z:m(jlgﬂooﬁf/_gm(t)e dt) e
< %
= lim (/ m(t)e_jQWfktdt) ejQTrfktAf
T—o0 . _%
:/ (/ :Lr(t)e—jz‘n'ftdt) €j27rftdf. (34)
A

B

The reason that fi became f is that fi represented discrete values, i.e., fi
jumped from a frequency to an another frequency, however these values are
continuous when 7' — oo. Therefore fj, denotes now f.

As you see, e 727ft in A is a function of f and t. However, now multiply by
x(t) and integrate for ¢ from —oo to oo which makes this as a function of f. In
B, first, we have a multiplication of A and e??"/* and the result is a function
of f and ¢t. Then this function is multiplied by Af and summed up between
(—00,00).

Now we can separate this equation, and obtain equations of the Fourier trans-
form and the inverse Fourier transform.

Definition 3.1.1. (Fourier transform) The Fourier transform of the function x
is denoted by X.

X(f)= / x(t)e 92t de (Fourier transform) (3.5)

x(t) = / X(f)errmrtay (Inverse Fourier transform) (3.6)

16

As we showed above, we assume as T — oo in the Fourier transform, the
frequency resolution goes to 0 in the Fourier series. Therefore, the sequence of
Fourier coefficients becomes a continuous function X (f).

3.2 The Dirac Delta Function

So far we have considered only continuous functions. In fact, real sound is
continuous. However, the computer can only handle discrete values. Therefore
we use an Analog-Digital converter to transform the original input signal to a
discrete time-signal. To convert analog signal to digital signal we need sampling
and quantization. Sampling means to discritize time and quantization is to
discritize amplitude. We often use the word sampling for both sampling and
quantization.

The period for measuring the discrete time-signal is called the sampling pe-
riod and the number of data points taken in one second is called the sampling
frequency. Sampling period and sampling frequency have an inverse relation-
ship, just like the relationship between period and frequency in the previous
chapter.

The Dirac delta function is a generalized function invented by Paul Adrien
Maurice Dirac(1902-1984) [11] in order to express particles existing only in one
special point e.g., point mass. Theoretically, the value is infinite at one point,
but when integrating over the entire real line, it becomes the finite quantity, 1.
This is described as below;

Definition 3.2.1. (the Dirac delta function)
0 t#0
é(t) = { 7 (3.7)

oo t=0
/ S(t)dt = 1. (3.8)
Let f(t) be a real continuous function. Then this will be satisfied for all ¢;

| rwswa = s (3.9)

Tt is called the shifting property of §(t) [6]. If we use the form §(t — 1), then
the point ¢ = t; is the special point.

/ F)S(t —t1)dt = f(t1) (3.10)
As we have seen, we can take out a value of a function at any one point using

convolution with the function and the Dirac delta function. We will discuss
convolution in the later sections.

17

3.3 The Comb Function

Now we are ready for Dirac comb function which is also known as impulse train.
The comb function looks like the second graph in Figure 3.4. The name is given
because the form looks like a comb. This function is made by the sum of the
Dirac delta functions.

Definition 3.3.1. (Dirac comb function)

combyp(t) = i d(t—nAt) (3.11)

n=—oo

where n is index of the sample and At is sampling interval. Then we denote
[3, 22] the discrete time-signal x4(t) as;

xs(t) = z(t) i o(t—nAt) (3.12)

n=-—oo

where z(t) is an original input signal. We assume the points where the arrows
stand are sample points (Figure 3.4).

LLILILLLL

, Ta-

Crl e,

Figure 3.4: Sampling by a Dirac comb function: an original input signal z(¢) is multi-
plied by the comb function to produce the discrete time-signal z(t). Figure adapted
from [22].

3.4 Discrete Fourier Transform

Consider the Fourier transform (3.5) of the discrete time-signal x4(t) with a
period T. The original input signal z(t) is assumed z(t) = 0 outside of the

18

period T. We take N equally spaced samples of z(t).

N-1

X(f) :/ (2(t) 3 6(t —n A 1)e=27T at
> n=0

N-1 .0 ,

= Z / (z(t)e 7?1 §(t —n At) dt (using the shifting property)
n=0 7~
N-1

= z(n A t)e2mf (A (3.13)
n=0

Just as with t, f also has to be discretized by sampling. This relationship is the
key to understanding the Discrete Fourier transform [29].

T
t:nAt:%, 0<n<N-1)
kfs
f=kDf==2 (0<k<N-1) (3.14)

where Af is frequency resolution, k is index of discrete frequency and fy is
sampling frequency defined by fs = % Then, (3.13) becomes;

N-1
XkAf)= Z z(n A t)e 92T kAHMAY, (3.15)
n=0
Since,
fs T 1
Af-Nt=2=0— = — 1
f NN-N (3.16)
(3.15) becomes;
N-1 .
X(kAf)=> anAt)e .
n=0
Let X = X(k A f) and z,, = z(n A t) then,
Xp= > w,e ¥ (DFT) (3.17)

This is known as the Discrete Fourier transform (DFT) and the inverse discrete
Fourier is

(IDFT). (3.18)

19

To summarize the notations,
T : sampling period
fs = = : sampling frequency (sampling rate),

the number of data points taken in one second

N = f, - T : total number of sample points

T
At = N sampling interval
n € [0: N — 1] : index of sample (discrete time)
Af = % : frequency resolution

k €]0: N —1]:index of discrete frequency.

To compute the DFT is the same as computing the inner product between
an input signal z, and a complex sinusoid e’ “%*. Therefore DFT can be
understood as the projection of an input signal onto a finite set of complex
sinusoids. In the absolute value of the DFT result X which is complex number,
we get the amount of the complex sinusoids which are present in the input signal
of the frequency. We can find the absolute value by the following formula.

The absolute value = | X;,| = v/Re(X};)2 + Im(X})2

In the phase we identify the location of these sinusoids with respect to time zero
[9]. To calculate phase, we do;

o= arctan(lm(Xk)

Re(Xk)).

3.5 How to Interpret DFT Spectral Results

Audio sound is a real-valued signal. By using Euler’s identity that we presented
in Section 2.4, we can express a real-valued signal by a cosine function i.e., the
sum of two complex sinusoids [9].

27mnl AO

2T A ;27N
N)= ?BJZTI + ?OeszNl (3.19)

X, = Ap cos(

20

where Ag is an amplitude. Then the DFT of this real valued-signal is;

N—-1
_2nnk
X, = E Tpe lTN
n=0
N-1
Ao j 2mn Ap _j2mnl, _jamnk
= (—e™ v + —e N)6 N
2 2
n=0
N-1 N-1
Ay 2r0-k)n Ay _2r(4k)n
= 76‘7 N + E —e J N
2 2
n=0 n=0
Ag

for k = I,—1 and 0 for rest of the k’s. As you can see, in order to represent
real-valued signals, we need to have both positive and negative exponentials
because of the cosine identity. For the result of DFT of a real-valued signal,
the negative frequencies will be a mirror image of the positive frequencies in the
spectrum. It is important to know that DFT does not provide us with the actual
amplitude Ay which was expressed in the Fourier series. However, it returns a
ratio between the amplitude of the frequency components of the input signal.
Below is an example of DFT implementation by python and a plot.

def DFT(x,N, fs):

X=np.array ([]) #initialize X
nv=np.arange(—N/2, N/2) #time index
kv=np.arange(—N/2, N/2) #frequency indezx

for k in kv:
sinusoid=np.exp(1j#*2+np. pixk*nv/N) #DFT-sinusoid
X = np.append (X,sum(x*np.conjugate (sinusoid)))
plt.stem (kv,abs(X))
plt.axis([—fs/2, fs/2, min(X), max(X)+5])

60
50
1]
Sa
=
c
o 30
g
20
o [[
] . T " "
-30 -20 -10 0 10 20 0

Frequency(Hz)

Figure 3.5: Plot of the spectrum of a real-valued signal for N = fs = 64, The function
x contains; fi = THz, fo = 10Hz, f3 = 20Hz, a1 = 2,a2 = 0.5,a3 = 1.

21

From Figure 3.5 we read that the absolute value of the spectrum are correct
based on the calculations of equation (3.20). Also pay attention to the range
of the z-axis, the time- and the frequency index in the code. When you want
to plot frequencies correctly as (3.20), then this is the way to do it. For sim-

plicity, assume period T" = 1 so sampling frequency fs is equal to N in this
example.

However we do not actually need the negative frequencies to get the spectrum.
We will need the negative frequencies when we reconstruct the original input
signal. Therefore we calculate DFT using both time- and frequency index as
[0: N — 1] and plot only positive frequency.

def DFT(x,N, fs):
X=np.array ([])
n=np.arange (N)
for k in range(N):
sinusoid=np.exp(1j*2+np. pixk*n/N)
X = np.append (X,sum(x*np.conjugate (sinusoid)))
plt.stem(float (fs)*np.arange(X.size)/float (N), abs(X))
plt.axis ([0, fs/2.0, min(X), max(X)+5])

Then the plot is the same as above but only positive frequencies side.

Xk - complex valued

|

0 N/2 N-1 DFT equation index

|
‘Positive frequencies |

v Negative frequencies

DC component

Figure 3.6: DFT results using the complex DFT for a real valued signal. Figure
adapted from [23].

3.6 Computation of DFT

We can arrange the DFT (3.17) for signal processing and it can be expressed
as;

N-1
Xp =S e, Wik (3.21)
n=0

22

where Wy is the complex N-th roots of unity such as Wy = e™J ¥ =

2m

cos(3Z)—j sin(%’). These can be plotted in the complex plane as below.

N

(Ws™ =) Wy’

Figure 3.7 Wy for N equally divided points on the unit circle (N = 8).

reproduced from [31].

Figure

The inner product (3.21) for N = 8 can be expressed with a system of linear

equations.
X(0) woo
X(1) wot
X(2) wo-2
X3) | _ [wos
X@4) | [wos
X (5) wos
X(6) wo-e
X(7) wo7

Here we use W"F instead of writing Wg*.

WI‘O
W1~1
W1-2
W1-3
W1-4
W1-5
WLG
W1~7

W2-0
W2-1
W2~2
W2~3
W2»4
W2»5
W2~6
W2'7

W3‘0
W3~1
W3-2
WB-S
W3-4
W3-5
W3~6
W3~7

W4»O
W4-1
W4~2
W4~3
W4»4
W4»5
W4-6
W4~7

WS‘O
W5~1
W5-2
W5-3
W5-4
W5-5
W5~6
W5~7

WG»O
Wﬁ-l
W6~2
W6~3
W6»4
W6»5
W6~6
W6~7

WTO
W7~1
W7-2
W7-3
W7-4
W7-5
W7~6
W7~7

As you see, if you compute the

DFT formula as it is, you will need at least N2 operations. In other words, the
calculation order of DFT is O(N?). Thus, the amount of computations increases
quadratically with N and it can take an unreasonably long time to calculate
this, even with a computer, for large N.

The matrix of the complex N-th roots of unity is a helical structure in the
complex number space [33]. This animation matrix shows exactly the same as
above but this helps more to get the intuition of the DFT.

23

[)(0\ [- - - = == - — —\ X0
X =NGh o= 5 e A -
Xz ol g =) - 1 o
Xs| X E'E K K X X3
Xa| Y Y Y Y Y Y Y x4
Xs = N I ? & < 1 y X5
X6 - 1 - 1 - | - 1 X6
vV 0000000 W@ |~

Figure 3.8: The animation of the complex 8th roots of unity matrix. Figure adapted
from [33].

The first row (for Xy) of the complex 8th roots of unity matrix can be used
for a measurement how much DC component is in the signal. In the second
row (for X;) we can see that it rotates clockwise by 1/8 turns each time a
circle shifts to the right. As the exponent of the second row of the matrix (3.22)
increases by 1, it moves exactly like Figure 3.7. It is one revolution with 8 circles
from left to right. X; contains the amount of the lowest frequency component.
Using N = 8, X; is a frequency component of a 1/8 sampling frequency, fs.
For example, if f; = 1000Hz and N = 8 then 1000/8 = 125Hz so X; shows
the amount of the frequency 125Hz that is present in the input signal z. Now,
we look at the third row (for X5). The exponent of W is doubled compared
with the second row therefore it has twice the angular velocity. Looking at the
rotation speed of the thick line in the circle, you can see that it is rotating at
twice the angular velocity. It has 2 rotations with 8 circles. Using the above
example, Xo shows the amount of the frequency 250Hz that is present in the
input signal z. Similarly, angular velocities increase three times, four times, ...,
seven times. However, the fastest velocity appears in X, which extracts the
highest frequency component. With the above example, it is 500Hz. From the
sixth row (X5) the rotation becomes counter-clockwise and gets slower toward
X7. As we discussed in the previous section, we get negative frequencies after
N/2 and the negative frequencies are just a mirror of the positive frequencies.
Therefore, the frequency component of the 1/8 sampling frequency appears in
to two places, X; (positive frequency) and X7 (negative frequency).

24

Chapter 4

Cooley-Tukey FFT
Algorithm

The Fast Fourier Transform (FFT) is an efficient implementation of DFT. FFT
reduces the computation time significantly by taking advantage of the periodic-
ity and symmetry of DFT. Such an algorithm was used by Carl Friedrich Gauss
(1777-1855) [20] more than one hundred years earlier. However this early work
was forgotten because it lacked the tool, i.e., a digital computer, to make it
practical. FFT was rediscovered in the 1960s by two mathematicians, J. W.
Cooley (1926-2016) and J. W. Tukey (1915-2000). Their article ” An Algorithm
for the Machine Calculation of Complex Fourier Series” was published at the
right time which is the beginning of the computer revolution [2]. So they are
referenced as the inventors of the FFT algorithm in most signal processing liter-
ature. There are several FFT algorithms. In this thesis, we will show the most
common FFT algorithm which is named after the above two, the Cooley—Tukey
FFT algorithm with a divide and conquer approach. To take advantage of
this algorithm, it is good to choose N to be a power of two; N = 2™,

4.1 Matrix Form

There are some useful properties to simplify the matrix (3.22).
1) WEIN = e 7% =1=Wg
2) W™ =W - W™ =1-Wg™" =Wy™
3) Wk = WEFN for all integer 1.

25

Using 1) and 3) properties, we can rewrite the matrix (3.22) as;

X(0) we wo wo w° wo wo wo wo x(0)

X(1) wo wt w2 w? wt ws w¢ w7 | z(1)

X (2) wo w2 wt wé w w2 wt weé x(2)

X(3) we w3 wé wbt wt w' w? ws z(3)

X)) |~ [wo owt o wo o wt wo owt WO WA | | 2(4) (4.1)

X (5) we ws w2 wr wt wt wé w3 x(5)

X(6) woe ws wt w2 wo wé w* w2 x(6)

X(7) wo wT owes ws o wt w3 w2 wt x(7)
Furthermore, W*=4 = e I2TT eI = It = —WP*, therefore W* =

—W*k=4, We apply this to k = 4,5,6,7.

X(0) WO owe WO w° wo W Ww° WO\ /z(0)
X(1) wo wl w2 w3 W —wt —w2 w3 | | 2(1)
X(2) wo w2 oW —w? W w2 —w° —w?| |22
x@3) | _|we owd —w?2 oWl W W w2 W | | 2(3)
x| T |we —wo owo —wo W —w° WO —wO| |az4)
X(5) wo —wl w2 w3 —wo Wl —w2 w3 | | a(5)
X(6) WO w2 W w2 oW w2 —w° w2 | | ax(6)
X(7) wo W w2 Wl —wo w3 w2 Wl) \a(7)

o,

Now looking at closely of the third row in the matrix (4.2), the one associate
with X (2), we see some useful symmetry. Therefore we can write as;

X(2)=(W° W2 —w° —w?) (4.3)

If we write like this, the computation can be reduced by a half. This can be
used for all X (even) in this case, X (0),X(2),X(4),X(6).

Now looking carefully at the row for X (1), the difference between the right side
and the left side is only the sign. So we can express as;

z(0) — z(4)
X1) =" wt w2 w) ﬁg; - i% (4.4)
z(3) — z(7)

X(0) WO WO WO WO\ [a(0) + a(4)
X2 | _ (we w2 —-wo —w? x(1) + z(5) A5
X4 | [wb —-wo wo WO | 2(2)+ x(6) (4.5)
X(6) wo w2 w0 w2) \a@3)+a(7)

26

woe wt o w2 w3 2(0) — x(4)
wo w3 —-w? w! z(1) — z(5) 16
wo —wt w2 w3 x(2) — z(6) (4.6)
wo w3 —-w?2 Wt x(3) — (7)

apply this to the half of matrix (4.6).

X(1) wo wbt o — WO — W\ [x(0) - z(4)
x@) | [wo —wt ogwe wt (1) — x(5)
xG) | (we o —-wt —iwo Wt x(2) — z(6)
X(7) wo gwto Gwt o Wt z(3) — z(7)

Then we again find symmetries or symmetries with different signs so we do the
same procedure as before.

<X(0)> _ <W2 W00> <x(0) +x(4) + z(2)
X(4) wo —wo) \z(1) + 2(5) + z(3)
(X)) = (o M) GO T8 —08 7))
() (1) (2
XQY _ (W0 =Wy (a
G-)G

4.2 Mathematical Expression

Here we show with a mathematical expression.

We start with (3.21) for N =8,

N-1
X(k/S) = Z onnk_ (48)
n=0

We divide x,, with even and odd numbers,

vl
—

_ %_1
X(k/S) —_ x(Qn)Wan + Z x(2n+l)W(2n+1)k

n=0

M‘Zﬁ
Lo

N
N_q

= .’L‘(Qn)WQHk + Wk Z $(2n+1)W2nk. (49)

n=0

3
Il
=)

27

We set;

even group : = Z(z,) = p(n)

odd group : = z(2,41) = q(n).

Then,
-1 X1
Xirss) = Z p(n)W?2F + Wk q(n)Ww?2nrk. (4.10)
n=0 n=0

—j2
FEnk
2

Note, since W2k = 2R nk — ¢
of unity to express this equation [1].

Now we set W2"% = W% and again divide p(n) and ¢(n) with even and odd
numbers.

, therefore we are now using 4th roots

| ¥
X(k/S) — Z ()W nk + Wk Z W nk
n=0
4 41
= W+ D panyW GOk (4.11)
n=0 =
y- §
WO qen W2+ 3 gy W TR
n=0 n=0

We assign these functions like this;

p(2n) = a(n)
p(2n+ 1) = b(n)
q(2n) = c(n)
q(2n+ 1) =d(n).

Then,
%_1 ’ ! %_1 ’ %_1 ’ , %_1
X(k/s) = Z a(n)W nk 4 pyk Z b(n)W 2nk 4 Wk(Z c(n)W 2k | 'k Z d
n=0 n=0 "0 o
(4.12)
Note, since W'27F = ¢? Nk _ oWk , we can express this equation with 2nd

roots of unity [1].

As we have seen, we divide the given problem into smaller subproblems of same
type and solve these subproblems and we proceed recursively until we reach a
stage where no more division is possible. This approach is called divide and

28

conquer. In the last stage, we have 24 operations which is reduced a lot from
64 operations. Generally, for N points, the N? cost can be reduced Nlogs N
by the divide and conquer method without changing the result if IV is a power
of 2. When N = 8, it might not seem like a big difference. However, imagine
N = 131072 which we used for our project. It is now a huge difference for the
computation time.

29

Chapter 5

Audio Classification

Audio classification consists of extracting significant features from a sound and
classifying them into a most suitable sound group. As we mentioned before,
frequency is sometimes more practical to work with than the waveform of a
sound. With development of computers and the discovery of FFT, the study
of audio classification has progressed significantly. One of the most interesting
studies in this field is machine hearing. Machine hearing is the ability of
computers to recognize surrounding sounds as human beings do [14].

Take for example Shazam, which is a smartphone app which recognizes music.
Shazam analyzes songs from around the world and stores them as waveform
data. These are also saved as an audio fingerprint in its own database. An
audio fingerprint is a digital summary of sound features that can be used to iden-
tify an audio sample or quickly locate similar information in an audio database.
When a user downloads Shazam and taps the screen, then the smartphone lis-
tens to the surrounding sound with the built-in microphone and digitizes the
sound. When the device captures the fingerprint of the song, Shazam accesses its
own database and compares if this fingerprint matches with one in the database.
Since all songs have unique features, Shazam can identify songs [19]. This may
give some clues to what we are going to do.

5.1 Washing Machine

We are going to classify sounds of a washing machine. A washing program steps
through the different stages e.g., water-filling, washing, spinning, etc. Each
stage has a different sound therefore we can determine the stage from the sound
even though we don’t see the washing machine. Therefore the sounds in each
stage have unique features. We can describe the differences by looking at the
frequencies. The stage can then be identified by the frequency. It may then

30

be possible to get information about the stage of the washing program from a
remote place without seeing or hearing the washing machine. In summary, our
goal is to classify sounds of a washing program by features of the frequencies
using FFT (Short-time Fourier transform (STFT)) and to detect a stage from
a short sound clip.

In the beginning, we considered this procedure:
1. Preparing the environment

2. Sampling sounds of washing machine

3. Splitting sounds by each stage

4. Short-time Fourier transform (STFT)

5. Spectrum analysis

We describe how the experiment proceeded.

5.2 Experiment Environment

The washing machine used in our experiment is : w365H LE, Electrolux.

It appears to be an industrial washing machine (see Figure 5.1 (a)). It is placed
in the basement. The laundry room is quite noisy. Even when all the machines
are turned off, there are still sounds, especially from these pipes in Figure 5.1
(b).

According to the washing machine manual [12],

52rpm f =52/60 ~ 0.866Hz (spinning for washing)
1100rpm f=1100/60 ~ 18.33Hz (maximum spinning(centrifugation)).

Therefore we expect that those frequencies appear in the frequency domain.

31

(b) The noisy pipes in the laundry room

(a) The washing machine (¢) The USB microphone

Figure 5.1: Environment
USB microphone : Mini Mikrofon med USB kontakt !

Table 5.1: The microphone specifications

Frequency Response | 50Hz - 16kHz
Sensitivity -30dB +3dB
Impedance < 220012

We used a mobile app for recording sounds at first but the frequency of around
18Hz which we were supposed to be able to see couldn’t be confirmed in the
spectrum. So instead we used the microphone above. In the specification of the
microphone, the frequency response between 50Hz to 16kHz is what is guaran-
teed, but the observed range is certainly larger.

Software: Audacity which is a free, open source digital audio editor. We used
for recording, exporting as wav.file and editing e.g., cutting and deleting.

IThere is no company information. Please refer this site for the product.
https://www.24.se/datortillbehor/datortillbehor/datortillbehor-
mikrofon/mini-mikrofon-med-usb-kontakt?gclid=EAIaIQobChMIrfe-
107y4AIVC6WaChOCGwcAEAQYASABEgLguPD_BwE (Accessed 20190308)

32

To get every sample as similar as possible, the same bathmat is washed using
the same washing program every time. However, it is impossible to get the same
sound every time because it is not possible to control the timing at which the
mat falls and what kind of sound is made.

5.3 Sampling and Sound Editing

For sampling, we used the USB microphone and Audacity. The washing program
which is used all the time is ”"Permanent Press wash program, max 40°C. Half
load”.

Table 5.2: Program

Number Program
1 press the start-button
2 spin slow-middle-slow
3 water-in
4 washing
) water-out
6 water-in
7 rinsing
8 water-out
9 water-in
10 rinsing
11 water-out
12 water-in
13 rinsing
14 water-out
15 spin slow-full-slow
16 finish

The whole program takes about 32 minutes. We recorded all sounds at once.
This one unbroken section of a sound is normally called a track. Then, the
track can be split by each stage. We can process everything with Audacity.
There is a ’click’ sound between each stage. The click is made as the sign that
the next stage will come soon but not right away. So if we cut the sample at
each click, the next stage sample will have sounds of the previous stage. This
is not good for extracting features. Also, there are several moments when the
machine is very calm i.e., it doesn’t make much sound. For sounds during those
moments, even the human ear can’t distinguish the different stages. It happens
often between stages. So we called the sound of the moment as "between”. In
the beginning "between” is included as a sample in stages. Later the clips are
split more finely and "between”s are deleted.

33

5.3.1 Sampling & Time Domain Aliasing

As we discussed in Section 3.2, a real sound is necessary to be discretized by
time and amplitude when we analyze it on a computer. Then, at what time in-
tervals should we sample the input signal? If you sample the input signal finely,
you will definitely be able to reconstruct the original input signal. However, the
amount of data will be enormous. On the other hand, if the sample interval is
too large, the original information will be lost.

sin0t =0 - . cos0t =1
sint . cost

sin 2t 7 - cos 2t

sin 3¢ . cos 3t

Figure 5.2: Sampling N = 4. Figure reproduced from [30].

Figure 5.2 shows that points in cos 3t and cost have exactly the same position
and we see the same with sin 0t and sin 2¢. These two signals contain the same
four samples, yet are very different signals. This is called a time domain
aliasing. Aliasing is an effect that makes different signals indistinguishable
when sampled. When this happens, the analog signal may not be completely
reconstructed from the sampled signal [2]. So, this is not good sampling. N has
to be increased. Then what is a reasonable sample interval?

5.3.2 Convolution Theorem

Before we discuss the sampling interval, we introduce the convolution theo-
rem which actually came up in Chapter 2. The convolution theorem states a
fundamental property of the Fourier transform and this is the most important
theorem we need to understand the concept of signal processing.

The convolution theorem for Fourier transform states that convolution in the
time domain is equivalent to multiplication in the frequency domain and vice

34

versa [3, 5, 10].

Theorem 5.3.1. (convolution theorem)

If two signals x(t) and y(t) are Fourier transformable, then the Fourier transform
of a convolution of the two signals x(¢) and y(t) is the product of the Fourier
transform. Also the Fourier transform of a product of the two signals is the
convolution of the Fourier transform.

FTa(t) xy()] = X(f) - Y (/) (5.1)
FTx(t) - y(t)] = X(f) « Y (/) (5.2)

Note that X (f) = FT[x(¢)] and Y (f) = FT[y(¢)] where FT stands for operation
of the Fourier transform.

Proof. (for (5.1)) The convolution of the two signals x(t) and y() is defined by;

o0

x(t) *y(t) = / x(r)y(t —7)dr. (5.3)

— 00

Suppose the convolution of x(t) and y(t) is Fourier transformable. Then the
Fourier transform of their convolution will be;

FT[Z’(t) * y(t)] _ /OO [/oo x(T)y(t B 7_) dT]eszﬂ-ft dt

et |
:/ x(T)/ y(t — 1)e 2" dtdr
—co —co
:/ x(T)/ y(t)e 2 1) qtdr (change of variables)
:/ x(T)e*jQ’TfT/ y(t)e 72t dtdr

x(T)e_jQ’TfTY(f)dT

O

This can also be applied to the Discrete Fourier transform [5]. A sampled signal
is generated by multiplying a continuous input signal with a comb function.
Now multiplication in the time domain results in convolution in the frequency
domain. This means that the original input signal’s frequency spectra would be
slid across the spectra of the comb function and summed up.

In Figure 5.3, we summarize the above relationship.

35

(a)

x(0)

<

Fourier transform pair

(x)
ke (1)
(c)
1
It 4T 1 Ir I I I' I, ‘[_r[f Fourier transform pair
‘ multiplication
x.(0
(©)
Y e

-&'Wl T

T 2\V} st g Fourier transform pair

Time-domain

X0
(b)
Im Jn
(%)
(0
(d)
e
3 -2 - it T T
‘ convolution
X

I \ 1541y
AT~y

Frequency-domain

Figure 5.3: (a): a continuous input signal z(t), (b): FT of (a), (c): a comb function

he(t) =

> 6t —n1), (d): FT of (c), (e): discrete time-signal x,(t), (f): FT of (e).

Figure adapted from [34].

fm is Bandwidth which is the difference between the upper and lower frequen-
cies. (a)(b), (c)(d) and (e)(f) are a Fourier transform pair. To derive (d), we
use the Fourier coefficients of h,(t). Since (c) is a periodic function which 6(¢)
is repeated by period 7, we can write;

1 [z 2 1
Ch==[6&(t)e7=Fdt=—. 5.4
v=g [e - (5.49)
So we can rewrite h.(t) as Fourier series;
ha(t) = i e T H (5.5)
’ T k=—o00 .

The Fourier transform of (5.5) is then,

o [e%e]
/ (7 Z ej%"kt)e—jzwftdt
U

1 3 /°° e—i2n (=Lt g
T k=—o0 Y ™

Iy a5 (56)

H-(f)

This shows that the Fourier transform of a comb function with a period T
becomes a comb function with a period %

Using (5.3) to calculate the convolution of (b) and (d), we get the Fourier
transform of multiplication (a) and (c). Thus, (f) is a periodic function repeating
with sampling frequency %

This is an example that maximum frequency f,, is smaller than sampling fre-
quency % Let us think about when the case that f,, is larger than sampling
frequency

5.3.3 Frequency Domain Aliasing

Imagine we would sample less often which means the comb function (c) becomes
a larger period than 7. Then the period of (d) is smaller than % When sampling
frequency % becomes smaller than f,,, then the curves in the convolution begin
to overlap like Figure 5.4. This is called a frequency domain aliasing.

|
|

N

b
=) R
[

Figure 5.4: Aliasing in the frequency domain. Figure reproduced from [34].

Basically, aliasing depends on the sampling frequency and frequency content of
the signal. In order to avoid this overlapping, we have to assume f,, < % — fm
which is the same as to choose a sampling frequency satisfying;

% > 9. (5.7)

37

This is called the sampling theorem. We are trying to give maximum information
about the original signal with the least amount of data.

5.3.4 Sampling Theorem

Theorem 5.3.2 (Nyquist-Shannon Sampling theorem). The original signal can
be reconstructed when the sampling frequency f; is greater than twice the max-
imum frequency f,q: of the signal being sampled;

fs > 2fmaa- (5.8)

We call the Nyquist frequency f, = % which is a half of the sampling fre-
quency. As long as the Nyquist frequency exceeds the maximum frequency of
the signal being sampled, the original analog signal can be reconstructed without
loss.

Consequently, we have to set fs greater than 2f,,,,. However in many cases,
we do not know f,q, of the sound. Therefore, in sound analysis, fyq. IS set
to be twice or more than 20kHz which is the maximum frequency of human
hearing. For example, the sampling frequency is set to 44.1kHz in a music CD.
Therefore, we also use the 44.1kHz as sampling frequency all the time.

5.4 Spectral Analysis with Audacity

In Audacity, there is a function in which you can view any sound as a spectrum.
Spectrum converts a selected sound to a graph of amplitudes in the vertical axis
against frequencies(Hz) in the horizontal axis. Decibel (dB) is the unit to
measure the intensity of a sound and it is used in most cases.

dB = 201log;,(absolute value of FFT result).

38

-51dB|

-57dB -57dB

10.00Hz 100.00Hz 1000.00Hz 6000.00Hz R 10.00Hz 100.00Hz 1000.00Hz 6000.00Hz
(a) water-in (b) washing

-48dB7| ~ -49dB ~
5108
-54dB -54dB
_57dB- -57dB|
-60dB-|
-63dB|
-66dB-|
-69dB-
-72dB-|
-75dB-
-78dB-
-81dB
-84dB-|
-90dB | v

1.00Hz 10.00Hz 100.00Hz 1000.00Hz 6000.00Hz L 10.00Hz 100.00Hz 1000.00Hz 6000.00Hz

(c) water-out (d) rinsing

45481 " 3008 | N

i -3648-

-51dB- -39dB| 18Hz

-4508 | {}

10.00Hz 100.00Hz 1000.00Hz 6000.00Hz 10.00Hz 100.00Hz 1000.00Hz 6000.00Hz

(e) spin-start (f) spin-full

Figure 5.5: Spectrum view by Audacity

Note that each stage has a different time duration. The ”washing” stage is
very long about 20 minutes on the other hand, the ”water-in” stage is about 10
seconds. Furthermore, we have to speak about Figure 5.5 and its presentation.
We confirmed the 18Hz frequency in the stage ’spin-full’ (f). However this
spectrum view is not very practical to find features of the other stages because
sounds are varying over time and this spectrum is the result of DFT i.e., all
frequencies that have appeared over a whole stage.

39

There is another way to visualize sounds in Audacity. This is called spectro-
gram. Spectrogram shows how the energy in different frequency bins changes
over time. The vertical axis shows frequencies(Hz) and the horizontal axis shows
time(s). This is the result of the Short-time Fourier transform (STFT). We will
take up STFT in the next section. Here you can see only a few colors but there
are six color bands in the Audacity spectrogram view and the brightness of
colors shows the strength of the sound (amplitude). This spectrogram view is
analyzed by using the same clips as in the above spectrum analysis.

G3337 XOO U~ 4 R0& e e R by s 558 KA e~ Qa9
Silas 20 B a Qi Py

ook B o g anbedse

aagae
Doty

(c) water-out (d) rinsing

o T e I 270 EZZEE T T T PR R TN 4 e L AN VY W e n e e TEZ Sy sk 155 KOO 6 nn Q9@
E S - Pt S

aex ol Siaes Qo] O Giih P EbRshaisaiise &

N 0 e i)

- - E

(e) spin-start (f) spin-full

Figure 5.6: Spectrogram view by Audacity

We can almost identify every stages by the spectrogram. However our goal is
to detect a stage from a short sound clip. ”Spin-full” has a clear feature, which
is evident from the spectrogram and the spectrum analysis. Even though we
split the clip of the ”spin-full” smaller, we will be able to capture the feature.
How about the other stages? It depends on the time duration. At least what
we understand from the spectral analysis, we need to use the short-time Fourier
transform (STFT) to classify the stages.

40

5.5 Short-Time Fourier Transform

For example, an unexpected squeaking sound may be generated at a certain
moment with a combination of a pair of gears. Even if we could capture the
sound signal containing this squeaking sound, if we do FFT over the whole
signal, the spectrum of the squeaking sound will be buried by other frequency
components and it probably can not be determined. Also, even if we observe the
original input signal in waveform, it is very difficult to grasp exactly at which
time the squeaking noise occurred.

For such sound analysis, short-time Fourier transform (STFT) is the solution.
Our implementation of STFT can be found in Appendix.

Xik] = Z w[n]:z:[n—FHl]e#m, 1=0,1,... (5.9)

where

w : window function
[: frame number

H : hop size.

This is the Short-time Fourier Transform equation. Basically we apply the FFT
over short periods of time with a sliding window.

windows

~~ WA~

windowed A’VNWPN\
segments “’WW‘Y’”

Figure 5.7: The image of STFT. Figure reproduced from [21].

41

The reason for using a window function is that the Fourier transform assumes
that the signal is a periodic function which means the two endpoints of the
cutout signal are interpreted as though as if they were connected together.
However, if you cut out an original input signal at random, the endpoints do
not connect well which makes the effects of the leakage (see Figure 5.8) and fre-
quency components not present in the original input signal appear. By applying
a window function, the endpoints can be smoothly connected to form a periodic
function and it can reduce the leakage therefore frequencies are now displayed
more correctly [7].

550] There are frequencies which
oHz don't exist appear

M
Figure 5.8: The endpoints are the same position (topleft), The endpoints are the

different position (downleft) so the leakage appears in the frequency domain. Figure
adapted from [38].

| .

Unimportant frequencies

decrease by window function

Figure 5.9: The frequencies not present in the original input signal decrease when a
window function is applied (right). Figure adapted from [38].

5.6 Window Functions

There are several different types of window functions.

42

For selecting an appropriate window function you need to know the estimate
frequency content of the signal or you need to know which frequency should be
emphasized. Each window function has its own characteristics and suitability
for different applications. Here, we introduce popular window functions [36] and
their spectrum.

(1) The Rectangular window:

From the definition, it is 1 for the sample element n from 0 to N — 1 and
all 0 for the others. It is equivalent to simply sampling N samples from the
waveform. Frequency resolution of the main component is good, however, if
no consideration is given to the discontinuity at both ends of the section, the
spectrum will become widely spread as shown in Figure 5.10. This means it is
not suitable for detecting the spectrum of low frequencies.

1, 0< N
wn)=4 V=TS (5.10)
0 otherwise

(2) The Hanning window:

The characteristic of this window gently gets smaller toward both endpoints.
Since it becomes zero, even if the original waveform is discontinuous, the values
at both ends become zero. There is also a disadvantage that the endpoints of
the original signal component are not reflected in the spectrum.

(5.11)

w(n) = 0.5—0.5cos(252), 0<n < N
0 otherwise

(3) The Hamming window:

This is an improvement to the Hanning window. The shape is exactly the same,
but both ends do not become zero. Therefore, a small amount of discontinuity
remains.

(5.12)

w(n) = 0.54 — 0.46 cos(32), 0<n < N
0 otherwise

43

Rectangular window

Frequency response of the rectangular window
104
. 20
=)
2
102 £ 0
g E
3)
2100 g 0
é T
]
098 " 80
E
2
096 -100
-120 T T v T T
0 10 sl 30 0 50 —0.4 -0.2 0.0 02 0.4

Sample Normalized frequency [cycles per sample]

Figure 5.10: The Rectangular window

Hanning window

N Frequency response of the Hanning window
10
-20
08 =
2
06 % 40
» 2
El s
g T 0
& o4 B
]
5 80
0z E
= 100
00
T T y T y T -120 ' T v T t
0 0 0 30 a 50 04 -02 00 02 Y]
Sample Hormalized frequency [cycles per sample]
Figure 5.11: The Hanning window
Hamming window N Frequency response of the Hamming window
10
-20
08 =
k=3
3 -0
n 2
T 06 £
£ i
E ol
04 8
® —80
E
5
02 = 100
T g y y -120

,;,_
=
=1
]
&
@

-04 -02 0.0 02 X
Normalized frequency [cycles per sample]

Figure 5.12: The Hamming window

In our project, we use the Hamming window which is popular for audio signal
processing.

5.7 Feature Extraction

Our washing machine sounds are positioned as environmental sounds in this
classification scheme. Here we have not just artificial sound but also noise in
our samples.

44

Noise

Environmental sounds— Natural sounds

Artificial sounds
Hearable sound —
Sound —

Speech

Music

Non-hearable sound

Figure 5.13: General sound classification scheme. Figure reproduced from [14].

Although we have tried spectrogram and spectrum, there are many audio feature
extract techniques in signal processing. In this section, we introduces a few more
methods. For the interested reader we recommend the article [14] which provides
a broad view of the existing approaches to audio feature extraction. First, here
are the group categories for feature extraction techniques in Figure 5.14.

45

Zero-crossing rate-based
Amplitude-based
Power-based
Rhythm-based

Time domain

Autoregression-based

Short-Time Fourier Transform-based
Brightness-related

Tonality-related

Chroma-related

Spectrum shape-related

. Frequency domain

Physical - Wavelet-based direct approaches
Hurst parameter features

Wavelet domain o np-based Gabor features
Spectral decomposition
Sparse coding tensor representation

Image domain - Spectrogram image features

Cepstral domain - Linear Prediction Cepstrum Coefficients

Eigenspace-based
Other domains Phase space-based
Acoustic environment-based

Audio features — - Zero-crossing rate-based
Time domain Perceptual autocorrelation-based
Rhythm-based

Modulation-based
Brightness-related
Frequency domain - Tenality-related
Loudness-related
Roughness-related

Kernel Power Flow Orientation Coefficients
Mel Frequency Discrete Wavelet Coefficients
Wavelet domain 4 Gammatone Wavelets
Perceptual Wavelet Packets
Perceptual — Gabor functions

Multiscale spectro-temporal modulations

Multiscale spectro-temporal domain i . .
Computational models for auditory receptive fields

Auditory image model
Image domain « Stabilized auditory image
Time-chroma images

. Perceptual filter banks-based
Cepstral domain -
Autoregression-based

Eigenspace-based
Other domains < Electroencephalogram-based
- Auditory saliency map

Figure 5.14: Taxonomy of audio features extraction techniques. Figure reproduced
from [14].

For example, Zero-crossing rate(ZCR) is widely used in speech and music
discrimination/classification and environmental sound recognition [14]. ZCR is
one of Zero-crossing rate-based methods and analyzed in the time domain.

M-1
ZCR = ﬁ > [sign(x(m)) — sign(z(m — 1)) (5.13)

m=0

46

where M is the total number of samples in a processing window, sign is 1 for
positive arguments and 0 for negative arguments. xz(m) is the magnitude of
m-th sample of the wave form. The algorithm is very simple since only the sign
change of the wave form is counted. However, we couldn’t find any useful result
from ZCR in our case.

Another method that we tried is Short-time-energy(STE). This is one of
the power-based methods. It analyses also in the time domain or even in the
frequency domain.

M-1

STE =) 2%(m) (5.14)
m=0

This can be computed as the average energy per processing window. It may be
more suitable for detecting voice/silence. Our samples have sounds constantly
and the sound volume doesn’t change much except during the spinning stage.
So this doesn’t give a good result for our case either.

5.8 Problems

In Section 5.2, we already mentioned the noise of the laundry room. Here is the
plot of the spectrum and the spectrogram of the noise. All electrical switches
that we are allowed to push are off.

-45dB ~
-51dB|
-54d8
-57dB |
-60dB-{
-63dB|
-66dB
-69dB-|
-72dB-|
-75dB-|
-78dB
-81dB-|
-84dB-{
o0as) z
1.00Hz 10.00Hz 100.00Hz 1000.00Hz 6000.00Hz
(a) Spectrogram of the noise (b) Spectrum of the noise

The spectrum (b) has a very similar form to the other stages in Figure 5.5
(except the spinning stage). We may take away the remarkable frequencies,
e.g., around 30Hz but it is still difficult to extract features in other stages. This
is because the sound of the noise is also changing with time.

Now we step back and see the differences of sound types which are speech, music
and environmental sound.

47

Speech time signal Music time signal Environmental time signal

amplitude
amplitude
amplitude

0 0.5 1 1.5 2 [1 2 3 4
time (s) time (s)

(a) (b)

Figure 5.16: Waveform in time domain:(a)speech signal, (b)music signal (trumpet),
(c)environment sound signal (traffic street). Figure reproduced from [14].

Speech spectrum Music spectrum Environmental spectrum

80

2000 200

60
3 3 1500 g 150
£ 2 2
g 40 A £ 1000 £ 100
< © <

20(J ! 500 J 50

|
VUIA i l |
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
frequency (Hz) frequency (Hz) frequency (Hz)

(a) (b) (o)

Figure 5.17: Frequency domain for extracted region of Figure 5.16 :(a)speech signal,
(b)music signal (trumpet), (c)environment sound signal (traffic street). Figure repro-
duced from [14].

Despite what is shown in the figures, there is a certain periodicity in the time
domain for music and speech signals so harmonic structures can be presented in
their spectrum. On the other hand, the spectrum of the environmental sound is
extremely complex, i.e., not periodic. Moreover, speech and music are composed
of a limited dictionary of sound units i.e., phonemes and musical notes [14]. They
also have some rules e.g., grammar, combination of tones and duration. On the
contrary, most environmental sounds can be irregular and unpredictable since
any sounds except music and speech can be included in this category.

From these points of view, analyzing a washing machine sound specially with
significant unwanted noise is very challenging.

The difficulties of extracting features of our washing machine sounds include:
* the sounds & the unwanted sound (noise) vary by time

* the quality of the sound is not good

* getting the same sound every time is impossible

48

* the range of most frequencies are unknown

+* multiple actions occur at the same time for example, in the 'water-in’
stage, the drum is also rotating while filling water. This makes it difficult
to extract features of the stages.

Note also noises are not necessarily coming only from the pipes. This also occurs
when any parts come into contact with vibration of the washing machine parts
e.g., motors or coolant systems [15].

49

Chapter 6

To Machine Learning

Our goal is to classify sounds of our washing program by features of the fre-
quencies and to detect a stage from a short sound clip. We tried several feature
extracting methods to separate our sound data by the stages but we haven’t
found any good method yet. As we have shown in the previous section, there
are many obstacles to extract features. However, machine learning may be
possible to classify our data. Machine learning is one of the studies in artificial
intelligence and it is a technique and method by which a computer realizes the
learning ability of a human being. Examples of this includes, examining, calcu-
lating, predicting and judging without teaching explicitly. Machine learning is
using algorithms to be able to extract features from data and represent them
in a model. Then, we can use the model to infer things about other data which
we have not modeled yet [8].

For example, regard to the task of detecting a car. Conventionally, we humans
first decide features which are considered important for detecting cars e.g., tires
or windshields and then make a model so that a computer can detect cars.
However, machine learning automatically finds such features (patterns) from
the data. We don’t need to teach features to a computer.

We introduce some use of Machine learning for example, virtual personal assis-
tants e.g., Siri or Google. Another example of this is classifying spam mails or
product recommendations for you. Machine learning can be found everywhere
nowadays.

Supervised learning is an algorithm of machine learning in which both input
and desired output (label) data are provided at the same time for classification.
We use this algorithm and create a model to identify the stages of our washing
machine sounds. We are going to explain the steps as follows.

1. Outline of Deep neural network
2. Keras
3. Environment

50

4. Deep learning with Keras
5. Random search for hyperparameters
6. Results

6.1 Outline of Deep Neural Network

Neural network is one of the research topics in machine learning. It is a system
inspired by the function of neurons in the human brain. Deep learning is a
method for classification or regression problems using a model called a deep
neural network. Although we have heard of neural networks vigorously in
recent years, the idea itself existed from the 1950s [28]. Figure 6.1 shows an
example of a perceptron' which is an algorithm that receives multiple signals
as input and outputs one signal.

Each circle in Figure 6.1 is called a neuron(it is also called a mode or a unit).
Both input signals are multiplied with their weights (wi,w2) and summed up.
We call the summation a weighted sum. If the weighted sum is larger than
a threshold 6, it outputs 1 (it can be said that the neuron is firing). If the
weighted sum is smaller than 6, it gives 0.

o wi qb

Figure 6.1: A simple perceptron with two input units: zi,r2, two weight parameters:
w1,w2, a threshold: 6, an output: y.

Using a mathematical expression, we can write;
0, xiwy+ xzows <06
Y= (6.1)
1, ziwi 4 xows > 6.

The function used here is called a step function which is one type of activa-
tion function. We will come back to the activation function in later sections.
This simple perceptron can solve only linearly separable problems. However,
most interesting problems are not linearly separable like Figure 6.2.

11t is also called a simple perceptron or an artificial neuron. However, in this thesis we use
the perceptron for an algorithm which uses step function and an artificial neuron for using
another activation functions.

o1

Figure 6.2: A : a linear problem, B: non-linear problems. Figure reproduced from [26].

In order to deal with complicated problems, layers are accumulated as shown
in the next figure. Also output can became any decimal number between 0 to 1
instead of just binary values 0 and 1. This is due to an improvement of activation
functions. Then, a simple perceptron which uses only a step function now is
called a neural network when it uses another activation function. Often we refer
to deep neural networks which consist of more than three hidden layers(layers
between input- and output layer). In the Figure 6.3, the hidden layers are in
blue color.

Input Hidden Hidden Hidden Output
layer Ly layer L, layer Ly layer Ly layer Ly

Figure 6.3: A multi-layered neural network. In this figure, biases are not considered.
Figure reproduced from [24].

92

Figure 6.4: An artificial neuron with two input units: x1,x2, two weight parameters:
wl,w2, a bias: b, a weighted sum: a, an activation function: h, an output: y.

Note that the idea of bias b comes from a threshold #. Weights can only change
the amount of steepness of the y. Bias help to shift the entire curve. Output y

can be expressed;
=h
{y (a) (6.2)

a = xiwy + Tows + b

where h is an activation function (except step function). We can choose one
activation function per layer. Figure 6.4 has only 2 input signals but notice
that input signal x is usually a vector or sometimes a matrix. In our project,
we used 8192 input signals for the frequency data and 131072 input signals for
the raw data.

Every input z is connected to every neuron in the next layer (Figure 6.3). This
type of network is called a fully connected network. There are some variations
but in our project, this fully connected (deep) neural network is used.

What Neural Networks (NN) do is, simply receive an input x, and then the
neural network sets off a chain reaction and finally outputs a certain value
y (such as a scalar or a vector). This output y is obtained as a probability
distribution. A NN learning means to minimize a error function (error between
the output y and the desired output i.e., label). The weights and the biases in
the NN are adjusted in the direction to minimize the error function.

Deep neural network users have increased a lot because these methods give a
result with high accuracy. Also supercomputers made it possible to extract
insights from large, complex data sets.

6.2 Keras

TensorFlow is the most popular machine learning framework. It is an open
source library for numerical computation that makes machine learning faster
and easier. However TensorFlow interface is a bit challenging for a new user.

93

Keras is a neural networks library written in Python that wraps the efficient
numerical libraries of TensorFlow, CNTK and Theano. By using Keras, you can
implement relatively short code because all mathematical operations are already
prepared. Therefore, Keras makes it possible to write code more intuitively and
more concisely than using TensorFlow. That is why we chose to use Keras to
build and train our model.

6.3 Environment

Here we introduce the tools what we set up for studying deep learning.

Python environment:
Anaconda

Jupyter Notebook
TensorFlow (including Keras)
NumPy

matplotlib

scikit-learn

PC hardware:

To perform machine learning or specially deep learning, having a fast GPU
(Graphics Processing Unit) is very important. It is needed to perform a large
amount of product sum operations in a short time. The improvement in pro-
cessing speed by GPU is just too huge to ignore. So we use a computer with a
NVIDIA TITAN X (Pascal) graphics card at Lund university.

Operating System:
Since we use the above GPU computer from our computer, we set up Ubuntu
18.04.1 LTS in our computer to be able to control the computations remotely.

6.4 Deep Learning with Keras

The flow of classification using deep learning is below.
1. Making dataset

2. Making a (deep) neural network model

3. Training the model by the given training dataset
4. Evaluating the model

o4

6.4.1 Making the Dataset

It is said that the first thing you need for creating a classification model by deep
learning is a large quantity of good quality data. Good quality data means the
sample includes features of the classes (’the stages’ in our case) which we want
to classify. Furthermore, all samples need to be the same size. We have already
split our sound track by stages but they need to be split further. Quantity is
really depending on the sample. If you have good samples which reflect the
features then we don’t need much data. Obviously, if our samples are poor, we
need lots of data. Here are the datasets (Table 6.1) which are prepared for the
tutorials of Keras [16] and we will see the number of data which is used for each
classification.

Table 6.1: The amount of datasets for multi-class classification. Table adapted
from [25]

’ Dataset \ Contents \ Class \ Train data | Test data
MNIST 28x28 Handwritten digit recognition 10 60000 10000
cifar10 32x32 Small color images classification 10 50000 10000

fashion-mnist 28x28 Fashion articles 10 60000 10000
images classification
imdb Movie reviews 2 25000 25000
sentiment classification
reuters Newswire topics classification 46 8972 2246

This is how we proceeded to make our datasets.

1. Extract features

Since we do supervised learning, the computer learns from labeled training data.
In this way we give both input and label. For example, as the above MNIST
case, we give a 2D-image of handwriting ”9” and also a label that it states this
is 79”. The algorithm receives a 2D-image (input z) and the answer (label) at
the same time, then the algorithm tries to find a pattern (function) which is
mapping from the input to the output.

First, we make sound clips of each stage. The number of classes that we want
to classify is five and the details are in Table 6.2.

The extraction of the sound clips is proceeded like this. We listen to the sound
and keep only the part we recognize of the stages. However, all clips are cut
even smaller, around 3 seconds each?. These 3 seconds sound clips are difficult
to distinguish.

2. Pre-processing
All the sound clips are read in Python and normalized to the range [—1,1).

2To get benefits of FFT, we set the number of sample N = 27 = 131072. Since the
sampling frequency fs = 44100Hz which means 44100 points per second was taken for the

sampling. So one sound clip becomes around 3 second(14341100702 ~ 2.972s)

99

3. Apply FFT after a window function (STFT)

Each 3 seconds clip is applied to FFT after being multiplied by the Hamming
window then the result i.e., the absolute value of the FFT are stored in an array.
As we discussed in the sampling theorem, we use only half of the frequency bins
i.e., 65536 frequency bins. We decided to take average of every 8 frequency bins
so we can reduce the size. Now the FFT result of each clip is of the shape (1,
8192).

We also prepared an array for the label of the stages. For example, if the sound
clip is a part of the ”washing” stage, then we set the label as ”1”. The Python
codes for making datasets are attached in the Appendix C. We also made a raw
dataset. This is made by steps 1 and 2 without step 3. Each clip of the raw
data is of the shape (1, 131072).

Table 6.2: The amount of datasets by the stages for both the frequency dataset
and the raw dataset

Label number \ Stage \ Train data \ Test data ‘
0 spinning_full 500 82
1 washing 500 99
2 water_in 500 68
3 water_out 500 105
4 rinsing 500 106

You may notice that our datasets are extremely small compared with MNIST
datasets that contain 60,000 handwritten numerical images and 10,000 test im-
ages. It is better to have a large number of good quality data but sometimes
it is difficult to collect a large number of data in a short time. In reality, there
are many situations where it is necessary to analyze something with the data
which we have now.

Import the datasets and shuffle.

x_train) = np.loadtxt(’x_train.dat’)

((

(y-train) = np.loadtxt(’y-train.dat’)
(x-test) = np.loadtxt (’x_test.dat’)
(y-test) = np.loadtxt(’y_test.dat’)

)

x_train ,y_train = shuffle(x_train, y_train)
x_test ,y_test = shuffle(x_test, y_test)

Both z contains (sample, frequency) and both y contains (sample, label). There
is no essential difference between training data and test data. But they shouldn’t
be the same. In case training data is in order by category, then it should be put
in a random order by shuffle.

96

6.4.2 Making the Neural Network Model

model = Sequential ()

model.add (Dense (128, input_dim=x_train.shape[1l],
activation="relu’,
kernel_regularizer=keras.regularizers.12(le—3)))

model.add (Dropout (0.2))

model.add (Dense (64, activation=’tanh’,
kernel_regularizer=keras.regularizers.12(le—4)))
model . add (Dropout (0.2))

model.add (Dense (5, activation=’softmax’,
kernel_regularizer=keras.regularizers.12(le—5)))

Here, we select a form of the model. In the above example, it is configured with
an input layer, two hidden layers and an output layer. The first hidden layer
has 128 nodes and uses 'relu’ as the activation function. The second hidden
layer has 64 nodes and uses 'tanh’ as the activation function. The last layer has
5 nodes which is the number that you want to classify and uses 'softmax’ as the
activation function.

Below are some explanations of common words used in a classification model in
Keras:

Batch size : The number of data to be passed at one iteration is called batch
size. You divide the size of your samples by this number and send the portions
in for training. It can be as big as the size of your data which means you are
sending the whole data in at once.

Number of class : The number of the category that you want to classify.

Epoch number : In general, we will do learning several times using the same
training data in order to improve the accuracy of the model. This is called
iterative learning. The number of iterations is called epoch number.

Sequential : There are two ways to build Keras models, e.g., sequential and
functional. Sequential models represent models connecting each layer of a neural
network in order. We can add layers with model.add ().

Hidden layers : Layers of nodes between the input and output layers (Figure
6.3).

Dense : Densely connected layer. All nodes are connected to the nodes of the
previous layer. We can decide the number of nodes in a hidden layer. This can
be any number but it needs to be chosen as a suitable number.

Overfitting : The purpose of learning is to increase the accuracy of unknown
(test) data. However it sometimes happens that the accuracy of the train-
ing data is very high but the accuracy of the test data is not good. This is

o7

called overfitting. Overfitting refers to a model that fits the training data too
well.

Dropout : One method to prevent overfitting and improve the accuracy of the
model is called dropout. Using dropout, a part of the node is randomly deleted
(overwritten with 0) at each update during training time, which helps prevent
overfitting. Dropout(0.2) means 20 percent will be dropped out.

Regularization : In learning networks, the weights and the bias are updated
automatically in an algorithm. Regularization keeps the weights small. There
are many ways for regularization. The main purpose of using regularization is
to control overfitting.

Activation function : To each neuron of the hidden layers, we apply a function
called an activation function. There are several activation functions but all are
non-linear functions. Here are some commonly used.

(1)sigmoid function

1

i id(x) = —— 6.3
sigmoid(x) T (6.3)
(2)tanh function
e — e~ 7
tanh(z) = — 6.4
anb(a) = & (6.4
(3)relu(Rectified Linear Unit) function
0, <0
relu(z) = ¢ 6.5
@ {x T (6:5)
sigmoid tanh

relu

R [) T

Figure 6.5: Activation functions

As a final activation function, the softmax function is often used for multi-class
classification [13]. The softmax function returns an array of length 5 (in our
case), with probability scores between 0 and 1 which all sum up to 1.

To make the model work in Keras we need to compile the model.

98

model . compile (optimizer="adam’ ,
loss="sparse_categorical _crossentropy ’,
metrics=[’accuracy’])

Loss function : This is a method of evaluating how much your neural network
model does(not) match your dataset. It is showing the level of the performance
of the neural network. The goal is to minimize this value. There are several
loss functions. The common loss functions are, Mean Squared Error (MSE) and
Cross Entropy Loss. We can’t predict beforehand which will be best. It depends
on your dataset and your problem.

Optimizer : This is how your neural network model updates the weights of
every layer based on the data it sees and its loss function. Optimization algo-
rithms help us to find a minimum value of a loss function. There are several
optimizer functions as well. SDG, Adam, Adadelta and RMSProp are popular
algorithms in the field of multi-class classification.

Metrics : Metric values can be recorded at the end of each epoch on the
training/validation dataset. Here ’accuracy’ is selected and displayed.

Backpropagation : This is an algorithm for training a neural network. If the
output dose not match the label, each of the weights and the bias in the network
are adjusted in the direction to minimize the value of the loss function.

Hyperparameters : Among the parameters, the parameters that humans
adjust are called hyperparameters. All of the above mentioned e.g., activa-
tion function, number of hidden layers, rate of dropout (rate) and optimization
function etc are hyperparameters. Hyperparameters can not be changed during
training since they are defining the architecture of the network. Also learning
can not be done correctly unless these are properly set. However there are no
books that introduce the best hyperparameters for our datasets. Much experi-
ence or examination is required in order to find the optimal hyperparameter for
our datasets.

6.4.3 Training the Model

Training the neural network model to call model.fit method.

model. fit (x_train, y_train,
validation_split =0.3,
verbose=1,
epochs= 5,
batch_size= 20)

Validation_split : We split the training data to a learning data and a validation
data. The validation dataset is used to give an estimate of model skill while
tuning hyperparameters of the model. The number of the validation_split is how

99

many percent of the training data will be the validation data. In the code, the
last 30% of the training data is used for verification.

Verbose : verbose=0 shows nothing. verbose=1 shows an animated progress
bar like below:

Epoch 1/5
6eee0/60008 [] - 34s 571lus/step - loss: ©.2215 - acc: 9.9342
Epoch 2/5
60000/60000 [] - 33s 546us/step - loss: ©.0960 - acc: 9.9707
Epoch 3/5
ceeee/ceeee [] - 32s 536us/step - loss: ©.0698 - acc: 9.9781
Epoch 4/5
60000/60000 [] - 33s 547us/step - loss: ©.0536 - acc: 9.9825
Epoch 5/5
60000/60000 [] - 32s 533us/step - loss: ©.0439 - acc: 9.9862

Figure 6.6: 5 epochs training and the result

As the model trains, the loss and accuracy metrics are displayed. This model
reaches an accuracy of about 0.9862 (or 98.6%) on the training data.

6.4.4 Model Evaluation

Now we compare how the model performs on the other dataset i.e., the test
dataset.

test_loss=model.evaluate (x_test ,y_test , batch_size= 20)
y_true=keras.utils.to_categorical (y_test)
y-score=model. predict (x_test)
p-score=label_ranking_average

_precision_score (y_-true, y_score)

By iterative learning, the value of the loss function often gradually declined.
However, the value of the loss function is only for the training dataset. It is not
certain whether we can demonstrate the same level of accuracy in new datasets.
The goal is to make an algorithm which approximates so well using new input
datasets that we predict the output as close as the label for that data. Here we
explain how to evaluate a model.

60

Prediction

Positive Negative

TP FN

Positive

Actual

FP TN

Negative

Figure 6.7: Confusion matrix. Figure reproduced from [37].

This is called confusion matrix and it is often used to describe the performance
of a classification model. To evaluate a model, we compare the predicted output
with the actual output (label). There are 4 patterns which are;

e TP (True-Positive) Predict (Yes)— Answer (Yes)
e FP (False-Positive) Predict (Yes)— Answer (No)
e FN (False-Negative) Predict (No)— Answer (Yes)
e TN (True-Negative) Predict (No)— Answer (No).

We introduce some basic measures that are computed from a confusion matrix
for binary classification.

e Accuracy = all correct predictions/total predictions = TIZ{EN
e Error rate = incorrect predictions/total predictions= FPAJEEN
e Precision = correct positive predictions/total positive predictions = %

e True positive rate(Recall) = % e.g., in a medical screen test used to
identify a disease, the true positive rate is defined as the proportion of
people with the disease who have a positive result.

e True negative rate :% e.g., in the above test, this is the proportion

of people without the disease who will have a negative result.

__ 2:-Recall-Precision
e F1 score = Recall+Precision

F1 Score is the weighted average of Recall and Precision. Therefore, F1
score takes both FP and FN into account. Like in our case that we have

61

uneven class distributions, the F1 score is used more often than accuracy
[27].

How to evaluate your model depends on what you are analyzing it for. Like
the above medical screen test, if you don’t have a disease but you get a positive
result (FP), then you may need to go for another test to detect the disease but
it is considered less of a problem than the case where you have a disease but
you get a negative result (FN).

For our case, we first evaluate our model by the mean reciprocal rank
(MRR) which is often used to evaluate a model for multi-class classification.
MRR is calculated as;

1 [¢] 1

MRR 0 ; — (6.6)
where @) is the query (in our case, the sound samples) and rank; refers to the
rank of the correct answer. For example, after we trained a model with a training
dataset, we evaluated the model with a test dataset which consisted of 5 sound
samples of each stage. For Query 1, our model predicts stage 3 as the highest
possibility and stage 2 as the second highest possibility and stage 0 (the correct
answer) as the third highest possibility. Then the reciprocal rank will be 1/3 for
this query. Similarly, we calculate every reciprocal rank and sum up and divide
by the number of the sound samples.

Table 6.3: Example for MRR

Query | Proposed Results | Correct response | Rank | Reciprocal rank
1 3,2,0,1,4 0 3 1/3
2 4,0,2,1,3 1 4 1/4
3 0,1,3,4,2 2 5 1/5
4 3,0,2,1,4 3 1 1
5 3,4,2,1,0 4 2 1/2

Given those five samples, we calculate the mean reciprocal rank as;
1 1 1 1

MRR = (= + -+ - +1+-)/5~0.4 .
RR = (5 + 5 + ¢ 14 5)/5 04567 (6.7)

The MRR values (p_score) of our best models are in Table 6.4. The result of
the confusion matrix and the classification report for our best models can be
found in Section 6.6.

6.5 Random Search for Hyperparameters

In the previous section, we have seen that a neural network adjusts parameters
i.e., the weights and the bias. However hyperparameters i.e., all other parame-

62

ters can not be changed. We have to adjust them. Here we introduce one way
of hyperparameter optimization called random search. Below is an example
for making dictionaries.

'n_nod’:sorted (np.random. choice (range(50,3500),

size = np.random. choice (range(3,6))), reverse= True)
"dropout ’:np.random. uniform (0,1.0),
“act_func’: np.random.choice([’tanh’, ’relu’, ’sigmoid’])

Here we use NumPy. We let Python pick hyperparameters randomly from the
dictionary that we prepared as above. Then we save the model which gives the
good precision.

if precision_score > 0.63
np.save(’file .name’, your dictionary name)

We prepared two kinds of datasets which are the frequency data (FFT result)
and the raw data. The raw data is the normalized [-1, 1) sounds clips without
applying FFT. Table 6.4 shows the best three models of the frequency data and
the raw data from the random search. p_score is the precision that we got from
the model.

63

Table 6.4: Best three hyperparameters from the random search

Layer \ Hyper I Frequency data I Raw data ‘
Input Nodes# 8192 8192 8192 131072 131072 131072
Dense 1804 2213 2457 3097 3798 3097
1 lambd 0.001 0.1 0.001 0.001 0.001 0.0001
act relu relu relu sigmoid relu sigmoid
drop 0.3 0.3 0.3 0.3 0.3 0.3
Dense 815 2150 1733 2976 1578 2767
9 lambd 0.01 0.1 0.001 0.001 0.1 0.001
act relu relu relu tanh sigmoid relu
drop 0.2 0.2 0.2 0.2 0.2 0.2
Dense 243 1908 588 233 180 1260
3 lambd 0.01 0.01 0.01 0.01 0.0001 0.01
act relu tanh relu tanh tanh sigmoid
drop 0.1 0.1 0.1 0.1 0.1 0.1
Dense 656 253
4 lambd 0.01 0.1
act relu relu
drop 0 0
Dense 251
5 lambd 0.01
act tanh
drop 0
Output Dense 5 5 5 5 5 5
act softmax softmax softmax | softmax softmax softmax
optimizer | Adadelta Adadelta Adadelta | Adam Adam Adam
Ir 0.0001 0.0001 0.00001 | 0.00001 0.0001 0.0001
Epochs 20 60 60 80 60 80
Batch 64 512 512 64 128 32
p-score 0.60261 0.61181 0.65566 \ 0.61101 0.62826 0.63043

There are several methods for tuning hyperparameters. We introduce another
method that is called grid search. Grid search is different from the random
search in the sense that we check every combination of hyperparameters. We
may be able to find the best combination of hyperparameters which give the
best accuracy. However if we use grid search, we need a lot of computational
resources e.g., sometimes the computation time takes a couple of months. On the
other hand, random search might not give us the best hyperparameters however,
it is a more efficient technique when we consider time and cost.

64

6.6 Results

This is the results of the confusion matrix using each best model.

Table 6.5: The frequency data Table 6.6: The raw data
Predicted Predicted

o 1 2 3 4 0o 1 2 3 4
0]18 64 0 0 O 0/8 0 0 o0 O
= 170 1 0 98 0 = 110 0 0 99 0
£ 2/0 4 0 64 0 £ 2/0 0 0 68 0
< 3|0 2 0 103 0 < 3|0 0 0O 105 O
410 1 0 105 0 410 0 0 106 O

: spinning_full

: washing

: water_in

: water_out

: rinsing

It is clear that the learning was not done well for either case. Almost every
sample was predicted as the stage 'water_out’ except the ’spinning_full’ stage.
Below is the result of the classification report.

=W N = O

Table 6.7: The frequency data

precision recall fl-score support
0 1.00 0.22 0.36 82
1 0.01 0.01 0.01 99
2 0.00 0.00 0.00 68
3 0.28 0.98 0.43 105
4 0.00 0.00 0.00 106
Table 6.8: The raw data
precision recall fl-score support
0 1.00 1.00 1.00 82
1 0.00 0.00 0.00 99
2 0.00 0.00 0.00 68
3 0.28 1.00 0.43 105
4 0.00 0.00 0.00 106

where the support is the number of samples of the true response that lie in that
class.

65

Chapter 7

Conclusion

Our goal was to classify sounds of the five stages of the washing program using
short sound clips we recorded ourselves. We didn’t use 'between’ sounds and
other complex sounds because we realized that these seemed very difficult to
classify. As the purpose of this thesis is more of a study rather than the de-
velopment of a robust software tool or a mobile phone application, we did not
invest more time on this certainly important issue. Here, we discuss the result
and point out ways for future improvements.

As we expected, it is possible to predict the ’spinning_full’ stage from the raw
data (see Table 6.6). Using the frequency data from the ’spinning_full’ stage,
some sound samples of this stage could also be identified correctly. This is
because of the well-defined frequency generated by the long rotation at con-
stant speed. However, almost all the other sound clips were predicted as the
‘'water_out’ stage even though we excluded the above complex sounds. The clas-
sification by machine learning was used in this thesis for prototyping reasons but
undoubtedly, for more reliable results we would have needed larger datasets and
more advanced models to extract significant information from the noise often
coming from the laundry room. On the data acquisition side, we can not be
sure, that a tiny $10 USB microphone is fully sufficient for this task.

Additionally, the ’spinning_full’ stage has a clear feature and it can already be
identified. Therefore, we could do machine learning without this stage. Or if we
use 'noise’ sound clips then we may be able to detect that the washing program
is finished.

How about the size of the sound clip? We decided to choose a sound clip of
around 3 seconds to make sure that it is sufficiently long to contain significant
sound features needed to identify a particular washing stage. Even with the
human ear, it is sometimes difficult to recognize the stage of a sound which is
shorter than 3 seconds. Also we would like to have the number of the sample
points in the sound clip as a power of 2 in order to get benefits of FFT. The next

66

largest size would be around 6 seconds. This sound clip may have contained
more features of the stage, however it would have taken much more time to
collect the data. Additionally, if we had used such large samples, we would have
needed a huge memory space in the computer. We note here that the frequency
resolution of a DFT is defined as fﬁ Therefore if we were to choose a large sound
clip(=large sample points V), then the frequency resolution would have become
smaller. We used N = 131072 and took the average of every 8 frequency bins so
our frequency resolution was approximate 2.69Hz and our input dimension was
8192. We don’t want the frequency resolution to be smaller because that would
have led to a larger input dimension. That is another reason why we didn’t
use a 6 second sound clip. However, to solve this problem, there is a method
called Mel Frequency Cepstral Coefficients (MFCCs) which can reduce
the dimension without causing much damage to the information. It would be a
nice way to extend this project.

We are very satisfied with our study. We learned many things throughout this
thesis project such as Fourier transform, feature extraction methods, digital
signal processing and classification with machine learning. We can find a myriad
of things that oscillate in this universe. This means that all these things can
be expressed by waveforms, and we can apply FFT and analyze them by their
frequencies. Movement of a comet, exchange rates and our brain waves are just
a few examples!

Also, we learned the basics for classification by deep learning. When we take
in signals into a computer, features such as colors, strength and positions etc,
are converted to numbers. This means we can apply this classification by deep
learning, even though the input signal is not frequency. Our only requirement
is that the signal contains some features.

This study is incredibly practical and all these concepts are used widely through-
out the world. Therefore we are hopeful that this thesis is an ideal entry point
for future work for someone who starts to study mathematics and physics in
university.

67

Appendix A

Dirichlet Condition

Johann Peter Gustav Lejeune Dirichlet (1805-1859) [17] derived these condi-
tions [18] and they are called the Dirichlet conditions.

1. f(¢) is periodic and single-valued everywhere.

We say f(t) is a periodic function when a function f(¢) is such that;

fE+T) = f(t)

where T is a period.

A single-valued function means that the function is One to One which
means every element of the range of the function corresponds to exactly
one element of the domain.

2. f(t) has a finite number of discontinuities in one period and the disconti-
nuities must be finite.

3. f(t) has a finite number of extrema in one period.

4. the integral over one period must be less than oco.

T+t
/ If(8)] dt < 0o, Vi

T

68

Appendix B

Python Code - STFT

import wave

from scipy . fftpack import fft
import numpy as np

import matplotlib.pyplot as plt
from scipy.signal import get_window

def stft (filename="0lwater_in_t’, answer=2, window=’hamming’, M=131072,
N=131072, H=65536):

wavf = filename 4+ ’.wav’

wr = wave.open(wavf, 'r’)

information of the wav file
ch, sampwidth, fr, fn, _ , _ = wr.getparams()

total_time = fn/ fr

#transform to ndarray from bites

data_string = wr.readframes(fn)

wr. close ()

transform to ndarray , normalized on [—1,1)
if sampwidth =— 2:

data = np.frombuffer(data_string , dtype='int16’)
x = data / 32768.0

elif sampwidth =— 4:
data = np.frombuffer(data_string , dtype='int32’)
x = data / 2147483648.0

w = get_window (window, M, False) # window, M-size

M= w.size # size of analysis window

#for M is mot N, we do zero—padding

hM1 = (M+1)//2 # half analysis window size by rounding
hM2 = M/ /2 # half analysis window size by floor

69

x = np.append(np.zeros (hM2) ,x)
x = np.append (x,np.zeros (hM2))

pin = hM1
pend = x.size—-hMl1
xmX = []

while pin<=pend:
x1 = x[pin—hMI1: pin+hM2]
hN =(N//2)+1
w = w/sum(w)
xw = xl*w
X = fft (xw)
mX= abs (X[:hN])

zmX. append (np. array (mX))
pin +=H
change_shape=mX.reshape (8192,8)
after_mean=np.mean(change_shape
xmX. append (np. array (after_mean))
xmX = np.array (xmX)

return xmX, teach_answer

70

FHHRHFH W

#
#
#

add zeros at beginning

add zeros at the

initialize sound pointer in middle

end

last sample to start a frame

Initialise empty

select one frame
size of positive
normalize analys

window the input

#
#

append output to

compute FFT
compute absolute

list for mX

of input sound
spectrum
window

sound

value of positive

list

advance sound pointer

#this
axis=1)

#

append output to

is for making matriz smaller

list

convert to numpy array

side

Appendix C

Python Code - Making

Dataset

import numpy as np
import STFT
import collections

2979

0: spinning_full

1: washing
2: water_in
3: water_out(draining)
4: rincing
names = [’7draining’, ’16spin_full’,

vals = [3, 0, 2, 1, 3, ...]

(]
(]

mat_list =
ans_list =

for name, val in zip(names, vals):
mat, ans = STFT. stft (name, val)
mat_list .append (mat)
ans_list .append (ans)

x_train = np.vstack(mat_list)

y-train = np.vstack(ans_list)

rec=y_train.reshape(—1)

71

’2—1water_in

’, ’3washing’,’4—1draining’,

counting_train = collections.Counter(rec)
print (counting_train)

np.savetxt(’x_train.dat’, x_train)
np.savetxt(’y_train.dat’, y_train)
»n»

making test_-matrixz and test_answer

2999

names3 = [’Olwater_-in_t’,’02washing_t’,’03draining_t’,’04dwater_in_t’ ,...

vals3 = [2,1,3,2,...]

mat_list3 = []
ans_list3 []

for name, val in zip(names3, vals3):
mat3, ans3 = STFT.stft (name, val)
mat_list3 .append (mat3)
ans_list3 .append(ans3)

x_test = np.vstack(mat_list3)

y-test = np.vstack(ans_list3)
res=y_test.reshape(—1)

counting_test = collections.Counter(res)
print (counting_test)

np.savetxt(’x_test.dat’, x_test)
np.savetxt(’y_test.dat’, y_test)

72

Appendix D

Python Code - Random
Search

import numpy as np

import keras

from keras.models import Sequential

from keras.layers import Dense, Dropout, Activation, Input
from keras.optimizers import SGD

from keras.callbacks import EarlyStopping

import matplotlib.pyplot as plt

from keras import backend as K

import tensorflow as tf

from sklearn.utils import shuffle

from sklearn.metrics import label_ranking_average_precision_score
import os

os.environ ['TF.CPP.MIN.LOG_LEVEL’| = 2’

x_train = np.loadtxt(’x_train.dat’)
y-train = np.loadtxt(’y_train.dat’)

x_test np.loadtxt (’x_test.dat’)
y_test = np.loadtxt(’y_test.dat’)

x_train ,y_train = shuffle(x_-train, y_train)
x_test ,y_test = shuffle(x_test, y_test)

def pipline (inp_dim ,
n_nod ,
drop = [],
act_fun = ’'relu’,
out_act_fun = ’sigmoid’,

73

opt_-method = ’'Adam’,

cost_fun = ’binary_crossentropy’,
Ir_rate = 0.01,

num_out = 5,

lambd = 0.0,

batch_size = 20,
epochs = 10):

main_input = Input(shape=(inp_-dim,), dtype='float32’, name=’main_input’)

X = main_input
actfun_used =[]
lambd_used =[]

for j,nod in enumerate(n_nod):

templ=np.random. choice (INPUT["act_fun’])
temp3=np.random. choice (INPUT['lambd’|)

X = Dense(nod,
activation = templ,
kernel_regularizer= keras.regularizers.12 (temp3))(X)
X = keras.layers.Dropout(drop[j])(X)
actfun_used .append (templ)
lambd_used . append (temp3)
output = Dense(num_out, activation = out-act_fun)(X)

method = getattr (keras.optimizers, opt_.method)

model = keras.models.Model(inputs=[main_input], outputs=[output])
model . compile (optimizer = method(lr = Ir_rate),
loss = cost_fun)

return model, actfun_used, lambd_used

for _ in range(1000):

INPUT = {’inp_.dim’: x_train.shape[l],
'n_nod’:sorted (np.random. choice (range(50,4000),
size =np.random.choice (range(3,6))), reverse= True),
"drop’:[0.3, 0.2, 0.1, 0., 0., 0., 0., 0.],
’act_fun’: [’tanh’, ’relu’, ’sigmoid’],
out_act_fun’: ’softmax’,
’opt_method ’: np.random.choice (['RMSprop’, ’Adam’, ’Adadelta’]),
>cost_fun’: ’sparse_categorical_crossentropy’,
"lr_rate’: np.random.choice ([le—1, 1le—2, 1le—3, le—4, le—5]),
‘num_out’ : 5 |

74

‘lambd’: [le—1, le—2, le—3, le—4, le—5],
"batch_size’:np.random. choice ([64, 128, 256, 512]),
’epochs’:np.random. choice ([20,40,60])}

model, actfun_used, lambd_used = pipline (x*xINPUT)

es_cb=keras.callbacks.EarlyStopping (monitor="val_loss’, patience=6,
verbose=1, mode="auto’)
history = model. fit (x_-train, y-_train,

validation_split=0.3,

verbose=0,

epochs= INPUT|[’epochs’],
batch_size= INPUT[’batch_size’],
callbacks=[es_cb])

test_loss = model.evaluate (x_test ,y_test, batch_size= INPUT[’batch_size’])
print(’Test.loss:’, test_loss)

y_true = keras.utils.to_categorical (y_test)

y-pred = model. predict (x_test)

p-score = label_ranking_average_precision_score(y-true, y_pred)
print(’precision.score’, p_score)

if p_score > 0.65
np.savez(’'great_hyperl.npz’, INPUT, actfun_used, lambd_used, p-_score)

))

target_names = [’0:spinning_full’, ’1:_washing’, ’'2:_.water_in’,’3:_water_out’,
"4:_rincing 7]

y-pred=np.argmax (y-pred, axis=1)

print (confusion_matrix (y-test , y_pred))

print(classification_report (y_test, y_pred, target_names=target_names))

()

Bibliography

1]

Transnational College of Lex, Who Is Fourier? A Mathematical Adventure
2nd Edition. U.S.A.: Language Research Foundation, 1997

Steven W. Smith, The Scientist and Engineer’s Guide to Digital Signal
Processing. San Diego: California Technical Publishing, 1997

Bernard Mulgrew, Peter Grant and John Thompson, Digital signal process-
ing, Concept €& Applications N.Y: Palgrave, 1999

Julius O. Smith III, Mathematics of the discrete Fourier transform(DFT)
with audio applications 2nd ed. U.S.A.: W3K Publishing, 2008

Julius O. Smith III, Spectral audio signal processing U.S.A.: W3K Publish-
ing, 2011

William L.Briggs, Van Emden Henson, The DFT, An Owner’s Manual
for the Discrete Fourier Transform U.S.A.: the Society for Industrial and
Applied Mathematics, 1995

Richard G. Lyons, Understanding Digital Signal processing U.S.A.: Addison
Wesley Longman, Inc., 1997

Josh Patterson and Adam Gibson,
Deep Learning, A Practitioner’s Approach U.S.A.: O’Reilly Media, Inc.,
2017

Xavier Serra and Julius O Smith, III, DFT of real sinusoids, lecture notes.
COURSERA, Audio Signal Processing for Music Applications, Universitat

76

Pompeu Fabra of Barcelona & Stanford University, 2018. https://www.
coursera.org/learn/audio-signal-processing/home/info

[10] NATIONAL PROGRAMME ON TECHNOLOGY ENHANCED LEARN-
ING, The Convolution Theorem, Module 2:Signals in Frequency Domain
Lecture 18, lecture note.
https://nptel.ac.in/courses/117101055/downloads/Lec-18.pdf (Ac-
cessed 20181215)

[11] Wikipedia, Paul Dirac,
https://en.wikipedia.org/wiki/Paul_Dirac (Accessed 20181226)

[12] Electrolux, Washing machine Service Manual
http://tools.professional.electrolux.com/Mirror/Doc/ELS/SMA/
SM_438920181_W365-3300H_Exacta_EN.pdf (Accessed 20190108)

[13] Stacey Ronaghan, Deep Learning: Which Loss and Activation Func-
tions should I use?. https://towardsdatascience.com/deep-learning-
which-loss-and-activation-functions-should-i-use-ac02f1c56aa8
(Accessed 20190120)

[14] Francesc Alias, Joan Claudi Socoré and Xavier Sevillano, A Review of
Physical and Perceptual Feature Extraction Techniques for Speech, Music
and Environmental Sounds, Applied Sciences, MDPI, 2016
https://www.mdpi.com/2076-3417/6/5/143 (Accessed 20190110)

[15] Marcel Janda, Ondrej Vitek and Vitezslav Hajek, Noise of Induction
Machines, IntechOpen Limited, 2012.
https://www.intechopen.com/books/induction-motors-modelling-
and-control/noise-of-induction-machines (Accessed 20190112)

[16] TensorFlow, Tutorials, Get Started with TensorFlow, https://wuw.
tensorflow.org/tutorials/ (Accessed 20190112)

[17] Wikipedia, Johann Peter Gustav Lejeune Dirichlet,
https://sv.wikipedia.org/wiki/Johann_Peter_Gustav_Lejeune_
Dirichlet (Accessed 20181201)

[18] Neelu Kumari, Notes on Dirichlet conditions in Fourier trans-
form, Our blog education. https://blog.oureducation.in/dirichlet-
conditions/ (Accessed 20181206)

[19] Christophe, How does Shazam work, Coding Geek, A blog about IT, pro-
gramming and Java, 2015.
http://coding-geek.com/how-shazam-works/ (Accessed 20181206)

[20] Michael T. Heideman- Don H. Johnson c. Sidney Burrus Gauss and
the History of the Fast Fourier Transform, IEEE ASSP MAGAZINE
OCTOBER 1984.
https://www.cis.rit.edu/class/simg716/Gauss_History_FFT.pdf
(Accessed 20190211)

7

[21] Ricardo Gutierrez-Osuna, L6: Short-time Fourier analysis and synthesis,
lecture notes. Introduction to Speech Processing, TEXAS AM UNIVER-
SITY, 2002. http://research.cs.tamu.edu/prism/lectures/sp/16.pdf
(Accessed 20190122

[22] MIT OpenCourseWare, Sampling and the Discrete Fourier Transform,
lecture notes. 2.161 Signal Processing, Continuous and Discrete, Fall
2008. https://ocw.mit.edu/courses/mechanical-engineering/2-161-
signal-processing-continuous-and-discrete-fall-2008/study-
materials/samplingdft.pdf (Accessed 20181211)

[23] Mathuranathan Viswanathan, How to Interpret FFT results — com-
plex DFT, frequency bins and FFTShift, GaussianWaves, 2015.
https://www.gaussianwaves.com/2015/11/interpreting-fft-
results-complex-dft-frequency-bins-and-fftshift/ (Accessed
20190126)

[24] UC Business Analytics R Programming Guide, Feedforward Deep Learning
Models, http://uc-r.github.io/feedforward_DNN (Accessed 20190308)

[25] Keras documentation, Datasets, https://keras.io/datasets/ (Accessed
20190308)

[26] Sebastian Raschka, Naive Bayes and Text Classification — Introduc-
tion and Theory, http://sebastianraschka.com/Articles/2014_naive_
bayes_1.html (Accessed 20190313)

[27] Renuka Joshi , Accuracy, Precision, Recall €& F1 Score: Interpretation of
Performance Measures, https://blog.exsilio.com/all/accuracy-
precision-recall-fl-score-interpretation-of-performance-
measures/ (Accessed 20190314)

[28] Koki Saitoh 1@ m5{F% DeepLearning. Python T AT 4 —7 5 —=
> PO & FEE | Japan @ O'Reilly Japan, Inc. 2016

(29] aidiary A THIREICEI 9 2 Wralss, BERC7 —) =Z4% | http://aidiary.
hatenablog.com/entry/20110611/1307751369 (Accessed 20181212)

[30] Mayuko Iwamoto,
Aol 7 =) TR T —) T ZEWE6H 9 H) e
ture notes. Shimane University. http://www.math.shimane-u.ac.jp/
\~miwamoto/2016mmm1/mmm1-9.html (Accessed 20190125)

[31] Naoto KOUYAMA,
B4 EREE Y —) = A | lecture notes. Toyama University.
https://kouyama.sci.u-toyama.ac.jp/main/education/2006/
infomath/pdf/text/text10.pdf (Accessed 20190301)

[32] Akira Asano 20115FFLRR=] BREATICHT 55 6 [0
BLER - 7 =) AT RERL T —) TR L S T —) TR | lecture

78

notes, 2011. http://racco.mikeneko. jp/Kougi/2011a/AAN/2011aaan06.
pdf (Accessed 20190301)

B3 PIC AVR TfF%, FFT - - #HZEZEAM , http://picavr.
uunyan. com/warehouse_fft3.html (Accessed 20190211)

[34] Onosokki &FHHI2 T Liemm136%5
D S ORI (T) - [BfE5o+> 7) > 7] https://
www.onosokki. co.jp/HP-WK/eMM_back/emm136.pdf (Accessed 20190211)
[35] Shingo Kagami,
LEHERTERLT 4 Y YL {E5 U | Tohoku University. http://
www.ic.is.tohoku.ac.jp/~swk/lecture/yaruodsp/main.html (Accessed
20181126)

[36] w2 AT =V, BEEZEH WS E) 2019, https://www.
logical-arts.jp/archives/124 (Accessed 20190116)

[37] kaeken,
/scikit-learn,/5y FUM 1L %2 GF il 97 % FRIC (b 1 % B [6] 17 7] (Confusion
matriz)lC D\ . kaeken? Data Scienceld¥5% 7 10 77 http://kaeken.

hatenablog.com/entry/2018/02/02/210000 (Accessed 20190308)

[38] Setoka Karikome, T ¥ L {2 5WIE3 | 2002. https://slidesplayer.
net/slide/11519754/ (Accessed 20190116)

79

